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Abstract. Randomized algorithms are being used extensively in optimization. We discuss one
such algorithm, called a genetic algorithm, which can be used for combinatorial optimization. We will
consider the application of the genetic algorithm to a particular problem, the Assembly Line Balancing
Problem, and its implementation on a parallel architecture. The general scheme of a genetic algorithm
is given, and its specialized use on our test bed problems is outlined. Although extensive parallel
processing is available in these methods, the problems of communication and synchronization have not
been considered in detail. We describe a prototype local neighborhood genetic algorithm for which
communication is greatly reduced and give results of experimentation on several different neighborhood
structures. A possible asynchronous scheme is also mentioned.

1. Introduction. Algorithms based on genetic ideas were first used to solve op-
timization problems more than twenty years ago (e.g. [Bag67]). During the 1970’s
this work continued, but was largely unknown. In the last five years, however, there
has been increasing interest in genetic algorithms. There have been three conferences
devoted to this topic and two books have appeared [Dav87, Gol89].

Many researchers have concentrated their efforts on nonlinear function optimization
or the nonlinear programming problem. OQur interest is in the application of genetic
algorithms to combinatorial optimization problems. It is appropriate to start with an
outline description of this type of approach to combinatorial optimization. A genetic al-
gorithm (GA) works with a whole population of potential solutions, (i = 1,..., popsize),
which we will call individuals. The population changes over time, but always has the
same number of members. Each individual is usually represented by a single string of
characters. At every iteration of the algorithm a fitness value, f(¢), is calculated for
each of the current individuals. Based on this fitness function a number of individuals
are selected as potential parents. Two new individuals can be obtained from two par-
ents by choosing a random point along the string, splitting both strings at that point
and then joining the front part of one parent to the back part of the other parent and
vice versa. Thus parents A-B-C-A-B-C-A-B-C and A-A-B-B-C-C-C-B-A might produce
offspring A-B-C-B-C-C-C-B-A and A-A-B-A-B-C-A-B-C when mated. This process is
usually called crossover. Individuals may also change through random mutation when
elements within a string are changed directly (normally this happens with only a low
probability). The processes of crossover and mutation are collectively referred to as re-
production. The end result is a new population (the next “generation”) and the whole
process repeats. Over time this leads to convergence within a population with fewer
and fewer differences between individuals. When a genetic algorithm works well the
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population converges to a good solution of the underlying optimization problem and
the best individual in the population after many generations is likely to be close to the
global optimum. A model algorithm is given below:

Model Algorithm:
repeat
for each individual i do evaluate f(i)
for i=1 to (popsize/2) do
select pairs of individuals j and k to mate based on their fitness
reproduce using individuals j and k
until population variance is small

There are some similarities between a GA and the method of simulated annealing.
Both approaches involve some random element in the way that the algorithm proceeds.
In both cases the running time of the method will depend on certain parameter settings,
with a greater likelihood that an optimal or near-optimal solution is found if the algo-
rithm is allowed to run for a long time. Both methods have applicability across a wide
range of problem domains — part of their attraction is that they hold out the promise of
effectiveness without being dependent on a detailed knowledge of the problem domain.
On the other hand there are substantial differences between the two approaches: for
example since GAs operate using a whole population of individuals, they have a kind
of natural parallelism not found in simulated annealing.

It is not easy to assess the effectiveness of this type of algorithm. For any particular
problem there are likely to be special purpose techniques and heuristics which will
outperform a more general purpose method. In a sense this may not be important.
The value of simulated annealing, for example, is that for many problems half a day’s
programming and a day’s computation will suffice to find as good a solution as would
be obtainable after an half an hour’s computation using a sophisticated method which
might take three weeks or more to get working. Might something similar be true for
genetic algorithms?

The paper consists of two parts. In the first part we have tried to establish that,
for one particular type of problem, GAs have a clear advantage over the simplest of all
generic approaches, which is the use of a neighborhood search technique with multiple
starts. This is perhaps the minimal condition for genetic algorithms to be considered
as a serious contender in solving hard combinatorial optimization problems. As far as
we are aware this type of comparison has not been carried out before.

In the second part of the paper, we will describe more fully the parallelism which
is inherent to the genetic algorithm and explain the various extensions which enable
efficient implementation of the algorithm on message passing systems. Related work
can be found in [GS89, M&89, SG87, Tan87]

2. The Assembly Line Balancing Problem. We will look at the application of
genetic algorithms to the Assembly Line Balancing Problem (ALBP). Suppose we wish
to design a manufacturing line using a given number of stations, n. At each station
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someone will perform a number of operations on an item being made, before passing it on
to the next station in the line. The problem is to assign the operations to the n stations
in such a way as to produce a balanced line, given the time that each operation will
take. The total output of the line will be determined by the slowest station, which is the
station with the most work assigned to it. Our aim is to minimize the amount of work
assigned to this station and thus to maximize the total throughput of the line. Thus far
we have described a type of standard balancing problem - in a scheduling context this
would be equivalent to minimizing makespan on parallel machines. The crucial feature
of the ALBP, however, is that certain operations must be performed before others can
be started. If we have this type of precedence relation between operations A and B,
for example, then we cannot assign operation B to a station earlier than operation A
(though both operations may be assigned to the same station).

The ALBP has attracted the attention of many researchers. Both heuristic and
exact methods have been proposed for its solution. For a review of some of these
methods see the papers [TPG86, Joh88]. Note that the ALBP is sometimes posed with
the total operation time for each station constrained by some upper bound (the desired
“cycle time”) and the number of stations as the variable to be minimized. The ALBP
is attractive as a test bed for GAs since there is a natural coding of a solution given
by the station assignment for each operation. Also, though we do not expect a GA to
be as effective as some of the special purpose heuristic methods, it will nevertheless be
interesting to make comparisons between the two approaches.

There are a number of issues to be resolved in implementing a genetic algorithm
for the ALBP. We will now deal with three of these issues; namely the coding scheme
used, the method of calculating fitness and selecting individuals for mating, and the
recombination mechanism (of mutation and crossover).

Coding. There are two aspects to the coding scheme for a genetic algorithm. One
is the way that a solution is related to the elements of the string which codes for it. As
we mentioned above a natural coding is available for the ALBP in which each operation
is associated with a fixed position on the string and the code is simply the number of the
station to which that operation is assigned. The other aspect of coding is the location of
the operations on the string. This will be important since the crossover operation will
be less likely to separate two pieces of information (“genes” in the genetic description)
if they are close together on the string. We have chosen to put the operations into an
order given by increasing numbers of predecessors, with ties broken by looking at the
number of immediate predecessors.

Fitness and selection for the mating pool. At the heart of a GA is some
calculation of fitness for each member of the population. This will determine how likely
it is that an individual survives into the next generation, or is selected for mating. For
the ALBP the fitness must include an element corresponding to the total time for the
operations assigned to the slowest station. However we also wish to avoid solutions
which are infeasible because of precedence constraints. Rather than rule these out
directly, we will assign a large penalty cost to any of these infeasible solutions.
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The fitness function we use is defined to be
exp(—k(Tmaz +d*V + ex T2+ f * (T'maz — Tmin)))

Here Tmaxz is the slowest station time, T2 is the second slowest station time, T'min is
the fastest station time and V is the number of precedence violations. The constants
d, e, f and k are chosen as follows. d > 1 in order that the precedence violations are
removed as quickly as possible. e is chosen so that the second slowest time is taken into
account (to decrease the solution value it would be valuable to have this time smaller
than T'maz) but so that Tmaz dominates. The final term is added to try and force a
balanced line (but with f chosen suitably small). The constant k is chosen so that the
values of the fitness function lie within reasonable bounds.

We have also implemented a linear scaling of the fitness values. The scaling is
performed in such a way that the average fitness remains constant but the maximum
fitness is a multiple (usually 1.5) of this average value.

We have used two different methods to select individuals for mating. The first
(stochastic sampling with replacement) selects each individual with a probability pro-
portional to its fitness. Thus each time a selection is made individual ¢ is chosen with
probability given by

pselect; = fi/ > f;
J

The second method, which is usually called “remainder stochastic sampling without
replacement” is similar but involves some selections being made in a deterministic way.
First each individual is allocated samples according to the integer parts of e; = pselect;*
n. The remaining samples are taken one by one, with at each stage the probability
of individual ¢ being selected proportional to the fractional part of e; until the new
population has the desired size. This scheme has the advantage that all above average
individuals will survive to mate in the next generation. The second of these methods is

generally acknowledged to be superior and this has been confirmed by numerical testing
on the ALBP.

Recombination. There are two aspects to recombination: crossover and muta-
tion. We have made some limited experiments with different crossover mechanisms
with the aim of incorporating some problem specific knowledge. This has been shown
to be effective in some previous studies [Gre87]. One method that we tested was to
concentrate the changes that crossover introduces within the slowest station. For each
parent, this was achieved by changing some of the station assignments for operations
currently assigned to one of the slowest stations to the station assignment that that
operation has in the other parent. However this approach did not lead to any very
substantial improvements over the more standard crossover mechanism described in
the introduction. For our problem, a more natural scheme for crossover is to randomly
generate an operation number and cross over that operation and operations which are
its successors in the precedence graph. This appears to work slightly better than the
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scheme outlined in the introduction and is the scheme of choice for the remaining results
reported here.

We have implemented two forms of mutation. The first is standard in the literature
of genetic algorithms and involves the random change of a particular allocation of
operation to station. We move a random operation from its station to the station
immediately before or after it. The second scheme is motivated by our particular
problem. Mutation is achieved by choosing two adjacent stations and moving each
task from one of these stations to the other with small probability. We also tested
concentrating the mutations within the stations achieving the slowest time. Over a
number of runs this usually gave a slightly better solution, but the variance of the
solutions was much greater and frequently infeasible solutions resulted.

3. Experimental Results (Comparison). Experiments were performed on ran-
domly generated problems having 40 operations; these are to be assigned to 6 stations.
One factor which we varied was the number of precedence relations included. This
can be conveniently measured as a “density” giving the number of precedence relations
actually present or implied divided by the total number possible.

As stated earlier our aim is to compare an implementation of a genetic algorithm
with a simple neighborhood search scheme. We have implemented the neighborhood
search by taking a population of initial solutions and at each generation replacing each
individual with a randomly generated neighbor. The randomly generated neighbor
is given by applying the mutation operation described above to the individual and
only replacing the current individual by its neighbor if the neighbor is as good as the
individual. For the genetic algorithm we used a probability of crossover of 0.6 and a
probability of mutation of 0.03 (for each element in a string). For both the neighborhood
search method and the genetic algorithm we used a population size of 40.

We experimented with two kinds of starting solution. The first scheme generated
the initial population entirely at random. In order that one can effectively program a
genetic code quickly, this would be the method of preference for generating initial solu-
tions. In this case, the genetic algorithm performed far better than the neighborhood
scheme. Indeed, in most cases, the neighborhood scheme was unable to find a feasible
solution. However, the genetic algorithm was able to find a feasible individual whose
maximum time was within 10% of the optimal time for the problem in every case we
tried.

However the situation is different when a preselected initial population is used. We
generated a set of initial solutions using a method due to Arcus (see [Arc66]). This is
extremely effective. In a significant proportion of cases the initial set of Arcus solutions
contains at least one which is never improved upon by either the GA or neighborhood
search method. In the other cases the best of the Arcus solutions is never far from the
best solution found. Using the same parameters as before for the GA and with a limit
of 40 iterations the performance of the GA and the neighborhood search scheme was
comparable. It seems that there is premature convergence of the method around the
few individuals which are generated by the Arcus scheme. With insufficient variability
in the population the GA is unable to work well.
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The total time assigned to the slowest station for these randomly generated prob-
lems was around 50. In cases where the GA or the neighborhood scheme did better it
was usually by a margin of 1 unit, implying that the throughput of the line would be
improved by about 2%.

There are a number of conclusions that can be drawn from these experiments.
First we note how difficult it is to improve on the “standard” version of the genetic
algorithm; the only area where changes were able to show some improvement for the
problem we looked at was in the use of different mutation schemes. This characteristic
of genetic algorithms is clearly beneficial if it is desired to use the technique on problem
domains about which one has little knowledge. We have shown that for the assembly
line balancing problem a genetic algorithm performs significantly better than simple
neighborhood search from a random initial population. The effectiveness of the method
does depend somewhat on the density of the problem, the best results being obtained
for problems with relatively low densities. If an initial population of good solutions
is used then a genetic algorithm may offer little benefit in comparison with a more
straightforward neighborhood search scheme. However, even in this case, both methods
give an improvement of about 2% over the initial solutions after 40 generations.

4. Parallel Implementation Using Local Neighborhoods. Up to this point
we have only been concerned with a comparison of the genetic algorithm with other
schemes used to solve our problem. In the remainder of this paper we will look at the
parallelism associated with the genetic algorithm initialized with a random population
and try to improve on synchronization and communication costs. A GA would appear
to be ideal for parallel architectures since evaluation and reproduction can be performed
concurrently. In fact, for a large population of individuals, the use of many processors
would seem enticing. However, this ignores the problem of communication and synchro-
nization which are inherent in the selection mechanism described above. In this section
we discuss how selection can be performed in a way which reduces the message passing
required in a parallel architecture. Not only is this beneficial from the point of view of
communication penalties but computational experience demonstrates that it will also
improve the quality of solutions obtained.

Note that for both of the techniques of selection described previously, the processor
effecting the selection needs to acquire the fitness values of every individual. This
involves a large communication penalty for any message passing system.

Recently, several researchers have experimented with neighborhood schemes in
which the fitness information need only be transmitted within the local neighborhood.
The pioneers in this area are H. Miihlenbein and M. Gorges—-Schleuter who have devel-
oped the ASPARAGOS system to implement an asynchronous parallel genetic algorithm
[GS89, M89]. In this paper we will concentrate on two issues: first the determination of
the best neighborhood structure to use, and second the difference between synchronous
and asynchronous versions of the algorithm. We aim to clarify these issues by discussing
the performance of a parallel GA on a particular problem.

A model algorithm for a scheme in which fitness information is only compared
locally is as follows.




Local Neighborhood Algorithm:
repeat
for each individual i do
evaluate f(i)
broadcast (i) in the neighborhood of i
receive {(j) for all individuals j in the neighborhood
select individuals j and k to mate from neighborhood based on fitness
request individuals j and k
synchronize
reproduce using individuals j and k
until population variance is small

For a parallel implementation, we assume that each individual in the population
resides on a processor and communication is carried out by message passing. Our ex-
perimental results are concerned with several neighborhood schemes which we describe
briefly now:

global: Here every individual is in the neighborhood of every other individual. The
neighborhood size is the size of the population.

hypercube:

¢ € nhd(j) < du(i,j) <1

where dy(i,7) is the number of different bits in the binary expansions of ¢ and j. This
can be viewed as each individual residing on the vertex of a hypercube with adjacent
vertices giving its neighbors. The neighborhood size is one more than the dimension of
the hypercube.

ring4:

i €nhd(j) <= |i—j| <2

This can be viewed as each individual residing on a ring and its neighbors are those no
further than two links away. The neighborhood size is four.
ring8:

i €nhd(j) < |i-j| <4

This can be viewed as each individual residing on a ring and its neighbors are those no
further than four links away. The neighborhood size is eight.

grid4: Suppose popsize = r? and individuals are labeled as (u,v) with u,v €
{1,...,r}. Let d.(a,b): = |(a mod r) — (b mod r)|. Then

(u,v) € nhd((x,y)) < di(u,x) +ds(v,y) <1

This can be viewed as each individual lying on a grid and only communicating with the

four grid points which differ by one in at most one component (with wrap around at
the edges).
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grid8: Using the same setup as grid4
(u,v) € nhd((x,y)) = max{d:(u,x),dr(v,y)} <1

This can be viewed as each individual lying on a grid and only communicating with the
eight grid points which differ by less than one in every component.

island: Suppose popsize = r * s and individuals are labeled as (u,v) with u €
{1,...,r} and v € {1,...,s}. Then

u==cand |v—y|<2o0r
(u,v)Enhd((XJ)) — {v:y:land |u-—~$l§1

This can be viewed as r island populations which can only communicate with the rest
of the world through a particular individual. The neighborhood size is between 4 and
6.

We now describe some further details of an implementation of this algorithm. Be-
cause we can no longer think of a single mating pool it is unclear how to implement
remainder stochastic sampling without replacement. Instead we carry out selection
using stochastic sampling with replacement. In the form given above we select two
individuals j and k from the neighborhood based on fitness. In order to reduce commu-
nication it is possible to set k = i. This technique was used on our test problems with
each of the neighborhood schemes above and performed at least as well and frequently
better than the original scheme. For the rest of our experimentation, this technique was
used. We postulate that (although the new technique allows potentially poor solutions
to be involved in mating which could degrade performance) the greater variability in
solutions considered is helpful.

Reproduction produces two offspring. Our strategy was to replace the current
individual with its best offspring provided this offspring is better than the worst indi-
vidual in the neighborhood. The question arises whether it is possible to use the other
offspring? In order to answer this, the following techniques were tested:

noret: The less fit offspring is discarded.

retpar: The less fit offspring is sent to its other parent which it replaces if it is fitter
than this parent.

retran: The less fit offspring is sent to a random neighbor which it replaces if it is
fitter than this neighbor.

In the sequel, we shall refer to these techniques as “return policies”.

5. Experimental Results (Parallelism). The aim of these tests was to deter-
mine, if possible, which neighborhood scheme and which return policy was optimal.
Although these results may depend on our particular problem, it is hoped that the con-
clusions of this research will be applicable in the general context of genetic algorithms
applied to combinatorial optimization problems. Our experiments were confined to a
randomly generated test set with the number of stations varying between 2 and 6, the
number of operations varying between 40 and 50 and the density of the precedence
graph ranging between 0.2 and 0.8. The operation times were generated either from a
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optimality | noret | retpar | retran | twosel

tolerance
0.1% 245 256 52 64
global 1.0% 805 829 632 640
2.0% 827 896 640 704
0.1% 64 192 128 0

hypercube 1.0% 704 768 704 448
2.0% 704 832 768 576
0.1% 197 216 85 128
ring4 1.0% 826 790 768 448
2.0% 831 804 832 640
0.1% 192 192 0 128
ring8 1.0% 832 960 512 640
2.0% 944 960 731 768
0.1% 128 64 256 0

grid4 1.0% 832 576 704 448
2.0% 832 640 768 576
0.1% 128 0 128 64
grid8 1.0% 704 576 704 384
2.0% 832 704 704 832
0.1% 349 309 355 64

island 1.0% 829 854 768 640
2.0% 829 876 916 704
TABLE 1

Number of individuals within optimality tolerance

uniform distribution on [50,500] or a binomial distribution with parameters n = 30 and
p = 0.25, The generator used to produce these problems is described in more detail in
[TPG86]. Each problem was allowed to run for 400 generations on a population size of
64 starting from 5 random initial populations. Table 1 is a summary of the experimen-
tal results we obtained. For each of the neighborhood schemes we calculate how many
individuals from the population at generation 400 are within 0.1%, 1.0% and 2.0% of
the optimal solution for each of the problems and take their sum. We feel this is the
significant figure for each of the procedures - it is an attempt to ascertain which neigh-
borhood structure and which return policy works best, independent of other factors
(such as density of precedence graph, number of operations, etc) on the problem. The
maximum figure that could appear in the table is 1280.

In all cases, the minimum value found in the final generation by the genetic algo-
rithm was within one-tenth of a percent of optimality. We do not consider the best
solution found over all generations, since the communication involved in determining
this solution would be enormous. However, in a serial implementation, the best solution
found in the final generation was close to and in general equal to this value. Further-
more, the local neighborhood algorithm always outperformed the standard schemes

9



global | hypercube | ring4 | ring8 | grid4 | grid8 | island
global - 3:1 22 | 31 3:1 3:1 | 0:3*
hypercube | 1:3 - 1:3 1:3 | 1:2% | 2:2 0:4
ringd 2:2 3:1 - 2:2 3:1 3:1 1:3
ring8 1:3 3:1 2:2 - 3:1 3:1 1:3
grid4 1:3 2:1%* 1:3 1:3 - 3:1 0:4
grid8 1:3 2:2 1:3 1:3 1:3 - 0:4
island 3:.0* 4:0 3:1 3:1 4:0 4:0 -

TABLE 2

Neighborhood scheme rating

where selection was performed (with or without replacement) on the entire population.

Note that the values reported in Table 1 are frequently multiples of 64. This is
due to the fact that after 400 iterations, the GA has frequently converged and all the
individuals have the same value. It is clear that different schemes will have different
convergence rates. Some of the schemes above converged after around 200 generations
and produced inferior quality solutions, mainly due to the fact that they did not look
at enough different individuals. In order to obtain a fair comparison, we set the scale
factor in the linear scaling of the fitness values to 1.2 instead of 1.5 (in the case of
the hypercube or grid8 neighborhoods). Figures 1 and 2 show the effect of changing
the scale factor. The graphs show the maximum, minimum and average values of the
objective function for a particular problem instance averaged over 5 runs of the genetic
algorithm as a function of generation. In Figure 1, the linear scaling factor makes the
maximum fitness 1.5 times the average fitness, whereas in Figure 2 the scale factor is
1.2. Notice that the convergence is slower in the second example, but the histograms
(which are plots of the numbers of individuals against the maximum station time) show
the quality of solutions is much better. :

From Table 1 we produce two further tables which we claim show which neigh-
borhood scheme is best and which return policies work well. Essentially, we order the
triples found in Table 1. Two triples, (a, b, c) and (d, e, f) are ordered as follows:

(a,b,c) “is better than” (d,e, f)
dfa < 0.95
= or 0.95 < d/a < 1.05 and e/b < 0.95
or 0.95 < d/a < 1.05 and 0.95 < e¢/b < 1.05 and f/c < 0.95

Essentially, one triple is better than another if is is lexicographically greater than the
other (with two elements of the triple being treated as equal if they differ by less
than 5%). To obtain the ijth entry of Table 2 we compare rows of Table 1. Thus
entry (hypercube, ring8) in the table is 1:3 which means that for 1 return policy the
hypercube neighborhood structure was better than the ring8 structure, whereas for the
other 3 return policies, the ring8 structure gave better solutions. A * represents the fact
that a tie occurred. From the results given in Table 2 we conclude that island is the best
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noret | retpar | retran | twosel
noret - 34 4:3 7:0
retpar | 4:3 - 4:3 6:1
retran | 3:4 3:4 - 4:3
twosel | 0:7 1:6 3:4 -
TABLE 3

Return policy rating

neighborhood scheme, followed by the global scheme and then the schemes ring4 and
ring8. The grid4, grid8 and hypercube schemes are comparable to each other but not
very good at all. We also note that the global scheme requires much more computation,
since the neighborhood size is much bigger.

Table 3 gives the comparison of return policies by comparing columns of Table 1
in a similar manner as above. The results given in Table 3 are not as conclusive. In
fact, noret, retpar and retran perform somewhat similarly. For completeness, we have
included a column labeled twosel. This corresponds to selecting two individuals from
the neighborhood and using policy noret for the worst offspring. As mentioned above,
the results in the table show this does not perform as well as the other schemes and is
clearly not a good policy to consider.

Since the communication costs associated with noret are smaller than those asso-
ciated with retpar and retran and the quality of their solutions is very comparable, we
conclude that discarding the less fit offspring is the best return policy and that the
island neighborhood scheme (or a closely related variant of this) should be chosen as
the neighborhood when these scale factors are used.

We also carried out further experimentation as to the effect of scaling on our results.
Tables 4, 5 and 6 are the corresponding results when we require the maximum fitness
to be 1.15 times the average fitness.

The results given in Table 4 are better than those given in Table 1 as can be seen
by a similar comparison as the one described above. Some of the conclusions we can
draw from Tables 5 and 6 are slightly different from our previous conclusions. The
striking difference is that the global scheme now performs badly. The ring4 and ring8
schemes are now the best, with the grid4, grid8 and island schemes being comparable
to each other, but not as good. The global and hypercube schemes do not perform
well. Furthermore, it appears that the best return policy is retran. However, this effect
should be balanced against the extra communication cost.

A plausible explanation for the above behavior is that information is dissipated
through the population much slower in the ring4, ring8 and island schemes, which
allows many more local optima to be explored. The island scheme works better than
the other schemes when the fitness values are not scaled down as much because it still
allows several local optima to be explored, even if there is one dominant local optima.

We conclude from this that an appropriate scaling of the fitness values will improve
the quality of the solutions found. Clearly, experimentation has to be performed in
order to calculate the correct scale factor for a given problem. Generally, increasing the
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optimality | noret | retpar | retran | twosel
tolerance
0.1% 94 144 4 192
global 1.0% 583 758 702 768
2.0% 886 873 704 832
0.1% 320 256 320 0
hypercube 1.0% 832 832 896 384
2.0% 832 896 896 576
0.1% 425 370 168 384
ring4 1.0% 866 965 873 960
2.0% 941 | 1012 896 960
0.1% 299 376 448 128
ring8 1.0% 768 960 960 576
2.0% 896 960 960 832
0.1% 255 128 320 128
grid4 1.0% 896 896 896 512
2.0% 896 896 896 768
0.1% 256 256 192 64
grid8 1.0% 896 896 832 768
2.0% 1024 | 896 896 896
0.1% 108 145 378 256
island 1.0% 865 793 810 576
2.0% 879 896 960 768
TABLE 4
Number of individuals within optimality tolerance
global | hypercube | ring4 | ring8 | grid4 | grid8 | island
global - 2:2 1:3 1:3 1:3 1:3 0:4
hypercube | 2:2 - 1:3 1:3 | 2:1% | 2:2 2:2
ringd 3:1 3:1 - 3:1 3:1 3:1 3:1
ring8 3:1 3:1 1:3 - 4:0 4:0 3:1
grid4 3:1 1:2% 1:3 0:4 - 2:2 1:3
grid8 3:1 2:2 1:3 0:4 2:2 - 2:2
island 4:0 2:2 1:3 1:3 1:3 2:2 -
TABLE 5

Neighborhood scheme rating
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noret | retpar | retran | twosel
noret - 4:2 2:4 5:1
retpar | 2:4 - 2:4 4:2
retran | 4:2 4:2 - 4:2
twosel | 1:5 2:4 2:4 -
TABLE 6

Return policy raling

scale factor speeds up convergence, and decreasing the scale factor gives better quality
solutions, provided the genetic algorithm is allowed to run until it has converged.

6. Synchronization. The neighborhood schemes of the previous section effec-
tively deal with communication penalties provided that care is taken to use a neighbor-
hood structure which is appropriate for the machine architecture. The synchronization
issue remains largely unsolved, but the following asynchronous scheme has proven very
effective in practice.

Asynchronous Local Neighborhood Algorithm:
repeat
for each individual i do
evaluate f(i)
broadcast (i) in the neighborhood of i
receive f(j) for all individuals j in the neighborhood
select an individual j to mate from neighborhood based on fitness
request individual j
reproduce using individuals i and j
until population variance is small

Note that since we have removed the synchronization step, it may happen that
we request an individual based on its fitness, but in fact receive an individual which
has replaced the one requested. In practice, this does not seem to matter and in
experiments carried out on our test examples, the above algorithm has produced results
of comparable quality in somewhat smaller computational times.

7. Conclusions. The conclusions of this work are twofold. Firstly, the compari-
son of the standard genetic algorithm with a neighborhood search scheme with multiple
restarts shows that the genetic algorithm outperforms this method and invariably pro-
duces better solutions.

We conclude from our experimental parallel work on the genetic algorithm that
using a local neighborhood scheme is very important for achieving close to optimal
solutions and in fact produces better solutions than the standard genetic algorithm.
The choice of neighborhood seems to be machine dependent: our computational results
indicate that a variant of the island or the ring schemes we define in this paper seemns
to give the best performance. If two offspring are produced from the reproduction
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phase, it is better to discard the less fit offspring. Mating on each processor should be
between the individual that is situated at the processor and an individual selected from
the neighborhood. Appropriate choice of scaling for the fitness values can improve the
quality of solutions or speed up the convergence rate.

Further work on these techniques is in progress. New techniques for evaluation
of fitness under constraints and applications to database query optimization are being
developed.
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help in testing the algorithm.
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