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Abstract. We show that the deterministic non preemptive scheduling problem with earliness and tar-
diness penalties can be solved in polynomial time for certain forms of an objective function provided that a
certain optimization problem can be solved. We give instances where this problem has a solution and show
that this generalizes several results from the literature. These results do not require symmetric penalization
and the penalty functions need only be lower semicontinuous.

1 Introduction

The theory of deterministic scheduling has been mainly concerned with minimizing a regular
measure of performance, i.e. with minimizing functions which are nondecreasing in job com-
pletion times. However, in some practical situations production schedules must be evaluated
with respect to both earliness and tardiness costs. If that is the case, one usually has to deal
with a nonregular measure of performance. Examples of such practical situations are men-
tioned in [MM72, Sid77, Kan81, GTW88]. They include the production of perishable goods,
organization of computer files, material requirements planning and situations in which equal
treatment of jobs is desirable.

We consider single machine problems with n jobs numbered by the natural numbers
1,...,n. Each job is to be processed on a continuously available machine and at any time
the machine can handle at most one job. Every job, j, requires a positive processing time p;
and has a specified release time p; and a specified deadline §; such that

0O Spj <5j < 400
If weset N:={1,2,...,n}, No:= {0,1,2,...,n} and

(£): = J whenever job j is being executed at time ¢
W)= 0 otherwise
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then we can present every schedule as a piecewise constant function
o:(—00,00) = Ny
with the following properties:
the measure of the set {t| o(t) = j} is equal to p; for all j € N (1)
o(t) # j whenever j € N and t ¢ [p;, 6;] (2)

In order to avoid unnecessary complications, we shall confine ourselves to representation
by functions which are lower semicontinuous with a finite number of discontinuities. Of
course, not every such function represents a feasible schedule. In general, feasibility is char-
acterized by various systems of conditions reflecting additional capacity and technological
restrictions. Here we direct our attention to the problems in which no preemption is allowed,
i.e. in addition to (1) and (2) we require that

ot )=o(t"Y=j = o(t)=jlorallt' <t<t’'and jEN (3)

In the sequel, we shall let X denote the set of feasible schedules, that is those schedules
satisfying (1) - (3).

Regardless of whether preemption is permitted or not, each feasible schedule o determines

uniquely the start time

Si(o):=inf {t|o(t) =7}
and the completion time

Ci(o):=sup{t|o(t) =3}
of each job j in the schedule o. It is useful to note that if « is a real number and if o, is
defined by

oa(t):=o(t + «)
then
Sj(oa) = Sj(e) — @, Cj(0a) = Cj(0) —

for each 7 € N.

In dealing with situations where penalties are incurred both when jobs are completed
late or started early, it is usually assumed that each job j has a target start time r; and a
due date d; satisfying

pi S1j <d; <§;

Quantitative measures for calculating schedules considered here are based on the following
constructs. The lateness of j in o, L;j(c):= Cj(c) — d;, the promptness of j in o, £;(0): =
r; — S;(o), the tardiness of j in o, Tj(0): = max{0,Cj(¢) — d;} and the earliness of j in o,
E;(c): = max{0,r; — S;(o)}.

Given these definitions, we are interested in finding a schedule ¢ € X to minimize some
objective or cost function defined in terms of these constructs. Several of the objective
functions that may occur in practice include:




(a) o+ max{max; g(E;(c)), max; h(T;(c))}
(b) o= max{33; g(E;(0)),5; h(T;(0))}

(c) o+ max; g(E;(0)) + max; h(T;(c))

(d) o= 5 9(Ei(0) + Z; h(T5(e)

(e) o max;{g(E;(7)) + A(T;(v))}

(f) o Z;max{g(E;j(s)), h(Tj(o))}

where g, h: IRy — R4 U{+o0} are nondecreasing. Note that we allow the possibility of an
infinite penalty on earliness or tardiness. An analogous set of objective functions might be
defined by replacing F; and T; by &; and L; respectively, and defining g and k on IR.

We now present some examples from the literature which can be reformulated as special
cases of the above problems.

Example 1 Sidney[Sid77] proposed an algorithm for minimizing (a) under the following
additional assumptions:

p;j = —o00 and §; = +oo forall j € N (4)

functions g and h are continuous (5)
the target start times and due dates have the property that if r; < r; then d; < d;

Sidney’s algorithm has a time complexity of O(n?), under the assumption that the equation
g9(z) = h(A - 1) (6)

can be solved for z € [0,A] sufficiently fast for A > 0. Subsequently, Lakshminarayan
et al[LLPR78] developed an algorithm that can be implemented to run in O(nlogn) time.
Furthermore, assuming (4) and (5) only, Achuthan et al[AGS81] established that the problem
can be solved via the maximum tardiness problem with general release times. In fact, they
showed that their approach applies to all problems with objective function (a) whose feasible
sets have the following translation property: if o is a feasible schedule and o € IR, then o,
defined by o4(t):= o(t + ) is also feasible. In all these results, continuity of ¢ and h is
assumed to guarantee that (6) has a solution in [0,A] for each A > 0. However many
standard penalty functions are discontinuous at certain points. The results presented in
[V1a83] allow the continuity assumption (5) to be weakened to one-sided continuity.

Example 2 Kanet[Kan81] considered the problem of minimizing the function

o — %Z |L;(o)]



subject to (4) and
di=dy=-=dp 23 p;

3
Introducing rj: = d; — p; for all j € N and assuming that preemption is not allowed, we have
max{0, d; — C;(a)} = max{0,r; — S;(o)}
for each 7 € N and each o € X. Moreover
|Cj(0) — dj| = max{0, d; — Cj(o)} + max{0, Cj(o) — d;}

It follows that Kanet’s problem can be considered as a special case of minimizing function
(d). A slightly different version of Kanet’s problem has been studied by Sundararaghavan
and Ahmed[SA84].

Example 8 Gupta and Sen[GS84] addressed the problem of scheduling n jobs on one ma-
chine so as to minimize the function

o ++ max L;(o) — min L;(0)
7 7
subject to the following additional conditions
p1=p2=---=pn=0, 51=52=---=5n=00

and
no idle time is allowed between jobs

Again introducing r;: = d; — p;, we have

min; L;(o)

min;(C;(0) — d;]

— — max;[d; — C;(0)]
= —max;[r; +p; — Cj(o)]

—max;j[r; - S;(o)]

It follows that
max L;(o) — min L;(¢) = max Lj(o) + max &;(o)
J J J J

Therefore, this problem can be considered as a special case of minimizing the function ob-
tained from (c) by replacing E; and T; by &; and L; respectively.

Example 4 Garey et al[GTW88] studied the problems of minimizing the functions
o — max|S;(o) — rj
i
and

o Y1Si(0) — 1
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under the assumption that for each y € N
pi=d;—r;
Assuming this condition and no preemption we see that
1Si(0) =il = Ej(o) + Ti(o)

and therefore, the first problem is a special case (g(z) = h(z) = z) of minimizing function
(c) and the second problem is a special case of minimizing function (d).

2 The general problem

For the remainder of this paper we shall concern ourselves with the following problem
mip f(7): = p(g(max Ey(o), h(max T3(0)) ©

where ¥: Ry U{+00} x Ry U{+00} = RU{+00}. We assume the standard conventions for
ordering with respect to +00, see for example [Rud76]. We also assume that 1 is isotonic,
that is

u>z,v>y = P(u,v) > Y(z,y)

The general problem includes as special cases the objective functions (a) and (c).
We are concerned with single machine problems; however, some results can be extended
to problems with several machines. Given p;, p; , 6;, r;, d; satisfying

p; >0, pj=—00, =400, r;<d;

we let X denote the set of feasible schedules satisfying (1) - (3) and let Y be the subset of
X given by the additional condition

JeNt<r) = o(t)#J
Furthermore, let A stand for the minimum value of the function

o +— max L;(o)
J

over the set Y. It is standard practice in the literature to refer to this problem as 1|r;| Lz,
see for instance [LLRKS89], (single machine, general release times, maximum lateness). For
the rest of this paper we let 7 be a schedule from Y such that

max Lj(n) = A (8)

The following two lemmas are useful for our development.
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Lemma 5 If A > 0, then for each z € [0,A] there is 0, € X such that

max E;(o;) <z
M
and

maxTj(o;) <A -z
3

Proof For each z € [0,A] define o, by

o5(t): = n(t + z)

Obviously
Ej(0s) = max{0,r; — S;(0.)}
= max{0,r; — S;(n) + =}
= z+max{—z,r; — S;(n)}
and

Tj(os) = max{0,Cj(oz) — d;}
max{0,C;(n) — = — d;}
= —z +max{z,C;(n) - d;}

for each j € N. Since 0 < z < A and Sj(n) 2 r; and C;(n) — d; < A, we have
max{~z,r; — Sj(n)} £ 0, max{z,C;(n)-d;} <A
for each 7 € N. Therefore

max E;(0;) < ¢ and maxTj(o,) <A -2
3 j

for each j € N, as required.
Lemma 6 If A > 0, then for each o € X we have

max &;(o) + max L;j(o) > A
i 7

(9)




Proof Suppose the claim is false. Then there is some & € X such that
max £;() + max L;(5) < A
j 3

For & defined by
G(t):=a(t — max E(7))

we have

5j(6) = 5;(7) + max &(a) 2 5;(7) + €(7) =r;
and so & € Y. Moreover
max L;j(6) = max[C;(d) — dj]
= max[C;(7) + max £(5) — dj]
= max Li(5)+ max E(a)
< A

However, the inequality max; L;(§) < A for & € Y contradicts the definition of A. 0

The following theorem is the key result of this paper and suggests a method for solving
the general problem (7) via the maximum lateness problem.

Theorem 7 If A > 0 and
z* € arg miny(g(z), h(A — z)) (10)
z€[0,4]

then for n defined by (8)
gun(t): = (i + 2°)

minimizes f(o) over o € X.
Proof The proof is in two parts. First of all, consider o, defined by (9). Now
floz) = b(g(max Ej(os)), h(maxT;(0s)))
Invoking Lemma 5 and Lemma 6 we see that for all 0 € X
max Ei(og) + max Ti(o;) <AL max Ei(o) + max L;(o)
However, o, € X, E;(c) > &;(0) and Tj(c) = L;j(o) so that for each z € A

max E;(0;) + maxTj(o;) = A
i ]



Moreover
max T;(0,;) = maxmax{0, L;(0;)} = max{0, max Li(o,)}
J J 2

and

max; Lj(0z) max;[C;(0z) — dj]

—z + max; L;(n)

max;[C;(n) — = — d;]
A—z

Therefore, max; Tj(0;) = max{0,A — ¢} = A — z, for each z € [0, A]. It now follows that
max; E;(0;) = « and hence that

o
(I

floz) = ¥(g(z), (A - z)), for all z € [0, A] (11)
For the second part of the proof we take o € X. It follows from Lemma 6 that
max Ti(oc) =2 A — max E;(o)
However max; T;(o) > 0 so we obtain
max Tj(o) > max{A-AA- max E;(o)}
= A+ max{-A,—maxFE;(0)}
= A —min{A, max EJ,(G)}
= A - D(o) J
where D(c): = min{A, max; E;(c)}. Note that D(o) € [0, A] and that

max E;(c) > min{A, max E;(0)} = D(o)
J J

It now follows from the last two inequalities, the isotonicity of ¢, and g and h nondecreasing
that

f(o) = v(g(max Bj(0)), h(max L;(a)))
> (g(D()), (A = D(2)))
> min (g(z),h(A - 2))
= floz)
the last equality by (11). This is the required result. 0

Theorem 7 suggests the following procedure for solving the general problem given by (7).
Step 1 Determine A and find a schedule 7 € Y such that max; Li(n) = A.

Step 2 If A <0, then stop (7 is optimal); otherwise, find z* satisfying (10) and go to Step
3.




Step 3 Construct o« from 7 and stop (o« is optimal).

Note that the problem (7) is already NP-hard for #(z,y) = max{z,y} and g(z) = h(z) =
z, (see [AGS81]) and also that 1|rj| L, is NP-hard. However, Step 1 can be realized in
polynomial time whenever 1|r;| L., can be solved in polynomial time. This is the case, for
example, if the data satisfy the condition

LT = d,‘de

To show this consider the maximum lateness problem with release times r;, due dates d; and
processing times p;. Without loss of generality let us assume that

rmSrp <o Sy, dy Sdp <o <dy (12)

First, modify r; by setting

/
Ty, = T

- - . -
ri = max{r;,r;_; +p;a}, j=2,3,...,n

Second, define n by

. J wheneverr;<tST;~+Pj,j€N
n(t): = 0 otherwise

It is clear that n is the best schedule among those in which the jobs are processed in the
order given by the natural ordering of N. Let such a set of schedules be denoted by ¥. We
now establish that such a set of schedules contains an optimal schedule.

Lemma 8 [f (12) is satisfied, then for each o € Y, there is an € Y such that

max L;(n) < max L;(o)
i 3

Proof If o € Y then we take n:= 0. If 0 € Y \ Y, then there exists j € {2,3,...,n} and
k < j satisfying
S;(o) < Sk(o)
and
Si(0)+pj <t < Sk(o) = o(t) =0
Define & by setting
Sk(?):= Si(e), Ci(a):= Ci(o)



Since C;(5) > Cx(G) and d; > di by assumption, we have

max{L(5), L;(5)} max{Cy(d) — di, C;(5) — d;}

< max{C;(d) — di, C;(5) — di}
C;(5) — dx

= Ci(o) —ds

< max{Li(o), L;(0)}

Since all other completion times are the same in both schedules, it is clear that

max L;(¢) < max L;(o)
3 3

If €Y, then weset ;:=5. If & 92_17, then we repeat the process above. After a finite
number of such steps, we obtain n € Y with the required property. 0

Other cases when the maximum lateness problem can be solved in polynomial time include
the cases when all r; are equal, all d; are equal, or all p; are equal. Note that the first two
are special cases of Lemma 8. An excellent survey paper on these results is [LLRKS89].

Observe that Theorem 7 has been established without any reference to continuity of g
and h. However, to convert an optimal schedule for the maximum lateness problem into an
optimal schedule for the general problem using Theorem 7 one needs to find an z* satisfying
(10). 1t is well known[Ber63] that a a sufficient condition for a function to have a minimizer
on a compact set is lower semicontinuity, so this is all we need to assume.

Lemma 9 Ifg, h:IRy — Ry U{+oo} are lower semicontinuous and

: Ry [ J{+00} x Ry J{+00} = R{+0o0}
is lower semicontinuous and isotonic then ¥ (g(x), h(z)) is lower semicontinuous on z € IR.
Proof By taking appropriate subsequences we may assume that
lim i (9(2), h(z)) = ligb(g(ze), hiz)
and
liminf g(z) = lim ()

and
hiré}{nfh(m) = llclenl} h(zk)

where K is an indexing set for the subsequence. Therefore
liminf$(g(z), h(z)) = lim¥(g(ee), h(z))
> (lim(g(er), b))




by lower semicontinuity of 1. However, by invoking lower semicontinuity of g and h and the
isotonicity of 1 we see that

liminf¥(g(z), h(z))

Tz

v

Y(limg(ze), lim h(zy))

Y(g(lim i), h(lim 1))
P(g(z"), h(z™))

v

as required. 0

Corollary 10 With appropriate conventions for treating +0o and if g, h: Ry — IRy U{+o0}
are lower semicontinuous, and i is defined by

(a) ¥(z,y) = max{z,y}
(b) ¥(z,y) =z +y
(c) ¥(z,y) = zy
(d) ¥(z,y) = 2 +y*
(z,y) = {2” +y?}/? for 1 <p < o0
then

arg mint(g(z), h(A — z)) # 0

z€[0,A]

To conclude this paper we show that Theorem 7 is an exact generalization of the work
cited in Example 1. If we let ¥(z,y) = max{z,y} then we recover the framework of that
example. The auxiliary condition to be solved here was to find an z such that g(z) = h(A-z).
We show that condition (10) is equivalent to the existence of such an z under the assumption
that g and h are continuous. The following theorem proves this and also provides a saddle
point condition equivalent to (10).

Theorem 11 Suppose g, h: Ry — R, are nondecreasing. Then (10) is equivalent to
Jz* € [0, A] with max{g(z*), h(A — ")} < sup min{g(y), h(A —y)} (13)
yE[O»A]
If g and h are continuous, (13) is equivalent to the existence of z* € [0,A] with g(z*) =
h(A — 2*).

Proof First of all, assume that z* satisfies (10). Suppose that g(z*) > h(A — z*). Define
u:=inf {y € [0,A] ]| g(y) = R(A —y)} and note that 0 < u < z*. It follows that

sup min{g(y),h(A—y)} > sup min{g(y), (A —y)}
ve[0,A] ve[u,z*]

= sup g(y)
y€[u,z*]

> g(z*)

11



as required. If now, g(z*) < h(A — z*) then define v: = sup {y € [0, A]| g(y) < R(A —y)}
and note that z* < v < A. Also

sup min{g(y), (A —y)} = sup min{g(y), A(A—y)}
velo,A] yelz* ]

= sup h{(A-y)

y€[z* 0]

> h(A - z¥)

as required.

For the converse, suppose that z* satisfies (13) but not (10). Then there is some y* €
[0, A] such that

max{g(y*), h(A — y*)} < max{g(z*), h(A — z")}

Therefore
sup min{g(y), h(A —y)}
y€[0,A]
= max{ sup min{g(y), (A —y)}, sup min{g(y), (A —y)}}
ye[0,y* y€[y*,Al
= max{ sup ¢(y), sup h(A—y)}
y€l0,y7] y€fy*,Al

= max{g(y"), (A —y")}
< max{g(z"), (A — z*)}

which a contradiction to (13).

We now consider the case when g and h are continuous. If g(z*) = h(A — z*) then (13)
clearly holds with * = z*. For the converse, suppose (13) holds. Then min{g(y), A(A —y)}
is a continuous function and so attains it supremum over the compact set [0, A], say at 7.
If g(7) = h(A — §) then we are done. Suppose g(7) < h(A — ), so that g(7) > h(A — z¥)
and g(7) > g(z*). But A(A —§) > h(A — z*) so that § < z* implying by g nondecreasing
that g(7) < g(y*). It follows that g is constant on [7,z*]. The existence of a 2* € [7, 2]
now follows from the Mean Value Theorem. (The case when g(7) > h(A — %) is proved in a
similar manner). 0
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