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Abstract

Recently we have proposed an adaptive, random sampling algorithm for general query
size estimation. In earlier work we analyzed the asymptotic efficiency and accuracy of the
algorithm; in this paper we investigate its practicality as applied to selects and joins. First,
we extend our previous analysis to provide significantly improved bounds on the amount of
sampling necessary for a given level of accuracy. Next, we provide “sanity bounds” to deal
with queries for which the underlying data is extremely skewed or the query result is very
small. Finally, we report on the performance of the estimation algorithm as implemented in
a host language on a commercial relational system. The results are encouraging, even with
this loose coupling between the estimation algorithm and the DBMS.

1 Introduction

Estimates of query result size are useful in query optimization, as a means of determining the
feasibility of queries, and as a quick way of answering queries for which the size of the answer
is of interest in its own right. The potential benefits of sampling-based algorithms for size
estimation are many. Unlike parametric methods [Chr83a, Chr83b, Dem80, Fed84, SAC*79,
Lyn88, MDL83], they require no assumptions about the fit of the data to a probability distribu-
tion. Unlike histogram or table based nonparametric methods [Chr83b, KK85, HTY82, Koo80,
MD88, MK85, PSC84], they do not require storing and maintaining detailed statistics about
the base data and views in the system. Finally, they are robust in the presence of correlation
of attributes, which allows accurate estimation for queries that involve many operators.

However, there has been very little experimental or analytic work to evaluate the practicality
of sampling estimation algorithms, perhaps due to skepticism about the performance of these
algorithms. Folk wisdom says that since
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1. To attain reasonable accuracy, many samples must be taken, and

2. Sampling algorithms must do a disk I/O per tuple examined, whereas query evaluation
algorithms can amortize the cost of a disk I/O over all tuples on a page, and

3. In sampling, the overhead of initiating an operation is incurred n times, where n is the
number of samples taken; in evaluating the query, the overhead is incurred just once,

the cost of estimating a query through sampling is too high to be effective. In this paper we
argue that, to the contrary, a well-designed sampling algorithm for size estimation can be very
efficient.

Recently, we proposed the first adaptive random sampling algorithm for general query size
estimation [LN89, LN90]. The analysis in those papers showed that the algorithm has good
asymptotic behavior, suggesting that it might be efficiently implementable. However, asymp-
totics alone do not guarantee practicality. The purpose of this paper is to demonstrate that
the algorithm has sufficiently high performance to be useful in practice.

We report the performance of the estimation algorithm in estimating the sizes of various
select and join queries over a synthetic database designed to stress the algorithm. To ensure that
our tests did not underestimate the cost of sampling in a production quality database system,
we implemented our algorithm as a host-level program running on a commercial relational
database system (EQUEL and RTIngres.) Note that this actually overestimates the cost of
sampling, since the algorithm is implemented outside of the system, treating the system as a
black box. For example, in our implementation every sample requires a minimum of two UNIX
pipe reads and two UNIX pipe writes as the host program communicates with the database
back end.

Detailed results of the experiments appear in Sections 4 and 5. The main point is that,
unless the query itself can be computed extremely efficiently (e.g., an equality selection on a
key attribute with an index), or the answer is very small, the size of the query can be estimated
accurately in a small fraction of the time it takes to compute the query.

While implementing the sampling algorithm, several important points arose. First, the
algorithm gave much better estimates than were predicted by the bounds given in [LN89, LN90].
In order to demonstrate that this is a property of the algorithm, and not of the specific data
being used in the tests, we have done a new analysis of the algorithm in order to derive the
smallest possible sampling bounds that guarantee the required confidence levels. Section 2
provides this analysis. The improvement over [LN89, LN90] is dramatic; for example, the
bound for 95% confidence has been improved by a factor of 8. While this does not change the
asymptotic time bounds, a factor of 8 reduction in running time can be the difference between
a useful and a useless estimation algorithm.

Second, highly skewed data provide special challenges to estimation through sampling. To
deal with this problem, in Section 3 we propose the notion of sanity bounds for sampling.
Intuitively, the adaptive algorithm augmented with sanity bounds will either (1) estimate the
query size to within some given percentage of its true value, or (2) guarantee that the query
size is itself small.



The literature directly related to this paper is surprisingly sparse. Both Piatetsky-Shapiro
and Connell [PSC84] and Muralikrishna and DeWitt [MD88] discuss using sampling to build
approximate selectivity histograms. Those papers use the Kolmogorov test statistic to give
bounds on the number of samples necessary to construct a histogram with a given accuracy,
but do not consider the problem of estimating the size of the query directly through sampling.

Olken and Rotem [OR86, OR89] consider the problem of sampling to construct a random
subset of a query answer without computing the full answer. This problem is complementary
to size estimation, since an algorithm for size estimation does not imply an algorithm for
constructing a random sample, and vice-versa.

The most closely related work is that of Hou, Ozsoyoglu, and Taneja [HOT88, HOT89]. In
that work, the emphasis is on the estimation of aggregate queries in real-time environments,
rather than on query size estimation. The papers present data relating the number of samples
to accuracy, but do not explicitly consider timing considerations. A comparison in Sections 4
and 5 shows that while our algorithm and their algorithm are comparable for selections on
single relations, for join queries our algorithm clearly dominates with respect to efficiency of
size estimation.

The results presented in this paper argue that size estimation through sampling could be
easily added to database systems and can provide what is perhaps surprisingly good perfor-
mance. We close in Section 6 with a discussion that current trends in technology argue that
sampling will be even more useful in future systems.

2 Bounds on Sampling

The sampling algorithm presented in this paper is based on a model developed in [LN90]. The
central notion of that algorithm was that of partitioning the query. In order to estimate the size
of the query, we first partition the answer to the query into some number of disjoint subsets
such that it is possible to randomly choose one of these subsets and compute its size. We
emphasize that this partitioning is conceptual; the sampling algorithm does not construct the
answer to the query. The sampling algorithm works by repeatedly randomly choosing one of
these subsets, computing the size of the subset, then estimating the size of the query result
based on these samples.

Example 2.1 In this paper we will be concerned with the two “work-horse” operators of
relational systems, join and select. (The general algorithm applies to other types of queries as
well.)

First, consider a selection query Qi = o(R). In this case the answer can be partitioned
based on the tuples in R. Each tuple of R can be considered as a representative of a subset of
the answer to the query; if the tuple satisfies the selection, then the size of the subset is 1; if
not, the size of the subset is zero.

Next, consider the natural join query Q; = R X §. The query is partionable as follows:
for each tuple 7 in R, the corresponding partition of Q5 is all tuples ¢ in Qg such that ¢ was
generated by joining r with some tuple of S. In this case the size of a subset denoted by a
tuple 7 is the number of S-tuples that join with r. O



§ = 0;

m = 0;

while ((s < k1bd(d + 1)) and (m < kqe?)) do begin
s:= s + RandomSample();
m:=m-+ 1

end;

A := ns/m;

Figure 1: A general algorithm for query size estimation.

A novel feature of the estimation algorithm is that the termination condition is expressed
in terms of the size of the sum of the samples taken, rather than in terms of the number of
samples. This lends the algorithm an adaptive flavor; if the samples are large, fewer will be
taken; if the samples are small, more will be taken.

If the size of a sample can be computed in time that is some function of the size of the
sample, the adaptive nature of the algorithm makes it more efficient than a corresponding
non-adaptive sampling approach. Intuitively, this is because a non-adaptive sampling approach
must take enough samples to guarantee accuracy in all cases; the adaptive algorithm is able to
terminate early in the expensive cases, that is, when the samples turn out to be large.

Suppose that the answer to the query to be estimated can be partitioned into n disjoint
subsets, and define a random variable X to be the size of a randomly selected subset. We let F
denote the expected value of X, and V denote its variance.

We assume that we have available two constants b and A.,.¢. These constants are specific
to the query being estimated; b is an upper bound on the size of a partition, while Apa.y is an
upper bound on the query size. Note that Apax is just bn. The accuracy does not depend on
how close the bounds b and Ap.x are to their actual values; however, the closer they are, the
more efficient the sampling.

The sampling algorithm takes as parameters two integers d and e, and attempts to produce
an estimate A that is within max(A/d, Amax/e) of the actual value A. Additionally, a parame-
ter p, where 0 < p < 1, specifies the desired confidence in the estimate. That is, the estimate
will be within the specified error bound with probability p. The general algorithm appears in
Figure 1.

The constants k; and ky depend on the desired confidence level p. Initially, in [LN90], we
presented the algorithm without the second conjunct in the control expression of the while loop
(the conjunct (m < kqe?)).) The reason for the second conjunct is given in Section 3. The
analysis in that paper proved the following bound.

Theorem 2.1 Suppose that in a run of the algorithm of Figure 1, the while loop terminates

because s > kibd(d +1). Then for 0 < p <1, if by = 1/(1 — \/p), the error in A is less than
A/d with probability p.



p | k1 (no CLA) | ky (with CLA)
0.80 9.5 2.6
0.90 19.5 3.8
0.95 39.5 5.0
0.99 199.5 12.2

Table 1: Value of k;, with and without central limit assumption.

Initial experiments with an implementation of the algorithm showed uniformly much bet-
ter performance than that guaranteed by Theorem 2.1. The following theory offers a partial
explanation of this phenomenon.

Briefly, Theorem 2.1 gives weak bounds because it is so general. In particular, it assumes
that the sum of the samples has an arbitrary distribution; in practice, relatively few samples
are necessary in order for the distribution of the sum to begin to look normal. Note that this
is not a statement about the distribution of the sizes of the partitions of the query. Rather, it
is an observation about the sum of a set of random samples of the partitions. To quantify this
observation, we use the following definition.

Definition 2.1 Suppose that in a particular run of the algorithm in Figure 1 m samples are
made. Then we will say the central limit approzimation applies if

mV
has the standard normal distribution.

By the Central Limit Theorem [Fel68], for any given instance of the estimation problem, for
large enough m we may always treat the sampling as if the central limit approximation applies.
For small numbers of samples on certain distributions the approximation will be less accurate.
The following theorem shows that when the central limit approximation applies, much better
bounds can be derived. It uses the notation ®(a) = 1/27 [%_ e® /2dz, that is, the area under
the unit normal distribution to the left of a.

Theorem 2.2 Suppose that in a run of the algorithm of Figure 1, the while loop terminates
because s > kibd(d + 1), and let the central limit approzimation apply. Then for 0 < p < 1, if
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the error in A is less than A/d with probability p.

The improvement in the value of k; given by Theorem 2.2 over Theorem 2.1 is dramatic;
the values of k; with and without the central limit assumption for several values of p are given
in Table 1. (The reader uninterested in the proof of this theorem can safely skip the remainder
of this section.)

The proof of Theorem 2.2 uses the following sequence of lemmas. We represent the proba-
bility of an event z by P[z].



Lemma 2.1 Let m = BV/E? be a positive integer, and suppose that the sampling satisfies the
central limit approxzimation. Then
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We bound the error in the estimate with the following lemma.

Lemma 2.2 Let m > BV/E? and d > 0, and suppose that the sampling satisfies the central
limit approzimation. Then
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We can now prove Theorem 2.2.

Proof: (Theorem 2.2.) There are two parts to the proof. First, we prove that if the
algorithm in Figure 1 terminates with s > ky(V/E)d(d + 1), then the desired confidence and
accuracy hold. Next, we show that b > V/E, completing the proof.

There are two ways that the algorithm can fail — it can stop too early to guarantee a good
error bound, or it can stop after enough samples but with a bad estimate.

By Lemma 2.1, the probability that the algorithm stops with fewer than m = SV/E?
samples is ®((a — 8)/+/B). By Lemma 2.2, the probability that, given m = V/E? samples,
the estimate is within A/d of A, is 28(/f/d) — 1. Combining the two gives a probability of

success equal to
o a — ,3 2% \/:B_
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We can bound this product by setting the two probabilities to both be equal to p’, where
p' = /P, where p is the desired probability of success. This gives 8 = [®1((1 + p')/2)]*d?, and

a= &' (p) VB + 8
@ (1) d (07 &) + 071 (H7) d)
o (52) a5 (42) + 5 () )
[Q—l (1+2 P)] d(d+ 1)

This completes the proof that if the algorithm samples until s > k;(V/E)d(d + 1), the desired
accuracy holds with probability p.
Now we turn to prove that b > V/E. By definition of V,
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so V/E < bE/E = b. This means that if s > k;bd(d + 1), we also have s > ki (V/E)d(d + 1),
and the theorem holds. O

3 Skewed Data and Small Queries

While the central limit approximation indicates that in many cases a much smaller amount
of sampling will suffice than the amount indicated by Theorem 2.1, there is still a problem of
efficiency when b is large in comparison to E. In practical terms, this means that the sizes of
the partitions of the query are highly skewed, that is, that a large portion of the total query
size is due to a small portion of the samples.

The problem in this case is not so much with our specific algorithm, but with sampling in
general. To make the following discussion concrete, consider the case of estimating a selection
on a 1,000,000 tuple relation, and, furthermore, that only one tuple satisfies the selection. Then
we will have 999,999 partitions of size zero, and one partition of size one. This means that the
expected size of a random sample is 1/1,000,000, so sampling until s > k;bd(d + 1) can be
expected to require 1,000,000 * k1d(d + 1) samples.

The problem is that the bound s > k;bd(d + 1) is designed to ensure that the total error is
at most A/d. In this case, that corresponds to asking for an error less than one on a sample
space of size 1,000,000.

The solution is to guarantee instead that the error will be at most some fixed fraction of
the worst-case size. In essence, if the answer is small relative to the problem space, we sample
enough to guarantee that the answer is indeed small.



As in the adaptive case, there are two types of bounds we can prove, depending on whether
or not we assume the central limit approximation. The following theorem does not assume the
central limit approximation.

Theorem 3.1 Suppose that in a run of the algorithm of Figure 1, the while loop terminates
because m > koe?. Then for 0 < p < 1, if ky > 1/(1 — p), the error in A is less than Amax/e
of A with probability p.

Proof: It turns out that the proof is simpler if we prove that the error is less than nv/V /e
instead of directly proving the error less than Ap,ax/e. First we prove that V < bA/n, or,
equivalently, that nV /b < A. We have
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Since V' < bA/n, the error bound nv/V/e is at most vnbA/e, which in turn is less than
vnbnb/e, so the error is less than nb/e. But by definition, nb = Agay, so if the error is
bounded by n\/V/e, it must also be bounded by An.x/e.

pllasx-as 2] < p[Sx-zal> 2]
1=1 =1
' mVe?
m2V
2
< &
m

This is the probability that the error is greater than the desired accuracy; if the probability
that the error is less than the desired accuracy is p, we require that 1 — p < e?/m, or m =
kze* > €2 /(1 — p), which in turn will hold if k; > 1/(1 —p). O

If we assume that the central limit approximation is valid, tighter bounds are possible.

Theorem 3.2 Suppose that in a run of the algorithm of Figure 1, the while loop terminates
because m > kqe?, and suppose that the central limit approzimation applies to the samples.

Then for 0 < p < 1, if ko > [®~Y((1 + p)/2))%, the error in A is less than Amax/e of A with
probability p.

Proof: As in the case for Theorem 3.1, it is easier to prove that the error is less than
WV /e than to show the error less than Apay/e directly. We have

g2 - e




p | k2 (no CLA) | ks (with CLA)
0.80 5.0 17
0.90 10.0 2.7
0.95 20.0 3.8
0.99 100.0 6.7

Table 2: Value of k;, with and without central limit assumption.
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So for the confidence to be at least p, we need 2®(\/m/e) — 1 > p, or m = koe® > [®@~1((1 +
p)/2)e]®. This will be true if ky > [®~1((1 + p)/2)]?. O

Again, as in the case of the bounds on k;, the central limit approximation gives much better
bounds. The values for k2 for several values of p are given in Table 2.

When comparing these bounds with those given for those given in Section 2, it is important
to note two things. First, here the error is expressed in terms of the worst-case bound on the
size of the actual sum being estimated, which in general may be much larger than the actual
size of the sum. That is, it is possible that Ayayx/d > A/d. Second, here kze? is the number of
samples taken, whereas in the adaptive case k1bd(d + 1) is the sum of the sizes of the samples
taken.

Example 3.1 We return to the example of a selection query that returns a single tuple of a
1,000,000 tuple relation. As noted above, if we omit the “sanity bound,” and request that the
query size be estimated to within 10% of the true query size with 80% certainty, we can expect
to take about 5.0 x 108 samples. Since for the same effort we could scan the entire relation 500
times, this is clearly a mistake.

If we add the sanity bound and say that we wish to estimate the query to within 10% of
the worst-case bound on the selection size or 10% of the answer size, whichever is larger, we
get that at most 200 samples are required. O

4 Estimating Selections

In the literature on estimating statistical parameters of database queries, estimating the fraction
of tuples that satisfy a selection has received the most attention, both from a parametric and
a non-parametric viewpoint. In this section we examine the problem of estimating the size of
selection through sampling.



Overview of Selectivity Sampling

Sampling to estimate selectivities is most effective in situations where the selection itself must
be evaluated through a scan of the relation. This includes selections on columns for which there
is no index, complex selection conditions such as arithmetic expressions, and dyadic selection
conditions such as “A.X = A.Y,” where X and Y are attributes of relation A. Sampling to
estimate the selectivities of the last two types of selections is particularly important, since
non-sampling parametric and non-parametric approaches do not work well in these cases.

As noted in Example 2.1, our adaptive sampling algorithm can be used to estimate selec-
tivities by partitioning the input relation by tuples. That is, we randomly choose a tuple, and
check to see if it satisfies the selection condition; if it does, the sample is of size one; if not, it
is of size zero. In order for this strategy to be practical, we need an index on some column of
the relation; note that this need not be the column to which the selection applies.

In the experiments we ran, we ensured that there was always an index on a dense key
attribute of the relation. (By “dense” we mean that there are no gaps between consecutive
values appearing in the relation.) This is not necessary in general; if we use the techniques
from [OR89], all that is required is a B*-tree on some attribute of the relation.

If we assume that the cost of retrieving a sample tuple from the relation is much greater
than the cost of verifying that the tuple satisfies the selection, then the form of the selection
expression does not significantly affect the running time of the algorithm; all that matters is
the selectivity being estimated. Hence in our experiments we ran simple equality selections on
columns without indices, but the results are also representative of estimating more complex
selections with the same selectivities.

The database used to estimate the selectivities was based on the database used in the Wis-
consin benchmarks [BDT83]. We tested 1% and 10% selectivities on relations of 10,000, 30,000
and 50,000 tuples. Except where noted otherwise, the tuple size was 208 bytes. We varied
the selectivities by performing an equality select on a column with a random permutation of
integers from one to ten (for the 10% case) or from one to 100 (for the 1% case.)

The fragment of EQUEL code that does the sampling for the 1% case is presented in
Figure 2. The column a.uniquela is a key for relation wiscrela, and there is a B*-tree index
on that column. The relationship between this code fragment and the general algorithm in
Figure 1 should be clear.

Discussion of Selection Data

Table 3 gives the time to compute the estimate and the relative error in the estimate for both
one and 10 percent selections from a 10,000 tuple relation and a range of k values. Recall that
the bound for the sampling is k£ d*(d+ 1) xb; here b is 1, and in order to clarify the exposition,
we also set d = 1 and vary k. Since we wish to evaluate the adaptive nature of the algorithm,
we set e artificially high, to avoid “sanity” escapes.

The data points given represent average values over 100 trials. All trials were run under
RTIngres Release 5.0 running on a moderately loaded DEC VAX 6820.

Two observations are clear from the data. First, with the exception of the k& = 1.0 value,
the relative errors are very close for one and 10 percent. Second, the one percent estimations
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## range of a is wiscrela

sum = m = 0;

while ((sum <= k¥Dx(D+1)*b) && (m <= k*E*E))
{

m++;
target = random() % N;
## repeat retrieve (size = count(a.uniquela
## where a.uniquela = Qtarget and
## a.hundreda = 5))
sum += gize;

3

estimate = (sum*N)/m;

Figure 2: EQuel code for estimating selectivity.

k | 0.0l err 0.10 err | 0.01 time 0.10 time
1.0 97 61 5.0 0.6
2.0 45 43 10.1 0.8
3.0 39 37 13.7 1.4
4.0 28 29 18.5 1.7

Table 3: Time and error vs. k for selectivity tests

take roughly a factor of ten longer to compute.

These two observations are direct consequences of the adaptive nature of the sampling
algorithm. Intuitively, the algorithm samples until it has seen enough “one” samples to make
a good estimate. To see the same number of “one” values in the one percent case as the 10
percent case, we would expect to do a factor of ten more samples, since there are a tenth as
many ones.

Note also that although the relative error is roughly the same in each case, the absolute
error is a factor of ten worse in the 10 percent case. For example, in the k = 4.0 entry, the
error of 28% in the one percent selection corresponds to an error of 28 tuples, whereas the error
of 29% in the ten percent selection corresponds to an error of 290 tuples. This is the same
observation that motivates the “sanity bounds” as discussed in Section 3.

To put the efficiency of estimation into perspective, we compared the time of estimation to
the time to actually compute the query. Since both the one percent and 10 percent selections
were chosen to force INGRES to scan the relation, both queries took the same time: 9.0 seconds.
This means that while the 10 percent selection estimation was not too expensive, in all cases
other than k = 1.0, estimating the size of the one percent selection took longer than computing
the actual number.

While on the surface this implies sampling is a bad idea for one percent selectivities, this

11
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Figure 3: Scale-up results for select estimation.

is not necessarily the case. First, the estimation ran for a long time because the sanity bounds
were purposely set high enough to guarantee that they did not come into play. In an actual
application of sampling, the sanity bounds should be set so that the sampling will not run as
long as the query.

Secondly, and perhaps more importantly, sampling to estimate selectivities scales very well.
In fact, the time to estimate a selectivity is largely independent of the size of the input relation.
As the relation grows, the time to compute the query grows, so the percentage of compute
time to estimate to a given accuracy decreases. This is important because it is queries over
large relations, where computation times can be very high, that must be estimated rather
than computed. The graph in Figure 3 gives data for estimating and computing a 10 percent
selectivity over relations of 10K, 30K, and 50K tuples. The vertical axis is the relative error of
the estimate with respect to the actual query size; the horizontal axis is the ratio of the time
to estimate the query size to the time to compute the query size.

Another factor in the efficiency of sampling is the tuple size. When scanning the relation to
compute the answer, INGRES has the advantage of getting about ¢ tuples for each disk access,
where c is the average number of tuples per disk page. Hence the larger c is, the less efficient
sampling will be. Conversely, with smaller ¢, sampling is more efficient.

The simplest way to vary c is to vary the tuple size. Table 4 shows the effect of varying

12



tup size | est. | comp. | est./comp.
200 bytes | 1.4 9.0 0.156
600 bytes | 1.4 26.0 0.054

Table 4: Time vs. tuple size for selectivity tests (k = 3.0, s = 0.10.)

the tuple size by a factor of three in the 10 percent selection. The estimating time remains
constant, whereas the time to compute the query grows in proportion to the tuple size. The
next subsection discusses two ways to deal with large ¢ values.

Comparison with Hou et al.

Hou, Ozsoyoglu, and Taneja [HOT88, HOT89] describe another algorithm for estimating se-
lectivities through random sampling. While similar, there are a number of differences between
their approach and ours. First, they sample without replacement, whereas we sample with
replacement. For the large population sizes we are considering, this does not make much of a
difference. Perhaps most significantly, Hou et al. [HOTS88] propose to use cluster sampling. In
cluster sampling, when a disk page is brought into memory, all tuples on the page are sampled.
This increases the efficiency, especially if ¢, the blocking factor, is large. However, the samples
are no longer independent.

Using all tuples on a disk page is clearly a good idea. One natural way to incorporate this
into our sampling framework is as follows: first, define a sample to be a randomly chosen disk
page of the relation, rather than a randomly chosen tuple. The size of a sample is the number
of tuples in the page that satisfy the selection, and n, the number of partitions, is the number
of disk blocks in the relation. Note that this is different from cluster sampling; cluster sampling
treats a disk page as a set of correlated samples, whereas the method outlined above treats a
disk page as a single sample.

From the EQUEL interface we could not implement either cluster sampling or this algorithm.
Intuitively, the block sampling algorithm of [HOT88] should perform better than the simple non-
blocking adaptive sampling algorithm we have presented, since essentially in the same sampling
time the blocking algorithm can examine a factor of ¢ more tuples than the non-blocking
adaptive algorithm. The comparison between the algorithm of [HOT88] and the blocking version
of our adaptive algorithm is less obvious, and will be the topic for future experimentation.

5 Estimating Joins

In this section we consider the problem of estimating join selectivities through random sampling.
Estimating join selectivities is more involved than estimating the simple selectivities of Section 4;
however, since in general computing a join is more expensive than computing a select, and much

less is known about non-sampling methods of estimating joins, finding good sampling estimation
algorithms for joins is critical.
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## range of a is wiscrela

## range of d is wiscreld

sum = m = 0;

while ((sum <= k¥b*D*(D+1)) && (m <= k+E*E))
{

m++;
target = random() % N;
## repeat retrieve (size = count(d.uniqueid
## where a.uniquela = Qtarget and
## d.norm8d = a.thousa))
sum += size;

}

estimate = (sum*N)/ m;

Figure 4: EQUEL to estimate a join size.

Overview of Join Sampling

In this paper we consider binary joins, although most of the discussion can be extended to
arbitrary joins with minor modifications. As discussed in Example 2.1, we sample joins by
denoting one relation as the source relation and the other as the target relation. The query
answer is partitioned into as many subsets as there are tuples in the source relation; the size of
a subset denoted by a tuple ¢ of the source relation is just the number of tuples in the target
relation that join with t. A sample is just the size of a randomly chosen subset.

The EQUEL fragment in Figure 4 implements the sampling loop for one of the joins de-
scribed below. Again, the analogy to the algorithm in Figure 1 should be clear.

Because in join sampling the samples are no longer zero-one samples, the distribution of
sample sizes can be more interesting and has a significant effect on the estimation algorithm.
Recall from Section 2 that the bounds on sampling are expressed in terms of ratio of the
variance and expected value of the samples, which is bounded above by the maximum size
of any sample. In order to fully test our algorithm, we investigated joins in which the join
attribute in one relation was uniformly distributed, and the join attribute in the other was
normally distributed. By varying the standard deviation of the normal distributions, we were
able to test the algorithm for various distributions of sample sizes.

As in the selection estimation case, we assume that one of the relations has a dense key with
an index, although all that is needed is a B*-tree on some attribute. There is an additional
requirement for efficient join sampling: after randomly choosing a tuple ¢ of the source relation,
we must find all tuples of the target relation that join with ¢{. Hence if the sampling is to be
efficient, there must be an index on the join attribute of the target relation.

In the following data, the source and target relations both contained 10,000 tuples, each of
208 bytes. The relevant columns for the sampling were

¢ uniquel — an integer key column, used for randomly choosing a source tuple.

14



200 -

180 +

160 - ¢ norm16000
A norml1000

+ norm250

140

120 4

100

[oe]
<
I

HMORTmM mQP-HZmOREY
N
S

ey
jaw]
i

20

O i ¥ ¥ T ¥ 1 1 1 L) L]
0 3 6 9 12 15 18 21 24 27 30
PERCENT OF COMPUTE TIME

Figure 5: Error vs. percentage of compute time.

¢ unique2 — a permutation of uniquel.

¢ thousa — random integers between one and 1000, subject to the condition that each
appears exactly 10 times in the relation.

¢ normX — the positive half of a normal distribution with mean zero and standard deviation
X. There are 3 such columns, for X = 250, 1000, and 16000.

Discussion of Join Data

The graph in Figure 5 shows the relative error in the estimate as a function of the percentage
of time to compute the full join. There are curves for each of unique2 join normX for X = 250,
1000, and 16000. A couple of trends are clear from the graph. First, fairly accurate estimates
(certainly good enough to be useful in query optimization) are possible in a small fraction of
the time required to compute the join size. Second, the more skewed the data (the smaller the
standard deviation) the less efficient the estimation.

This can be understood as an extension of the situation with selects. In the select case, if
there were many zeroes and few ones, the algorithm had to sample for a relatively long time in
order to discover those ones; in the join case, if there are a few outlying sample sizes that are
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time (sec) | err, V/E = 1.14 | err, V/E = 3.2
0.25 20 29
0.50 14 20
0.75 12 17
1.00 10 15

Table 5: Two ways to sample a join.

much bigger than the average sample size, the algorithm again needs to do more sampling to
discover those samples.

This dependence on variance of the samples raises an interesting point: there is no a priori
reason to pick one relation as the source over the other. Clearly, if only one relation has an
index on the join attribute, it must be the target relation. But if both relations have indices on
the join attribute, either can serve as the source. The decision should be made in such a way
as to minimize the variance of the samples.

Consider joining two relations, with the join attribute in one relation thous, and the join
attribute in the other norm2000. It turns out that if we make the relation with norm2000 the
source relation, then V/E = 3.2, whereas if we pick the relation with thous as the source,
V/E = 1.14. Table 5 compares the performance of both strategies by giving the relative error
of each strategy at several points in time. The data points are averages over 100 trials; the
errors for each time ¢ are interpolated values. The strategy with lower V/E converges faster.

The scale-up considerations in terms of tuple size for join estimation are similar to those
for select estimation. However, if V/E grows as the size of the joining relations grows, then
since the amount of sampling necessary for a given accuracy is proportional to V/E, the cost of
sampling will not remain constant. On the other hand, if V/E grows more slowly than the size
of the relation, or remains constant, as is often the case, join sampling will increase in efficiency
as relations grow.

Comparison with Hou et al.

Hou et al. [HOT88, HOT89] also give an algorithm for estimating join selectivities. In its
simplest form, the algorithm works as follows. Suppose we are joining relations R and S, and
denote the size of R by |R|, and the size of S by |S|. The algorithm works as follows. First
pick a tuple from the R; then pick a tuple from §. If the tuples join, the sample is of size one;
otherwise, the sample is of size zero. Say m such samples have been taken, and that the sum
is s. Then estimate that A, the true answer, is |R||S|s/m.

A more sophisticated version of their algorithm, also presented in [HOT88], involves ran-
domly choosing a set of disk blocks of R and a set of disk blocks of §, then comparing all tuples
within these blocks to see if they join. This greatly reduces the number of disk I/Q’s for a given
number of tuple comparisons.

Again, since we cannot implement this blocked sampling algorithm through the EQUEL
interface, we cannot sensibly compare times for the two algorithms. However, we can compare
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Figure 6: Accuracy of HOT Algorithm for query unique2a join quarterb.

the accuracy of the estimate in terms of the number of tuples examined.

We compared relative accuracies of our adaptive sampling algorithm and the HOT algorithm
for the query unique2a join quarterb. That is, the join attribute in relation A contained a
random permutation of the integers from zero to n, where n is the number of tuples in relation
A, while the join attribute in relation B contained a random permutation of the integers from
zero to n/4, each integer appearing four times.

Figure 6 gives the accuracy of the HOT algorithm on this query for relations of sizes vary-
ing from 10K to 40K tuples. Figure 7 gives the accuracy of the adaptive algorithm for the
same query. Both graphs compare the relative error in the estimate vs. the number of tuples
examined. The scale for the z-axis is different in the two figures; the graphs indicate that the
adaptive algorithm converges to a good estimate much faster (in terms of number of tuple com-
parisons) than the HOT algorithm. However, since the HOT algorithm uses clustered sampling,
it is able to make more tuple comparisons per disk I/O than the adaptive algorithm.

Also, the intended application of the HOT algorithm is real-time systems, where predictabil-
ity of the time to compute a sample is paramount. Since every sample in the HOT algorithm
consists of extracting a fixed number of disk pages, it is predictable; whereas in the adaptive
algorithm, the time for a sample will vary depending on the size of the sample.
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Figure 7: Accuracy of Adaptive Algorithm for query unique2a join quarterb.
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6 Conclusion

We have argued that adaptive random sampling can be a useful tool in estimating query sizes.
Implemented in a loosely coupled manner as a host language program, it gave good performance
over a wide range of select and join queries.

In future work we intend to examine the efficiency of random adaptive sampling when added
as an operator within the database system. This will allow us to test the disk block-at-a-time
variant of our select estimation algorithm, and to test the performance of the algorithm with the
host/system overhead removed. Finally, we plan to investigate sampling on large main-memory
and on multiprocessor machines. Such machines provide an extremely attractive environment
for size estimation through sampling, since 1) in main-memory databases, there is no handicap
to the sampling algorithm due to poor use of disk accesses, and 2) on a multiprocessor, many
samples can be done simultaneously in parallel.
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