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Program integration atternpts to construct a merged program from several related but different variants of a base pro-
gram. The merged program must include the changed computations of the variants as well as the computations of the
base program that are preserved in all variants.

A fundamental problem of program integration is determining the sets of changed and preserved computations of
each variant. This paper first describes a new algorithm for partitioning program components (in one or more pro-
grams) into disjoint equivalence classes so that two components are in the same class only if they have the same execu-
tion behavior. This partitioning algorithm can be used to identify changed and preserved computations, and thus forms
the basis for the new program-integration algorithm presented here. The new program-integration algorithm is strictly
better than the original algorithm of Horwitz, Prins, and Reps: integrated programs produced by the new algorithm
have the same semantic properties relative to the base program and its variants as do integrated programs produced by
the original algorithm, the new algorithm successfully integrates program variants whenever the original algorithm
does, but there are classes of program modifications for which the new algorithm succeeds while the original algorithm
reports interference.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques ~ programmer workbench;
D.2.3 [Software Engineering]: Coding — program editors; D.2.6 [Software Engineering]: Programming Environ-
ments; D.2.7 [Software Engineering]: Distribution and Maintenance —~ enhancement, restructuring, version control;
D.2.9 [Software Engineering]: Management — programming teams, software configuration managemens; D.3.4 [Pro-
gramming Languages): Processors — compilers, interpreters, optimization; E.1 [Data Structures] graphs

General Terms: Algorithms, Design
Additional Key Words and Phrases: coarsest partition, control dependence, data congruence, data dependence, data-

flow analysis, flow dependence, program dependence graph, program integration, program representation graph,
sequence congruence, static-single-assignment form

1. INTRODUCTION

Given a base program Base and a set of variant programs, each created by modifying a copy of Base, the
goal of program integration is to determine whether the variants incorporate interfering changes, and if not,
to create a single program that includes the changes introduced in the variants as well as the portions of
Base that are preserved in all variants. Although text-merging tools that address this problem have existed
for years, when used for merging programs they are unsafe, in the sense that they do not protect against
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unwanted interactions between the parts of the integrated program that are incorporated from different vari-
ants. Thus, one has no guarantees about how the execution behavior of the integrated program relates to
the behaviors of the programs that are the arguments to the merge.

The first algorithm to provide any such guarantees was given by Horwitz, Prins, and Reps in
[Horwitz88, Horwitz89]. This algorithm—referred to hereafter as the HPR algorithm——guarantees that the
following semantic property holds for the integrated program in cases where the algorithm determines that
the variant programs do not interfere [Reps89]:'

If the HPR algorithm is applied to base program Base and variant programs A and B,? and if integration
succeeds, producing program M, then for any initial state ¢ on which Base, A, and B all terminate nor-
mally,? M has the following properties:

(1) M terminates normally on .

(2) For any variable x that has final value v after executing A on ¢, and a different final value v after
executing Base on G, x has final value v after executing M on & (i.e., M agrees with A on x).

(3)  For any variable y that has final value v after executing B on ¢, and a different final value v’ after
executing Base on 0, y has final value v after executing M on o (i.e., M agrees with B on y).

(4)  For any variable z that has the same final value v after executing Base, A, and B on G, z has final
value v after executing M on o (i.e., M agrees with Base, A, and B on 2),

More informally: changes in the behavior of A and B with respect to Base are detected and preserved in
the integrated program, along with the unchanged behavior of all three.

Properties (1)—(4) can be taken to define a semantic criterion for integration and interference: any pro-
gram M that satisfies (1)-(4) integrates Base, A, and B; if no such program exists then A and B interfere
with respect to Base. However, this criterion is not decidable; it requires being able to determine, for all
possible initial states, which variables of a variant program have the same final values as their counterparts
in the base program. Thus, any program-integration algorithm must use techniques that compute a safe
approximation to this set of variables. (In this case safe means that two inequivalent variables must never
be identified as being equivalent.) Consequently, any program-integration algorithm will sometimes fail to
produce an integrated program even though there is actually no interference (i.e., even when there is some
program that meets the integration criterion given above).

As a practical matter, it is desirable to place further restrictions on how the integrated program M is con-
structed from Base, A, and B:

(1) M must be constructed from components of A and B and no other components.

(2) Each component of M must behave in exactly the same way as one of its counterparts in A or B.

"The HPR algorithm applies to programs written in a simple language that includes scalar variables, assignment statements, condition-~
al statements, while loops, and final output statements (called end statements). By definition, only those variables listed in the end
statement have values in the final state. The language does not include input statements; however, a program can use a variable before
assigning to it, in which case the variable’s value comes from the initial state.

2Both the HPR algorithm and the new algorithm can accommodate any number of variants; for the sake of exposition, we consider the
common case of two variants.

*There are two ways in which a program may fail to terminate normally: (1) the program has a non-terminating loop, or (2) a fault such
ag division by zero occurs.




Thus, a fundamental problem is how to determine which components of a variant program might produce
different values than the analogous components of the base program. (We call such components affected
components.)

The HPR algorithm uses program slices [Weiser84] to find affected components.* If a component ¢’s
slice in the base program differs from its slice in a variant, then the way ¢’s values are computed differs in
the base program and the variant, and thus the values themselves might differ. Therefore, any component
whose slice in the base program differs from its slice in a variant is considered to be an affected component
by the HPR algorithm.

The goal of the work described in this paper was to find an appropriate way (o extend the HPR algorithm
with a sharper technique for identifying affected components. We recognized that an idea introduced by
Alpern, Wegman, and Zadeck in [Alpern88], which uses a certain graph representation of programs to find
“equivalence classes” of program components, provided a possible basis for extending the integration
method in this way. The algorithm of Alpern, Wegman, and Zadeck first optimistically groups possibly
equivalent components in an initial partition, and then finds the coarsest partition of the components that is
consistent with the initial partition and the edges of the graph.

However, their equivalence-testing algorithm was not suitable for our purposes; the property that holds
for components in the same “equivalence class” is that components of a single program that are in the same
final partition produce the same value at certain moments during program execution [Alpern88]. There are
two reasons why this is not the appropriate property for our purposes: (1) for integration, it is necessary to
be able to identify equivalent components in several programs simultaneously; (2) equivalent components
must produce identical sequences of values. Consequently, we developed a new algorithm that uses the
partitioning idea to find equivalent components, called the Sequence-Congruence Algorithm [Yang89].
The affected components determined using the Sequence-Congruence Algorithm are a subset of the
affected components determined using program slicing (but are still a safe approximation to the exact set of
affected components).

This paper describes a new program-integration algorithm that uses the Sequence-Congruence Algo-
rithm to find affected components. The new integration algorithm is quite different from the HPR algo-
rithm. In addition to using a different method for determining affected components, it uses a different
underlying graph representation of programs and uses different criteria to extract changed and preserved
components from the variants to be assembled into the merged program.

Despite these differences, the new algorithm shares with the HPR algorithm the same characterization of
the execution behavior of the integrated program in terms of the behaviors of the base program and the two
integrands. In addition, it can be shown that the new algorithm is strictly better than the HPR algorithm in
the following sense.

(1) The new algorithm succeeds whenever the HPR algorithm succeeds.

(2) There are classes of program modifications for which the new algorithm succeeds but the HPR
algorithm reports interference.

The kinds of changes that cause components to be (pessimistically) classified as affected using program
slicing but classified as unaffected using the Sequence-Congruence Algorithm include changing variable

*“The slice of a program with respect to a component ¢ (where a program component is an assignment statement, a predicate, or an end
statement) is the set of program components that might affect (either directly or transitively) the values of the variables used at ¢
[Weiser84, Ottenstein84].



names, inserting or deleting statements that copy values from a constant to a variable or from one variable
to another, and some instances of moving assignments into or out of conditional statements. Examples of
these three kinds of changes are given in Figure 1.

Figure 1 shows three sets of programs, each set containing a base program and two variants. In all three
cases, the slice with respect to the assignment to variable area in variant A differs from the corresponding
slice in Base. Thus, the HPR algorithm would classify that assignment as an affected component (although
in fact the value assigned to area is the same in variant A as in Base). This classification, in conjunction
with the fact that variant B introduces new code that uses the value of area (namely, the assignment to vol)

Integrated Program
Base Variant A Variant B Produced by the
New Algorithm
Pr—
program program program program
P:=314 PI:=3.14 P:=3.14 PI:=3.14
rad:=2 rad:=2 rad ;=2 rad:=2
area = P * (rad**2) area := PI * (rad**2) area := P * (rad**2) area := PI * (rad**2)
end(area) end(area) height .= 4 height :=4
vol := height*area vol = height*area
end(area,vol) end{area,vol)
program program program program
P:=314 rad =2 P:=3.14 rad:=2
rad:=2 area :=3.14 * (rad**2) rad =2 area :=3.14 * (rad**2)
area := P * (rad**2) end(area) area =P * (rad**2) height := 4
end(area) height := 4 vol := height*area
vol := height*area end(area,vol)
end(area,vol)
program program program program
P:=314 P:=3.14 P:=3.14 P:=3.14
rad =2 if DEBUG rad ;=2 if DEBUG
if DEBUG then rad :=4 if DEBUG then rad :=4
then rad := 4 else rad:=2 then rad := 4 elserad ;=12
fi fi fi fi
area := P * (rad**2) area = P * (rad**2) area:=P * (rad**2) area:=P * (rad**2)
end(area) end(area) height := 4 height :=4
vol := height*area vol := height*area
end(area,vol) end(area,vol)

Figure 1. Three example integration problems that illustrate the three kinds of changes that cause the HPR algorithm
to report interference, but for which the new algorithm produces the integrated programs shown. The first example il-
Iustrates variable renaming (P is renamed PI in variant A); the second example illustrates a value being used directly vs.
being passed through a variable; the third example illustrates an assignment being moved into a conditional.



leads the HPR algorithm to determine that the variants incorporate interfering changes. In fact, there is no
interference in any of these examples, and the new integration algorithm would succeed in all cases, pro-
ducing the integrated programs as shown.

The remainder of this paper defines and discusses the Sequence-Congruence Algorithm and the new
program-integration algorithm. Both algorithms use a graph representation of programs called the Program
Representation Graph (first defined in [Yang89]), which combines features of program dependence graphs
[Kuck81, Ferrante87, Horwitz88, Horwitz89] and static single assignment forms
[Shapiro70, Alpem88, Cytron89, Rosen88]. Program Representation Graphs are defined in Section 2. Sec-
tion 3 describes the Sequence-Congruence Algorithm. The Sequence-Congruence Algorithm can be
applied to the Program Representation Graphs of one or more programs; the algorithm partitions the ver-
tices of the graph(s) into disjoint equivalence classes so that two vertices are in the same class only if the
program components that they represent have equivalent behaviors (a definition of equivalent behavior is
given in Section 3). Section 4 presents the new integration algorithm. Section 5 proves that when the new
integration algorithm successfully produces an integrated programs, that program satisfies the semantic cri-
terion given above. Section 6 shows that the new integration algorithm is strictly better than the HPR algo-
rithm. Section 7 discusses the relation between the result reported in this paper and previous work.

2. PROGRAM REPRESENTATION GRAPHS

Both the Sequence-Congruence Algorithm and the new program-integration algorithm use a graph
representation of programs called a Program Representation Graph. Program Representation Graphs
(PRGS) are currently defined only for programs in a limited language that includes scalar variables, assign-
ment statements, conditional statements, while loops, and final output statements called end statements.
PRGs combine features of program dependence graphs [Kuck81,Ferrante87, Horwitz88, Horwitz89] and
static single assignment forms [Shapiro70, Alpemn88, Cytron89, Rosen88].

A program’s PRG is defined in terms of an augmented version of the program’s control-flow graph. The
standard control-flow graph includes a special Entry vertex and one vertex for each if or while predicate,
and each assignment statement. The control-flow graph is augmented as follows. First, a final-use vertex,
labeled “FinalUse(x),” is added for each variable x named in the program’s end statement. The relative
order of these vertices is arbitrary; however, they must appear sequentially, following all other vertices of
the control-flow graph. Second, as in static single assignment forms, the control-flow graph is augmented
by adding special “¢ vertices” so that each use of a variable in an assignment statement, a predicate, or the
end statement is reached by exactly one definition.

(1)  For each variable x that is defined within either (or both) branches of an if statement and is live at
the end of the if statement, a “¢;” vertex labeled “y: x := x” is added to the control-flow graph
immediately following the if statement. If there is more than one such vertex, their relative order is
arbitrary.

(2) For each variable x that is defined within a while loop, and is live immediately before the loop
predicate (i.e., may be used before being redefined either inside the loop or after the loop), a
“Oenser” vertex labeled “¢,n,: x 1= x” is added to the control-flow graph inside the loop, before the
loop predicate. If there is more than one such vertex, their relative order is arbitrary.

(3)  For each variable x that is defined within a while loop and is live after the loop, a “¢..;,” vertex
labeled “¢,.: x := x” is added to the control-flow graph immediately after the loop. If there is more
than one such vertex, their relative order is arbitrary.



Finally, for each variable x that may be used before being defined (i.e., there is an x-definition clear path in
the control-flow graph from the Entry vertex to a vertex that uses x), an initial-definition vertex, labeled
“x := InitialState (x),” is added to the control-flow graph after the Entry vertex. This vertex represents the
assignment to x of a value from the initial state. If there is more than one such vertex, their relative order is
arbitrary; however, they must appear sequentially, following the Entry vertex and preceding all other ver-
tices in the control-flow graph.

Example. Figures 2(a) and 2(b) show a program and its augmented control-flow graph.

The vertices of a program’s Program Representation Graph (PRG) are the same as the vertices in the aug-
mented control-flow graph (an Entry vertex, one vertex for each predicate, and each assignment statement,
and for each initial definition, final use, ¢y, Oemer» and Py vertex). The edges of the PRG represent control
and flow dependences.

program

P:=3.14

rad:=2 @

it DEBUG then

rad =4 DEBUG = InitSt (DEBU

fi

area := P*(rad**2) ’
end(area)

(a)

DEBUG:=InitSt (DEBUG

area = P*(rad**2)
FinalUse(area)

() ®)

Figure 2. (a) A program; (b) its augmented control-flow graph; (c) its Program Representation Graph. In the Program
Representation Graph, control dependence edges are shown using bold arrows and the edges are shown without their
labels (in this example, all control dependence edges would be labeled true); data dependence edges are shown using
arcs.




The source of a control dependence edge is always either the Entry vertex or a predicate vertex; control
dependence edges are labeled either true or false. The intuitive meaning of a control dependence edge
from vertex v to vertex w is that if the program component represented by vertex v is evaluated during pro-
gram execution and its value matches the label on the edge, then, (assuming termination of all loops) the
component represented by w will eventually execute, while if the component represented by v is evaluated
and its value does not match the label on the edge, then the component represented by w may never exe-
cute. (By definition, the Entry vertex always evaluates to true.)

Algorithms for computing control dependences in languages with unrestricted control flow are given in
[Ferrante87, Cytron89). For the restricted language under consideration here, control dependence edges
reflect the nesting structure of the program (i.e., there is an edge labeled true from the vertex that
represents a while predicate to all vertices that represent statements inside the loop; there is an edge labeled
true from the vertex that represents an if predicate to all vertices that represent statements in the true
branch of the if, and an edge labeled false to all vertices that represent statements in the false branch; there
is an edge labeled true from the Entry vertex to all vertices that represent statements or predicates that are
not inside any while loop or if statement). In addition, there is a control dependence edge labeled true
from every vertex that represents a while predicate to itself.

Flow dependence edges represent the possible flow of values, i.e., there is a flow dependence edge from
vertex v to vertex w if vertex v represents a program component that assigns a value to some variable x,
vertex w represents a component that uses the value of variable x, and there is an x-definition clear path
from v to w in the augmented control-flow graph.

Example. Figure 2(c) shows the Program Representation Graph of the program of Figure 2(a). Control
dependence edges are shown using bold arrows and their labels have been omitted (in this example, all
control dependence edges would be labeled true); data dependence edges are shown using arcs.

Textually different programs may have identical Program Representation Graphs. However, we have
shown that if two programs have the same graph, then the programs are semantically equivalent [Yang90].

THEOREM. (EQUIVALENCE THEOREM FOR PROGRAM REPRESENTATION GRAPHS). Suppose P and Q) are
programs such that the Program Representation Graph of P is identical to the Program Representation
Graph of Q. If © is a state on which P terminates normally, then for any state & that agrees with & on all
variables for which the graphs contain initial-definition vertices, (1) Q terminates normally on ¢, (2) P
and Q compute the same sequence of values at each corresponding program component, and (3) the final
states of P and Q agree on all variables for which the graphs contain final-use vertices.

3. THE SEQUENCE-CONGRUENCE ALGORITHM

The Sequence-Congruence Algorithm can be applied to the Program Representation Graphs of one or more
programs. The algorithm partitions the vertices of the graph(s) into disjoint equivalence classes so that two
vertices are in the same class only if the program components that they represent have equivalent behaviors
in the following sense:

Definition. (Equivalent behavior of program components.) Two components ¢; and ¢ of (not neces-
sarily distinct) programs P, and P, respectively, have equivalent behaviors if and only if all four of the
following hold:

(1)  For all initial states ¢ such that both P, and P, terminate normally when executed on o, the
sequence of values produced at component ¢, when P; is executed on o is identical to the
sequence of values produced at component ¢, when P is executed on G.



(2) For all initial states o such that neither P, nor P, terminates normally when executed on o, either
the sequence of values produced at component ¢, is an initial sub-sequence of the sequence of
values produced at c, or vice versa.

(3) For all initial states ¢ such that P, terminates normally on o but P, fails to terminate normally on
o, the sequence of values produced at ¢, is an initial sub-sequence of the sequence of values pro-
duced at ;. ’

(4) For all initial states o such that P, terminates normally on & but P, fails to terminate normally on
o, the sequence of values produced at ¢, is an initial sub-sequence of the sequence of values pro-
duced at c,.

By “the sequence of values produced at a component” we mean: For an assignment statement (including
initial-definition statements and ¢ statements), the sequence of values assigned to the left-hand-side vari-
able; for a predicate, the sequence of boolean values to which the predicate evaluates; and for a variable
named in the end statement, the final value of that variable. Note that a fault such as integer overflow is
considered to be a special “value” in the above definition. Thus, suppose a fault occurs during the K
evaluation of ¢;. Then program P, cannot terminate normally and the same fault must occur during the
k** evaluation of ¢,, if ¢, is evaluated k times.

A component’s execution behavior depends on three factors: the operator in the component, the
operands available when the operator is applied, and the predicates that control the execution of the opera-
tion. It is not unreasonable to assume that vertices with different operators, inequivalent operands, or ine-
- quivalent controlling predicates will have inequivalent execution behaviors (although there do exist pro-
gram components that have equivalent behavior but have different operators, inequivalent operands, or ine-
quivalent controlling predicates).

The Sequence-Congruence Algorithm is based on the above assumption. Given one or more programs,
the Algorithm divides components of the programs that have different operators, inequivalent operands, or
inequivalent controlling predicates into disjoint equivalence classes. Initially, components with different
operators are put into different partitions. Flow dependences and control dependences are used to refine
the initial partition. Components that are in the same final equivalence classes will have the same opera-
tors, equivalent operands, and equivalent controlling predicates.

The Sequence-Congruence Algorithm consists of two passes. Both passes use an algorithm called the
Basic Partitioning Algorithm that was adapted from [Alpern88, Aho74], and is based on an algorithm of
[Hopcroft71] for minimizing a finite state machine. Figure 3 shows the Basic Partitioning Algorithm
where the m-successors of a vertex u are the vertices v such that there is an edge u —> v of type m (the type
of an edge is defined below). The Basic Partitioning Algorithm finds the coarsest partition of a graph that
is consistent with a given initial partition of the graph’s vertices. The algorithm guarantees that two ver-
tices v and v’ are in the same class after partitioning if and only if they are in the same initial partition, and,
for every predecessor u of v, there is an analogous predecessor u” of v’ such that u and u’ are in the same
class after partitioning.

The two passes of the Sequence-Congruence Algorithm apply the Basic Partitioning Algorithm to dif-
ferent initial partitions, and make use of different sets of edges. The first pass creates an initial partition
based on the operators used at the vertices. Flow dependence edges (and some additional edges) are used
in the first pass to refine the initial partition. The second pass starts with the final partition produced by the
first pass; control dependence edges are used to further refine this partition.

The operator in a statement or a predicate vertex is determined from the expression part of the vertex.
For example, statement “x :=a + b * ¢” has the same operator as statement “y :=d + e * f” but a different




The Basic Partitioning Algorithm:

The initial partition is B[1}, B[2], ..., B[p]
WAITING := { 1, 2,..., P )

q:=p
while WAITING # & do
select and delete an integer i from WAITING
for each type m of edge do
FOLLOWER := @&
for each vertex u in Bfi] do
FOLLOWER := FOLLOWER U m-successor(u)
od
for each j such that B[j] N FOLLOWER # & and B[j] ¢ FOLLOWER do
q:=q+1
create a new class B[q]
B{q] := B[j] N FOLLOWER
B(j] :=B(j] - B[q]
if j € WAITING
then add q to WAITING
else If size(B([j]) < size(B[q])
then add j to WAITING |
else add q to WAITING
fi
fi
od
od
od

Figure 3. The Basic Partitioning Algorithm. This algorithm, which is adapted from [Alpem88, Aho74], finds the coar-
sest partition of a graph that is consistent with a given initial partition of the graph’s vertices. The algorithm guarantees
that two vertices v and v’ are in the same class after partitioning if and only if they are in the same initial partition and
for every predecessor u of v there is an analogous predecessor «’ of v’ such that u and 4’ are in the same class after par-
titioning.

operator than statement “z := g * h”; that is, the structure of the expression in the vertex defines the opera-
tor. The expression “a + b * ¢” uses the operator that takes three arguments a, b, and ¢, and returns the
valueof “a+ b * ¢”.

A predicate is simple if it consists of a single boolean variable; an assignment statement is simple if its
right-hand-side expression consists of a single variable. Both vertices that represent simple predicates and
vertices that represent simple assignments are referred to as simple vertices. The operator in a simple ver-
tex is the identity operator, that is, an operator that takes one argument and returns the value of the argu-
ment. Examples of simple vertices include: “if P,” “‘y := x,” and

The operator in a vertex whose expression consists of a single constant is the constant operator that takes
no argument and always returns the value of that constant (i.e., there is a different operator for each con-
stant value).
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Two vertices that are the same kind of ¢ vertex (i.€., Qenter» Pexit» OF §) Of that have the same operators
must have the same number of incoming control and flow dependence edges. Thus, we can speak of the
“analogous” flow (or control) predecessors of the two vertices. To be more specific, we assign fypes to
edges in the PRGs; the notion of analogous flow (or control) predecessors of two vertices is then defined in
terms of the types of edges. (Note that the numbers for the edge types specified below are chosen arbi-
trarily; these numbers are used only to distinguish different types of edges.)

Due to the presence of ¢ vertices in PRGs, each use of a variable in a non-¢ vertex is reached by exactly
one definition (either an original assignment statement, an initial-definition assignment, or a ¢ assignment).
Therefore, if the operator in a non-¢ vertex is an n-ary operator, there are exactly n incoming flow depen-
dence edges for this vertex. These flow dependence edges are assigned types 1, 2,..., n, one for each
operand. Edge-type numbers for other kinds of edges in a PRG start at m + 1, where m is the greatest
number of flow edges incident on some non-¢ vertex. In what follows, we will assume that m = 3, and start
numbering other edges at 4.

A vertex u labeled “¢;: x = x” has two incoming flow dependence edges: one represents the value that
flows to u from or via the true branch of the associated if statement; the other represents the value that
flows to u from or via the false branch. The flow dependence edges incident on a ¢ vertex are assigned
types 4 and 5, respectively. For example, consider the following program fragment:

<Tl> =x:=1
if P then
<T2> x =2
fi

<T3> Ppx:=x

The definition at T1 reaches T3 via the false branch of the if statement, so the flow dependence edge from
T1 to T3 has type 5. The definition at T2 reaches T3 from the frue branch, so the flow dependence edge
from T2 to T3 has type 4.

A vertex u labeled “Qonr: x := x” has two incoming flow dependence edges: one represents the value
that flows to u from outside the associated loop (due to an assignment to x before the loop); the other
represents the value that flows to u from inside the loop. These flow dependence edges are assigned types
6 and 7, respectively.

A vertex u labeled “,,;: x := x” has one incoming flow dependence edge; the source of this flow depen-
dence edge is the associated ¢,., vertex. The flow dependence edge incident on a ¢,s;, vertex is assigned
type 8.

All vertices except ¢,.., and while predicate vertices have exactly one incoming control dependence
edge. The control dependence edges that form self-loops on while predicates are assigned type 9. The
incoming control dependence edge of a {,, vertex ¥ whose source is not the associated while predicate
for u is assigned type 10 or 11 depending on whether the label on the control dependence edge is true or
false. All other control dependence edges are assigned type 12 or 13 depending on whether the label on
the control dependence edge is true or false.

The analogous flow (or control) predecessors of two vertices 1, and u, are two vertices v, and v, such
that the flow (or control, respectively) dependence edges u; — v, and u, — v, have the same type.

Figure 4 presents the Sequence-Congruence Algorithm, which operates on one or more Program
Representation Graphs. When the algorithm operates on more than one PRG, the multiple PRGs are treated
as one graph; thus, when we refer below to “the graph,” we mean the collection of PRGs.
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The Sequence-Congruence Algorithm:

Pass 1:
Add an if-edge from every if predicate to each associated ¢ vertex.
Add a while-edge from every while predicate to each associated §.;, vertex.
Merge non-b vertices that use identity operators with their flow predecessors.
Create an initial partition using the operators in the vertices as explained in the text.
Apply the Basic Partitioning Algorithm to refine the initial partition, ignoring all control dependence edges.
Remove all if and while edges.
Undo all merge operations.

Pass 2:
Apply the Basic Partitioning Algorithm to the partition obtained from the first pass, using only control depen-
dence edges to further refine the partition.

Figure 4. The Sequence-Congruence Algorithm. The Sequence-Congruence Algorithm consists of iwo passes. Both
passes make use of the Basic Partitioning Algorithm presented in Figure 3; only the starting partition and the edges
considered in the two passes are different.

Pass 1:

For the first pass, some additional edges are added to the graph: an edge from every if predicate to each
associated ¢; vertex and an edge from every while predicate to each associated ¢,y vertex are added to the
PRGs. These added edges are assigned types 14 and 15, respectively. Also, for the first pass, non-¢ vertices
with identity operators are merged with their (single) flow predecessors. To merge vertex v with vertex u,
replace every edge v — x with edge u — x, remove edge u — v, and remove vertex v. (This merge opera-
tion will be undone before the second pass, but vertices u and v will remain in the same partition.)

The initial partition is based on the operators in the vertices. Initially, there is a class for all the Entry
vertices; for each variable x there is a class for all the initial—definition vertices for x; there is a class for all
non-¢ vertices that have the same operators; for each nesting level of while loops, there is a class for all the
denier Vertices at this nesting level; there is a class for all the @,y vertices; there is a class for all the ¢; ver-
tices.

The initial partition is refined by the Basic Partitioning Algorithm; however, all control dependence
edges are ignored in the first pass.

At the end of the first pass, the edges added at the beginning of the first pass — those of types 14 and 15 -
are discarded. Also, all merge operations performed at the beginning of the first pass are undone.

Pass 2:

The second pass considers only control dependence edges, and applies the Basic Partitioning Algorithm
again to refine the partition obtained from the first pass.

The time required by the Sequence-Congruence Algorithm is O (N log N), where N is the sum of the
sizes of the Program Representation Graphs (i.e., number of vertices + number of edges) to which the algo-
rithm is applied.
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Definition. Vertices are sequence-congruent if they are in the same class after the second pass of parti-
tioning.

The Sequence-Congruence Theorem [Yang89] states that program components represented by
sequence-congruent vertices have equivalent execution behaviors in the sense defined at the beginning of
Section 3. This Theorem establishes the ability of the Sequence-Congruence Algorithm to detect program
components with equivalent execution behaviors. '

THEOREM. (SEQUENCE-CONGRUENCE THEOREM). If two vertices are sequence-congruent, then the pro-
gram components represented by the two vertices have equivalent behaviors.

Example. Figure 5 shows the final partition created by applying the Sequence-Congruence Algorithm to
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Figure S. Partitioning Example. The final partition created by the Sequence-Congruence Algorithm for the programs
of the third example of Figure 1.
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the third set of programs in Figure 1.5 Although the three occurrences of “rad := 2" are in the same initial
partition, the component from variant A is in a different final partition than the analogous components from
Base and variant B. This is because “rad := 2” is executed unconditionally in Base and in variant B; thus,
the sequence of values produced at this component in those programs is never empty. However, the
sequence of values produced at this component in variant A is empty if the initial value of DEBU! G is true.
Note that the component “area := P*(rad**2)” from variant A is in the same final partition as the analo-
gous components of Base and B (and is thus guaranteed to assign the same value to the variable area) even
though the slice of A with respect to this component is not the same as the slice with respect to the analo-
gous components of Base and B.

4. THE NEW INTEGRATION ALGORITHM

Given a base program Base and variant programs A and B, the new integration algorithm performs the fol-
lowing steps:
(1)  Apply the Sequence-Congruence Algorithm to the Program Representation Graphs of the three
programs,
(2)  Use the sequence-congruence classes produced in Step (1) to classify the vertices of each PRG.

(3) Use the classification of Step (2) to compute subgraphs that represent the changed and preserved
computations of the variant programs with respect to the base program.

(4) Combine the subgraphs to form a merged graph.
(5) Determine whether the merged graph represents a program; if so, produce the program.
The algorithm may determine that the variant programs interfere in either Step (2), Step (3), or Step (5).

4.1. Classification of Vertices

There are two kinds of changes that can be introduced by a variant program: a change in execution
behavior, or a change in text that does not affect execution behavior. The new integration algorithm
attempts to preserve both kinds of changes in the integrated program. The non-¢ vertices® in each of the
three programs (Base, A, and B) are classified as defined below to reflect how the behavior and text of the
vertex in that program relates to the behavior and text of the corresponding vertices in the other two pro-
grams.

The first problem is, given a vertex in one program, which are the corresponding vertices in the other
two programs? The partition produced by the Sequence-Congruence Algorithm cannot always provide an
answer, since one sequence-congruence class may include several vertices from each program (i.e., the
partition does not define a one-to-one correspondence). The HPR algorithm relies on editor-supplied tags;
it is assumed that programs are created using a special editor that provides unique tags for newly inserted
components, and maintains tags when components are moved within a program or when a copy of a pro-
gram is made. Components with the same tag are considered to be the “same component” in different vari-
ants of the base program.

*Note that when the Sequence-Congruence Algorithm is applied to the second set of programs in Figure 1, the assignment statements
10 area in Base and in variant A are in different sequence congruence classes. To be able to discover they are sequence-congruent, we
need one straightforward enhancement to the Sequence-Congruence Algorithm [Yang89): For every constant ¢ used in the program,
we create a new variable Const_c and a new assignment statement Const_c = ¢ at the very beginning of the program and replace every
use of ¢ in the program with Const_c.

Note that only non-4 vertices are classified. This will be explained further in Section 4.5.
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The new program-integration algorithm also assumes that program components are tagged (tags may be
provided by the editor, or may be supplied by some other mechanism—the source of the tags is not
relevant to the algorithm itself)’. Given this assumption, the correspondence between components of the
three programs is established as follows: Two components ¢, and ¢, correspond (or ¢, and ¢, are
corresponding components) if and only if all of the following hold:

(1) ¢, and c, are sequence-congruent;
(2) ¢, and c, have the same tag;
(3) ifc, and ¢, are assignment statements, they assign to the same variable.

Corresponding components are considered the same components in different programs. That is, we can
assign to each compone -+t an identity, which consists of three parts: its sequence-congruence class, its tag,
and the vzrisble that is ‘ned to at the vertex. Thus, two components correspond if and only if they have
the same identity; henc: .rresponding components are considered the same component in different ver-
sions of a program.

Using this definition of corresponding components, each non-¢ vertex of Base, A, and B is classified as
defined below.

Every non-¢ vertex in A is in one of five sets: New,, Modified,, Modifieds, Unchanged, or
Intermediate,.

(1) A vertex is in New, if there is no corresponding vertex in Base. Vertices in New, represent pro-
gram components that have been added to Base to create A, or have been moved to a context that
has changed their execution behaviors.

(2) A vertex is in Modified, if there is a corresponding vertex in Base, but the vertex’s text in A differs
from the text of the corresponding vertex in Base. Vertices in Modified, represent components of
A that have been textually changed but whose execution behaviors have not been changed.

(3) A vertex is in Modifiedy if there are corresponding vertices in both Base and B, and the vertex’s
text in A is the same as the text of the corresponding vertex in Base, but differs from the text of the
corresponding vertex in B.

(4) A vertex is in Intermediate, if there is a corresponding vertex in Base and the vertex’s text in A is
the same as the text of the corresponding vertex in Base, but there is no corresponding vertex in B
(either because the vertex was deleted from B, or because the vertex’s execution behavior was
changed, or because the vertex’s left-hand side variable was changed).

(5) A vertex is in Unchanged if there are corresponding vertices in both Base and B, and all three ver-
tices have the same text. Vertices in Unchanged represent components that are textually and
behaviorally identical in all three programs.

Vertices in B are similarly classified into the sets Newp, Modifieds, Modified,, Unchanged, and
Intermediateg. Vertices in Base are similarly classified into the sets Modified,, Modifiedy, Intermediate,,
Intermediateg, Unchanged, and Deleted. (A vertex in Base is in Deleted if neither A nor B contains a
corresponding vertex. Vertices in Deleted represent program components of Base that have been deleted
or whose left-hand-side variable and/or behavior have been changed in both A and B.)

"Since ¢ statements are not part of the source program, they cannot be tagged by the editor. Their tags can, however, be generated sys-
tematically from the tags of the associated predicates and the names of the variables that are assigned to by the ¢ statements.
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Note that it is possible for a vertex in New, to have a corresponding vertex in B that is in News and fora
vertex in Modified, to have a corresponding vertex in B that is in Modifiedy. For instance, consider the fol-
lowing three programs:

Base Variant A Variant B
<T1> x =0 <T1> x =0 <T1> x:=0
<I> y=x <T2> y:=0 <I2> y:=0
<T3> z:=x <T4> x =1 <T4> x =1
<T4> x =1 <T3>z:=x <T3> z:=1

The assignment T3 in A is in New,, because the value assigned to z at T3 in A differs from that assigned to z
at T3 in Base; Similarly, the assignment T3 in B is in News. However, the two assignment statements T3
in A and B correspond. The assignment T2 in A is in Modified, because the two assignment statements T2
in A and Base produce the same value, have the same tag, and they assign to the same variable y but their
texts differ. Similarly, the assignment T2 in B is in Modifieds. The assignment T2 in Base is in both
Modified, and Modifieds. The three assignment statements T2 in A, B, and Base correspond.

The classification process may discover that A and B interfere with respect to Base by identifying
corresponding vertices v, and v in A and B, respectively, such that the text of v, differs from the text of vg
and, if there is a corresponding vertex Vg, in Base, the texts of v, v, and vgg, are pairwise distinct.
Since a vertex in the merged PRG can have only one text, it is not possible to preserve the changed text of
this component from both A and B. This can occur either for a vertex in New, (with a corresponding ver-
tex in Newp), or for a vertex in Modified, (with a corresponding vertex in Modifiedp). In the example
given above, the fact that the text of the assignment tagged T3 in B differs from the text of the assignment
tagged T3 in A causes interference.

4.2. Computing Changed and Preserved Computations

The program produced by a successful integration must include the changed computations introduced by
the variants as well as the computations of the base program that are preserved in both variants. The
identification of changed and preserved computations is done differently in the HPR algorithm and the new
integration algorithm.

4.2.1. Limited slices

In the HPR algorithm, two program components are assumed to have different execution behaviors if their
slices are different. To ensure that an affected component included in the integrated program retains its
behavior, the HPR algorithm includes in the integrated program the entire slice with respect to the affected
component.

In contrast, the Sequence-Congruence Algorithm is able to identify behaviorally equivalent vertices that
have unequal program slices. Therefore, an affected component’s behavior can sometimes be retained in
the integrated program without including its entire slice; only the “neighborhood” of the component is
needed. This neighborhood is formalized as a limited slice.
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Definition. Let R be the Program Representation Graph of Base, A, or B, and let S be a set of (¢ and
non-¢) vertices in R. The limited slice of R with respect to S, denoted by R//S, is defined as the smallest
subgraph of R such that if there is a path from a vertex u to a vertex of S and all non-¢ vertices along this
path, excluding the two endpoints, belong to either Intermediate,, Intermediateg, or Deleted, then all ver-
tices and edges on this path are included in R//S.

It is easy 1o see that the limited slice with respect to a set of vertices is equivalent to the union of the lim-
ited slices with respect to the individual vertices.

4.2.2. Changed and preserved computations

The affected components of a variant are the components that are textually different from the correspond-
ing components of Base, or that have no corresponding component in Base. The changed computations of
a variant are computed by taking a limited slice of the variant with respect to its affected components. (R4
denotes A’s PRG.)

Affected, = New, w Modified,
ChangedComps, = R, /[ Affected,
Affectedy and ChangedCompsp are defined similarly.
The preserved computations of Base, A, and B are computed by examining the limited slices of the three
programs with respect to the vertices u in the set Unchanged. Note that these limited slices may not be

equal®; although u itself is behaviorally and textually identical in Base, A, and B, the values of the variables
used at u may be computed differently in the three programs. Interference is reported at this point if there
is some vertex u in Unchanged such that the limited slices with respect to u in Base, A, and B, are pairwise
unequal. Otherwise, for each vertex u e Unchanged, the preserved limited slice with respect to u,
Preserved (u), is determined as follows:

Relationship of limited slices Preserved (u)
RA//ll:RB//ll RAI/u
(RA//u=RB“//u)and(RA//u¢RB//u) RB/I“
(Rg//u=Rg,,//u)and (Rg//u# Ry//u) Ry//u

Ri/lu, Rg!lu, and Ry, //u are pairwise unequal interference

The preserved computations, Preserved, is the union of Preserved(u) for all u € Unchanged.

Preserved = U Preserved (u)
ue Unchanged

*Two limited slices are equal if there is an isomorphism under which related vertices correspond (i.e., related vertices have identical
tags and left-hand-side variables, and are sequence-congruent).
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4.3. Forming the Merged Graph

The merged graph, Ry, is formed by taking the union of the graphs that represent the changed computa-
tions of A and B, and the graphs that represent the preserved computations of Base, A, and B:

Ry = ChangedComps, v ChangedCompsg v Preserved.

For the purposes of this union, two vertices are “the same” (i.e., only one copy of the vertex is included in
the merged graph) if and only if the two vertices correspond. It is possible that both ChangedComps, and
ChangedCompsg will include corresponding vertices with different text. This can only happen, however, if
the two vertices are both classified Modified, or both classified Modified. In the former case, the text of
the vertex incorporated in the merged graph is the text from A; in the latter case, it is the text from B. If
vertices from the sets New, and Newy have corresponding vertices in both A and B, these vertices must
have the same text, else interference would have been reported during vertex classification; if vertices from
the sets Modified, and Modifiedg have corresponding vertices in both A and B, these vertices must have the
same text, else interference would have been detected during vertex classification; vertices from the set
Intermediate, cannot have corresponding vertices from B (and similarly for Intermediatep); vertices from
the set Unchanged have the same text in both A and B; corresponding ¢ vertices must have the same text.

4.4. Reconstituting a Program From the Merged Graph

The final step of the program integration algorithm is to determine whether the merged graph comresponds
to some program, and if so, to produce the program. If the merged graph is infeasible (does not correspond
. to any program), the algorithm reports interference.

Determining whether a Program Dependence Graph is feasible has been shown to be NP-complete
[Horwitz88a]; a similar result can be shown for Program Representation Graphs. The crux of the problem
is to order each predicate’s control children. A backtracking algorithm that operates on Program Depen-
dence Graphs has been written and proved correct [Ball89]; this algorithm is easily adaptable to work on
Program Representation Graphs. Although the algorithm is, in the worst case, exponential in the number of
pairs of assignments to the same variable, we believe that it will be acceptable in practice.

Example. Figure 6 illustrates the new integration algorithm using the third set of example programs in
Figure 1. Figure 6 shows the sets of vertices Affected,, Affectedy, and Unchanged; the graph fragments
ChangedComps,, ChangedCompsg, and Preserved; and the merged graph. This merged graph is feasible,
and corresponds to the program shown in Figure 1 as the result of integrating the third set of programs.

4.5. Discussion of Classification of Vertices

In Section 4.1, we mentioned that only non-¢ vertices are classified into the categories New, Modified,
Intermediate, Unchanged, and Deleted. The reason ¢ vertices are not classified in these categories is
because in a (feasible) PRG ¢ vertices exist only if they have flow successors. If ¢ vertices are treated in the
same way as non-¢ vertices, the merged graph may not be a feasible PRG even if there is no interference.
For instance, consider the example in Figure 7 (the ¢; vertices are shown explicitly).

In Figure 7, if ¢; vertices were treated in the same way as non-¢ vertices, the ¢ vertices would be
classified as Unchanged and would be included in Preserved and the merged graph would be as in M 1,
which is not a feasible PRG (because the ¢y vertex in M 1 has no flow successor). Thus, a false interference
would be reported in this case. However, our new program integration algorithm will successfully produce
the integrated program M 2.
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height:=4 EBUG:=InitSt (DEBUG) @ FinalUse (area)
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Figure 6. The new integration algorithm is illustrated using the third set of example programs from Figure 1. Note the
absence of any incoming control edge to vertex rad := 2 in Preserved.
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Base Variant A Variant B M1 M2
program program program program program
x:=1 x=1 X = . x:=1 x=1
if P then if P then if P then if P then if P then
x=2 x=2 x:=2 x=2 x=2
fi fi fi fi fi
dpsx=x dyix =x Oy x =X dpix=x end
y=x+2 y=x+2 z:=x+3 end
zi=x+3 end(y) end(z)
end(y, z)

Figure 7. An integration example that demonstrates why ¢ vertices are not classified to avoid certain interference.

5. THE INTEGRATION THEOREM

As with the HPR algorithm, we can prove a theorem for the new integration algorithm about how the exe-
cution behavior of the integrated program relates to the execution behaviors of the programs that are the
arguments to the merge. The theorem asserts that when the new integration algorithm successfully
integrates the variant programs (with respect to the base program), the merged program preserves the
changed behaviors of the variants as well as the behaviors common to all three.

THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which the new integration
algorithm succeeds (and produces a merged program M), then for any initial state G on which A, B, and
Base all terminate normally:

(1) M terminates normally on G.

(2)  For any program component v, in A, if v4 € Affected, then there is a program component v in M
such that v and v, produce the same sequence of values during the respective executions of M and
Aong.

(3)  For any program component vy in B, if vy € Affectedg then there is a program component v in M
such that v and vg produce the same sequence of values during the respective executions of M and
Bono.

(4)  For any program component Vg, in Base, if vpa, € Unchanged then there is a program com-
ponent v in M such that v and vp,,, produce the same sequence of values during the respective exe-
cutions of M and Base on ©.

Note that this theorem meets (and generalizes) the semantic integration criterion stated in the Introduc-
tion. For example, if there is a variable x whose final value after executing A on ¢ differs from its final
value after executing Base on o, then (1) there is a final-use vertex v, for variable x in A, and

(2) v4 € Affected,. Thus, x’s final value after executing M on o is equal to the value of x after executing A
ono.

In addition to the final values of variables, the Theorem also asserts that, if the new integration algorithm
successfully produces a merged program, the changed behaviors of program components are preserved in
the merged program. That is, if a component ¢ in a variant behaves differently from the component in Base
that has the same tag as ¢ (if such a component exists in Base), then ¢’s behavior will be preserved in the
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merged program,

In addition to behavioral changes, the new integration algorithm also attempts to preserve textual
changes: Affected, and Affectedy include those components whose texts, rather than execution behaviors,
have been changed (i.e., components in the sets Modified, and Modifiedg) and the limited slices with
respect to components in Modified, and Modifiedy are always included in the merged graph. Thus, textual
changes made in A and B are also preserved in the merged program when the new integration algorithm
successfully produces a merged program.

In what follows, we use R4, R, Rpase, and Ry to denote the respective program representation graphs of
A, B, Base, and M. Every (¢ or non-¢) vertex v of Ry is taken from either R, or R or both (it is possible
that v appears in Ry,,, as well); this vertex in R, or R is called an originating vertex of v. A vertex v of
Ry, inherits an “identity” from its originating vertices. ( “Identity” is based on tag, left-hand-side variable,
and sequence-congruence class, but not the entire text in the vertex. A vertex v in Ry may have a different
text from one of its originating vertices, although the text of v must match one of its originating vertices.)
Modulo their having different texts, v and its originating vertices can be considered to be the same vertex in
different graphs. Note that, by the construction of Ry, if both v, and v, are originating vertices of v, then
v, and v, must be corresponding vertices (in particular, v, and v, must be sequence-congruent).

Similarly, every edge u —> v of Ry is taken from either R, or Rp or both. (It is possible that the edge
u —> v appears in Rp,,, as well.) Since each control or flow dependence edge is identified by its two end-
points, when we say an edge & —> v of Ry, is taken from R, (or Rp), we mean that there are originating ver-
tices u’ and v’ of u and v, respectively, and an identical control or flow dependence edge u” —> v’ in R, (or
R, respectively). It can be shown (by cases on the classification of v”) that v’ and v have the same text.

The proof of the Integration Theorem proceeds by considering the sequence-congruence classes formed
when the Sequence-Congruence Algorithm is applied to Ry, together with R4, Rp, and Rp,,,. We show that
every vertex of Ry is placed in the same sequence-congruence class as its originating vertices; the Integra-
tion Theorem then follows from the Sequence-Congruence Theorem and the fact that, by the construction
of Ry, every vertex in Affected, , Affectedy, and Unchanged is an originating vertex of some vertex in Ry.

Recall that the Sequence-Congruence Algorithm consists of two partitioning passes. A key observation
about the Sequence-Congruence Algorithm is that each pass can be decomposed into repeated phases. In
each phase we consider only edges of a single type. For instance, in the first phase of the first pass, we use
only edges of type 1 to perform partitioning; in the second phase, we use only edges of type 2, ec. After
all types of edges (except control dependence edges) have been considered in separate phases, edges of
type 1 are taken into account again in a new phase. This process is repeated again and again until a stable
partition is reached. The second pass of partitioning is performed in a similar way, except that only control
dependence edges are considered during partitioning.

We use R’ to denote the subgraph of R obtained by retaining only edges of type i in the program
representation graph R. For each type i, if we ignore the control dependence edge from a while predicate to
itself, R¢ is a forest because there is no cycle in R that consists of edges of a single type i, and there is at
most one incoming edge of type i for any vertex in R. We use root(v, R to denote the root of the tree that
contains v in R, We use level(v, R’) to denote the length of the path from root(v, R’) to v in R,

Based on the above observation, the following lemma asserts that when the Sequence-Congruence Algo-
rithm is applied to R, Rg, Rpase, and Ry, simultaneously, every vertex of Ry is sequence-congruent (o its
originating vertices.

LEMMA. If A and B are two variants of Base for which the new integration algorithm succeeds (and pro-
duces a merged program M), then every vertex of Ry is sequence-congruent to its originating vertices.
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PROOF. We use the above repeated phases to partition R4, R, Rpa,, and Ry,. Based on the above obser-
vation, it suffices to show that every vertex in Ry is in the same class as its originating vertices at the end
of every phase of both partitioning passes.

First we show that every vertex in Ry, is in the same class as its originating vertices in the initial parti-
tion. Suppose v is a vertex in Ry and v’ is its originating vertex in R4 or Rz whose text is the same as v v
must exist because the text of v is taken from one of its originating vertices). Without loss of generality,
assume v’ is in Ry.

If v is not a simple vertex, then since the texts in v and v’ are the same, v and v* are in the same class in
the initial partition. If there is another vertex v”’ in B or Base that is also an originating vertex of v, then v’
and v” are corresponding vertices, which means that v’ and v” are always in the same class. Hence v and
v” are also in the same initial class. Therefore, every non-simple vertex v of Ry is in the same class as its
originating vertices in the initial partition.

If v is a simple vertex, let u be a non-simple vertex in Ry such that there is a flow dependence path
u—>} v in Ry and all vertices on this path except u are simple assignment vertices (i.e., statements of the
form x :=y). We prove by induction over the length of the flow dependence path u —>F v that v and v’ are
in the same initial class. (Induction is needed here because the flow dependence path u —} v in Ry may
not be entirely from R4 nor entirely from Rp.)

Base case. Suppose the length of the flow dependence path u —>F v is 1. If the edge u —>;v in Ry is
taken from R,, then there exists an identical edge u” —>,v’ in R, such that u” and v’ are originating vertices
of u and v, respectively. Since u’ is an originating vertex of u and u is not a simple vertex, u and u’ are in
the same class in the initial partition, as shown above. Because by hypothesis v and v” have the same text,
v’ is simple; therefore v’ and u’ are in the same initial class. Because vertices u’ and u are in the same ini-
tial class and because u and v are in the same initial class, v” and v are in the same initial class.

If the edge u —>¢v in Ry is taken from Rj, then there exists an identical edge ug —>vp in Rp such that
ug and vy are originating vertices of u and v, respectively; note that because the edge u —> v was taken
from B, vertices vz and v have the same text. By the same argument as in the previous paragraph, v and vg
are in the same initial class. Because (1) v and vg are in the same initial class and (2) v and v’ are
corresponding vertices, v and v’ are in the same initial class.

In either case, v and v’ are in the same class in the initial partition.

Induction step. Suppose the length of the flow dependence path u —>F v is n for some n > 1. Let w be
the immediate flow predecessor of v. If the edge w —>,v in Ry is taken from Ry, then there exists an
identical edge w’ —>;v’ in R, such that w’ and v’ are originating vertices of w and v, respectively. Since
w’ is an originating vertex of w and the length of the flow dependence path u —} w is n—1, by the induc-
tion hypothesis, w and w’ must be in the same initial class. By assumption, v and v’ have the same text,
thus v’ is simple and w” and v’ are in the same initial class. Because (1) v and w are in the same initial
class, (2) w and w’ are in the same initial class, and (3) w’ and v’ are in the same initial class, v and v’ are in
the same initial class.

If the edge w —>;v in Ry is taken from Rp, then there exists an identical edge wg —>fvp in Ry such that
wg and vp are originating vertices of w and v, respectively. Since wp is an originating vertex of w and the
length of the flow dependence path u —>} w is n—1, by the induction hypothesis, w and wy are in the same
initial class. Note that because the edge w —> v was taken from B, vertices v and v have the same text.
That is, both v and vj are simple vertices. Because (1) v and w are in the same initial class, (2) w and wp
are in the same initial class, and (3) wy and v are in the same initial class, we know that v and v are in the
same initial class. Because (1) v and vy are in the same initial class and (2) vy and v’ are corresponding
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vertices, v and v’ are in the same initial class.
In either case, v and v’ are in the same initial class. This completes the induction.

If there is another vertex v” in B or Base that is also an originating vertex of v, then v’ and v” are
corresponding vertices, which means that v’ and v are always in the same class. Hence v and v” are also
in the same initial class. Therefore, every simple vertex v of Ry is in the same class as its originating ver-
tices in the initial partition.

We conclude that every vertex, simple or non-simple, of Ry is in the same class as its originating ver-
tices in the initial partition.

Next we want to show that every vertex of Ry, stays in the same class as its originating vertices at the
end of each phase of both partitioning passes.

Fix a pass and a phase of the pass. Let i be the type of edge under consideration during this phase. We
want to prove that if every vertex of Ry is in the same class as its originating vertices at the beginning of
this phase, then every vertex of Ry is still in the same class as its originating vertices at the end of this
phase.

Suppose v is a vertex in Ry and v’ is its originating vertex in R4 or Rp whose text is the same as v.
Because the texts in v and v’ are the same, v and v’ have the same number of incoming flow and control
dependence edges. In particular, v has an incoming edge of type i if and only if v* has an incoming edge of
the same type. We prove by induction over level(v, Ri,) that, if every vertex of Ry is in the same class as
its originating vertices at the beginning of this phase, then every vertex of Ry is still in the same class as its
originating vertices at the end of this phase (it is sufficient to show that v and v’ are still in the same class at
the end of this phase.)

Base case. Suppose level(v, Ri,) is 0; that is, either v has no incoming edge of type i in Ry or edges of
type i are the self-loops on while predicates. First assume v has no incoming edge of type i in Ry. Because
v and v* must have the same incoming edges, v’ has no incoming edge of type i. By assumption, v and v’
were in the same class at the beginning of this phase. Because they have no incoming edges of type i, they
cannot be separated during this phase. Therefore, v and v’ are still in the same class at the end of this
phase.

Next assume that edges of type i are the self-loops on while predicates. In this case, both v and v’ are
while predicate vertices. By assumption, v and v’ were in the same class at the beginning of this phase.
Because v and v’ both have self-loops, they cannot be separated during this phase. Therefore, v and v’ are
still in the same class at the end of this phase.

In either case, v and v’ are still in the same class at the end of this phase.

Induction step. Suppose that level(v, Ri,) is n for some n > 0. Our induction hypothesis is that if every
vertex of Ry is in the same class as its originating vertices at the beginning of this phase, then, for all ver-
tices u with level(u, Ry) < n, u is still in the same class as its originating vertices at the end of this phase.

Since v has an incoming edge of type i, so does v’. Let u be the immediate predecessor of v in Ri. Due
to the construction of Ry, the edge u —> v is taken either from R, or from Rp.

First assume the edge u —> v in Ry, is taken from R,. Thus, there is an identical edge u’—>Vv’ in Ry.
Because «’ is an originating vertex of u, by assumption, 4 and «” are in the same class at the beginning of
this phase. Because there is an edge u—>v in Ri,, root(u, R) is the same vertex as root(v Ri/) and
level(u, Riy) is n—1. Because level(u, R) is n—1, by the induction hypothesis, 4 and u’ are still in the
same class at the end of this phase. Because u and u’ are always in the same class during this phase, v and
v’ are in the same class at the end of this phase.




Next assume the edge u —> v in Ry, is taken from Rp. Thus, there is an identical edge u” —>v” in Rp.
By the same argument as in the previous paragraph, v and v” are in the same class at the end of this phase.
Because v’ and v” are sequence-congruent, v’ and v” are always in the same class during partitioning.
Since v and v” are in the same class and v” and v’ are always in the same class, v and v’ are in the same
class at the end of this phase.

In either case, we conclude that v and v’ are in the samie class at the end of this phase. This completes
the induction.

If there is another vertex v” in B or Base that is also an originating vertex of v, then v’ and v” are
corresponding vertices, which means that v’ and v” are always in the same class. Hence v and v” are also
in the same class at the end of this phase.

We have proved that (1) every vertex of Ry is in the same class as its originating vertices in the initial
partition and (2) if every vertex of Ry is in the same class as its originating vertices at the beginning of a
phase, then every vertex of Ry is still in the same class as its originating vertices at the end of the phase.
Therefore, every vertex of Ry is in the same equivalence class as its originating vertices when the
Sequence-Congruence Algorithm terminates; that is, every vertex of Ry is sequence-congruent to its ori-
ginating vertices. [J

THEOREM. (INTEGRATION THEOREM). If A and B are two variants of Base for which the new integration
algorithm succeeds (and produces a merged program M), then for any initial state & on which A, B, and
Base all terminate normally:

(1) M terminates normally on G.

(2) For any program component v, in A, if v4 € A_ﬂ'ectedA' then there is a program component v in M
such that v and v, produce the same sequence of values during the respective executions of M and
Aong.

(3)  For any program component vg in B, if vz € Affectedy then there is a program component v in M
such that v and vg produce the same sequence of values during the respective executions of M and
Bono.

(4)  For any program component vg,,, in Base, if vp., € Unchanged then there is a program com-
ponent v in M such that v and vp,,, produce the same sequence of values during the respective exe-
cutions of M and Base on ©.

PROOE. Note that every vertex in Affected,, Affectedy, and Unchanged, is an originating vertex of some
vertex of Ry,. This is because for each vertex v in these classes, either R, //v or Rg//v is included in Ry.
Thus, we only need to show that M terminates normally on 6. The remaining assertions of the theorem fol-
low directly from the previous lemma and the Sequence-Congruence Theorem.

Suppose M does not terminate normally on 6. Then either there is a non-terminating loop or a fault such
as division by zero occurs during the execution of M.

First suppose a fault occurs during the execution of M. Let u be the component where the fault occurs.
By the construction of Ry, u must have an originating vertex in either R, or Rg. Without loss of generality,
assume u has an originating vertex u, in R,. By the previous lemma, u and u, are sequence-congruent.
Since A terminates normally on the initial state ¢ but M does not, by the Sequence-Congruence Theorem,
the sequence of values produced at u is an initial sub-sequence of the sequence of values produced at ug.
In particular, the fault value occurs as the last element of the sequence of values produced at u; thus, the
fault value must be in the sequence of values produced at u,. The presence of this value means that, in
fact, A does not terminate normally on the initial state ¢, which contradicts the assumption that A ter-



minates normally. Therefore, no fault can occur during the execution of M.

Next suppose there is a non-terminating loop during the execution of M. Let u be the predicate of the
non-terminating loop. Without loss of generality assume u is taken from R,; that is, 4 has an originating
vertex u, in R4. By the previous lemma, u and u, are sequence-congruent. Since A terminates normally
on @ but M does not, by the Sequence-Congruence Theorem, the sequence of values produced at u is an
initial sub-sequence of the sequence of values produced at u,. Because A terminates normally, the
sequence of values produced at u, is finite. Therefore, the sequence of values produced at u is also finite.
Thus, the loop of u cannot execute an infinite number of iterations, which contradicts the assumption that u
is the predicate of a non-terminating loop. Therefore, there cannot be a non-terminating loop in M.

Because no fault can occur during the execution of M and because there cannot be a non-terminating
loop in M. M terminates normally on the initial state ¢. O3

6. COMPARISON WITH THE HPR ALGORITHM

The HPR program-integration algorithm [Horwitz88, Horwitz89] operates on Program Dependence Graphs
(PDGs) rather than Program Representation Graphs (PRGs). Since PDGs and PRGs are very similar in nature,
it is possible to modify the HPR algorithm to operate on PRGs and to show that the modified algorithm is
equivalent to the HPR algorithm [Yang90]. The comparison made in this section is based on the modified
algorithm rather than the original HPR algorithm [Horwitz88, Horwitz89].

In this section, we first describe the modified HPR algorithm that operates on PRGs. Since the HPR algo-
rithm makes use of program slices, Section 6.1 demonstrates how slices can be extracted from PRGs and
gives a characterization of program slicing. The modified HPR algorithm, presented in Section 6.2, isa
straightforward translation of the original HPR algorithm; the only difference is that it uses PRGs instead of
PDGs. In Section 6.3, we compare the new program-integration algorithm with the modified HPR algo-
rithm. We are able to show that, given the same set of component tags, whenever the HPR algorithm
succeeds in integrating a base program and a set of variants, the new integration algorithm will also
succeed, and will produce a program whose execution behavior has the same characterization as the one
produced by the HPR algorithm.

6.1. Feasibility Lemma for Program Representation Graphs

The HPR integration algorithm makes use of slices of Program Dependence Graphs. In order to modify the
HPR algorithm to work on Program Representation Graphs, we first define slices of Program Representa-
tion Graphs.

Definition. A slice of a Program Representation Graph R with respect to a set of (¢ and non-¢) vertices
S, denoted by R/S, is the subgraph of R induced by all vertices that can reach an element of S via a path of
control and/or flow dependence edges.

Note that a slice of R with respect to a vertex that does not appear in R is the empty graph. A slice of the
example program of Figure 2 is shown in Figure 8. The slice is taken with respect to the statement
“rad :=4."

We say a graph is a feasible PRG if it is the PRG of some program. It has been shown in [Reps88] that a
slice of a PDG is a feasible PDG. For the same result to hold for PRGs, it is necessary to impose the restric-
tion that the slice be taken with respect to a set of non-¢ vertices [Yang90].

LEMMA. (FEASIBILITY LEMMA FOR PROGRAM REPRESENTATION GRAPHS [Yang90]). For any program
P, if Ry is the slice of P's Program Representation Graph with respect to a set of non-¢ vertices, then Ry is
a feasible Program Representation Graph.




DEBUG:=InitSt (DEBU

Figure 8. A slice of the program representation graph shown in Figure 2(c). The slice is taken with respect to the
statement rad := 4.

6.2. The Modified HPR Algorithm

The HPR integration algorithm operates on Program Dependence Graphs rather than Program Representa-
tion Graphs. In order to compare the two integration algorithms, the HPR algorithm is modified to work on
Program Representation Graphs. The modified integration algorithm is a straightforward translation of the
HPR algorithm. It takes as input a base program Base, and two variant programs A and B. Whenever the
changes made to Base to create A and B do not “interfere” (as defined below), the modified algorithm pro-
duces a merged program M that incorporates the changed computation threads of A and B as well as the
preserved computation thread common to all three versions. We have shown that the HPR and the
modified integration algorithms are equivalent in the sense that they produce equivalent merged programs
or they both report that there is interference [Yang90].

There are three steps in the modified algorithm. The first step determines slices that represent safe
approximations to the changed computation threads of A and B and the computation threads of Base
preserved in both A and B; the second step combines these slices to form the merged graph Ry,; the third
step tests Ry, for interference.

Step 1: Determining changed and preserved computation threads

If the slice of variant R, at non-¢ vertex v is not identical to the slice of Ry, at v, then R, and Rp,,, may
compute different values at v. In other words, vertex v is a site that potentially exhibits different behavior
in the two programs. Thus, we define the affected components of R, with respect to Rp,,,, denoted by
AF4 pase, 10 be the subset of non-¢ vertices of R, whose slices in Rp,, and R, are not identical:
AF, pase = { v :anon—¢ vertex in Ry | Rpop /v # Ry /v ). AFp pg, is defined similarly. It follows that
the slices Ry / AF 4, pase and Rg / AFp g, capture the respective changed computation threads of A and B.

The preserved components common to A, B, and Base, denoted by PR, p pas., are those non-¢ vertices
whose slices in Ry, Ry, and Ry are identical:
PRy, B, Base = { v :a non—¢ vertex in Rpye | R4 /v = Rg/v = Ry /v}. Thus, the preserved computation
thread common to A, B, and Base is captured by the program slice that appears in all three:
RBa.u /PRA, B, Base*
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Step 2: Forming the merged graph

The merged graph, Ry, is formed by unioning the three slices that represent the changed and the preserved
computation threads:

Rpy = (Ra/AF 4, pase) Y (Rp | AF g pace)” (Rpase | PR4, B, Base)-

Step 3: Testing for interference

There are two possible ways by which the graph Ry, may fail to represent a satisfactory integrated program;
both types of failure are referred to as “interference.” The first interference criterion is based on a com-
parison of slices of R4, R, and Ry. The slices Ry /AF4 pase and Rg / AFp pe,, represent the changed com-
putation threads of programs A and B with respect to Base. A and B interfere if Ry does not preserve these
slices; that is, the merged graph Ry, must satisfy the following two equations: Ry /AF, gae = R4/ AF 4, pase
and Ry / AFg pase = R/ AFg, pase-

The second interference criterion arises because the merged graph may not be feasible; if the graph is
infeasible, A and B interfere. As discussed in Section 4.4, determining whether a graph is a feasible PRG is
an NP-complete problem.

If neither kind of interference occurs, one of the programs whose PRGs are identical to the merged graph
Ry is returned as the result of the integration operation.

6.3. Comparison Theorem

As discussed in the Introduction, whenever the HPR algorithm succeeds in integrating a base program and
a set of variants, the execution behavior of the integrated program can be characterized in terms of the
behaviors of the base program and the variants. Given the same set of component tags, the new integration
algorithm will also succeed, and will produce a program whose execution behavior has the same character-
ization.

However, for the same argument programs it is possible for the two algorithms to produce different
integrated programs. This situation is illustrated by the following integration example.

Integrated Program Integrated Program
Base Variant A Variant B Produced by the Produced by the
HPR Algorithm New Algorithm
e — -
program program program program program
x:=1 x:=1 x:=1 x:=1 xw=1
yi=x+2 w=x+2 yi=x+2 wi=x+2 w=x+2
yi=w yi=w yi=w
z:=y+3 zi=y+3 2i=y+3
end(x) end(x) end(x) end(x) end(x)

The discrepancy between the two integrated programs is due to the assignment to z in variant A. The
assignment to z in A is considered to be an affected component by the HPR algorithm because the slice
with respect to this assignment in A is not equal to its counterpart in Base. Therefore, the assignment is
included in the integrated program by the HPR algorithm. However, the Sequence-Congruence Algorithm
discovers that the execution behaviors of the respective assignments in A and Base are, in fact, the same.
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This assignment is, therefore, not an affected component of A. This assignment statement is not a
preserved component because it has been deleted in B. Because no affected components depend on this
assignment to z in A, this assignment is not included in the integrated program produced by the new algo-
rithm,

Although the two integration algorithms may produce different results even in cases where both succeed,
it can be shown that the program produced by the new algorithm is always a slice of the program produced
by the HPR algorithm. This is stated as the following Comparison Theorem. '

THEOREM. (COMPARISON THEOREM). When the HPR algorithm successfully integrates A, B, and Base,
the new algorithm also succeeds and the integrated program produced by the new algorithm is a slice of
the integrated program produced by the HPR algorithm.

In this section, we use R,, Ry, and Ry, to denote the respective Program Representation Graphs of 4,
B, and Base. We use R4 and R,,,, to denote the respective merged graphs produced by the modified HPR
algorithm and the new algorithm.

The HPR algorithm requires that (1) tags be unique within a given program variant and (2) if vertices in
different variants of a program have the same tag, then they also have the same texts. Since the two
integration algorithms should be compared under the same conditions, both conditions will also be assumed
in our discussion of the new integration algorithm in this section. In particular, vertices with the same tag
will always have the same text, and hence the sets Modified, and Modifiedy in the new integration algo-
rithm are always empty. From now on, issues about the text associated with a vertex will be ignored.

The two integration algorithms use different methods for establishing a correspondence among program
components. In particular, vertices that have the same tag but are not sequence-congruent are correspond-
ing vertices under the HPR algorithm, but not under the new algorithm. In order to clarify this difference,
we first prove Lemma 6.1, which shows that when A, B, and Base can be integrated by the HPR algorithm,
there can be at most one vertex in R, with a given tag. Again under the assumption that A, B, and Base
can be integrated by the HPR algorithm, Lemma 6.2 shows that R,,,, is a subgraph of R,;; and Lemma 6.3
shows that R,,,, is a slice of R,;. The proof of the Comparison Theorem follows from Lemma 6.3 and the
Feasibility Lemma.

LEMMA 6.1. Suppose A, B, and Base can be integrated by the HPR algorithm. Then there is at most one
vertex with a given tag in R,

PROOF. First we have to show that when A, B, and Base can be integrated by the HPR algorithm, the
new integration algorithm will produce a merged graph. That is, the new integration algorithm will not
report interference in step (2) or in step (3) (see Section 4). '

Interference in step (2) is due to conflicting text in corresponding components. However, we have
already assumed, for the purposes of this section, that components with the same tag always have the same
text. Thus, interference due to conflicting text will not happen. Interference in step (3) can happen only
when there is a component u € Unchanged such that R,//u, Rg//u, and Rp,,//u are pairwise unequal.
However, if R,//u, Rg//u, and Rg,,,//u are pairwise unequal, then R, /u, Rp/u, and Rp,, /u are pairwise
unequal. Thus, the HPR algorithm will also report interference, which contradicts the assumption that A, B,
and Base can be integrated by the HPR algorithm. Thus, interference in step (3) cannot happen either.
Therefore, the new integration algorithm will produce a merged graph R,,,,.

We are assuming that two vertices with the same tag have identical text. Thus, when R,,,, is created —
by the union of three subgraphs — two vertices in these different graphs that both have the same tag and are
sequence-congruent are corresponding vertices. Such vertices will be identified as the “same vertex” in
performing the graph union and hence will not lead to multiple vertices with the same tag in R,,,,. Thus,
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what remains to be shown is that there cannot be two non-sequence-congruent vertices in R,,, with the
same tag.

We prove this by contradiction. Suppose A, B, and Base can be integrated by the HPR algorithm. Let v,
and v, be two vertices in R,,, that have the same tag but are not sequence-congruent. Without loss of gen-
erality, assume that v, is taken from A and v, from B.

First assume that there is no vertex in Rg,,, that has the same tag as v; and v,. Hence, R4/vy # Rpy, /vy
and Ry /v, # Rp,,. /v, (note that, by definition, Rg,,, /v, and Rp,,, /v, are empty graphs).

If v, is a non-¢ vertex then v, € AF, p.,. Because the HPR algorithm successfully integrates A, B, and
Base, it must be that R, /v, =R,3/v{. On the other hand, if v, is a ¢ vertex then there must be a non-¢ ver-
tex v, € AF, pa, Such that v, isin the slice R4 /v,’. Since v € AF gases Ra/V1’ = Ry4/v,” and therefore,
Ru/vy =R,3/vy. Thus, regardiess of whether v, is a ¢ vertex or a non-¢ vertex, we have Ry /vy =R, 4/v1.
By the same argument, Rg/v4 =R, 4/v5.

Note that the HPR algorithm considers v, and v, to be the “same vertex” in performing graph union.
Thus, R4/v, =R,4/vy =Rg/v,, However, since v, and v, are not sequence-congruent, R4/v, #Rg/v,.
This is a contradiction. Therefore, there cannot be two non-sequence-congruent vertices v, and v, in R,
with the same tag if there is no vertex with that tag in Rp,,,.

Next assume that there is a vertex in Rp,,, that has the same tag as v, and v,. Let vg,, be such a vertex
in Rg,,.. Because v; and v, are not sequence-congruent, R, /v, # Rg/v,. Hence, R4/v| #Rp,.,/Vpase OF
Rg/vy # Rpaee/ Vaase. Without loss of generality, we may assume that R4 /v, # Rpaee/ Vase-

Because R4/v1 #Rpase!/VBase» by the same argument as above, R,/v, =R,y/v,. There are two cases
depending on whether Rg/vy =Rp,.e/Vpase-

Case 1. Rg/vy # Rpyee/Vpase. Because Rg/vy # Rpage/Vpase, by the same arguments as above, the slice
Rplv, must be included in R,y and Rg/v, =R,y/v, for otherwise the HPR algorithm would report
interference. We conclude that R, /v, =R,;/v{ =Rpg/v,, but this contradicts the fact that R, /v # Rp/v,.

Case 2. Rp/vy = Rpaee/VBase- BY assumption, v, is included in R,,,. There are two ways in which v,
can be included in R,,,,,.

(1) There is a vertex wpge Affectedg such that v, is included in Rp//wp. Since wp e Affecteds,
wp € Newp and hence wp € AFj g, in the HPR algorithm. Because the HPR algorithm successfully
integrates A, B, and Base, R, /wg =Rg/wyg. Therefore, R,y/v,=Rp/v,. We conclude that
Ry/vy =R,/vy =Rpl/v,, but this contradicts the fact that R4 /v, # Rg/v,.

(2) There is a vertex w € Unchanged such that v, is in the limited slice Preserved (w). Therefore,
Preserved(w) is Rg//w. Because Preserved(w) is Rg//w, either Rg//w #Rp,,//w or
RB//W =RA//W.

If Rg//w # Rpase! /W, Rg/w # Rpay. /w; hence w € AFp g,,. Because (1) the HPR algorithm success-
fully integrates A, B, and Base and (2) w € AFp pa,, Roa/w =Rp/w. Because v, is a vertex in
Rg/!w, Ryylvy =Rglv,. We conclude that Ry/vy =R,4/vy =Rg/v,, but this contradicts the fact
that R, /vy #Rg/v,.

Suppose Rg//w =R,//w. Because v, is in Rg//w, by the definition of equality of limited slices, v;
must be in R, /w and must correspond to v,. In particular, v, and v, must be in the same sequence-
congruence class. This contradicts a previous assumption that v, and v, are not sequence-congruent.

There is a contradiction in either case. Therefore, there cannot be two vertices v, and v, in R,,,, with
the same tag. OJ
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LEMMA 6.2. Suppose A, B, and Base can be integrated by the HPR algorithm. Then R,,,, is a subgraph
OfRou. )

PROOF. By Lemma 6.1, if A, B, and Base can be integrated by the HPR algorithm, there is at most one
vertex with a given tag in R,,,,. Thus, tags provide a means for identifying vertices of R .

Since R, = Preserved v ChangedComps, © ChangedCompss, it suffices to show the following three
propositions: (1) Preserved is a subgraph of R,u, (2) ChangedComps, is a subgraph of R,;, and
(3) ChangedCompsg is a subgraph of R,,4.

Proposition 1. Preserved is a subgraph of R,4.

Since Preserved = U Preserved (), it suffices to show Preserved () is a subgraph of R, for
ue Unchanged

each u € Unchanged. For any vertex u in Unchanged, u is in both R, and Rg. There are four possibilities:
(1) u€ PRy, b, Bases Que AFg_Bm but u & AF4 Bare» (BYue AF4 pase butu € AFp g, or(@) ue AF, pae
and u € AFp g, We consider each case in turn.

Case 1. uePRyp pu,. Because Ry/u=Rp/u=Rpaelu, Rpl/lu=Rpliu=Rpyllu. So
Preserved () = Rpas/ /4 (or, equivalendy, R4//u or Rp//u). Because Rpa,//u is a subgraph of Rpgee/u
and Rpas, /4 is a subgraph of Rpag, /PRy, p, pase» Which, in turn, is a subgraph of R4, Preserved (u) is a sub-
graph of R .

Case 2. ue€ AFg pa but ué AF4 p... Because Ro/u=Rpae/tt, Rallu=Rpga!/u. So
Preserved (u) =Ry//u. Because Rg//u is a subgraph of Rz/u and Rp/u is a subgraph of Rp/AFp pa.,
which, in turn, is a subgraph of R4, Preserved (u) is a subgraph of R,.4.

Case 3. u€ AF4 pa, butu & AFg p,,. This case is similar to Case 2.

Case 4. u€ AF, po, and u€ AFyg g,,,. Since u € AF, g, Ry/u is a subgraph of Ry/AF 5, pase» Which,
in turn, is a subgraph of R,4. Since u € AFp pase, Rp/u is a subgraph of Rg/AFp, pas,, Which, in turn, is a
subgraph of R,,;. Note that Preserved (u) must be either R,/ /u or Rg//u, which are subgraphs of R,/u and
Rp/u, respectively. Therefore, Preserved (u) is a subgraph of R,,4.

In any of the above four cases, Preserved (u) is a subgraph of R,y for each u € Unchanged. Therefore,
Preserved is a subgraph of R,4.

Proposition 2. ChangedComps, is a subgraph of R,4.

ChangedComps, is the union of R, //w, for all vertices wy € Affected,. It suffices to show that Ry //wy
is a subgraph of R, for each vertex w, € Affected,. Let w, be a vertex in Affected,. Because
wa € Affected, and Modified, is an empty set, wy € New,. If there is no vertex wpq,, in Rpg, that has the
same tag as wy, by definition, wy € AF, pa,. Because w, € Newy, if there is a vertex wpgs, in Rp,,, that
has the same tag as w,, we have Ry /w4 # Rpee /Wpare- Therefore, wy € AFy pog,.

In either case, ws € AF pas. Because Ry//wy is a subgraph of Ry/w, and R4/w, is a subgraph of
R4/AF, Base and Ra/AF4 pae is a subgraph of Rou, Ra//wa is a subgraph of R, Therefore,
ChangedComps, is a subgraph of R, 1.

Proposition 3. ChangedCompsy is a subgraph of R,.
This proposition is similar to Proposition 2.
From the above three propositions, R,,,, is a subgraph of R,;. [

LEMMA 6.3. Suppose A, B, and Base can be integrated by the HPR algorithm. Then R,,, is a slice of
R,u.
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PROOF. Since the HPR algorithm successfully integrates A, B, and Base, R, is a feasible PRG. Note that
every vertex in a feasible PRG has a fixed number of incoming edges of a given type. We prove Lemma 6.3
by considering the incoming edges of each vertex in R,,.

By Lemma 6.2, R,,,,, is a subgraph of R,,;. The proposition that R, is a slice of R, is equivalent to the
following proposition: if v is a vertex in R,,,,, and there is a control or flow dependence edge u —> v inR,u4,
then the edge u —> vis in Ry, :

Case 1. Suppose one of the following holds: v is a ¢ vertex, v € Intermediate,, v € Intermediateg, ot
v e Unchanged. Because R,,, =(R4//Affecteds)w(Rp//Affectedg)v( Uumd Preserved(u)), v is
Be un

included in the limited slice R,//w, for some w, € (Affected, w Unchanged) or the limited slice Rg//wp
for some wp € (Affectedy v Unchanged). Without loss of generality, assume that v is in the limited slice
R,/Iw, for some w, € (Affected, w Unchanged). Note that every vertex in a PRG has a fixed number of
incoming edges of a given type. From the definition of limited slices, since v is included in a limited slice
R4/lw,, this limited slice must have included for v the correct number of incoming edges of each type.
Therefore, R, must have included the correct number of incoming edges for vertex v. Since R,,, is a
subgraph of R,;; (by Lemma 6.2), every incoming edge of v in R, is also in R . If the edge u —>v isin
R4 but not in R, then v has an extra incoming edge in R, which makes R, infeasible. This contrad-
icts the observation that R, is feasible. Therefore, the edge ¥ — v must also be in R,,,,,.

Case 2, Suppose v € Affected,. Because v € Affected, and

Roew = (Ral IAffectedy) v (Rp ! Affectedg) v ( U Preserved (1)), the limited slice R4//v is included
ue Unchanged

in R,,,. Note that every vertex in a PRG has a fixed number of edges of a given type. From the definition
of limited slices, the limited slice R, //v must have included for v the correct number of incoming edges of
each type. Therefore, R,,, must have included the correct number of incoming edges for vertex v. Since
R, is a subgraph of R,;; (by Lemma 6.2), every incoming edge of v in R, is also in Ryy. If the edge
u —>v is in R,y but not in R,,,,, then v has an extra incoming edge in R, which makes R, infeasible.
This again contradicts the observation that R, is feasible. Therefore, the edge u —> v must also be in
R

Case 3. Suppose v € Affectedg. This case is similar to Case 2.

From the above three cases, we conclude that if v is a vertex in R,,,, and there is a control or flow depen-
dence edge u —> v in R,y then the edge u —> v is in Rypy. If Ry, Were not a slice of Ry, then there would
be some vertex v in R,,,, such that at least one incoming edge of v in R,,; was not in R,,,. However, we
just argued that this cannot happen; therefore, R, is a slice of R,;4. [

THEOREM. (COMPARISON THEOREM). When the HPR algorithm successfully integrates A, B, and Base,
the new algorithm also succeeds and the integrated program produced by the new algorithm is a slice of
the integrated program produced by the HPR algorithm.

PROOF. Because the HPR algorithm successfully integrates A, B, and Base, R, is a feasible PRG. From
Lemma 6.3, we know that R,,,, is a slice of R,;. By the Feasibility Lemma for PRGs, to show that R ,,,, is
feasible as well, all we must demonstrate is that R, is a slice of R,;; with respect to a set of non-¢ ver-
tices. By definition, R,,, = (R4//Affecteds) v (Rp! /Ajj"ected,;)u(uE U’\‘.CJMM Preserved (u)). But

Affected,, Affectedg, and Unchanged are sets of non-¢ vertices, and

new = Rnew [ (Affected, v Affectedy © Unchanged). Therefore,
R = Roia/(Affected, v Affectedg w Unchanged). We conclude that the new integration algorithm also
produces a feasible merged Program Representation Graph. [0
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Extra components included in the integrated program by the HPR algorithm are the result of that
algorithm’s less precise computation of affected components; the fact that the Integration Theorem holds
for the new algorithm assures us that the programs produced by the new algorithm are reasonable ones.

It is interesting to consider the kinds of changes that cause the HPR algorithm to report interference,
while the new algorithm succeeds in producing an integrated program. Three such classes of changes were
illustrated in Figure 1. In those examples, the HPR algorithm reports interference because it incorrectly
identifies unchanged program components as having changed execution behaviors. There is another class
of integration problems on which the HPR algorithm reports interference while the new algorithm
succeeds. These are problems in which both variants change a component’s execution behavior (in dif-
ferent ways). In this case, the HPR algorithm reports interference because its definition of corresponding
vertices relies only on tags; there can be only one copy of the changed component in the integrated pro-
gram, and it cannot simultaneously have both changed behaviors. In contrast, the new algorithm considers
a component of a variant to be a new component whenever its execution behavior has been changed. Thus,
even if there is a component in the other variant that has the same tag this does not cause any interference
since the two components are considered distinct new components by the new integration algorithm. The
programs shown below illustrate this situation.

Integrated Program
Base Variant A Variant B Produced by the

New Algorithm
<T0> program <T0> program <T0> program <T0> program
<T1> x:=1 <Tl> x:=1 <Tl> x:=1 <T1> x:=1
<T2>  x:=2 <Td4> y=x+4 <T2> x:=2 <T4> y=x+4
<I3> x:=3 <T2>  x=2 <T4> y=x+4 <TI2> x=2
<l4> y=x+4 <I3> x:=3 <I3>  x:=3 <T4> y=x+4
<T5> end(x) <T5> end(x) <T'5> end(x) <T3> x:=3

<T5> end(x)

Component tags are shown explicitly on the left. The statements tagged T4 in A, B, and Base have dif-
ferent execution behaviors. Since the statements tagged T4 in A, B, and Base are considered to be the same
components in the HPR algorithm, there is interference due to conflicting execution behaviors; however, in
the new integration algorithm, the two statements tagged T4 in A and B are considered to be distinct new
components; they both are included in the integrated program, as shown on the right.

Note that the integrated program produced by the new algorithm includes two components with the same
tag. This can cause problems if the integrated program is itself used as an argument in future program-
integration problems. The ideal solution to this problem would be to find a mechanism for generating tags
(for example, based on the final partition produced by the Sequence-Congruence Algorithm), rather than
relying on editor-supplied tags. In this case, the tags generated for one instance of program integration
would not be reused by future integrations, so that the integrated program shown above would no longer be
problematical. How best to generate tags for use by the program-integration algorithm is currently an open
problem.

A final point of comparison with the HPR algorithm is that the algebraic properties of the HPR algorithm
have been characterized using Brouwerian algebra [Reps89al. Unfortunately, the new integration algo-
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rithm does not seem to fit this model; thus, the algebraic characterization of the new algorithm is a second
open problem.

7. RELATION TO PREVIOUS WORK

This paper presents a new program integration algorithm based on the Sequence-Congruence Algorithm of
[Yang89). There are several advantages of the new algorithm over the HPR integration algorithm
[Horwitz88, Horwitz89]. One is concerned with the ability to change the text of a program component. In
the HPR integration algorithm, the requirement that two vertices with the same tag must have the same text
means that when a programmer changes the text of a program component, the corresponding vertex in the
Program Dependence Graph is assigned a new tag. In contrast, the new integration algorithm allows the
corresponding vertex in the PRG to retain its old tag.

Because vertices with the same tag can have different text, certain new kinds of interference conditions
can occur. To sidestep this problem, we have imposed the requirement that the lefi-hand sides of
corresponding vertices — namely, the variables assigned to in the vertices — must be identical. For
instance, consider the following integration example:

Base Variant A Variant B M1 M2
program program program program program
<T1> x=1 <Tl> x:=1 <T1> u=1 <Tt> M:=1 <Ti> x =1
end <TIL y=x+1 <T3>z2=u+2 <T2> yi=x+1 <I2> y=x+1
end end <I3>z2=u+2 <Tl> u:=1
end <I3> z:=u+2
end

If corresponding vertices could have different left-hand sides, the merged program would be as in M1.
Note that in M 1 there is a conflict in the name of the left-hand-side variable that should be filled in in the
statement tagged T1. In contrast, since the new integration algorithm requires that corresponding vertices
have identical left-hand sides, the merged program produced by the new integration algorithm is as in M 2.
Because the statements tagged T1 in variants A and B are not corresponding vertices (even though they
have the same tag and are sequence-congruent), they both are included in the merged program; there is no
conflict.

The new integration algorithm also eliminates one of the two integrability tests that were part of the HPR
integration algorithm. In the HPR algorithm, we need to test explicitly whether the merged graph preserves
the changed computation threads of the variants. By contrast, the new integration algorithm may discover
interference in the process of building the merged graph; however, if no such interference is detected, the
merged graph is guaranteed to preserve the changed computation threads of the variants.

The basic technique used to identify components with equivalent execution behaviors -is the Sequence-
Congruence Algorithm of [Yang89]. The Sequence-Congruence Algorithm is based on an idea for finding
equivalence classes of program components introduced by Alpem, Wegman, and Zadeck [Alpem88].
Their algorithm first optimistically groups possibly equivalent components in an initial partition and then
finds the coarsest partition of the components that is consistent with the initial partition (and the underlying
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graph used to represent the program). The Alpern-Wegman-Zadeck algorithm considers only flow depen-
dences in refining the initial partition, and the property that holds for the partition classes produced by that
algorithm is that components of a single program that are in the same final partition produce the same
values at certain moments during program execution.

In contrast, our Sequence-Congruence algorithm considers control dependences as well as data depen-
dences, and has the following properties: (1) it is able t0 identify components with equivalent execution
behaviors, and (2) it is able to do so even if the components are in different programs.

The problem of identifying different programs that produce an identical sequence of values was also stu-
died by Weiser [Weiser84]. Weiser defined the notion of a slice of program P with respect to a program
point i and a set of variables V as a projection of P that produces the same sequence of values for variables
in V at point i. Although the techniques for computing slices given in [Weiser84, Ottenstein84] have come
to be regarded as the definition of slicing, Weiser’s definition is actually more general; by his definition,
any projection of P that produces the same sequence of values is a slice. The Sequence-Congruence Algo-
rithm solves a related, but slightly more general problem, that of identifying program projections—in dif-
ferent programs—that produce the same sequence of values.
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