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Abstract. This paper uses the technique of generalized spectra and expressibility of
complexity classes in logic, developed by Fagin and Immerman, to give alternate charac-
terizations of specific subclasses of NP. These characterizations serve to unify concepts
that appear in seemingly different areas of complexity theory; namely, the restricted
nondeterminism of Kintala and Fischer and the time bounded Kolmogorov complexity
of Daley and Ko. As consequences of these characterizations we show that relatively
casy subsets of NP — P can not be pseudorandomly generated, unless UTIME [t(n)]
— DTIME(t(n)] for certain exponential functions t. Secondly, we show that no easy
subset of the set of all satisfying assignments of satisflable g(n)-easy formulas contains
an assignment for each of these formulas, unless NEXPTIME = EXPTIME. The latter

partially answers a question raised by Hartmanis.

1. INTRODUCTION.

In this paper we use the technique of generalized spectra and expressibility of com-
plexity classes in logic, developed by Fagin and Immerman ([Fa 74] and [Im 82,87]),
to give alternate characterizations of subclasses of NP. Our characterizations serve to
unify concepts that appear in seemingly different areas of complexity theory, namely re-
stricted nondeterminism of Kintala and Fischer ([KiFi 80}, [ADT 89}), and time bounded
Kolmogorov complexity of Daley and Ko ([Da 77], [Ko 83]).

In addition, we can use these characterizations to draw conclusions about the Kol-
mogorov complexity of certain sets. More specifically, our results show that even highly
restricted sets in NP do not consist entirely of Kolmogorov-easy strings unless higher
complexity classes collapse. This relates to a result of Hartmanis ([HaYe 83]) that sets
in P cannot separate SAT from the set of Kolmogorov-easy strings in SAT unless higher
complexity classes collapse. Furthermore, since the outputs of pseudorandom genera-
tors are Kolmogorov-easy, our results establish the exact complexity of pseudorandomly
generated sets. This relates to recent work in [Ya 82], [Al 88], and [NiWi 88] that can
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be viewed as a study of the approximability of pseudorandomly generated sets. On a
different level, our results provide a comparison between the power of existential second
order explicit definitions and implicit definitions, and thus contribute to the study of
expressibility in logic.

Qur primary results are the following.

Result 1: We give a logical characterization of Kintala and Fischer’s re-
stricted nondeterministic classes, Py(n)-

The class Py(n) consists of sets accepted by NP machines that make at most
g(n) nondeterministic moves, where n is the length of the input and g(n) is a
sublinear function of n. We use the notion of generalized spectra to give an
alternate characterization of the classes Py(,. Just as Fagin ([Fa 74]) showed
that the sets in NP are exactly the generalized spectra (or, the set of finite
models) that satisfy a second order existential (2"d039(n)) sentence, we show
that that by restricting the second order quantifier in 2"403 sentences we can
obtain a class 2"d03g(n) that characterizes Py(n).

Kintala and Fischer ([KiFi 80]) introduced these subclasses of NP as a way to
study the fine structure of NP — P. They constructed oracles that separate the
classes Py(n) for functions g that have different growth rates, and argued that
the number of nondeterministic guesses is a resource that is independent of
the number of steps of an NP computation. Renewed interest in these classes
came when Stearns and Hunt ([StHu 86]) related them to the classification of
sets in NP based on the (sub) exponential complexities of their deterministic
algorithms. More recently, Alvarez, Diaz, and Toran ([ADT 89]) exhibited
natural self-reducible complete problems for the classes Pjogi(n) for fixed 7 >
1. In addition, they showed that the classes Pj,4i(n) have many structural
properties similar to those of NP.

Result 2: We give a logical characterization of the uniform subsets of the
time bounded Kolmogorov complexity classes, KT[g(n),n*].

The time bounded Kolmogorov complexity classes, KT [g(n),n*], were intro-
duced by Daley and Ko ([Da 77], [Ko 83]). Intuitively, the class XT[g(n), n*]
consists of “g(n)-easy” strings, i.e, the information content of the string is
efficiently retrievable from a compressed string of length g(n), where g(n) is
sublinear. We characterize the complexity of uniform subsets of KT [g(n), n*],
by restricting the deterministic checking part of NP computations. In partic-
ular, we additionally restrict the first order formulas in 2"d()39(n) sentences
to be explicit definitions and denote the class of these restricted sentences as

ond03E

The above results can be viewed as characterizations of subclasses of NP, obtained
by restricting the second order existential quantifier and the first order formula in 2403
sentences. It is worth noting that classes obtained by restricting the second order
quantifier have been studied earlier by Fagin ([Fa 74,75]) and Lynch ([Ly 82]). Fagin
showed that 27403 sentences, in which the arity of the second order relational variable is
bounded by 2k, characterize sets in NTIME(n*]. Lynch showed that the same restriction

on 2903 sentences, in the language of +, characterizes NTIME [n2*]. Subclasses of NP




obtained by restricting the first order formula in 2747 sentences have also been studied
earlier. Papadimitriouand Yannakakis ([PaYa 88]) considered the subclass, SNP, of NP,
obtained by restricting the first order formula to be universal, i.e. in the prefix class V.
They showed that a corresponding optimization class MAXSNP is easily approximable.
However, none of these restrictions differentiate between the number of nondeterministic
moves, and the number of steps in an NP computation.

Our next result relates a question in second order logic to a problem in complexity
theory.

Result 3: We show that existential second order implicit definitions have
more power than explicit definitions, unless higher complexity classes col-
lapse.

Here we compare 2"‘1035(”) with another subclass of NP, the class

2"d03§g’;“°“, or 2"d03§(n). This class is obtained by restricting the first order

formulas in 2"?03,(,) sentences to implicit rather than explicit definitions.
Intuitively, a set L in 2"d03"§( n) has the property that any string w can witness
at most one string z in L. If we additionally require z to be polynomially
computable from w, then L is in 2nd0Q3E .- We give evidence that the strings
in L may not be polynomially computable from their short witnesses, and
thus they may not be g(n)-easy. In particular, we show that every set, in
Q"dOS‘;(n) is “strongly equivalent” to a set in Z"dOEE(n), i.e, the two sets
are equal and their witness sets are identical, if and only if, certain higher
deterministic complexity classes are equal, to their corresponding unambiguous
nondeterministic (UTIME) classes.

The question of implicit versus expicit definability over finite structures has
been studied earlier by Gurevich ([Gu 84]). He showed that implicit definability
in fixpoint logic (first order logic with the fixpoint operator) has more power
than explicit definability unless P = UP N coUP. More recently, Kolaitis [Kol
89] strengthened Gurevich's result by showing that formulas that are implicitly
definable in fixpoint logic are in fact implicitly definable by a pair of formulas
in first order logic.

We note that Grollmann and Selman ([GrSe 84]) have shown that if one-way
functions exist, then P # UP. To explain the similarity between the conse-
quence in Grollmann and Selman’s result, and those mentioned in the previous
paragraphs, we recall some details of Grollmann and Selman'’s result. Their
proof proceeds by showing that if there are functions that are not polynomially
computable, but whose graphs are in P, then P # UP. We will see that this
latter assumption is intuitively similar to assumptions about the equivalence
of implicit and explicit definabilities.

From the above results we can draw two interesting conclusions. The first shows
that the relationship between implicit and explicit definitions is not merely a question
of interest to logicians: it can be used to define the exact complexity of the ranges of
pseudorandomly generated sets.



Conclusion 1: Relatively easy sets in NP — P can not be pseudorandomly gen-
erated, unless certain deterministic and nondeterministic complexity classes
collapse.

To explain further, we will see that the sets in 2"‘103;( n) aTe highly restricted,

and are hence relatively easy sets in NP — P, and that sets in 2"‘10357( n) are
exactly the ranges of pseudorandom generators. Hence, the assumption that
relatively easy sets in NP — P can be pseudorandomly generated is equivalent
to the hypothesis of Result 1, and yields the same consequence.

This relates to recent work by Allender in [Al 88] and Nisan and Widgerson in
[NiWi 88] on the consequences of the existence of pseudorandom generators.
In contrast, their results can be viewed as defining the complexity of sets that
can approximate the ranges of pseudorandom generators.

Our second conclusion gives a partial answer to a question posed by Hartmanis in
[Ha 83]: Do all log(n)-easy satisfiable formulas have at least one log(n)-easy satisfying
assignment?

Conclusion 2: No easy subset of the set of all satisfying assignments of
g(n)-easy formulas contains an assignment for each g(n)-easy satisfiable for-
mula, unless certain deterministic and nondeterministic complexity classes
collapse.

In the next sections we discuss our results in more detail and relate them to other
work on the restricted nondeterministic classes, time bounded Kolmogorov complexity,
pseudorandom generators and generalized spectra. ‘In a concluding section we present
some interesting open problems related to this work.

2. CHARACTERIZING THE CLASSES P,(,).

To give a logical characterization of the classes Py,) we first require some background
and definitions concerning these classes and the use of expressibility in logic as a com-
plexity measure.

In the study of nondeterministic computations one commonly equates the number
of nondeterministic moves with the number of steps of the computation. However,
Kintala and Fischer ([KiFi 80]) began work aimed at classifying NP machines based on
the number of “strict” c-ary nondeterministic moves; i.e., moves for which there are at
least ¢ > 2 choices for the next instantaneous description of the machine. They defined
the classes Py, as follows.

Definition. [KiFi 80] For any function g(n), the class Py, consists of sets that are
accepted by a polynomial time Turing machine that makes at most g(n) c-ary nonde-
terministic moves on inputs of size n, for some constant c.

Kintala and Fischer’s motivation for introducing the classes Py,) arose from the
observation that most known NP-complete sets can be recognized by machines that
make a linear number of nondeterministic moves. This led them to ask which languages
can be recognized using sublinear functions, for example g(n) = log’n or g(n) = n/i




for fixed j > 1, and thereby investigate the fine structure of NP — P. A second motivation
for studying these classes arises from later work of Stearns and Hunt ([StHu 86]) that
classifies sets in NP based on the complexity of deterministic simulations of their NP
algorithms. For sublinear functions g the sets in Py(,) have deterministic algorithms
that run in subexponential time. A third motivation for studying these classes arises
from a more recent work of Alvarez, Diaz, and Toran. They showed that the structural
properties of the classes P4, are similar to those of NP, for instance the existence of
natural self-reducible complete sets.

Kintala and Fischer posed the questions: Is Plogin = Plogi+in, and is Piggin closed
under complement? They provided evidence that answering these questions will be
difficult by proving relativized separation and equivalence results. From this they argued
that the number of nondeterministic moves is a resource that is independent of the
number of steps in an NP computation.

We will characterize the classes Py, by defining the logics that express them. For
this we assume the readers’ acquaintance with the basic notions of expressibility in first
and second order logic, and use the notation of Immerman’s survey paper [Im 87]. In
our discussion, we deal with finite structures that represent Boolean strings. l.e, we
consider structures (A, B') where the universe, A, is linearly ordered, and B ! is a one-
place relation symbol. We refer to these as input structures of length n, where |4 = n.
We consider generalized spectra (or, sets of input structures) that satisfy sentences in
different logics. The generalized spectrum of a sentence ¢ is the set

{(4,B") : (4,B") = ¢};

i.e., the set of input structures that satisfy ¢, where the semantic notion of satisfaction
is defined in the usual manner. -

We deal with sentences in first order logic, FO, a logic with the least fiz point
operator applied to first order formulas, FO + LFP, and existential second order logic,
2nd()3. Sentences in the latter logic are of the form: IWkH(WF), where ¢ is a first
order formula and W* is a relational variable of arity k. The following are some of the
characterizations of complexity classes given by Immerman and Fagin.

Theorem. [Im 82], [Fa 74]
1. P is the class of spectra of FO + LFP sentences.
2. NP is the class of spectra of 2"?03 sentences.

We are now ready to characterize the classes Py(,). Throughout this section, we will

assume that g(n) is either login or nl/7 for some j > 1; however, our results extend to
other nicely behaved sublinear functions. We begin by defining a restricted second order
existential quantifier that will, intuitively, quantify over encodings of short sequences
of nondeterministic moves. That is, the quantifiers “3,(,)” semantically quantify over
monadic relations (of arity one) that are defined on a fixed g(n)-sized subset of the
input structures’ universe.



Definition. Let (4, B') be a structure such that |A| = n, let ¢ be any formula in
FO + LFP, and let g(n) be log’n or nt/i, > 1.

(4,BY) = J,mW'e(W?!) <= IW![Vz [z > g(n) = -W(z)] AW

The class of sentences of the form 3y W'¢(W?'), where ¢ is a formula in FO + LFP,
is denoted as Q"dOE!g(n). :

We now have a characterization of Py(n)-

Theorem 1. Let g(n) be log’n or n!/i  j > 1. Then, Py(ny is the class of languages
that correspond to the generalized spectra of 2"d039(n) sentences.

Proof. The containment 2"d039(n) C Py(n) is clear. To prove that Py,) & Q"dOEg(n) we
consider a set S in Py(,) and a nondeterministic polynomial time Turing machine, N, for
S that consists of a deterministic machine, M, an input tape y of length n and a guess
tape W of length g(n). The machine M takes the tuple (y, W) as input, runs in time n*
" for some k and N accepts v, if and only if, M accepts (y, W) for some W. Without loss
of generality, the inputs y are structures of the form (4, B'), where [A| = n. The inputs
to the machine M are structures, (4, B!, W), where W! is a monadic relation whose
domain is restricted to the smallest g(n) elements of A, and encodes the Boolean string
on the guess tape W. Let ¢ be the FO + LFP sentence whose generalized spectrum
is the set of structures accepted by M. Thus, N accepts (4.B'), if and only if, for
some relation W?, (4, BY,W!) k= ¢. That is, the set of structures accepted by N is the
generalized spectrum of the 2703 () sentence Iy W' d(W1). g

It is important to note that in the above proof we require ¢ to be a FO + LFP
sentence. In contrast, in his proof that NP is 2403, Fagin ({Fa 74]) just required that
# be an FO sentence. To elaborate: although sentences of the form IWEH(WF), where
#(W*) is a formula in FO + LFP, are equivalent to sentences of the form JVIip(VI),
where (V) is a formula in FO, the arity of the second order variable increases in the
rewriting, i.e., j > k. This is because the relational variable V7 ranges over the encodings
of entire polynomial time computations that check the #O+ LFP formula &( W), Thus,
the arity j depends on the deterministic time complexity of the generalized spectrum of
#. When we restrict the arity and domain of the second order relational variable, wt,
as in 27403, (,,) sentences, it is not clear that a sentence, 3y We(W1), where ¢ is in
FO + LFP, is equivalent to a sentence 3,V %(V!), where ¢ is in FO.

3. CHARACTERIZING THE CLASSES KT{g(n),n*].

In this section we introduce the logic of ezistential second order ezplicit definitions, and
use it to characterize the complexity of pseudorandomly generated sets and uniform
subsets of the time bounded Kolmogorov complexity classes. We begin with a brief
discussion of time bounded Kolmogorov complexity.




The time bounded Kolmogorov complexity classes, KT [g(n), t(n)] were introduced
by Daley ([Da 77]), and Ko ([Ko 83]).? Intuitively, a string y, of length n, is in the class
KT[g(n),t(n)] if it can be generated from a string of length g(n) in t(n) steps.®> More
formally,

Definition. Let M, be a universal Turing machine. The class KT[g(n),t(n)] =4ef
{y: |yl =n and 3w [Jw| < g(n) and Mu(w) =y and M, halts in at most t(n) steps}

The notion of time bounded Kolmogorov complexity has applications in the the-
ory of pseudorandom number generators. Pseudorandom generators are polynomially
computable functions that typically map short seeds, say of length n!/J, to longer pseu-
dorandom strings of length n. Hence, the range, or set of outputs, of a.pseudorandom
generator is a uniformly generated subset of nl/i-easy strings. o

We can use a version of second order logic, which we will denote 2"‘103;‘12’;“':“,
to characterize the exact complexity of recognizing pseudorandomly generated sets.

2"‘1035&’;“‘:“ is obtained by restricting the syntactic complexity of the FO+LFP for-

mula, ¢(W?), in a 27403 y(, sentence Jg(n) W* #(W?) in the following manner. For any
relation W' on a universe A we demand that ¢(W?) ezplicitly define a unique relation
B! such that (4, B}, W) = ¢.

Definition. A FO+LFP formula ¢(W?) explicitly defines the relation symbol B if
#(W?) is of the form:

Vz[o(W?, z) <> B'(z)],
where o(W',z) is a FO+LFP formula that does not contain the relational variable
B!. The logic zndoaﬁfj;““t, also denoted 2"‘1035( n)» Consists of sentences of the form

3,y Wie(W?), where $(W*) explicitly defines the relational variable B! of the input
structures (4, B').

The next theorem shows that the logic E"dOEf( ) characterizes uniformly generated
subsets of g(n)-easy strings; i.e., it characterizes pseudorandomly generated sets.

Theorem 2.
1. A set L is the spectrum of a Q"dOE]f(n) sentence if and only if L is the set of outputs
of a pseudorandom generator that generates strings of length n from random seeds
of length g(n), in time polynomial in n.
2. If a set L is the spectrum of a 2”‘10357(“) sentence, then L C KT'[g(n) + ¢, n*], for
some constant k.

Proof. The proof of (2) follows immediately from (1).

2 These citations refer to the first uses of resource bounded Kolmogorov complexity within
complexity theory. However, we note that the first known result about time bounded Kol-
mogorov complexity was proved by Barzdin in [Ba 68].

3 We will not use Levin’s version of this notion, commonly referred to as time limited
Kolmogorov complexity ([Le 64]). Interested readers are referred to surveys by Longpré ([Lo
86]), and Li and Vitanyi ([LiVi 88]), for definitions and applications of different variants of
Kolmogorov complexity.



The forward direction of (1) will follow from the fact that any set, L, which is charac-

terized by a 2"d03in) formula, is an NP set with the following additional properties.
a. Each string (4, B!) of length n in L has a short witness string W' of length g(n).
b. Any string W' witnesses at most one string in L.
c. Each string (4,B") in L can be generated from its witness string W' in time

polynomial n.
Suppose that L is the set of input structures, (4, B1!), that satisfy a sentence,
3, Wie(W?), where ¢(W?!) is of the form: '

Vz[o(W?', ) <= B'(z)]

for some FO+LFP formula, o(W?*,z), that contains the only the relation symbol wi.
In addition assume that the generalized spectrum of ¢ is in DTIME([n*] and that Q is a
program that checks ¢ given the input structure (A, B, W1), where |A| = n. Without
loss of generality, @ consists of a program Q' of size ¢ that, on input (A, W) of size g(n),
generates a structure (4, o), followed by a program Q" that checks if (4,0') = (4, B).
Q' runs in at most n* steps, and is the required pseudorandom generator.

To prove the reverse direction of (1), we adapt the proof of Theorem 1: we consider
the nondeterministic Turing machine NV that accepts L. The machine N consists of
an input tape y of length n, a guess tape W of length g(n), and the pseudorandom
generator M of the hypothesis that takes W as input, and outputs the string o of
length n, in n* steps. The machine N accepts y if and only if 0 = y. Asin Theorem 1,
the inputs y are structures of the form (4, B!), the inputs to M are structures of the
form (A, W?!), and the outputs of M are structures of the form (4,c"). Thus the set,
L accepted by N is the generalized spectrum of a sentence,

Ay Wz [o(W',2) <> B'(2)),

and the set of structures, (4, B!, W1), that satisfy the sentence Vz [o(z) <= B'(z)]
is in DTIME[n*], since given (4, B!) and (4, o!), checking the sentence Vz [o(z) =
B!(z)] can be done in n steps. §

4. THE CLASSES 2nd03§gg“°‘".

Qur third result requires that we distinguish between explicit and implicit definitions
in existential second order logic. In the previous section, we saw that the spectra of
Q“dOEf(n) sentences consist of elements that can be polynomially generated from their
3[ mplicit
. . * . g(n) . -
merely of elements with short “exclusive” witnesses, i.e., each string witnesses at most
g

one element in such sets. In this sense, the spectra of 27?03 .y sentences are highly
restricted NP sets, and can be considered as relatively easy sets in NP — P. Below, we

formally define the logic Q"dOﬁé(n).

short witnesses. Here we will see that the spectra of 27?0 sentences, consist




Definition. A FO+LFP formula, $(W') implicitly defines the relational variable B*
if for every relation W' and pair of structures (4, B!, W') and (4,C',W?*) that sat-
isfy ¢, the relations B! and C' are equivalent. lLe., the structure (4,BY,CL, W) =
Vz[B'(z) <= C'(z)]. The logic 2""03;?;’)’1”“, (also denoted 2”d03§(n)) consists of
sentences of the form 3,nyW'¢(W?), where ¢(W') implicitly defines the relational
variable B of the input structures (4, B').

Our third result will show that certain UTIME classes collapse to the corresponding
DTIME classes under the assumption that the spectra of 2"‘1035(,;) are equivalent to

those of 2""‘035j ., sentences. However, we need a strong notion of equivalence by which
not only are two sets X and Y equivalent but in addition, there is some representation
for each set such that the sets of witnesses for X and ¥ induced by these representations
are equivalent. Below we formally define the notion of strong equivalence.

Definition. Two sets X and Y in NP are strongly equivalent if

1. X =Y and

2. there are NP machines Nx and Ny for X and Y such that a string w represents
an accepting computation of Nx ony € X if and only if w also represents an accepting
computation of Ny on y.

We note that Grollmann and Selman ([GrSe 84]) have shown that if one-way func-
tions exist, then P # UP. Their proof proceeds by considering the intermediate assump-
tion that there are functions that are not polynomially computable, but whose graphs
are in P. They show that under this latter assumption, P # UP. From the above
definition of the logic 2”d03§(n), it is intuitively clear that for spectra of 2"d03§(n)
sentences, the relation between the elements and witnesses is the graph of a function.
For the spectra of Z”dOEf(n) sentences, we additionally know that this function is com-
putable in polynomial time. Hence, it is not surprising that we obtain similar conse-
quences starting from the assumption that 2"‘1035(@ sentences are are equivalent to

Z"dOﬂgE(n) sentences. In fact, as mentioned earlier, similar consequences were obtained

by Gurevich ([Gu 84]) and Kolaitis ([Kol 89]) by assuming the equivalence of explicit
and implicit definitions in other logics.

Theorem 3. The following statements are equivalent.
1. The spectrum of each 2"d03§(n) sentence Is strongly equivalent to the spectrum of

a 2"‘10357(”) sentence.
2. UTIME[20¢*")] = DTIME[200*''))), if g(n) = log’n, and UP = P, if g(n) = n'/7.

Proof. We will use the intuitive notion of “witness sets.” Given a set, L, in Py(,), the
witness set of L consists of all strings of length g(n) that witness strings of length at
least n in L. We use the fact that the spectra of 2"403f ) and 2"‘103"3”) sentences
have witness sets in in the appropriate UTIMFE and DTIM% classes. It then follows that
the strong equivalence of the former two classes results in the equivalence of the later
two classes, and vice versa. We prove the theorem for g(n) = log’n. For g(n) = n'/J,
the proof is similar.

(l«<=2)Let L € ?."dOEg(n), where L is the generalized spectrum of the sentence
3,y Ws(W'), and ¢(W?) can be checked in DTIME[n*]. Let (Ag(n), W?) be the



substructure of (4, W?!) induced by the smallest g(n) elements of A, where |4]| = n.
Let U be a UTIME{2O("l/j)]~acceptor that, on input (Ayn), W1,0), guesses a unique
structure (A, B!) of size n, checks if (4,B',W!) = ¢ (in nf steps), and verifies if
B'(b). By hypothesis, there is a DTIME[QO("W)}acceptor M that accepts the same
set as U. Let (W', z) be the formula that expresses “M accepts (4, W1 z).” Clearly,
the set of structures (A, B!, W) that satisfy ¢ and those that satisfy ¥ = Vz[o(z) <
BY(z)] are identical, and thus L is strongly equivalent to the spectrum of the 274035

g(n)
sentence: IW! Vz [o(W!,z) <= B'(z)].

(1=2)LetUbea U TIME[QO(“W)}acceptor. Without loss of generality, on input
(Ag(n), W1), U first guesses a unique witness structure (A, BY), such that |A| < nf for
some fixed k, and 3z > n [BY(z)]. Then, U checks if (4, W', B!) |= ¢ where ¢ is a
FO + LFP sentence. Then the witness set of structures, (4, B') is the spectrum of
the 2"‘103?;(") sentence Jyn)W'4(W!). By assumption, there is a formula (W) =
Vz[o(W?!,z) <= B'(z)] such that the set of structures (4, B',W?') that satisfy v
is identical to those that satisfy ¢, and o(W',z) is a FO + LFP formula. Let M be
the deterministic machine that, on input (Ay(ny, W), generates (A,c'), and checks if

Jz > n [¢}(z)], in nF steps. Clearly, M simulates U, and runs in 20(n*/?) steps. g

Since all sets in 2"‘1035(,1) can be pseudorandomly generated, our result gives evi-
dence that pseudorandom generators cannot generate even relatively easy sets in NP-P,
namely the spectra of 2"‘1()3§( n) Sentences. This is formalized in the following interest-

ing corollary of Theorem 3.

Corollary 1. The following statements are equivalent.
1. The spectrum of each 2"‘103;( ny Sentence is strongly equivalent to the set of outputs
of a pseudorandom generator that generates strings of length n from random seeds
of length g(n).
2. UTIME[2°C"'))] = DTIME[20(""'))), if g(n) = log’n, and UP = P, ifg(n) = n'//.

This result relates to recent work by Yao ([Ya 82]), Allender ([Al 88]), and Nisan
and Widgerson ([NiWi 88]), on the consequences of the existence of good pseudoran-
dom generators. A pseudorandom generator is considered good if efficient algorithms
cannot distinguish its outputs from a truly random set of strings. A consequence of
the existence of a good pseudorandom generator is that probabilistic algorithms can be
efficiently simulated deterministically, by using the range of the generators to mimic
coin-tosses. The results in [Ya 82|, [Al 88] and [NiWi 88] differ in their exact definition
of a good pseudorandom generator. The notion of a statistical test to make the notion
of a good pseudorandom generator precise. A statistical test for pseudorandom gener-
ators is typically a probabilistic polynomial time acceptor, or a (non-uniform) family
of polynomial sized circuits, whose inputs are the outputs of the pseudorandom gen-
erators. A pseudorandom generator passes a statistical test if the set accepted by the
statistical test and the range of the generator differ substantially and are uncorrelated;
that is, the statistical test cannot distinguish between the range of the generator and a
set of truly random strings. Thus, a pseudorandom generator is considered C-good, if it
passes all statistical tests of complexity C. In other words, the assumption that C-good
pseudorandom generators exist is equivalent to the assumption that pseudorandomly




generated sets cannot be approzimated by sets of complexity C. Alternatively, uniformly
generated subsets of nl/i_easy strings cannot be approximated by sets of complexity C.
In contrast, we have shown consequences of the assumption that a certain complex-
ity class C, namely the class spectra of 2"d03§(n) sentences, can be pseudorandomly
generated.

As another corollafy to Theorem 3, we obtain a comparison of the sets in Py,) with

the spectra of 2"d03£(n) and 2”‘103;3(") sentences. Clearly, sets in Py,n) can contain

arbitrarily Kolmogorov-hard strings, as the number of g(n)-easy strings of length n is
at most 29(") while a single witness string of length g(n) may witness the membership
of arbitrarily many elements (of length n) of some set in Py,). However, the following
question is more interesting: given a set L in Py(n) does every string w of length g(n)
that witnesses some element of L, also witness at least one g(n)-easy string of length
n? By observing that the set, SAT-ASSIGN y(n), of satisfying assignments of g(n)-easy
satisfiable formulas is in Py(n), (and is complete,) the above question can be rephrased
as: Does every g(n)-easy satisfiable formula have at least one g(n)-easy satisfying as-
signment? Hartmanis ([Ha 83]) posed this question for the case when g(n) = log(n).
The following corollary gives a partial answer.

Corollary 2. Let S be any subset of SAT-ASSIGN () that contains at least one
satisfying assignment of each g(n)-easy satisfiable formula. Furthermore, let S be the
generalized spectrum of a sentence, Iy F! [“F" is a g(n)-easy satisflable formula and
(A, B) is a satisfying assignment of F'” and ¢(F*)]. If S is strongly equivalent to the
spectrum of a 2"‘103;( n) Sentence, then all sparse sets in NP — P are in UP, and if S

is strongly equivalent to the spectrum of a 2"d03§(n) sentence, then NEXPTIME =
EXPTIME.

Proof. We use the following theorem of Hartmanis.

Theorem. [Ha 83] For g(n) > log(n),
1. SAT N KT[g(n),n?] is a hard set for all sparse sets in NP.
2. The following statements are equivalent.
a. SAT N KT[log(n),n%] € P
b. There are no sparse sets in NP — P
c. NEXPTIME = EXPTIME.

If S is strongly equivalent to the set of structures (4, B') that satisfy the sentence
3, Fo(F*), where ¢(F') is a FO+LFP formula that implicitly defines B!, then the
witness set of S :

SAT yny = {(A, F) : (A4, F') |= 3B'%(B")}

is clearly in UP, and consists exactly of g(n)-easy satisfiable formulas.” By the above
theorem, the set of g(n)-easy satisfiable formulas, (for g(n) > log n) is hard for all
sparse sets in NP — P. Hence, all sparse sets in NP — P are in UP. If the formula W(F*)
above explicitly defines B!, then SAT y,) is in P, and hence by the above theorem,
NEXPTIME = EXPTIME. 3



5. OPEN PROBLEMS.

We have seen that interesting results emerge from a careful study of the relationships
between sets in NP and their corresponding witness sets. In particular, we have seen that
forcing certain relationships between sets in NP and their witness sets leads to robust
complexity classes that have alternate characterizations. We gave evidence that if two
such classes, 2"‘1035(") and Q“dOHgE( n) aT€ strongly equivalent, then higher complexity
classes collapse. An interesting question arises in this setting.
1. What are the consequences of an assumption that onrd03f ) and 2"d03in) are
equivalent? In particular, does Theorem 3 hold if we weaken the assumption of
strong equivalence to just equivalence? '

An answer to this question would help to determine the exact complexity of 27¢03E

g(n)
more accurately. The question of determining the approzimate complexity of Q"dOBf(n)
is also interesting since this characterizes the complexity of statistical tests that pseu-
dorandom generators can not pass. Hence, the following question arises.

2. Using one of the standard definitions of approximability (for example, that given in
[NiW1i 88]) can we provide an alternate characterization of the smallest complexity
class, C, such that every set in 2"d03En) can be approximated by a set in C7

A third question arises by observing that thus far we have only considered the complexity
of uniformly generated subsets of the class KT[g(n),nF].

3. Can we characterize the complexity of other interesting subsets of K T[g(n),nk],
for example, NP N KT[g(n),n*]?

Even for g(n) = log(n), an answer to this question would characterize the complexity
of the set SAT N K T[log(n),n*], which has many interesting applications following the

results of Hartmanis mentioned earlier ([Ha 83], [HaYe 83]).
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