COMPACT CLIQUE TREE DATA STRUCTURES
IN SPARE MATRIX FACTORIZATIONS

by
Alex Pothen
and
Chunguang Sun

Computer Sciences Technical Report #897

December 1989

COMPACT CLIQUE TREE DATA STRUCTURES
IN SPARSE MATRIX FACTORIZATIONS ~

ALEX POTHEN! aND CHUNGUANG SUN!

Abstract. The design of compact data structures for representing the structure of the Cholesky factor
I, of a sparse, symmetric positive definite matrix A is considered. The clique tree data structure described
in [10] provides a compact representation when the structure of L must be stored explicitly. Two more
compact data structures, the compact clique tree and the skeleton clique tree, which represent the structure
of L implicitly, i.e., when some computation on the data structure is permitted to obtain the structure of L,
are described. The compact clique tree is computed from a clique tree of L, while the skeleton clique tree is
computed from the skeleton matrix introduced by Liu [12] and a subset of the information in the clique tree.
The relationships between these data structures are considered, and it is proved that the compact clique tree
is the smaller of the two. Computational results on some Boeing-Harwell test problems show that these data
structures require less space than either the clique tree or the matrix A. It is also more efficient to generate
the structure of L from these data structures than by symbolic factorization on A. The final Section contains
a brief discussion of applications, related work, and some questions raised by this work.

AMS(MOS) subject classifications: 65F50, 65F25, 63R10.
Keywords. chordal graph, clique tree, compact clique tree, sparse Cholesky factoriza-
tion, sparse matrix, skeleton matrix, skeleton clique tree.

* Presented at the Workshop on Large-Scale Numerical Optimization, Mathematical Sciences Institute,
Cornell University, Oct 18-20, 1989.

t Departments of Computer Science and Mathematics, The University of Wisconsin-Madison, 1210 W.
Dayton St., Madison, WI 53706. Electronic address: pothen@cs.wisc.edu, na.pothen@na-net.stanford.edu.
Permanent address: Department of Computer Science, Whitmore Lab, The Pennsylvania State University,
University Park, PA 16802. The research of this author was supported by NSF grant CCR-8701723, NSF
equipment grant CCR-8705110, and U.S. Air Force Office of Scientific Research grant AFOSR-88-0161.

! Department of Computer Science, Whitmore Lab, The Pennsylvania State University, University Park,
PA 16802. Electronic address: csun@shire.cs.psu.edu. The research of this author was supported by U.S.
Air Force Office of Scientific Research grant AFOSR-88-0161.

Table Of Contents

Introduction

Background on clique trees

A new clique tree algorithm

Clique trees and elimination trees

Compact and skeleton clique trees

Relationships between compact and skeleton clique trees
Computational results

Concluding remarks

10

13

16

20

22

COMPACT CLIQUE TREE DATA STRUCTURES
IN SPARSE MATRIX FACTORIZATIONS *

ALEX POTHEN' AND CHUNGUANG SUN¥

Abstract. The design of compact data structures for representing the structure of the Cholesky factor
L of a sparse, symmetric positive definite matrix A is considered. The clique tree data structure described
in [10] provides a compact representation when the structure of L must be stored explicitly. Two more
compact data structures, the compact clique tree and the skeleton clique tree, which represent the structure
of L implicitly, i.e., when some computation on the data structure is permitted to obtain the structure of L,
are described. The compact clique tree is computed from a clique tree of L, while the skeleton clique tree is
computed from the skeleton matrix introduced by Liu [12] and a subset of the information in the clique tree.
The relationships between these data structures are considered, and it is proved that the compact clique tree
is the smaller of the two. Computational results on some Boeing-Harwell test problems show that these data
structures require less space than either the clique tree or the matrix A. It is also more efficient to generate
the structure of L from these data structures than by symbolic factorization on A. The final Section contains
a brief discussion of applications, related work, and some questions raised by this work.

AMS(MOS) subject classifications: 6550, 65F25, 68R10.
Keywords. chordal graph, clique tree, compact clique tree, sparse Cholesky factoriza-
tion, sparse matrix, skeleton matrix, skeleton clique tree.

1. Introduction. Consider the Cholesky factorization of a large, sparse, symmetric
positive definite matrix A. What is the least space in which the nonzero structure of the
Cholesky factor L can be stored? The answer to this question has implications in the design
of compact data structures for several sparse matrix problems. There are two versions in
which this question can be posed.

In the first, we are required to compute a data structure from which the structure of L
can be obtained without any additional computation. In this case, it is possible to store the
structure of L in space much smaller than the number of nonzeros in L by using the clique
tree data structure described in [10]. The existence of this data structure is the primary
reason for the spectacular success of the compressed column storage scheme proposed by
Sherman [16] and used in modern sparse matrix software. The size of the clique tree data
structure is the number of compressed row subscripts in a scheme which stores L by columns,
when ‘accidental compression’ is ignored.

In the second version of the question, we are required to compute a compact data
structure for L such that some ‘reasonable’ amount of computation on the data structure is
permitted to obtain the structure of L. This question is relevant in contexts in which the

* Presented at the Workshop on Large-Scale Numerical Optimization, Mathematical Sciences Institute,
Cornell University, Oct 18-20, 1989.

t Departments of Computer Science and Mathematics, The University of Wisconsin-Madison, 1210 W.
Dayton St., Madison, WI 53706. Electronic address: pothen@cs.wisc.edu, na.pothen@na-net.stanford.edu.
Permanent address: Department of Computer Science, Whitmore Lab, The Pennsylvania State University,
University Park, PA 16802. The research of this author was supported by NSF grant CCR-8701723, NSF
equipment grant CCR-8705110, and U.S. Air Force Office of Scientific Research grant AFOSR-88-0161.

! Department of Computer Science, Whitmore Lab, The Pennsylvania State University, University Park,
PA 16802. Electronic address: csun@shire.cs.psu.edu. The research of this author was supported by U.S.
Air Force Office of Scientific Research grant AFOSR-88-0161.

1

structure of I must be generated, used, and then discarded (to keep storage requirements
low) several times in the course of a computation. In this case, one possible choice for a
data structure is the structure of A; a symbolic factorization step can then be performed
every time the structure of L is required. In this paper, we describe two data structures, the
compact clique tree and the skeleton clique tree, which provide more compact representations
of the structure of L. We prove that these data structures require space bounded by the
smaller of the number of nonzeros in A and the number of compressed subscripts in L; and
in practice, the space required for these data structures is much less than the bound. It will
also turn out that it is faster to generate the structure of L from these data structures than
from A.

Both the compact clique tree and the skeleton clique tree are related to the clique tree
data structure. The former is computed directly from the clique tree using a certain property
of clique trees. The skeleton clique tree is also related to the concept of the skeleton matrix
introduced by Liu [12]. This data structure is obtained by computing a small subset of the
information in the clique tree together with the information in the skeleton matrix. We
will prove that the compact clique tree is the smaller of the two data structures, though in
practice the two require almost the same amount of storage.

We do not know if either the clique tree or the compact clique tree are optimal data struc-
tures with respect to space for representing L structurally (the former when no computation
is permitted on the data structure, and the latter when some computation is permitted).
Barring ‘accidental compression’ (observed, for instance, in a symbolic factorization proce-
dure), it is likely that the clique tree is an optimal data structure which provides an answer
for the first question.

The compact clique tree and skeleton clique tree data structures provide compact column-
oriented storage schemes for the Cholesky factor L. In this sense, they complement the com-
pact row-oriented storage scheme for L designed by Liu [12] which makes use of the skeleton
matrix. ’

An outline of this paper is as follows. § 2 contains a description of the clique tree data
structure as defined in [10]. Since a definition of a clique tree requires several concepts about
the maximal clique structure of chordal graphs, the relevant notions are also briefly reviewed.
In § 3 we design a new algorithm for computing a clique tree. This algorithm computes a
subset of the information in the clique tree from the elimination tree without requiring a
symbolic factorization step. This algorithm will be used later with some modifications to
compute a skeleton clique tree. We explore the relations between clique trees and elimination
trees in § 4. A major result of this section is that there exists a path between two vertices in
ihe elimination tree if and only if there is a corresponding path in a clique tree. The results
from this section will be necessary later to study the relationships between compact clique
trees and skeleton clique trees. § 5 contains the descriptions of the compact clique tree and
the skeleton clique tree data structures. We include in this section a brief description of the
skeleton matrix, and show how the new clique tree algorithm can be modified to compute a
skeleton clique tree. The relationships between these two data structures are investigated in
§ 6. We characterize the situations where the compact cliques (the vertices of the compact
clique tree) and the skeleton cliques (the vertices of the skeleton clique tree) differ from each

2

other. Computational results on the sizes of these data structures and the times required
to compute them for several large problems from the Boeing-Harwell collection are reported
in § 7. The final § 7 briefly discusses some applications, related work, and some questions
raised by this research.

We employ the following notation. The order of the matrix A is n, which is also the
number of vertices in the adjacency graph G(A). Without loss of generality, we assume
that G(A) is connected. We denote the adjacency graph of the Cholesky factor L (the filled
graph) by G. The number of nonzeros in the strict lower triangle of A (L) will be denoted
by |A| (|L]). Let K1, K3, ..., Kn denote the maximal cliques of the filled graph G. The
number of maximal cliques is m, and q denotes the size of a clique tree; i.e., this is the sum
", | Ki]. Let the vertices of a graph be numbered in some ordering from 1 to n. We denote
the set of vertices adjacent to a vertex v and numbered higher than v (the higher adjacency
set) by hadj(v). Similarly, the set ladj(v) will denote the set of vertices adjacent to v and
numbered lower than v (the lower adjacency set). The number hd(v) (higher degree) will
denote the cardinality of the set hadj(v).

2. Background on clique trees. In this section, we review the concept of a clique
tree as described in [10], and describe an algorithm which was designed there for computing
a clique tree from the output of a symbolic factorization routine. Throughout this section,
we assume the following context. A sparse symmetric matrix has been ordered by a fill-
reducing ordering algorithm, and the rows and columns of the matrix have been reordered in
this fill-reducing ordering. The adjacency graph G of the Cholesky factor L is chordal, and
as a result of the reordering, the natural ordering of the vertices of G is a perfect elimination
ordering (peo). In addition, we assume that an efficient symbolic factorization procedure
has been used to compute the nonzero structures of the columns of the factor matrix L; thus
the higher adjacency lists of the vertices {hadj(v) : v € V'} are available.

Maximal cliques. The vertices of a clique tree are the maximal cliques of the chordal
graph G, and therefore, the first step in computing a clique tree is to identify the maximal
cliques of the filled graph. They are easily identified by the following characterization due
to Fulkerson and Gross [6].

PROPOSITION 2.1. Let K be a mazimal clique in a chordal graph G whose vertices are
numbered in a peo. Ifv is the lowest-numbered vertez in K, then K = v + hadj(v).

The maximal cliques of G can hence be represented as K (v1), K(v2), ..., K(vm), where
K (v) specifies the maximal clique v + hadj(v) generated by the lowest-numbered or rep-
resentative vertex v. If a vertex is not the representative of any maximal clique, we call
it a non-representative vertex. From Proposition 2.1, it is only necessary to identify all
representative vertices to obtain the maximal cliques of G.

A chordal graph which arises from a finite element formulation is shown in Figure 1.
The reader can verify that its maximal cliques are as follows:

K(Q1)
K(5)

1,2,5,10}, K(3) = {3,4,5,6},
5,6,10,11}, K(7) = {7,8,9,10,11}.

We now turn our attention to a method for identifying representative vertices.

3

2 :) ;
Fig. 1. A chordal graph from a finite element problem. Each internal face of this planar graph is a
clique; such ‘diagonal’ edges have not been drawn for clarity.

PROPOSITION 2.2 ([10]). A vertex v is not a representative vertez for any mazimal
clique if and only if there ezxists a representative verter z numbered lower than v, with v +
hadj(v) C z + hadj(z).

The following Proposition provides an efficient test of whether the set v + hadj(v) is
contained in a set z + hadj(z), using only the higher degrees of the vertices.

PropoSITION 2.3 ([10]). Let K(v) ={v=wo<w1 <...< wy} be a mazimal clique
and let w; be the highest-numbered vertez in K(v) such that hd(w;) = p —jfor0 <y <.
Then {ws,...,w;} are not representative vertices.

Note that since the vertices are numbered in peo, when wo is eliminated, all of its higher-
numbered neighbors are adjacent to w;. Hence hadj(we) € wy + hadj(w;). By repeating
this argument for wy, ..., Wp-1, We have

hadj(wo) C wi + hadj(wi) C {wr,wz} U hadj(ws) ... S {wy, ..., wp} U hadj(wp).

Hence the higher degrees satisfy Ad(wo) < 1+ hd(wy) <...<p+ hd(w,). If p = hd(wo) =
i + hd(w;) for some w; with 1 <t < p, it follows that

hadj(we) = wy + hadj(wy) = ... = {wy,...,wi} U hadj(w;).

Thus w; + hadj(w;) C wo + hadj(wo), for 1 < j < i. Further, by the choice of ¢, if
(14 1) < k < p, then p = hd(wo) < k + hadj(wg), and w + hadj(wi) € wo + hadj(wo).

These results can be used to design an algorithm for computing the representative ver-
tices of the maximal cliques of G. Initially we consider all nodes are possible representatives,
and then process the vertices in the given peo. To process a vertex v, we identify if it is a
representative vertex, and if so, mark vertices which can be identified as nonrepresentative
vertices in hadj(v). In more detail: If a vertex v has not been marked as non-representative
by the time it is processed, no earlier vertex can satisfy the role of z in Proposition 2.2
and so we accept v as a representative vertex. We then examine hadj(v) and mark vertices
satisfying the degree test in Proposition 2.3 as non-representative vertices, stopping when a
vertex fails the degree test.

The above method marks a vertex as a nonrepresentative vertex in each maximal clique
in which it can do so. A more efficient method marks each nonrepresentative vertex w

4

exactly once, in the first maximal clique in which w can be identified as a nonrepresentative
vertex. This can be accomplished by stopping the search for nonrepresentative vertices in
hadj(v) as soon as we find either a vertex that fails the degree test or a vertex that has
already been marked as a nonrepresentative. It can be proved (Proposition 5 in [10]) that
the more efficient method will not fail to mark any other vertices which are identifiable as
nonrepresentative in hadj(v).

A partition of maximal cliques. The more efficient method for identifying repre-
sentative vertices can also be used to partition the vertices in a maximal clique into two
sets which will be useful for computing a clique tree. Let v be the representative vertex of
a maximal clique K = K(v). We partition the vertices in K into two sets: new(K) and
anc(K). (The notation adopted for these sets will become clear when a clique tree is con-
structed from them.) The set new(K) (read ‘new set of K’) consists of the representative
vertex v together with the vertices marked as non-representative while examining hadj(v).
The set anc(K) (read ‘ancestor set of K’) consists of the vertices in K that either fail the
degree test or were marked as non-representative in some other maximal clique K(u), with
u < v. We also define a vertex first_anc(K) (read ‘first-ancestor vertex in K"), which is the
last vertex examined in hadj(v), if anc(K) is not the emptyset. If all vertices in hadj(v) are
marked as nonrepresentative, then anc(K) is empty, and first_anc(K) is undefined.

The reader can verify that the maximal cliques of the chordal graph in Fig. 1 are parti-
tioned as follows:

new(K(1)) ={1,2}, anc(K(1)) = {5, 10};
new(K(3)) ={3,4}, anc(K(3)) = {5, 6};
new(K(5)) ={5,6,10,11}, anc(K(5))="0;
new(K(7)) ={7,8,9}, anc(K(7)) = {10,11}.

The partition of a maximal clique into the sets new(K) and anc(K) has two important
properties that we will use later in defining a clique tree from the maximal cliques. First,
note that the vertices in hadj(v) are examined in peo, and the marking process stops when
a vertex fails the degree test or when a previously marked vertex is encountered. Hence the
first ancestor node of K splits K into the ordered subsets, new(K) and anc(K); all nodes
in new() are numbered lower than the first ancestor, and the other nodes in anc(K) are
numbered higher than the first ancestor vertex. Second, the sets new(K(v1)), new(K(v2)),

.., new(K (vy)) form a partition of the nodes of the chordal graph, since every node is
chosen as a representative vertex or marked as a nonrepresentative vertex exactly once.

A clique tree. We now have all the information necessary to define a clique tree. The
vertices of the clique tree are the maximal cliques of the chordal graph G. Let w; be the
first_anc vertex for a maximal clique K(v) with anc(K(v)) # 0. Then the parent clique
of K(v) is the clique P that contains w; as a new vertex. Such a clique P exists, since
every vertex belongs as a new vertex in some maximal clique, by the partitioning property
of the new sets. The root of the clique tree is the clique R which satisfies new(R) = R, and
anc(R) = 0; first_anc(R) is undefined. The root clique R necessarily contains the vertex
numbered n as a new vertex.

Fig. 2 shows the clique tree of the chordal graph in Fig. 1 computed from the new and
anc sets obtained previously. The partitioning of a maximal clique is shown by drawing the

5

(10,11
NG

Fig. 2. A clique tree of the chordal graph in Figure 1 computed by Clique Tree Algorithm 1.

new sets at the bottom and the anc sets at the top. The reader can verify that the first_anc
vertex of each maximal clique is a new vertex in its parent clique, and that the root clique
has its anc set empty.

An algorithm which implements the above method was designed in [10]; we shall call this
the Clique Tree Algorithm 1. It computes the representative vertices, the first.anc vertices
of the maximal cliques, and a clique tree from the higher adjacency lists and the higher
degrees of the vertices of a chordal graph. If v is the representative of a maximal clique
K(v), a pointer to the first_anc vertex in the hadj(v) list is all that is necessary to obtain
the new(K(v)), anc(K(v)) partition, since these are ordered subsets of v + hadj(v). The
algorithm also computes a mapping new_in_clique(v) for each vertex v, which identifies the
unique clique in which v is a new vertex. This algorithm requires O(n) time and O(q) space
to compute a clique tree.

Properties of clique trees. We now consider the properties of clique trees which will
be useful in the study of compact clique tree data structures. At the outset, we note that
the above definition of a clique tree is a more restrictive definition than has been previously
employed in other contexts. Let P denote the parent clique of a maximal clique K. As a
consequence of our definition of a clique tree, it can be proved (Proposition 6 and Theorem
7, [10]) that

e anc(K) C P, new(K)NP =0
o a vertex w € new(K) can belong to the anc set of another clique D only if D is a
descendant of K; and
e a vertex w € anc(K) belongs to the new set of some ancestor clique A; further, w
belongs to all cliques which lie on the path from K to A in the clique tree.
These properties characterize ‘legal’ clique trees of chordal graphs. With our more restrictive
definition, we acquire the additional property that the parent P is the only clique which
contains all the vertices in anc(K)—all other ancestor cliques can contain only proper subsets
of anc(K).

It is instructive to consider the significance of the partition of each maximal clique K
into the new(K) and anc(K) sets. Let {v; < vz < ... < vn} be the set of representative
vertices of the maximal cliques of G. The Clique Tree Algorithm 1 then implicitly orders

6

the maximal cliques by their representative vertices: I(v1) < K(vy) < ... < K(vy,). This
ordering of the maximal cliques partitions each maximal clique KX'(v) as follows.

new(K(v)) = {we K(v): hadj(w) C K(v), but hadj(w) ¢ K(u),
where K'(u) < K(v)}.
anc(K(v)) = K(v)\ new(K(v)).

The reason for calling these sets new and anc sets can be explained with respect to the clique
tree. We can consider the chordal graph as being ‘built up’ by adding one maximal clique at
a time, starting with the root clique in the clique tree, and proceeding down the clique tree
level by level. When a maximal clique K is added, anc(K) is the set of vertices that also
belong to some ancestor cliques of K, and the vertices in new(K) have not appeared in any
of the cliques up to this level. These latter vertices may appear in some descendant cliques
of K.

We should mention that that the Clique Tree Algorithm 1 is only one of many algo-
rithms which may be designed to compute clique trees. The other algorithms differ from the
Clique Tree Algorithm 1 in the ordering of the maximal cliques. It should be clear from the
definitions of the new and anc sets that if the ordering of the maximal cliques is changed,
these sets and the clique tree may change too.

3. A new clique tree algorithm. In Section 5 of this paper, we design an algorithm
to compute a compact data structure for the structure of L called the skeleton clique tree. In
this context (and several others), we wish to compute only a subset of the information in a
clique tree. More precisely, we require only the representative vertices of the maximal cliques
and the parent relationships among the maximal cliques. Since we define a parent clique in
terms of the new_in_cliqgue mapping and the first_anc vertices, we need compute only the
representative and the first_anc vertices, and the new.in_cligue mapping. In particular, the
anc sets are not required, and hence this subset of the information in a clique tree can be
represented in O(n) space.

A natural question is the following: Is it possible to compute a clique tree (i.e., the
information listed in the previous paragraph) without performing symbolic factorization to
obtain the higher adjacency lists of the vertices? In this section, we design an algorithm
to compute a clique tree from the elimination tree and the higher degrees of the vertices in
O(]A|) space and O(n) time. (The elimination tree and the higher degrees can be computed
directly from A without symbolic factorization.) Throughout this section, we will refer to
an algorithm for computing the above subset of information about a clique tree as a clique
tree algorithm.

Elimination trees. The elimination tree F' = (V, E) (henceforth etree) has its vertex
set V equal to the vertices of the graph G. For each v € V such that hadj(v) # 0, E contains
an edge (v, w) where w is the lowest-numbered vertex in hadj(v). The vertex w is the parent
of v in the etree. The root of the etree is the vertex numbered n, since its higher adjacency
set is empty. Since each child is numbered lower than the parent, this is a heap-ordered tree.
An etree of the graph in Fig. 1 is given in Fig. 3.

The etree captures the column dependencies in the Cholesky factorization of the matrix
A. Hence it plays an important role in modern sparse matrix algorithms, and Liu [13]

7

FI1G. 3. The elimination tree of the graph in Fig.1

provides an excellent survey of this role. Liu [12] and Zmijewski and Gilbert [17] have
designed efficient algorithms for computing the etree directly from A; the asymptotically
fastest algorithm runs in O(|A|a(|A],n)) time, where a(x,*) is the functional inverse of
Ackermann’s function. The higher degrees of the vertices can then be computed from A and
the etree in O(|L|) time.

A new clique tree algorithm. Now we describe the Clique Tree Algorithm 2, which
computes a clique tree from the etree and the higher degrees of the vertices. The algorithm
processes the vertices of the etree from 1 to n. If a vertex v has a child in the etree with
1 + hd(v) = hd(), then v + hadj(v) C u + hadj(u), v is not a representative vertex, and v
is made a new vertex in the clique K, which includes u as a new vertex. If there are several
such children, we choose one child u arbitrarily. If v is an interior vertex of the etree with
no such child, or if v is a leaf of the etree, we make v the representative vertex of a new
maximal clique K;. Finally, if v is the representative vertex of Kj, for each child s of v in
the etree included in K, as a new vertex, we make K, a child of K; in the clique tree. The
Clique Tree Algorithm 2 is shown in Fig. 4.

It is clear that the algorithm requires O(n) time, since each vertex v in the etree is
examined at most twice: once while processing v, and once while processing the parent of v
in the etree.

When a vertex v has several children in the etree satisfying the degree test, v can be
included as a new vertex in any one of the maximal cliques in which a child is included as
a new vertex. This freedom can be used by the Clique Tree Algorithm 2 to compute clique
trees with differing properties.

A clique tree of the filled graph in Fig. 1 (with corresponding etree in Fig. 3) computed
by the Clique Tree Algorithm 2 is shown in Fig. 5. This algorithm can also compute the
clique tree shown in Fig. 2. The two different clique trees are obtained by choosing to merge
vertex 10 into either the clique which includes its child 9 as a new vertex, or the clique which
includes its other child 6 as a new vertex.

¢ = 0
for v:=1ton —
if v has a child u in etree with hd(v) + 1 = hd(u) then
K, = new.in_clique(u);
new.in._cliqgue(v) := K,; new(K,) := new(K,) + v;
else
=14+ 1;
make v the representative of a maximal clique K; = v + hadj(v);
new .in_clique(v) := Ky; new(K;) := {v};
fi
for each child s of v in etree with new_in_clique(s) # new_in_clique(v) —
K, := new_in_clique(s); first_anc(K,) := v;
make K, a child of new_in_clique(v) in the clique tree;
rof
rof

FiG. 4. The Clique Tree Algorithm 2. This algorithm computes the representative and first-ancestor
vertices, and the sets of new vertices of the mazimal cliques from the etree and the higher degrees.

We omit a proof of correctness of the Clique Tree Algorithm 2 for brevity. Instead, we
discuss the differences between the two clique tree algorithms, since the second algorithm can
be proved correct by a proof similar to the proof of correctness of the Clique Tree Algorithm 1,
provided in {10].

Recall that the Clique Tree Algorithm 1 implicitly orders the maximal cliques by their
representative vertices. It then partitions each clique K into two sets new(K) and anc(K) as
described in § 2. The major difference in Clique Tree Algorithm 2 is that the above ordering
of the maximal cliques is abandoned. For each maximal clique K = {wo < wy < ... < wp}
(except the root clique), the Clique Tree Algorithm 2 identifies two sets new(K), anc(K)
and a vertex first_anc(K) such that

1. new(K) = {wo <wy < ... <wi_1}, where 1 <1< p; and

hadj(wo) = wy + hadj(wy) = ... = {wo, w1, ..., w1} U hadj(wi_1).

2. first_anc(K) = w; satisfies either (i). hadj(wi) ¢ K, or (ii). hadj(w) C K, but
there exists exactly one other maximal clique K’ satisfying w; € new(K’), and
hadj(w;) C K’; and

3. anc(K) = {w < wiy1 < ... < wp}.

For the root clique R, new(R) = R, anc(R) =0, and first_anc(R) is undefined.

The parent relationships are defined exactly as in the Clique Tree Algorithm 1: P is
the parent of K if first_anc(K) is new in P. We can then prove that new(K) N P = () and
anc(K) C P. Theorem 7 in [10] (see the discussion at the end of Section 2) shows that a tree
joining the maximal cliques satisfying the above three properties is a legal clique tree. Since
the same definitions of the parent relationships are used in both clique tree algorithms, the

9

F1c. 5. A clique tree of the chordal graph in Fig. 1 computed by Clique Tree Algorithm 2. Note that this
clique tree differs from the one in Fig. 2.

clique trees constructed by the Clique Tree Algorithm 2 also possess the other properties of
clique trees discussed at the end of § 2.

Finally, we mention that the Clique Tree Algorithm 2 is similar in many respects to an
algorithm for computing supernodes designed in [9] and [14].

4. Clique trees and elimination trees. In this section, we study the relationships
between paths in etrees and clique trees. We make no assumption about how the clique tree
is computed—the only requirement is that the parent of a clique K should be defined as
the clique which contains first_anc(K) as a new vertex. Our results in this section will be
necessary for studying the relationships between the compact clique tree and the skeleton
clique tree data structures.

The only paths we consider are paths from some vertex of either the etree or the clique
tree to the root, or subpaths of such a path. (Hence these paths go ‘up’ in these trees, if the
trees are drawn with the root at the top.) We shall refer to paths in the clique tree as clique
paths.

Let G be a chordal graph whose vertices are ordered in some peo; let F' be the etree
corresponding to this ordering. The maximal cliques of G are uniquely determined, and they
are independent of the peo. But the partition of a maximal clique K into the sets new(K),
anc(K) is not necessarily unique, and hence there are several clique trees corresponding to
this ordering. Let T be any clique tree which corresponds to this peo.

LEMMA 4.1. If a mazimal clique K is partitioned into the sets new(K) and anc(K) in
a clique tree T, then the vertices in new(IK) form a path in the etree.

Proof. Let the vertices in new(K) be {v = wo < w1 < ... < w;}. Then, from the
discussion following Proposition 2.3,

hadj(wo) = wy + hadj(wy) -+ = {wy,. .. ,wi} U hadj(w;).

The parent of a vertex v in the etree is the lowest-numbered vertex in hadj(v). It then
10

follows that parent(w;) = wj41, for yj=0,...,2—1. ®

LEMMA 4.2. Let P be the parent clique and f the first-ancestor vertez of a clique K in
a clique tree T. Define

7ew(P) = {w: w € new(P), and w > f}.

The vertices in new(K) followed by the vertices in Tiew(P) form a path in the etree.

Proof Let e denote the highest-numbered vertex in new(K). Then, again from the
discussion following Proposition 2.3, hadj(e) = anc(K). Since f is the first-ancestor vertex
of K, f is the lowest-numbered vertex in anc(K). Hence f is the parent of e in the etree.
From Lemma 4.1, vertices in new(K) form a path in the etree, as do vertices in 7ew(P).
The lowest-numbered vertex in the latter path is f, since f is a new vertex in P, by the
definition of a clique tree. The former path concatenated with the edge (e, f) and the path
7ew(P) constitutes the desired path. m

THEOREM 4.3. Let G be a chordal graph whose vertices are ordered in some peo; let F
be the etree corresponding to this ordering; and let T be any clique tree corresponding to this
peo. Then there is a path from a vertez v to a vertezx w > v in the etree F' if and only if either
(1). v, w € new(K) for some mazimal cligue K in T, or (2). v € new(Cy), w € new(K),
and there exists a path C;, Ci_y, ..., C1, K in T with w > fy = first.anc(Cy).

Proof. First we prove the if part. If (1) holds, by Lemma 4.1 the result is true. Hence
assume that (2) holds. We prove the result by induction on the length of the clique path.

If the length of the clique path is one, the path is C;, K and by Lemma 4.2, the result
is true. Assume inductively that the result holds for all clique paths of length at most ¢ — 1.
Consider a clique path of length i, with cliques listed as in the statement of the theorem,
where v € new(C;), and w € new(K). Denote f; = first_anc(C;), forj =1, ..., %

Then f; € new(Ci_1) by definition of the clique tree, and by the inductive hypothesis,
there exists a path from f; to w in the etree. Since v € new(C}), and f; is the first-ancestor
vertex of C;, by Lemma 4.2, there exists a path from v to f; in the etree. The concatenation
of the two paths gives the desired path from v to w.

Now we prove the only if part. Proceed up the etree from the vertex v to w. Since the
new sets of the maximal cliques partition the vertices, each vertex on this path belongs to
the new set of some maximal clique in the clique tree T. Let C;, Ci-1, ..., C1, K be the
cliques which contain the vertices on the v — w path as new vertices, with w € new(K'), and
v € new(C;). We will prove that these cliques form a path in the clique tree T.

We prove the result by induction on (2 + 1), the number of cliques which include vertices
on the v — w etree path as new vertices. When ¢ = 0, then both v and w are in new(K),
and condition (1) is satisfled. Assume inductively that the result is true when there are
no more than i cliques on the path. Let z be the lowest-numbered vertex on the v —w
etree path such that z € new(Ci~1). By the inductive hypothesis, there exists a clique path
Ciziy ..y C1, K in T with w € new(K), z € new(Ci_1). Let a be the child of z which
belongs to the v — w etree path. By the choice of z, a € new(C;); from Lemma 4.1, a is
the highest-numbered vertex in new(C;). Now from the discussion immediately following
Proposition 2.3, hadj(a) = anc(C;). Further, since z is the parent of a in the etree, z is

11

the lowest-numbered vertex in anc(C;). Thus z is the first-ancestor vertex of the clique C,.
Then from the definition of the clique tree, the parent clique of C; is Ci;. Thus we have
w € new(K), v € new(C;), and the clique path C;, Ciy, ..., K in the clique tree T

It remains to prove that w > f; = first_anc(Cy). Let f be the lowest-numbered vertex
on the v — w path which belongs to new(K). Then w > f, and we shall prove that f = fi.
Let y be the child of f in the etree which lies on the w — v path. By the choice of f, y is the
highest-numbered vertex in new(C;). Thus hadj(y) = anc(Cy), and f is the first-ancestor
vertex of Cy. Hence f = f1. This completes the proof. ®

COROLLARY 4.4. Let C; be a clique on the clique path from C; to K = Co in Theo-
rem 4.3, where 0 < j <7 -1, and denote f; = first.anc(Cj). Define

ew(C;) = {z € new(C;) 1 z = fin}.

Then the etree path from v to w is a subpath of the concatenation of the etree paths new(C;),
7w (Ci-1), .., new(Ch), new(K).
The proof follows from a careful reading of the proof of the Theorem, and is ormitted.
To illustrate these results, consider the path from vertex 1 to vertex 10 in the etree in
Fig. 3. The corresponding clique path in the clique tree in Fig. 2 is K(1), K(5); further, this
etree path is a subpath of new(K (1)), 7ew (K (5)). Also consider the etree path from vertex
1 to 11 in Fig. 3. With respect to the clique tree in Fig. 5, this corresponds to the clique path
K (1), K(5), K(7). Also, the etree path is the path new(K(1)), aew(K (5)), mew(K(7)).
We now show how to obtain the structure of the v-th row of L from the clique tree.
THEOREM 4.5. Let K be the mazimal clique that contains v as a new vertez in a clique
tree T, and let D be the set of proper descendants of K which contain v. Then

ladj(v) = Upepnew(D) U {w : w € new(K) and w < v}.

Proof. From Theorem 7 in [10] (see the discussion in the last paragraph of Section 2),
since v € new(K), v can belong to another clique D only if D is a descendant of K. Also
from the same Theorem, if v belongs to such a descendant clique D, then it also belongs
to all cliques on the clique path from D to K. Hence there is a set of ‘lowest descendants’,
£ = {Li,...,L;}, such that for each clique L; where 1 < j < 1, the following properties
hold: (i). v belongs to L; and to all cliques on the clique path from L; to K; (ii). v does
not belong to any descendant of Lj;.

Let D = {Dy, Da,...,Di} be the set of proper descendants of K that are reached by
clique paths from each clique in £ to K. These cliques together with K are the only cliques
that contain v. Each clique D; contains v as an anc vertex, and hence vertices in new(D;)
belong to ladj(v). Vertices in new(K) numbered lower than v also belong to ladj(v). Since
no other cliques contain v, these are the only vertices in ladj(v). &

A result of Schreiber [15] (see also Liu [12]) characterizes the structure of the v-th row
of L as a pruned subtree of the etree rooted at v. This result now follows easily from the
previous Theorem; the proof provides an intuitive understanding of why the row structure
is a pruned subtree.

THEOREM 4.6. The set ladj(v) +v induces a pruned subtree F'(v) of the etree which is
rooted at v.

12

Proof. Let T be a clique tree of the graph G. Let v belong to new(K'), and as in
Theorem 4.5, let £ = {Li,..., L;} be the lowest descendants of K in the clique tree T which
contain v. A clique J which does not lie on a clique path from some clique in £ to K does
not contain v by Theorem 4.5, and thus any vertex in new(J) cannot belong to ladj(v).

The pruned subtree F'(v) can be characterized by its leaves. We can compute the leaves
of the row subtree F'(v) by considering each clique path from some clique L € £ to i in T
Let L be any clique in the set £, and write the cliques in the clique path from L to K in T
as D; =L, Dy, ..., Dy, Do = K. Let wy denote the representative of the maximal clique
Dy, where 0 < k < 7.

From Theorem 4.3, there is an etree path from each representative vertex wy to v in the
etree F'. We can now describe the leaves of the row subtree F'(v) which correspond to the
clique path from L to K. The vertex w;j is a leaf of F'(v). The other leaves (if any) of the
row subtree corresponding to this clique path include all other representative vertices wg,
with 0 < k£ < j — 1, which do not lie on the etree path from w; to v. By repeating this
procedure for each clique L € £, we obtain all the leaves of the row subtree F'(v).

Consider the set of etree paths beginning at some leaf vertex belonging to the set of
leaves defined above and ending at v. Each vertex reached by such a path belongs to a
clique which includes v; further, such vertices are numbered lower than v by definition of
the etree. It then follows that all such vertices belong to ladj(v). &

The reader can verify that for the example we have considered, ladj(10) = {1,2,5,6,7,8,9};
the row subtree is the pruned subtree of the etree rooted at 10 with leaves 1 and 7; and that
the cliques containing the vertex 10 form subtrees of both the clique trees we have obtained
for this graph.

5. Compact and skeleton clique trees. In the first subsection, we consider a com-
pact data structure called the compact clique tree (cct) which can be computed from the
clique tree. In the second subsection, we will consider a second compact data structure called
the skeleton clique tree. Both these data structures are useful in applications where compact
representations of the structure of the Cholesky factor are required.

5.1. Compact clique trees. Let K, Ks, ..., K, be the set of maximal cliques of a
chordal filled graph G, and let T be a clique tree of G. Let K be a maximal clique whose
set of child cliques is denoted by C(K). Recall that one property of a clique tree is that
if C' is a child of K, then anc(C) C K. Thus we can delete the vertices of K that belong
to some child clique to obtain a space-efficient data structure. The maximal clique ' may
be recomputed when necessary from the anc sets of its children. Hence define the compact
cligue K¢ corresponding to K as follows:

K¢ =K \ Ucee(k) anc(C’).

Note that the compact clique K¢ depends on the particular choice of the clique tree T' used
to represent G. The compact clique tree T is obtained from the clique tree T' by replacing
the maximal cliques by compact cliques for its vertices. If K is a leaf clique of the clique
tree, then by definition, the compact clique is the clique itself.

13

Consider a maximal clique K and a vertex v belonging to new(K). From the proof of
Theorem 4.5, there is a set £ of lowest descendant cliques of K such that v belongs to each
clique L € £, and also to all cliques on the clique paths from each clique L to K. In the cct,
v belongs only to the compact cliques which correspond to the cliques in £, and not to any
of the compact cliques of the other descendant cliques. Thus the cct could be potentially a
much smaller data structure than the clique tree. Computational results on the sizes of the
clique tree and cct for several problems in the Boeing-Harwell collection will be reported in
Section 7.

As an illustration, we compute the ccts of the two clique trees in Figs. 2 and 5. In the
first figure, the compact clique K9(5) has the empty set of vertices; all other cliques are leaf
cliques, and hence unchanged. In the second figure, K°(5) = {11}, K°(7) = {7,8,9}, and
the other cliques are unaffected.

We can compute the cct corresponding to a clique tree by a simple marking algorithm
which marks all vertices of a maximal clique belonging also to the ancestor set of some child
clique. Once such vertices are marked by considering all child cliques, the compact clique is
computed to be the set of unmarked vertices in the maximal clique. Each maximal clique
is examined at most three times: twice when its compact clique is being computed, and
once when the compact clique of its parent is being computed. Thus the complexity of the
algorithm for computing the cct from the clique tree is O(q).

If we are given the cct T'C, then we can compute the maximal clique K by merging the
ancestor sets of its child cliques with the compact clique K¢. If the maximal cliques are
computed in post order on the cct, these ancestor sets will be available when we compute
the maximal clique K. Since for each child clique C we have to decide if a vertex belongs
to new(C) or anc(C), we maintain the first_anc vertex of each maximal clique. The clique
tree can be computed from the cct in O(q) time.

5.2. Skeleton clique trees. In this section, we consider another compact data struc-
ture for representing clique trees called the skeleton clique tree (sct). The skeleton clique
tree relies on the concept of the skeleton matrix introduced by Liu [12]. Given the structure
of a symmetric matrix A and an ordering for factoring the matrix, the skeleton matrix AS
is obtained by deleting every nonzero in A that would become a fill-nonzero under the given
ordering of A. The skeleton graph GS is the adjacency graph of the skeleton matrix AS.
Necessarily, the size (the number of nonzeros in the strict lower triangle) of the skeleton
matrix is bounded by the size of the matrix A. We denote the size of the skeleton matrix by
|AS|. The skeleton graph of the chordal graph in Fig. 1 is shown in Fig. 6. The reader can
verify that under the given ordering, all omitted edges are generated as fill edges.

In Theorem 4.6, we saw that the structure of the v-th row of L (the set ladj(v) in G)
is a pruned subtree of the etree. More precisely, the row subtree F(v) is a subtree of the
etree rooted at v, from which vertices have been pruned. The subtree F(v) is characterized
by identifying its leaves, and in the above Theorem, this was accomplished by means of a
clique tree. The set of leaves of F(v) is the set ladj(v) in the skeleton graph G?®; hence this
set is the row structure of the v-th row of the skeleton matrix AS. The row structure of the
v-th row of L (the set ladj(v) in G) can then be generated from the set of leaves of F(v) by
traversing the etree path from each leaf to v, and including every vertex reached in the v-th

14

K

FIG. 6. The skeleton graph of the chordal graph in Fig. 1. It can be verified that the corresponding filled
graph is the chordal graph in Fig. 1.

row of L. The row structures of A5 can be computed from A and the elimination tree in
O(|A|) time by an algorithm designed by Liu [12].

We define the skeleton higher adjacency set of a vertex v, S(v), to be the set hadj(v) in
the skeleton graph G°. These sets can be computed by a bucket sort of the ladj(v) sets in
the skeleton graphs in O(|A%]) time.

1 :=0;
forv:=1ton —
if v has a child u in etree with hd(v) + 1 = hd(u) then
K, := new_in_clique(u);
new_in_clique(v) := K,; new(K,) := new(K,) + v;
else
i:=1+1; new-in_clique(v) := Kj;
if v is a leaf in the etree then
make K? := v + S(v) a skeleton clique;
else
make K7 := S(v) a skeleton clique;
fi
fi
for each child s of v in etree with new_in_clique(s) # new.in_clique(v) do
make new_in-cliqgue(s) a child of new_in_cliqgue(v) in the skeleton clique tree
rof
rof

Fia. 7. The Skeleton Clique Tree Algorithm

We now define the sct 7% corresponding to a clique tree T'. The sct has skeleton cliques
for its vertices with parent relationships identical to those in the clique tree. The skeleton
clique K’ corresponding to a maximal clique K is defined as follows. Let v be the represen-
tative vertex of K. We distinguish two cases: If K is a leaf clique in the clique tree, or if K

15

is an interior clique but v does not belong to any child clique of K, we define the skeleton
clique K5 = v+ S(v). Otherwise, the skeleton clique K% = S(v). (The first case corresponds
to v being a leaf in the elimination tree. The difference in the definitions in the two cases is
slight, but it will be helpful to maintain the difference to make comparisons between the sct
and the cct easier.)

In the clique tree in Fig. 2 the only non-leaf clique is the root clique; for this clique K (5),
the skeleton clique K5(5) = S(5) = {11}. (The reader can verify that S(5) = {11} from the
skeleton graph in Fig. 6.) For each leaf clique, the skeleton clique is identical to itself. In the
clique tree in Fig. 5, the interior cliques are K(5) and K (7). As before, the skeleton clique
K5(5) = S(5) = {11}. The skeleton clique K5(7) = K(7) since its representative vertex 7
is not contained in a child clique.

Next we design an algorithm, the Skeleton Clique Tree Algorithm, for computing the
sct of a sparse, symmetric matrix. It requires the elimination tree, the higher degrees of
the vertices, and the sets S(v), the higher adjacency sets of vertices in the skeleton graph
(5. The computation of these data structures and degrees have been discussed earlier in
Section 3 and in this subsection.

The Skeleton Clique Tree Algorithm is shown in Fig. 7. The only difference between this
algorithm and the Clique Tree Algorithm 2 is that this algorithm computes skeleton cliques
in addition to the new sets.

For the chordal graph in our examples so far, the Skeleton Clique Tree Algorithm can
be used to compute scts corresponding to either of the two clique trees in Figs. 2 and 5. The
particular sct computed depends on the choice of a child u of a vertex v satisfying the degree
test in the algorithm.

6. Relationships between skeleton and compact clique trees. Let T' be any
clique tree of a chordal filled graph G obtained by the Clique Tree Algorithm 2, and for each
maximal clique K, let K5, K¢ denote the corresponding skeleton clique and compact clique
with respect to T, respectively. In this section, we explore the relationships between the
skeleton and compact cliques.

In this section we denote the representative vertex of a clique K by rep(K). Let G*
denote the skeleton graph of the filled graph G, and let the higher adjacency set of a vertex
v in G5 be denoted by S(v). Note that w € S(v) implies that v € ladj(w) in the skeleton
graph; i.e., v is a leaf of the row subtree F'(w). We make use of this fact to prove several
results in this Section.

Our first result concerns a leaf clique.

LEMMA 6.1. Let K be a leaf clique of a clique tree T with corresponding skeleton clique
K5 and compact cliqgue K. Ifrep(K) = v, then K, K€, and K5 are all equal to v+ S(v).

Proof. Since v is the representative vertex of K, K = v + hadj(v). Since K has no child
cliques, by definition K € = K. Next we prove that K5 = K. Since K is a leaf clique, v is
a leaf in the etree, and by definition K% = v + S(v). If a vertex w is distinct from v and
belongs to K, then (v,w) is an edge in the graph G. The existence of this edge and the fact
that v is a leaf of the etree together imply that v is a leaf of the row subtree F° (w). Thus
w belongs to S(v), hence to K, and thus K C KS. Conversely, since K5 = v+ S(v) is a
subset of the vertices in v + hadj(v), we have K C K. Thus K = K5 m

16

Now we consider interior cliques in the clique tree. We begin by classifying the interior
cliques into two groups. We denote by C(I) the set of child cliques of a maximal clique X,
and define

low(K) = lowest-numbered vertex v belonging to both K and some child clique of K
= Cgél(r}()ﬁrst_anc(C’).
Using the definition of low(K), the interior cliques can be classified into two groups as
follows:

7, = {K: K is an interior clique with low(K) > rep(K)}
I, = {K: K is an interior clique with low(K) = rep(K)}.

First we consider the interior cliques in the group Z;.

LEMMA 6.2. If K = {wo < wy < ... < w,} is a mazimal clique with low(K) > wo,
then K5 = K.

Proof. First, we show that if low(K) > wo, then wq is a leaf of the etree. By Lemma 4.1,
vertices in new(K) form a path in the etree from the lowest to the highest-numbered vertex.
Since low(K) > wo, and the lowest-numbered new vertex in K is wo, the vertex wo is not
contained in any child clique of K. Further, since wg is a new vertex in K, it may belong
to other cliques only if they are descendants of K in T. From Theorem 7 in [10] (see the
discussion about the properties of clique trees in Section 2), if wo belongs to some proper
descendant D of K, it also belongs to the child C which lies on the clique path from D to
K in T. Since wy does not belong to any child clique of K, it cannot belong to any other
clique of T' either. Thus wo belongs only to the maximal clique K, and hence it is a leaf of
the etree.

Since K is a clique, it follows that wpq is a leaf of each row subtree F'(w;), for 1 < j < p.
Hence every vertex in K (other than wo) belongs to S(wo), and thus we + S(we) 2 K. Since
wo is a leaf of the etree, the skeleton clique K S = wg + S(wo), and hence K SO K. Asin
Lemma 6.1, since S(wo) is a subset of the vertices in hadj(wo), we have K¥ = wo+S(wo) = K.
|

From its definition, K¢ = K\ Ucec(kyanc(C). Thus in this case, the difference between
K and K€ is the union of the ancestor sets of the child cliques of K. The clique tree in Fig. 5
illustrates this case. Note that the clique K = K(7) = {7,8,9,10,11} has low(K) = 10,
which is greater than its representative vertex 7; hence the skeleton clique is the clique itself,
while the compact clique K¢ = {7,8,9}.

We now consider interior cliques in the group Zy; i.e., the case when low(K) = rep(K).
Partition the child cliques of K into two sets:

G = {CeC(K): first_anc(C) =rep(K)},
C;, = {CeC(K): first_anc(C) > rep(K)}.

We will show that in this case the skeleton clique K° is obtained by adding an ezcess set of

vertices E(K) to the compact clique K¢. Thus K¥ = K€ U E(K). We define E(K) as the
17

set of vertices w; € K which belong to some clique in C; but not to any clique in C;. The
set of cliques C; cannot be empty, since by assumption, low(K) = wo; however, the set Cy
can be empty. Then E(K) = 0, and K¢ = KS.

The clique tree in Fig. 2 illustrates this case. Consider the clique K = K(5) =
{5,6,10,11}. The child cliques K(1) and K(3) belong to the set C;, and the clique K(7)
belongs to the set C,. The only ancestor vertex in the child cliques belonging to a clique in
C, but not to any clique in C; is the vertex 11; hence E(K) = {11}. Note that the skeleton
clique K% = {11}, and that the compact clique K¢ =09.

LEMMA 6.3. If K is an interior cliqgue with low(K) = rep(K), then K°NnE(K)=0.

Proof. Let the set of child cliques of K be partitioned into Cy, C; as above. If w; belongs
to K€, then w; does not belong to any child C, and hence not to E(K). If w; belongs to
E(K), then it belongs to some child clique C € Cy, and hence not to K¢. m

LEMMA 6.4. IfK = {wo < wy < ... < wy} is an interior cliqgue with low(K) = wo,
then K = K¢ U E(K).

Proof. Since K is an interior clique, from its definition, K35 = S(wp). First we will show
that S(we) 2 K¢ U E(K), and second, that the reverse containment holds, thus proving the
lemma.

Suppose that w; € K¢, for some 1 < j < p. From the definition of the skeleton graph of
G, the edge (wo,w;) in G can be generated by a traversal of the row subtree F'(w;) starting
from a leaf vertex [of F(w;). The leaf | has the following properties: I < wo, (l,w;) is an
edge in G, and wq is included on the etree path from I to w;. Suppose for a contradiction
that { £ wo. Let [belong to new(C;). By Theorem 4.3, corresponding to the | — wo path in
the etree, there is a clique path C;, Ci—1, ..., C1, K with [€ new(C;), and wo € new(K).
Since (I,w;) is an edge of G, w; € hadj(l); since | € new(C;), we have hadj(l) C Cj, and
thus w; € C;. Further, since w; also belongs to the ancestor clique K of C;, w; € anc(C;).
But since w; belongs to K, it also belongs to all cliques on the clique path from C; to K.
In particular, it belongs to Ci, a child of K. But then w; cannot belong to K¢, contrary
to assumption. This contradiction proves that | = wo. Since wg is a leaf of the row subtree
F(w;), we have w; € S(wo).

Now assume that w; € E(K). As in the previous paragraph, since (wo,w;) is an edge
in G, there is a leaf I of the row subtree F(w;) such that I < wo, ({,w;) is an edge of G,
and wg is included on the etree path from ! to w;. Again, suppose [# wo to obtain a
contradiction. Let I belong to new(C;). Corresponding to the / — wp path in the etree, by
Theorem 4.3, there is a clique path C;, Ci_y, ..., C1, K with [€ new(C;), wo € new(K),
and first_anc(C}) < wo. But wo = low(K) = mingec(k) first_.anc(C) < first-anc(C1), and
thus we have wg = first_anc(Cy). Hence the clique C; belongs to the set Ci. As in the
previous paragraph, since | € new(C;), hadj(l) C C;; and since w; € hadj(l), w; belongs
to Cy; indeed, w; belongs to anc(C;), since it also belongs to the ancestor clique K. As
before, w; belongs to all cliques on the clique path from C; to K, and in particular, to the
set anc(C;). Now since Cy € Cy, from the definition of the set E(K), w; cannot belong to
E(K). This contradicts the initial assumption that w; belongs to E(K), and proves that
| = wo. Thus we have w; € S(wo). This completes the proof that S(wo) 2 K¢ U E(K).

We now prove that the reverse containment holds, thus proving the lemma. Since S(wo)

18

is a subset of hadj(wp), a vertex in S(wo) belongs to K = wo+hadj(wo). Recall our notation
K = {wo < wi < ... < wp}, and let w; € S(wo). Then wo is a leaf of the row subtree F(w;).
First, we claim that w; does not belong to any clique in C;. To obtain a contradiction,
suppose that w; belongs to C' € Cy, and let u be the representative vertex of C. Since
C € C;, we have wg = first.anc(C'), and then u < wo.

Now there are two cases to consider. If w; € new(K), then by Lemma 4.2, there is an
etree path from u to w; which includes wo. If w; € anc(K), let w; belong to new(A), where
A is an ancestor clique of K. Hence there is a clique path from C' to A such that u € new(C)
and w; € new(A). Since u € new(C) and wo = first-anc(C), by Corollary 4.4, there is an
etree path from u to w; which includes wo.

From the previous paragraph, there is an etree path from u to w; which includes wo;
further, (u,w;) and (wo,w;) are edges of G, the former because the vertices u, w; belong
to the clique C, the latter because the vertices wo, w; belong to K. But the (u,wo) edge
will generate the edges (z,wo) for every vertex z on the etree path from u to w;. Hence wo
cannot be a leaf of the row subtree F(w;), contradicting assumption. This proves the claim.

Next, consider the set of vertices X = Ugec,C. Let w; € S(wo) be the vertex considered
in the previous paragraphs. If w; belongs to X, then it belongs to E(K), since w; does not
belong to any clique in C; by the claim. If w; does not belong to X, then again from the
claim, w; belongs to no child of K, and hence it is included in KC€. Thus K°UE(K) 2 S(wo).
n

We can now compare the sizes of Compact and Skeleton clique trees by means of the
above results.

THEOREM 6.5.

Isct| = Ject] + > (JK\ KO+ > |E(K)|.

Kely Kel;

Proof. Immediate by summing over all the vertices of the cct and sct, using Lemmas 6.1,
6.2, and 6.4. ®

Let I, denote the number of leaf vertices of the etree of the matrix A under a given
ordering. Recall that the size of a symmetric matrix is the number of nonzeros in the strict
lower triangle of that matrix.

COROLLARY 6.6.

lect| < [sct| < min{q, |A| + le}.

Proof. The first inequality follows from Theorem 6.5. The two terms in the right-hand
side of the second inequality are obtained as follows.

Each leaf v of the etree is a representative vertex of some maximal clique K for which
KS = v+ S(v). For every other maximal clique K with representative vertex v, K $ = S§(v).
Thus the size of the sct is bounded by the sum of the size of the skeleton matrix A% and the
number of leaves in the etree of A. The size of the skeleton matrix is no bigger than the size
of the matrix A. This accounts for one term in the right-hand side.

The second term is obtained by noting that both the cct and the sct contain a subset
of the vertices in each maximal clique of a clique tree T'. ®

19

Grid graphs. Liu [12] shows that the skeleton graph of a k x k regular nine-point grid
graph ordered by theoretical nested dissection ordering has no more than 2k% edges. It is
of interest to characterize ccts and scts for this model problem. For simplicity, we consider
I x k nine-pont grids with & = 2™ —1, where m is a positive integer. (Other values of k will
have additional lower order terms in the size of the cct.)

THEOREM 6.7. Let m be a positive integer, and let k = 2™ — 1. Consider a k x k
nine-point regular grid graph ordered by theoretical nested dissection ordering. This graph
has a cct of size 2k*+((k+1)%/4)—2k. The compact cliques corresponding to interior cliques
are empty. Further, the sct is identical to the cct for this model problem.

The second term in the size of the cct in the theorem is due to the leaf cliques in a
clique tree, since in the compact clique corresponding to each leaf clique, we have included
the representative vertex of the clique. This is solely for the purpose of ease in describing the
cct, since the representative vertices of the maximal cliques would be stored separately in an
actual realization of the cct data structure. The theorem is proved by solving a recurrence
equation for the size of the cct in terms of the (k—1)/2 subgrids obtained when a ‘+’ shaped
separator is removed from the graph. We omit the proof.

A worst-case example. We now describe a class of graphs for which the size of the
cct is ©(n) whereas the sizes of the clique tree and sct are O(n?). The graphs arise from the
‘arrowhead matrix’, and consist of an even number of vertices. Half the vertices (numbered
(n/2) +1, ..., n) form a clique; vertex 1 is connected to vertex n; vertex 2ton—1, n;
and so on, till finally vertex n/2 is connected to all higher numbered vertices. The following
facts are not difficult to verify: this graph has n/2 maximal cliques, and there is a clique
tree of height (n/2) — 1; this clique tree has size (n?/8) + O(n); the corresponding cct has
size n (each vertex appears exactly once); and the sct is identical to the clique tree. The
large difference between the cct and the sct is caused by the fact that except for the single
leaf clique, every other clique K belongs to the class T;; thus K5 = K, while K C consists of
a single vertex.

The results in the next Section will show that for several ‘real’ problems from the Boeing-
Harwell collection, ordered by the minimum degree or nested dissection heuristics, the sizes
of cct and sct are quite close. This can be attributed to the following observations. First,
the number of cliques belonging to the class Iy is very small when these ordering algorithms
are used to order A. Second, most interior cliques in the clique tree have few children (less
than three on the average); and a vertex which belongs to the (one or two) child cliques in
the class Cp is quite likely to belong also to the (one or two) child cliques in the class C;.
Thus for most cliques K belonging to class Iz, the set E(IK) is empty. The reasons why the
computed clique trees have the above properties is a matter worthy of further study.

7. Computational results. In this section, we report results pertaining to the com-
putation of the various clique tree data structures for a set of large problems from the
Boeing-Harwell collection [4]. The results we report were obtained by ordering the matrices
using Liu’s Multiple Minimum Degree (MMD) ordering [11]. All programs were written in
C, and the computations were performed on one processor of a Cray-2.

The sizes of eight problems and the various data structures associated with them are
shown in Table 1. The problems arise in different application areas as power networks, finite

20

TaBLE 1
Sizes of problems and clique trees (scaled by 1073)

key n |Al L] | |CT|||CCT| | |SCT| | |CCT|/n
BCSPWRI10 | 5.3 8.3 23 22 9.2 9.3 1.7
GRID 80 9 6.4 25 183 48 14 14 2.2
NASA2910 2.9 36 201 25 8.4 8.4 2.9
BCSSTK16 4.9 140 740 51 12 12 2.4
BCSSTK29 14 300 | 1,700 | 140 32 32 2.3
BCSSTK31 | 35.6 570 | 5,300 | 340 79 79 2.2
BCSSTK32 | 44.6 990 | 5,200 | 380 96 96 2.2
NASARB 54.9 1,300 | 11,900 | 600 141 142 2.6

element formulations of partial differential equations, fluid flow, and structural analysis. All
numbers in the table are scaled by 10~2 for convenience. Recall that the size of a symmetric
matrix is the number of nonzeros in its strict lower triangle. The number of nonzeros in L
for these problems is about three to ten times the number of nonzeros in A.

It can be seen from the table that for all problems except the BCSPWRI10 problem, the
size of the clique tree is substantially smaller than the size of L. On the average problem,
the clique tree is more than twelve times smaller than L, and the advantage increases with
problem size. The power problem is typical of matrices with very high sparsity: the average
column in A has only about 1.5 nonzeros in BCSPWRI10. Such matrices incur low fill in L,
have a large number of maximal cliques, and have a small average number of vertices per
maximal clique. Hence the advantage of the clique tree representation over the adjacency
list representation is small for such problems. However, this is not the case for problems
in structural analysis, fluid flow, and finite element formulations of PDEs. Matrices from
these areas have a relatively large number of nonzeros per column, consequently higher fill
in L, and the clique tree representation offers large reduction in size over adjacency list
representations. Indeed, for all other problems belonging to this class with the exception
of the grid, the clique tree requires about half the size of the storage needed for the initial
matrix A.

The sizes of the cct and the sct are almost the same for all these problems. We explained
this in Section 6 by characterizing the two situations where the compact cliques and the
skeleton cliques differ, and observing that these situations do not occur frequently when the
Multiple Minimum Degree or Automated Nested Dissection orderings are used. We do not
understand the reasons for this well.

The cct and sct data structures further reduce the storage required for the structure of
L. The size of these compact data structures is about a quarter of the size of the clique tree
for the average problem in the table. Perhaps the most significant statistic is the ratio of the
size of the cct (sct) and the number of columns n. This number ranges from 1.7 to 2.9 for
the problems in the table. The significance of this ratio is that it shows that the structure
of L can be compactly stored in storage bounded by 3n for these problems.

In Table 2, we report the times required by the different steps in computing the cct
and the sct from A, and the time to generate the clique tree from the sct. The reported

21

TABLE 2
Times for computing cct and sct and symbolic factorization (in units of 10=2 sec on CRAY-2)

key A—-L L—-CT CT—CCT|A—SCT|SCT—-CT
BCSPWRI10 2 1 1 7 1
GRID 80 9 16 2 10 59 6
NASA2910 57 1 5 125 3
BCSSTK16 100 1 10 230 6
BCSSTK?29 190 3 28 480 17
BCSSTK31 320 8 66 1100 39
BCSSTK32 600 9 73 1500 43
NASARB 860 11 115 2500 66

times have been scaled for convenience; the unit of time is 10~? seconds on a Cray-2. The
computation of the cct requires a symbolic factorization step, the computation of the clique
tree from L using the Clique Tree Algorithm 1, and the subsequent computation of the cct
from the clique tree. The times required by these three steps are shown in the second, third,
and fourth columns in the table. Note that the symbolic factorization step dominates the
other two steps.

The sct is obtained by computing the elimination tree, the higher degrees, the skeleton
graph, and the sorting required to obtain the higher adjacency lists S (v). Then the Skeleton
Clique Tree Algorithm is used to compute the sct. The total time for all these steps is shown
in the fifth column of the table. Note that the computation of the sct requires more than
twice the time required to compute the cct for these problems. It may be possible to design
faster algorithms for computing the sct directly from A without computing the skeleton
graph first. In any case, these times are quite small compared to the time requirements of
the numerical factorization step.

Since the cct and the sct are quite compact, we should expect that it should be more
efficient to generate the clique tree from them compared to symbolic factorization which gen-
erates L from A, since there is less merging to perform in the former case. The final column
in Table 2 shows the time required to compute the clique tree from the sct. (Computing the
clique tree from the cct takes similar amounts of time.) The second column shows the time
taken by symbolic factorization to compute L from A. As expected, generating the clique
tree from the sct is about eleven times faster than symbolic factorization on the average
problem in the table.

8. Concluding remarks. In this section, we briefly sketch some applications of the
cct and the sct data structures, discuss related work, and mention some of the interesting
questions raised by this work.

Applications. The cct and the sct can be used to organize an out-of-core multifrontal
algorithm which is efficient with respect to storage. We consider one-pass algorithms in
which once data is moved out of core, it is not required again. This feature of the algorithm
reduces input-output operations which are typically expensive. A description of out-of-core
algorithms for sparse Cholesky factorization may be found in Ashcraft et al. [2].

22

Initially consider using the clique tree to organize the algorithm. In the numerical
factorization step, the columns of L corresponding to the new vertices of a maximal clique
K can be computed together. The anc(/\) vertices form the row and column subscripts of
the update submatrix to be stacked. We will refer to the computation of the columns of L
in the set new(K) as the computation of the clique K.

The numerical factorization is computed in post-order on the clique tree. When all
the child cliques of K have been computed, the nonzeros in A belonging to the column set
new(K) are brought into core storage. The corresponding columns of L are then computed
and stored out of core, and the update matrix stacked. The space used by these columns in
the clique K can then be freed and used for other purposes.

The cct or the sct can be used to organize this algorithm instead of the clique tree,
further reducing the integer overhead storage required. Notice that the vertex list of a
maximal clique K is required only immediately before the nonzeros in columns of new(K)
are being computed. This list can be generated from the compact clique and the anc lists
of its child cliques. The latter lists are available when K is being computed, since by then
all of its child cliques have been computed. Thus the use of the cct or sct makes more
space available to perform the factorization, reducing the number of garbage collection steps
required in the course of the algorithm.

Ashcraft et al. [2] report that garbage collection on the integer subscripts together with
the numerical values of the nonzeros provides an order of magnitude reduction in the integer
storage required for an out-of-core sparse Cholesky factorization algorithm. They recommend
that this feature be included in software for out-of-core factorizations.

The cct and sct can also be used to design storage-efficient algorithms for triangular
solutions, when solutions corresponding to several right-hand side vectors are desired. Again,
the core storage may be insufficient to hold the factor matrices and all the right-hand side
vectors. Algorithms can be designed which make use of these compact data structures to
reduce the primary and overhead storage required.

Suppose that the triangular factors of sparse, symmetric, positive definite matrix have
been computed. The partial refactorization problem is the problem of computing a new
factorization of the matrix when only a subset of the nonzero values change. The cct has
the advantage that it exhibits clearly those columns whose nonzero values are changed.

Another application of these compact data structures is in the parallel computation of
the factorization on a distributed-memory multiprocessor. Currently such architectures take
longer to communicate a word of data between two processors than to perform a floating point
operation on that word. Hence it will be advantageous in parallel algorithms to communicate
the cct or sct between processors and then let each processor compute the clique tree.

Related work. The compressed column storage scheme of Sherman [16] is used in
modern sparse matrix software. This is a column oriented storage scheme for the Cholesky
factor in which overlaps between the row subscripts of consecutively numbered columns are
exploited to compress the subscripts. In practice, the success of this scheme relies on an
ordering algorithm for first identifying, and then numbering consecutively, sets of nodes
which are indistinguishable with respect to elimination. The minimum degree ordering
algorithms [7] identify such indistinguishable nodes by a heuristic method. The spectacular

23

compression observed is primarily due to the underlying clique tree structure of the filled
graph. A set of indistinguishable nodes corresponds roughly to a set of new nodes in a
maximal clique of a clique tree.

Schreiber [15] has proposed an implementation of sparse Cholesky factorization where
relative (rather than absolute) row subscripts are stored. This storage scheme makes use of
the observation that the structure of a column j (except the diagonal element) is contained
in the structure of its parent p in the elimination tree. The structure of column j is stored
implicitly by storing the locations of the corresponding row subscripts in column p. Similarly,
the structure of column p can be stored relative to its parent in the etree, and so on. These
relative row subscripts can also be compressed as in the previous scheme.

Liu [12] has reported a compact row-oriented storage scheme which makes use of the
skeleton matrix. The leaves of the row subtree F'(v) correspond to the structure of the v-th
row of the skeleton matrix. Only these leaves are stored, and the structure of the v-th row of
I can be computed from a traversal of the elimination tree from each leaf to v. George and
Liu [8] have extended this work to static storage implementations of Gaussian elimination
and orthogonal factorization.

Bank and Smith [3] have described a row-oriented data structure for the factorization
of a sparse matrix with a symmetric nonzero structure in which overhead storage is required
only for the nonzeros of A. The structure of the rows of L are computed as necessary from
the corresponding rows of A. The overhead storage in this scheme could be further reduced
by using the skeleton matrix introduced by Liu. However, this approach has a difficulty: the
computation of the nonzero values of the k-th row requires the intersections of all rows j < k
such that ly; is nonzero with row k. But the structure of such a row j is not necessarily a
subset of the structure of row k. Hence it is not known how to compute these intersections
in time proportional to the number of nonzeros involved in the computations at this step.

Fisenstat, Schultz, and Sherman [5] have proposed a variant of Cholesky factorization
for finite element problems on machines with limited core storage without making use of
auxiliary storage. Their idea is to discard most nonzero values in the columns of L, and
recompute them as necessary within the framework of a divide and conquer approach. The
algorithm is organized around a data structure called the element merge tree, which is similar
to the elimination tree.

Ashcraft [1] has reported results from a vectorized implementation of a multifrontal
sparse Cholesky factorization. He computes a supernodal elimination tree which is defined
on the supernodes; the supernodes roughly correspond to the new sets of the maximal cliques
in a clique tree. Here, in the symbolic factorization step, the structure of a supernode is
computed by merging the row subscripts of the children of the supernode with the subscripts
of the columns of A which belong to the supernode. Ashcraft reports that not much effort
was put into optimizing this computation, and that this step took roughly the time taken
by a symbolic factorization routine in Sparspak— about a quarter to half the time of the
numerical factorization step on a single processor of a Cray X-MP.

The above supernodal symbolic factorization is similar to the computation of a clique tree
from the cct in that both compute the structure of a group of columns from the structures of
other groups. The major differences are that the cct does not require the columns of A, and

24

that much less merging is required with the cct because it has fewer redundant subscripts
to merge, being a more compact data structure. Indeed, the results in § 7 show that the
computation of the clique tree from the sct is on the average about eleven times faster than
symbolic factorization on the problems considered there.

Future work. In the discussion of applications, we have considered some of the algo-
rithmic contexts in which the cct and the sct are useful data structures. It would be helpful
to find other contexts where these data structures would be useful. The clique tree, cct, and
sct data structures could also be extended to the contexts of sparse Gaussian elimination
and sparse orthogonal factorization, in a manner similar to the work in George and Liu [8].

Various factors that influence the size of ccts and scts are also worthy of further study.
The set of maximal cliques of a chordal graph is independent of the ordering of the vertices.
Hence the size of a clique tree is unchanged when the vertices are reordered by another peo.
However, the situation is different for compact clique trees. Note that several clique trees
with vastly different structures could be computed from the same peo, and that a cct is
defined with respect to a particular clique tree. Thus the size of a cct depends on the clique
tree with respect to which it is defined. Indeed, there are worst-case examples of chordal
graphs such that it is possible to compute two compact clique trees corresponding to two
different clique trees of the graph such that one cct has size ©(n) while the other has size
©(n?). Thus a study of the influence of clique tree structure on the size of the cct seems
useful.

The size of the sct is the sum of the size of the skeleton graph and the number of leaves
in the etree. Hence the sct size is independent of the structure of the clique tree, and depends
only on the peo of the vertices. However, the size of the skeleton graph does depend on the
ordering, and little is known about this dependence.

The relationship between the cct and the sct remains to be fully understood. The
experimental results in this paper show that with commonly used ordering algorithms, the
sizes of these data structures are almost identical. Since we have characterized the situations
in which the compact clique differs from the skeleton clique, the results imply that these
situations do not occur frequently in practice. It would be worthwhile to understand this
behavior of the ordering algorithms.

Another question of interest is whether we can compute the cct from the sct efficiently.
It is possible to construct examples where this cannot be done solely by means of ‘local
operations’. By a local operation, we mean a comparison of a clique with its parent or any
of its children.

More efficient algorithms for generating the sct from the matrix A would be desirable,
since currently this computation is slower than the computation of the cct. It would also be
nice to know if there exists an algorithm for computing the cct directly from A rather than
from the clique tree.

REFERENCES

[1] C. ASHCRAFT, A vector implementation of the maultifrontal method for large, sparse, symmetric, posi-
tive definite linear systems, Tech. Report ETA-TR-51, Engineering Technology Applications Divi-

25

