IDENTIFYING THE SEMANTIC AND
TEXTUAL DIFFERENCES BETWEEN
TWO VERSIONS OF A PROGRAM

by

Susan Horwitz
Computer Sciences Technical Report #895

November 1989

Identifying the Semantic and Textual Differences
Between Two Versions of a Program

SUSAN HORWITZ
University of Wisconsin — Madison

Text-based file comparators (e.g., the Unix utility diff) are very general tools that can be applied to arbitrary files. However, using
such tools to compare programs can be unsatisfactory because their only notion of change is based on program fext rather than pro-
gram behavior. This paper describes a technique for comparing two versions of a program, determining which program components
represent changes, and classifying each changed component as representing either a semantic or a textual change.

Key words and phrases: file comparison, file difference, language-based tools, program maintenance, semantic difference.

1. INTRODUCTION

A tool that detects and reports differences between versions of programs is of obvious utility in a
software-development environment. Text-based tools, such as the Unix utility diff, have the advantage of
being applicable to arbitrary files; however, using such tools to compare programs can be unsatisfactory
because no distinction can be made between textual and semantic changes.

This paper describes a technique for comparing two programs, Qld and New, determining which com-
ponents of New represent changes from Old, and classifying each changed component as representing
either a textual or a semantic change. It is, in general, undecidable to determine precisely the set of
semantically changed components of New; thus, the technique described here computes a safe approxima-
tion to (i.e., possibly a superset of) this set. This computation is performed using a graph representation for
programs and a partitioning operation on these graphs first introduced in {Yang89], and summarized in
Section 2. The partitioning algorithm is currently limited to a language with scalar variables, assignment
statements, conditional statements, while loops, and output statements. Because the partitioning algorithm
is fundamental to the program-comparison algorithm described here, the program-comparison algorithm is
also currently limited to the language described above. However, research is under way to expand the
language; in particular, we are studying extensions for procedures and procedure calls, pointers, and arrays.

A precise definition of semantic change is given in Section 2; informally, a component ¢ of New
represents a semantic change either if there is no corresponding component of Old (because component ¢
was added to Old to create New), or if a different sequence of values might be produced at ¢ than at the
corresponding component of Old. By “the sequence of values produced at ¢” we mean: if ¢ is an assign-
ment statement, the sequence of values assigned to the left-hand-side variable when the program is exe-
cuted; if ¢ is a predicate, the sequence of true-false values to which ¢ evaluates when the program is exe-
cuted; if ¢ is an output statement, the sequence of values output when the program is executed.

This work was supported in part by the Defense Advanced Research Projects Agency, monitored by the Office of Naval Research
under contract N0O0014-88-K, by the National Science Foundation under grant CCR-8958530, and by grants from Xerox, Eastman Ko-
dak, and the Cray Research Foundation.

Author’s address: Computer Sciences Department, Univ. of Wisconsin, 1210 W. Dayton St., Madison, W1 53706.

.2-

Example. Figire 1 shows a program Old and three different New programs; each New program is anno-
tated to show its changes with respect to Old.

It is worthwhile to consider whether other approaches to program comparison could be used to detect the
kinds of changes illustrated in Figure 1. In program New, the assignment “x := 2” is flagged as a semantic
change because the value 2 is assigned to variable x whereas the corresponding component of Old assigns
the value 1 to x. A text-based program comparator would also have flagged this as a changed component;
however, the other changes flagged in New; would not have been detected by a text-based program com-
parator. These components represent semantic changes because they may use (directly or indirectly) the
new value assigned to x.

The second and third semantic changes of program New, could have been detected by following def-use
chains [Aho86] from the modified definition of x; however, program New, illustrates a situation in which
following def-use chains leads to an erroneous detection of semantic change. In New ;, component “x := 0"
is flagged as a semantic change because the sequence of values produced there is empty if variable P is
true,! while the sequence of values produced at the corresponding component in Old is never empty (since
the assignment is unconditional). Although “x := (” represents a semantic change, the sequence of values
produced at component “y := x” in New, is identical to the sequence of values produced at the correspond-
ing component of 0ld; thus, “y := x” is not flagged as a change. Following def-use chains from “x := 0"
would (incorrectly) identify both “y := x” and “output(y)” as semantic changes.

Finally, New, illustrates purely textual changes; again, following def-use chains from the changed com-
ponent “y :=a” would incorrectly identify “output(y)” as a semantic change.

In discussing the examples of Figure 1 we have talked about “corresponding components” in Old and the
various New programs. How is this correspondence actually established? One possibility is to rely on the

old New, New, New,
x:=0 x:=0 if P then a:=0 < TEXTUAL
if P then if P then x:=1 if P then
x=1 x:=2 <= SEMANTIC else a:=1 = TEXTUAL
fi fi x:=0 =« SEMANTIC fi
yi=X yi=X < SEMANTIC fi yi=a < TEXTUAL
output(y) output(y) - SEMANTIC yi=X output(y)
output(y)

Figure 1. Program Old and three versions of New; each version of New is annotated to show its changes with respect

to Old.

"The language under consideration does not include explicit input statements. However, variables can be used before being defined;
these variables’ values come from the initial state.

-3.

editing sequence used to create New from Qld. For example, this correspondence could be established and
maintained by the editor used to create New from Old as follows: Each component of O/d has a unique tag;
when a component is added, it is given a new tag, when a component is moved or modified it maintains its
tag, when a component is deleted, its tag is never reused.

An algorithm for detecting the semantic and textual changes between Old and New, assuming editor-
supplied tags, is given in Section 3.1; however, this approach has two important disadvantages:

(1) A special editor that maintains tags is required.

(2) The set of changes in New with respect to Old depends not only on the semantics of the two pro-
grams, but also on the particular editing sequence used to create New from Qld. For example, it
would be possible to use two different editing sequences to create programs New and New’ from
0ld, such that the two new programs were identical, yet had different sets of changed components
with respect to Old.

Section 3.2 considers how to determine semantic and textual changes between Old and New in the absence
of editor-supplied tags; i.e., the problem of finding the correspondence between the components of Qld and
New is included as part of the program-comparison algorithm. A reasonable criterion for determining the
correspondence is that it should minimize the difference between Old and New; however, we show that it is
not satisfactory to define “difference between Old and New” as simply the number of semantically or textu-
ally changed components of New with respect to Old. Instead, we propose defining “difference between
0ld and New” as the number of semantically or textually changed components of New plus the number of
new flow or control dependence edges in the graph representation of New (flow and control dependence
edges are defined in Section 2). Finding a correspondence that minimizes the difference between Old and
New according to this definition is shown to be NP-hard in the general case; a study of real programs is
needed to determine how difficult the problem will be in practice.

2. PARTITIONING PROGRAM COMPONENTS ACCORDING TO THEIR BEHAVIORS

The program-comparison algorithm described in this paper relies on an algorithm for partitioning program
components (in one or more programs) so that two components are in the same partition only if they have
equivalent behaviors [Yang89]. The Partitioning Algorithm uses a graph representation of programs called
a Program Representation Graph. This section summarizes the definitions of Program Representation
Graphs and partitioning given in [Yang89].

2.1. The Program Representation Graph

Program Representation Graphs (PRGs) are currently defined only for programs in a limited language that

includes scalar variables, assignment statements, conditional statements, while loops, and output state-
2

ments.

PRGs combine features of program dependence graphs [Kuck81, Ferrante87, Horwitz88] and static sin-
gle assignment forms [Shapiro70, Alpem88, Cytron89, Rosen88]. A program’s PRG is defined in terms of
an augmented version of the program’s control-flow graph. The standard control-flow graph includes a
special Entry vertex and one vertex for each if or while predicate, each assignment statement, and each

*The language used in [Yang89] is actually slightly more restrictive, including only a limited kind of output statement called an end
statement, which can appear only at the end of a program; however, it is clear that no problems are introduced by allowing general out-
put statements,

output statementin the program. As in static single assignment forms, the control-flow graph is augmented
by adding special “¢ vertices” so that each use of a variable in an assignment statement, an output state-
ment, or a predicate is reached by exactly one definition.

(1) For each variable x that is defined within either (or both) branches of an if statement and is live at
the end of the if statement, a “¢;” vertex labeled “¢;: x := x” is added to the control-flow graph
immediately following the if statement. If there is more than one such vertex, their relative order is
arbitrary.

(2) For each variable x that is defined within a while loop, and is live immediately after the loop predi-
cate (i.e., may be used before being redefined either inside the loop or after the 100p), 2 “(., ver-
tex labeled “d,p,: x := x” is added to the control-flow graph inside the loop, before the loop predi-
cate. If there is more than one such vertex, their relative order is arbitrary.

(3) For each variable x that is defined within a while loop and is live after the loop, a “¢,y," vertex
labeled “¢,,;;: x := x” is added to the control-flow graph immediately after the loop. If there is more
than one such vertex, their relative order is arbitrary.

In addition, for each variable x that may be used before being defined (i.e., there is a x-definition clear path
in the standard control-flow graph from the Entry vertex to a vertex that uses x), a vertex labeled “x :=
Initial (x)” is added to the control-flow graph after the Entry vertex. This vertex represents the assignment
to x of a value from the initial state. If there is more than one such vertex, their relative order is arbitrary;
however, they must appear sequentially, following the Entry vertex and preceding all other vertices in the
control-flow graph.

Example. Figures 2(a) and 2(b) show a program and its augmented control-flow graph.

The vertices of a program’s Program Representation Graph (PRG) are the same as the vertices in the
augmented control-flow graph (an Entry vertex, one vertex for each predicate, each assignment statement,
and each output statement, and for each Initial, ¢;f, Qencer» and ¢, vertex). The edges of the PRG represent
control and flow dependences.

The source of a control dependence edge is always either the Entry vertex or a predicate vertex; control
dependence edges are labeled either true or false. The intuitive meaning of a control dependence edge
from vertex v to vertex w is that if the program component represented by vertex v is evaluated during pro-
gram execution and its value matches the label on the edge, then, (assuming termination of all loops) the
component represented by w will eventually execute. (By definition, the Entry vertex always evaluates to
true.)

Algorithms for computing control dependences in languages with unrestricted control flow are given in
[Ferrante87, Cytron89]. For the restricted language under consideration here, control dependence edges
reflect the nesting structure of the program (i.e., there is an edge labeled true from the vertex that
represents a while predicate to all vertices that represent statements inside the loop; there is an edge labeled
true from the vertex that represents an if predicate to all vertices that represent statements in the true
branch of the if, and an edge labeled false to all vertices that represent statements in the false branch; there
is an edge labeled true from the Entry vertex to all vertices that represent statements or predicates that are
not inside any while loop or if statement). In addition, there is a control dependence edge labeled true
from every vertex that represents a while predicate to itself.

Flow dependence edges represent possible flow of values, i.e. there is a flow dependence edge from ver-
tex v to vertex w if vertex v represents a program component that assigns a value to some variable x, vertex
w represents a component that uses the value of variable x, and there is an x-definition clear path from v to
w in the augmented control-flow graph.

x:=0

if P then
xi=1

fi

y =X

output(y)

(a) (b) ©

Figure 2. (a) A program; (b) its augmented control-flow graph; (c) its Program Representation Graph. In the Program
Representation Graph, control dependence edges are shown using bold arrows and are unlabeled (in this example, all
control dependence edges would be labeled true); data dependence edges are shown using arcs.

Example. Figure 2(c) shows the Program Representation Graph of the program of Figure 2(a). Control
dependence edges are shown using bold arrows and are unlabeled (in this example, all control dependence
edges would be labeled true); data dependence edges are shown using arcs.

2.2. The Partitioning Algorithm

The Partitioning Algorithm of [Yang89] can be applied to the Program Representation Graphs of one or
more programs. The algorithm partitions the vertices of the graph(s) so that two vertices are in the same

partition only if the program components that they represent have equivalent behaviors in the following
sense:

Definition (equivalent behavior of program components). Two components ¢, and ¢, of (not necessarily
distinct) programs P, and P, respectively, have equivalent behaviors iff all four of the following hold:

(1) For all initial states o such that both P, and P, halt when executed on o, the sequence of values
1 q
produced at component ¢; when P is executed on ¢ is identical to the sequence of values pro-
duced at component ¢, when P, is executed on .

(2) For all initial states o such that neither P, nor P, halts when executed on o, either the sequence of

values produced at component ¢ is an initial sub-sequence of the sequence of values produced at
¢, Or vice versa.

-6-

(3) For all initial states ¢ such that P, halts on ¢ but P, fails to halt on G, the sequence of values pro-
duced at ¢ is an initial sub-sequence of the sequence of values produced at ¢ .

(4) For all initial states ¢ such that P, halts on ¢ but P, fails to halt on o, the sequence of values pro-
duced at ¢, is an initial sub-sequence of the sequence of values produced at ¢ ,.

By “the sequence of values produced at a component” we mean: for an assignment statement (including
Initial statements and ¢ statements), the sequence of values assigned to the left-hand-side variable; for an
output statement, the sequence of values output; and for a predicate, the sequence of boolean values to
which the predicate evaluates.

The Partitioning Algorithm uses a technique (which we will call the Basic Partitioning Algorithm)
adapted from [Alpern88, Aho74] that is based on an algorithm of [Hopcroft71] for minimizing a finite state
machine. This technique finds the coarsest partition of a graph that is consistent with a given initial parti-
tion of the graph’s vertices. The algorithm guarantees that two vertices v and v” are in the same class after
partitioning if and only if they are in the same initial partition, and, for every predecessor u of v, there is a
corresponding predecessor u” of v” such that u and u” are in the same class after partitioning.

The Partitioning Algorithm operates in two passes. Both passes use the Basic Partitioning Algorithm,
but apply it to different initial partitions, and make use of different sets of edges. The first pass creates an
initial partition based on the operators that are used in the vertices;® flow dependence edges are used by the
Basic Partitioning Algorithm to refine this partition. The second pass starts with the final partition pro-
duced by the first pass; control dependence edges are used by the Basic Partitioning Algorithm to further
refine this partition.

The time required by the Partitioning Algorithm is O (N log N), where N is the size of the Program
Representation Graph(s) (i.e., number of vertices + number of edges).

Example. Figure 3 illustrates partitioning using the programs from Figure 1. Figure 3 shows the parti-
tions created by the Partitioning Algorithm: the initial partition, the refinement created by Pass 1, and the
final partition. Note that the components labeled “y := x” from OId and New are in the same final parti-
tion (and thus have the same execution behaviors) even though they are transitively flow dependent on
components that are not in the same final partition (namely, the components labeled “x := 0" from Old and
New,).

3. COMPUTING SEMANTIC AND TEXTUAL DIFFERENCES

This section presents three different algorithms to compute the semantic and textual differences between
two versions of a program. All three algorithms operate on the programs’ Program Representation Graphs;
thus, in what follows, New and Old are Program Representation Graphs, and “program component” and
“Program Representation Graph vertex” are used interchangeably.

Section 3.1 assumes that a special tag-maintaining editor is used to create program New from program
Old. Section 3.2 assumes that the correspondence between the components of New and Old must be com-
puted; Sections 3.2.1 and 3.2.2 use different criteria for determining the best correspondence. In both cases
the goal is to find a correspondence that minimizes the size of the change between New and Old. However,

*The initial partition required for the purposes of this paper may be a refinement of that defined in [Yang89]. For the purposes of this
paper, assignment statements, predicates, and output statements are put into different classes in the initial partition even when they use
the same operator. For example, the statements “x := a or b”, “output(c or d)", and “if x or y” all use the same operator (the logical or
operator), but these statements would each be in a different class in the initial partition.

Initial Partition After Pass 1

Oid New; New, News Old New, New,

After Pass 2

(=)
(@=D =D @D)
(@==D)
(€=3 =3
(=D

(D @D G |

Figure 3. Partitioning Example. The partitions created by the Partitioning Algorithm for the programs of Figure 1.

in Section 3.2.1 “size of the change” is defined to be the number of semantically or textually changed

-8-

components of New, while in Section 3.2.2 “size of the change” is defined to be the number of semantically
or textually changed components, plus the number of new flow or control dependence edges in New.

3.1. Component Correspondence is Maintained by the Editor

If program New is created from program Old using an editor that maintains tags on program components,
then determining which components of New represent changes from Old and classifying each changed
component as either a textual or semantic change is quite straightforward. A procedure called Compu-
teChanges that classifies the components of New is given below. The procedure first partitions programs
Old and New and then considers each component ¢ of New. If there is no component of Old with the same
tag, then ¢ was added to Old to create New, and thus represents a semantic change. Similarly, if there isa
component of Old with the same tag, but the component is not in the same partition as ¢, then ¢ represents a
semantic change. If there is a component of Old with the same tag and in the same partition but with dif-
ferent text, then ¢ represents a textual change.

procedure ComputeChanges(Old, New: Program Representation Graphs)
returns two sets of components of New, representing semantic and textual changes, respectively
declare semanticChange, textualChange: sets of program components
begin
apply the Partitioning Algorithm to Old and New
semanticChange := @
textualChange := &
for each component ¢ of New do
if (there is no component of Old with the same tag as c) or
(the component of Old with the same tag as c is not in the same partition as ¢)
then insert ¢ into semanticChange
else if the text of the component of Old that has the same tag as ¢ # the text of ¢
then insert ¢ into textualChange
fi
fi
od
return(semanticChange, textualChange)
end

Procedure ComputeChanges can be illustrated by considering programs Old and New, of Figure 1.
Assume that program New, was created from Old by moving the statement “x := 0” into the else branch of
the if statement. In this case, for every component of New , there is a component of Old with the same tag,
and (as illustrated in Figure 3) for every component of New, other than component “x := 0", the com-
ponent of Old with the same tag is in the same final partition. Thus, the only component of New, identified
by procedure ComputeChanges as representing a change from Old is component “x := 0", which is
identified as a semantic change.

3.2. Component Correspondence Must be Computed

In this section we consider how to compare programs Old and New assuming that program components are
not tagged by the editor. Instead, the correspondence between the components of Old and New must be
computed as part of the program-comparison algorithm. Our goal is to find a correspondence that minim-
izes the size of the change between Old and New. Sections 3.2.1 and 3.2.2 consider two different
definitions of “the size of the change.”

-9.

3.2.1. Size of change = the number of semantically or textually changed components of New

If we define the size of the change between Old and New as the number of semantically or textually
changed components of New, then it is possible to define an efficient algorithm to find a correspondence
that minimizes this size. A procedure called MatchAndComputeChanges that computes such a correspon-
dence and simultaneously classifies the components of New with respect to Old is given below. The pro-
cedure first tries to match every component of New with a component of Old that is both semantically and
textually equivalent. Next, the procedure considers all unmatched components of New, attempting to
match them with unmatched components of Old that are semantically equivalent but textually different.
These components of New are classified as textual changes. Components of New that remain unmatched
are classified as semantic changes.

Applying procedure MatchAndComputeChanges to programs Old and New, of Figure 1 will produce
the result pictured in Figure 1 even if the components of the two programs are not tagged by the editor. All
components of New, other than “x := 0” will be matched with a component of Old that is both semantically
and textually equivalent; component “x := 0" will be unmatched, and so will be classified as a semantic
change.

Procedure MatchAndComputeChanges first partitions Old and New, then makes two passes through New
matching and classifying its components. Assuming that it is possible to determine in constant time
whether there is an unmatched component of Old in the same partition and with the same text as a given

procedure MatchAndComputeChanges(Old, New: Program Dependence Graphs)
returns (1) a map from components of New to components of Old, and
(2) two sets of components of New, representing semantic and textual changes, respectively
declare map: a set of program component pairs
semanticChange, textualChange: sets of program components
begin
apply the Partitioning Algorithm to Old and New
map := J; semanticChange := &; textualChange := &
for each component ¢ of New do
if there is an unmatched component ¢” of Old that is in the same partition as ¢ and has the same text
then insert the pair (¢, ¢”) into map
mark ¢ “matched”
mark ¢’ “matched”
fi
od
for each unmatched component ¢ of New do
if there exists an unmatched component ¢’ of Qld that is in the same partition as ¢
then insert the pair (c, ¢”) into map
insert ¢ into textualChange
mark ¢’ “matched”
else insert ¢ into semanticChange fi
od
return(map, semanticChange, textualChange)
end

-10 -

component of New, the time required for matching and classifying is linear in the size of New; thus, the
time required for procedure MatchAndComputeChanges is dominated by the time required for partitioning.
The total time for procedure MatchAndComputeChanges is O (N log N), where N is the sum of the sizes of
Old and New.

3.2.2. Size of change includes the number of new edges in New

Simply minimizing the number of semantically and textually changed components does not always produce
a satisfactory classification of the components of New; this is illustrated in Figure 4. Figure 4 shows pro-
grams Old and New, and four possible mappings from the components of New to the components of Old.
All four mappings induce the same (minimum) number of changed components of New with respect to Old,
yet there is something intuitively more satisfying about the first two mappings than the third and forth map-
pings. The problem with the third and forth mappings is that they “separate” a use of variable x from the
corresponding definition of x.

We can avoid choosing mapping three or mapping four of Figure 4 by redefining the “size of the change
between Old and New” to take into account PRG edges as well as vertices.

Definition (a correspondence between New and Old). A correspondence between New and Old is a 1-
to-1 partial function £ from vertices of New to vertices of Old such that (1) for all vertices v of New, f (v) is
either a vertex of Old, or is the special value | (f (v) = | means that there is no vertex of Old that
corresponds to vertex v of New), and (2) if f (v) = v, then vertices v and v are in the same final partition.

Definition (unmatched vertex). A vertex v of New is unmatched under correspondence fiff f (v) = | .

Definition (unmatched edge). An edge v, — v, of New is unmatched under correspondence f iff any of
the following hold: (1) f (v1) = _L; (2) f (vo) = | ; (3) there is no edge f (v,) - f (v2) in Old of the same
type* as the edge v, — v,.

old New Mapping . Changed Components
[01]x:=1 N1 x:=1 {(IN1}-[O1]), (IN2]-[02])} N3, N4
[02]y:=x [N2]y:=x ((IN3]-[01]), ([N4]-[O2Z])} N1, N2
[N3]x:=1 (([N1]-[O1]), ([N4]-[O2])) N2, N3
[N4]y:=x ((IN2]-[02)), (IN3]-[O1D)} N1, N4

Figure 4. Programs Old and New, and four possible mappings from the components of New to the componerus of Old.
Each mapping induces a set of changed components of size 2; however, the first two mappings each induce only one
new data dependence, while the second two mappings each induce two new data dependences.

“A precise definition of edge type can be found in [Yang89]. Roughly, two edges are of the same type if (1) they are both control-
dependence edges, or (2) they are both flow-dependence edges for the same operand of the target vertex. For example, vertices “x .= y
+ 2" and “a := b + ¢” both have two variable operands, so both have two incoming flow-dependence edges. The edge “carrying” the
definition of variable y can only match the edge carrying the definition of variable b; it cannot match the edge carrying the definition of
variable c.

.11 -

Definition (size of change between Old and New). The size of the change between Old and New induced
by correspondence f is: (the number of unmatched vertices v of New) + (the number of matched vertices v
of New such that f (v) = v” and the text of v is not identical to the text of v + (the number of unmatched
edges of New).

Figures 5(a), 5(b), and 5(c) give a procedure for computing a correspondence between New and Old that
minimizes the size of the change between Old and New as defined above. However, since the problem of
finding such a correspondence is NP-hard (as shown below) it is unlikely that an efficient procedure can be
defined.

declare global bestSoFar: a correspondence between New and Old
declare global smallestChangeSoFar: integer

procedure Match(Qld, New: Program Representation Graphs)

returns: a correspondence between New and Old that minimizes the size of the change between Old and New
declare map: a correspondence between New and Old
declare workingSet: a set of vertices of New

begin
apply the Partitioning Algorithm to Old and New
map = &

/* match all “no-choice” vertices of New */
for each partition that includes exactly one vertex v of New and one vertex v’ of Old do
insert (v, v') into map
mark v “matched”
mark v’ “matched”

od

/* put all remaining matchable vertices of New into the working set */
workingSet := &
for all unmatched vertices v of New such that 3 an unmatched vertex of Old in the same partition do
insert v into workingSet
od

/* try all possible correspondences; keep track of the best one found */
bestSoFar := &
smallestChangeSoFar := eo
TryMatches(map, workingSet)

/* the best correspondence has been saved in global variable bestSoFar */
return(bestSoFar)
end

Figure 5(a). Procedure Match finds a correspondence between New and Old that minimizes the difference between
0ld and New. Procedure Match calls procedure TryMatches, which is shown in Figure 5(b).

-12-

procedure TryMatches(map: a correspondence between New and oud,
workingSet: a set of vertices of New)
begin
if workingSet = &
then /* no more matchable vertices of New
* compute the size of the change induced by the current correspondence;
* save the current correspondence if its change size is smaller than the best so far

*/

if ChangeSize(map) < smallestChangeSoFar
then bestSoFar := map

smallestChangeSoFar := ChangeSize(map)
fi

else /* try all remaining possible matches */

select and remove an arbiirary vertex v from workingSet
let P be v's partition in
remove v from P
[L1]: if (# of unmatched vertices of New in P) 2 (# of unmatched vertices of Old in P)
then /* must try correspondences in which v is unmatched, too */
TryMatches(map, workingSet)
fi
[L2]: for each unmatched vertex v’ of Old in partition P do
insert (v, v") into map
mark v’ “matched”
TryMatches(map, workingSet)
remove (v, v') from map
mark v’ “unmatched”
od
/* put vertex v back into partition P and into workingSet so that it will be there next time TryMatches is called */
add v to partition P
insert v into workingSet
ni

7 4,

fi
end

Figure 5(b). If there are no more matchable vertices of New, Procedure TryMatches computes the size of the change
between Old and New induced by the current correspondence. Otherwise, it trys all correspondences consistent with
the given (incomplete) correspondence.

-13-

procedure ChangeSize(map: a correspondence between New and Old)
returns the size of the change between Qld and New induced by the given correspondence

/*
* “size of change” = (# of unmatched vertices of New) +
* (# of vertices of New matched with textually different vertices of Old) +
* (# of unmatched edges of New)
*/

declare size: integer
begin
size := (# of vertices of New) + (# of edges of New)
for each vertex v of New do
if (v, v") is in map
then if text(v) = text(v") then size :=size — 1 fi
for each edge v — w in New do
if (w, w’) is in map
then if (3 edge v’ — w’ in Old) and (type(v — w) = type(v’ — w"))
then size :=size - 1
fi

od
fi
od
return(size)
end

Figure 5(c). Procedure ChangeSize computes the size of the change between Old and New induced by the given

correspondence.

Procedure Match of Figure 5(a) matches all “no-choice” vertices of New, i.e., those vertices in partitions
that include exactly one vertex of Qld and one vertex of New. Match then puts all matchable vertices of
New (those vertices of New that are unmatched and are in partitions with at least one unmatched vertex of
0ld) into a working set, and calls procedure TryMatches to try all correspondences that include the “no-

choice” matchings performed so far.

To understand procedure TryMatches, consider what it does when the working set is empty, when the
working set contains exactly one vertex, and when the working set contains more than one vertex.

The working set is empty.

When the working set is empty there are no partitions that include both an unmatched vertex of New
and an unmatched vertex of Qld; i.e., a complete correspondence has been defined. In this case, pro-
cedure TryMatches computes the size of the change induced by the current correspondence; the
current correspondence and its change size are saved if it is the best correspondence found so far.
(The size of the change induced by the current correspondence is computed by procedure

ChangeSize, shown in Figure 5(c).)

-14 -

The working set contains one vertex v.
In this case, v is removed from the working set and from its partition P. Now there are two subcases:
(1) partition P contains no unmatched vertex of Old; (2) partition P contains one or more unmatched
vertices of Old. In the first case, the correspondence is complete; the test at line [L1] will succeed
(because both the number of unmatched vertices of New in P and the number of unmatched vertices
of Old in P are zero), and a recursive call to TryMatches (with an empty working set) will be made.
This recursive call will compute the cost of the current correspondence.

In the second case, the test at line [L.1] will fail, and the for loop at line [L2] will be executed. Each
time around the loop the current correspondence is completed by matching vertex v with a different
unmatched vertex of Old in P, and a recursive call to TryMatches (with an empty working set) is
made.

The working set contains more than one vertex.

In this case, an arbitrary vertex v is selected and removed from the working set. The test at line [L.1]
serves two (similar) purposes. First, if there are no unmatched vertices of Old in v’s partition P, the
test will succeed, guaranteeing that the current correspondence will be completed with v unmatched
(the for loop at line [L.2] will not serve this purpose since it will execute zero times). Second, if,
after removing v from P there are still at least as many unmatched vertices of New as unmatched ver-
tices of Old left in P, the test will succeed, and the recursive call to TryMatches will complete the
current correspondence in all possible ways with v unmatched. The for loop at line [L2] will take
care of completions in which v is matched with an available vertex of Old.

The time requirements of procedure TryMatches can be analyzed as follows. Let M be 1 + the maximum
number of unmatched vertices of Old in a partition with at least one unmatched vertex of New. Given a
working set of size 1, TryMatches will make at most M recursive calls, each with an empty working set, so
T(1) £ M. Given a working set of size n, TryMatches will make at most M recursive calls, each with a
working set of size n—1, so T(n) <M * T(n—1). Solving this equation we find that the time required for a
call to TryMatches with a working set of size nis O (M™).

The value of n for the original call to TryMatches made from procedure Match is the number of match-
able vertices of New that remain after all no-choice matches are made. It remains to be seen how large this
value, as well as the value of M, are in practice. An (unrealistic) upper bound for the time required by
TryMatches is 0(0"), where O is the number of vertices in Old, and N is the number of vertices in New.

Finding a minimum change correspondence is NP-hard.

In this section we prove that finding a correspondence between New and Old that minimizes the size of the
change between New and Old is NP-hard (where “size of the change” is as defined above). We call this
problem the “Minimum Correspondence” problem. We show that the Minimum Correspondence problem
is NP-hard by showing that a related problem, the “k-Correspondence” problem, is NP-complete. An algo-
rithm for k-Correspondence answers the question, “Is there a correspondence that induces a change
between Old and New of size < k?”. It is clear that a solution to the Minimum Correspondence problem
provides a solution to the k-Correspondence problem; thus, if the k-Correspondence problem is NP-
complete, the Minimum Correspondence problem is NP-hard.

To show that k-Correspondence is NP-complete, we must
(1) show that k-Correspondence is in NP, and

(2) show that a polynomial-time solution to k-Correspondence can be used to find a polynomial-time
solution to a known NP-complete problem.

-15-

It is clear that k-Correspondence is in NP; a nondeterministic algorithm to solve the k-Correspondence
problem partitions Old and New, then, for each vertex v of New’s PRG, matches v with a (nondeterministi-
cally chosen) unmatched vertex of Old’s PRG that is in the same partition. Finally, the size of the change
induced by the resulting correspondence is computed; if this size is less than or equal to , the algorithm
returns true, otherwise it returns false.

Next, we show that a polynomial-time solution to k-Correspondence can be used to find a polynomial-
time solution to 3-CNF-Satisfiability (a known NP-complete problem). We show that, given a 3-CNF for-
mula, we can produce (in polynomial time) Program Representation Graphs Old and New, and an integer &,
such that there is a correspondence between New and Old that induces a change of size < k iff the given 3-
CNF formula is satisfiable.

The following terminology is used: A 3-CNF formula uses a set of variables xy, x3, ***x,. The for-
mula consists of the conjunction of a set of clauses ¢y, ¢y, *** ¢n. Each clause ¢; is of the form
(i vt 2 V tj3), where each term tj is a barred or unbarred variable. For example:

n=x1 In=x
(X1 VX VX)) A (X3 VX3V Xg) {x1, X2, X3, X4} fp=x, Ip=x3
Li3=Xp I3=Xa

3-CNF Formula Set of Variables Terms

Figure 6 shows the general form of the Program Representation Graphs Old and New produced from a
given 3-CNF formula; Figure 7 shows the PRGs for the example 3-CNF formula given above. In Figure 6,
the notation “<ji>” (used in both Old and New) means the index of the variable that appears in the i term
of the j* clause; thus, “v<j2>” is the identifier whose first character is “v” and whose remaining characters
are the index of the variable that appears in the 2™ term of the j* clause. The notation “#;” (used in New)
means the value of the term ¢;; i.e., tj is a barred or unbarred variable.

To understand how a solution to the given 3-CNF-Satisfiability problem provides a solution to the
corresponding Minimum Matching problem and vice versa, consider the equivalence classes produced by
applying the Partitioning Algorithm to the programs Old and New illustrated in Figure 6. These classes are
shown in Figure 8. The equivalence classes that contain three vertices (one from Old and two from New)
“force” each variable x; to be assigned a unique value. (Think of the vertex from Old, “vi := i” as the value
true; that vertex can be matched with at most one of the two vertices from New; either vertex “xi :=i” or
vertex “xi := i”. The former corresponds to assigning variable x; the value true; the latter corresponds to
assigning variable x; the value false.)

The equivalence classes that contain four vertices (one from Old and three from New) “choose” one term
from each clause. Again, the Old vertex, “cj := v<j1> + v<j2> + v<j3> + j” can be matched with at most
one of the three vertices from New, either “cj := t; + y<j2> + y<j3> +j” or “cj := y<jl> + tp + y<j3> +J”
or “cj := y<j1> + y<j2> + t;3 + j”. Matching the first New vertex with 4o = v T> + v2> + Vi3> + §7
corresponds to choosing term ¢;,; matching the second New vertex corresponds to choosing term ¢;,; and
matching the third New vertex corresponds to choosing term ¢;3. The same number of vertices of New can
be matched whether or not the given 3-CNF formula is satisfiable; however, if the formula is not satisfiable,
then the number of matched flow edges of New will be insufficient to allow the size of the change to be < k.

Old’s PRG:

cj = vejl> +v<j2> + v<i3> +

one| vi:=1 |for each variable x;

one| ¢j:=v<jl> +v<j2> + v<i3> +j

for each clause ¢ i

one

one

one

one

one

one

New’s PRG:
Entry
yi=i if P
xi=1i xi=i cj =ty +y<j2>+y<j3>+]

cj = y<j1> +y +y<j3>+j

¢j i= y<jl>+y<j2> +13 +]

yi:=1 |for each variable x;

xi :=1 |for each variable x;

Xi =1 |for each variable x;

cj i=tjy +y<j2>+y<j3>+] |for each clause ¢;

¢j 1= y<jl>+t +y<j3>+] |for each clause ¢;

¢j := y<jl>+y<j2> + 3 +] |for each clause ¢;

Figure 6. The general form of PRGs Old and New built from a given 3-CNF formula. Flow edges are omitted. Con-
trol edges are shown unlabeled (these edges would all be labeled true). See the text for an explanation of notation like

“v<jl>" and £, .

-17-

Old’s PRG: Edge Key

- control edge

~ flow edge

Figure 7. PRGs Old and New produced from 3-CNF formula (x; v ;; vV X3) A (;; V X3 V Xx4). All flow edges
and some control edges are omitted from New's PRG. Control edges are shown unlabeled (these edges would all be
labeled true). ’

-18 -

Equivalence classes produced by the Partitioning Algorithm

old New New New
@) @),
@ @),
1)
1=
1)
{ x1l:=1) }
{ }

{ @vm2>+v<m3>+m> = Ly Hy<m2>+y<m3>+ m = y<ml>+, +y<m3>+ 1= y<ml>+y<m2>+t,3+D)

Figure 8. The equivalence classes produced by applying the Partitioning Algorithm to programs Old and New shown
in Figure 6.

The value selected for & for a given 3-CNF formula is:

(# of vertices and edges in New) — (# of potentially unchanged vertices in New + # of matchable edges in New) =
((3 + (6 * #-of-variables) + (15 * #-of-clauses)) - (2 + (1 + #-of-variables + (2 * #-of-clauses))) =

(5 * #-of-variables) + (13 * #-of-clauses)

This number is explained below.

(1) Number of vertices and edges in New
The number of vertices in New is 2 + (3 * # vars) + (3 * # clauses): the Entry vertex, the “if P” ver-
tex, one “yi := i” vertex for each variable, one “xi := i” vertex for each variable, and one “xi= i
vertex for each variable; and three “cj := ...” vertices for each clause.

-19-

The number of control dependence edges in New is one less than the number of vertices (because
every vertex other than the Entry vertex has exactly one incoming control dependence edge); thus,
there are 1 + (3 * # vars) + (3 * # clauses) control dependence edges.

The number of flow dependence edges in New is (9 * # clauses): the only vertices with incoming
flow dependence edges are the “cj := ...” vertices; each such vertex uses three variables (so it has
three incoming flow dependence edges), and there are three such vertices for each clause.

(2) Number of potentially unchanged vertices in New
The only vertices of New that can be matched with textually and semantically identical vertices of
Old are the Entry vertex and the “if P” vertex. These vertices can be matched whether or not the 3-
CNF formula is satisfiable.

(3) Number of matchable edges in New

Control dependence edges
A control dependence edge in New can be matched only if both endpoints are matched (however, the
endpoints need not be matched with textually identical vertices of Old). There are (1 + #-of-
variables+#-of-clauses) matchable control dependence edges. These edges, enumerated in the figure
below, can be matched whether or not the 3-CNF formula is satisfiable.

1 1 for each variable 1 for each clause

Flow dependence edges
There are (#-of-clauses) matchable flow dependence edges. These edges, enumerated in the figure
below, can all be matched only if the 3-CNF formula is satisfiable.

or

@ T) 1= y<jl>+p+y<j3>+

or

1 for each clause

As stated in the discussion above on the value of £, it is always possible to find a correspondence that
matches two vertices of New with textually and semantically equivalent vertices of Old, and matches
(1 + #-of-variables + #-of-clauses) control-dependence edges of New. The crux of the proof that the 3-
CNF formula is satisfiable iff there exists a correspondence between New and Old that induces a change of
size < k, is showing that (#-of-clauses) flow-dependence edges can be matched iff the 3-CNF formula is
satisfiable.

-20 -

It is clear that (#-of-clauses) flow-dependence edges can be matched if the 3-CNF formula is satisfiable.
In this case, for each variable x;, with value true, the Old vertex “vi := i” is matched with the New vertex
“xi := i"; for each variable x; with value false, the Old vertex “vi :=i” is matched with the New vertex “Xi
:= i.” For each clause ¢; with true term t;, the Old vertex “cj := v<jl>+v<j2>+v<j3>+j” is matched with
the New vertex that “chooses™ term t;. The flow-dependence edge from the New vertex that “assigns” true
to term ¢, to the New vertex for clause c; that “chooses” term ¢ is matched because both of its endpoints
are matched.

Example. Figure 9 uses the example 3-CNF formula (x; v ;1— VXa) A (;; Vv X3 V x4) to illustrate
how a solution to the 3-CNF Satisfiability problem can be used to find a solution to the k-Correspondence
problem. In this example, the number of vertices in New is 20, the number of edges in New is 37, the
number of potentially unchanged vertices in New is 2, and the number of matchable edges in New is 9; thus
the value of k for this example is 46. The correspondence shown in Figure 9 matches two vertices of New
with textually and semantically equivalent vertices of Old (namely, the Entry vertex and the “if P” vertex);
nine edges of New (seven control-dependence edges and two flow-dependence edges) are matched. There-
fore, this correspondence induces a change of size 46 (18 unmatched vertices, 6 matched but textually dif-
ferent vertices, 12 unmatched control-dependence edges, and 16 unmatched flow-dependence edges),
which is the value of .

It is also clear that the 3-CNF formula is satisfiable if (#-of-clauses) flow dependence edges can be
matched. By construction, each subgraph that corresponds to a clause can contribute at most one matched
flow-dependence edge; thus, if (#-of-clauses) flow-dependence edges can be matched, there must be
exactly one such edge in each “clause” subgraph. Again by construction, the source of the matched flow-
dependence edge is a vertex either of the form “xi := i”, or of the form “Xi := i”. Since for each variable x;
at most one of these two vertices can be matched, this matching provides a satisfying truth value assign-
ment for the variables of the formula.

4. RELATED WORK

Related work falls into two categories: techniques for computing texmual differences, and techniques for
computing semantic differences. The first category includes techniques for comparing strings
[Sankoff72, Wagner74, Nakatsu82, Tichy84, Miller85] and techniques for comparing trees
[Selkow77,Lu79, Tai79, Zhang89]. Although such work has a different goal than the technique described
here, these textual differencing techniques might be useful in practice as a compromise between requiring
editor-supplied tags and solving an NP-hard problem; i.e., one of these algorithms might be used to com-
pute tags for program components. Once tags are available, the procedure ComputeChanges of Section 3.1
can be used to classify the components of New. In this case, no special editor is required, and tags are not a
function of the particular edit sequence used to create program New from program Old; however, there is
no guarantee that the size of the change between Old and New will be minimal in the sense of Section
32.2.

Program slicing [Weiser84, Ottenstein84, Horwitz88a] is a technique for identifying just those program
components that might affect the values of a given set of variables at a given program point. Slicing is
used by the program integration algorithm of [Horwitz89] to determine the semantic differences between
two versions of a program. Program slicing could potentially be used in place of partitioning to identify
sets of components of Old and New that have the same execution behavior. However, in the absence of
tags, it is not clear whether this could be done efficiently since it would include determining isomorphism
of slices as a subproblem. Furthermore, partitioning is superior to slicing in the sense that the equivalence
classes determined by partitioning are supersets of the equivalence classes determined using slicing

-21-

Satisfying Truth Assignments Corresponding Matching
old New
Xy = true
True Term in Each Clause Corresponding Matching
Old New

clause 1: x1 w
clause 2: x4 -

|
I

Unchanged Vertices and Matched Edges of New
xl:=1 x2:=2 x3:=3 xd:=4 cl = yl4+x1+y2+1 €2 1= y2+y3+x4+2

_________><7________—/

Figure 9. The matching of the vertices and edges of New and Old that corresponds to a solution for the 3-CNF formula
(x, VX, VvX3) A (x5 v X3V x4) In the illustration of the unchanged vertices and matched edges of New, only the
vertices shown inside circles are matched with textually identical vertices of Old .

[Yang89]; for example, the components “y := x” and “output(y)” of program New, of Figure 1, and the
components “y := a” and “output(y)” of program New ; of Figure 1 would be classified as semantic changes
if slicing were used in place of partitioning.

-22-

5. CONCLUSIONS

We have discussed three algorithms for comparing two versions of a program and identifying their seman-
tic and textual differences. All three algorithms use the technique for partitioning programs introduced in
[Yang89]. Although the partitioning technique is currently applicable only to a limited language, we
believe that it can be extended to include many standard programming language constructs. Extensions to
the partitioning algorithm translate directly into extensions to the program-comparison algorithms; thus, we
believe that the algorithms described here will soon be applicable to a reasonable language, for example,
Pascal without procedure parameters.

After extending the partitioning algorithm, we will be able to implement the three program-comparison
algorithms to determine how well they work in practice. We will determine whether the third algorithm,
which in theory should provide a better classification of changes than the second algorithm, does so in
practice, and whether or not the NP-hard matching problem that it incorporates makes it unusable on real
programs.

References

Aho74.
Aho, A., Hopcroft, J.E., and Ullman, J., The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA (1974).

Aho86.
Aho, A., Sethi, R., and Ullman, J., Compilers: Principles, Techniques and Tools, Addison-Wesley,
Reading, MA (1986).

Alpern88.
Alpern, B., Wegman, M.N,, and Zadeck, F.K., “Detecting equality of variables in programs,” pp. 1-11
in Conference Record of the Fifteenth ACM Symposium on Principles of Programming Languages,
(San Diego, CA, January 13-15, 1988), ACM, New York (1988).

Cytron§9.
Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N.,, and Zadeck, K., “An efficient method of com-
puting static single assignment form,” pp. 25-35 in Conference Record of the Sixteenth ACM Sympo-
sium on Principles of Programming Languages, (Austin, TX, Jan. 11-13, 1989), ACM, New York,
NY (1989).

Ferrante87.
Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimiza-
tion,” ACM Transactions on Programming Languages and Systems, (1987).

Hopcroft71.
Hopcroft, J.E., “An n log n algorithm for minimizing the states of a finite automaton,” The Theory of
Machines and Computations, pp. 189-196 (1971).

Horwitz88.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” pp. 133-145 in
Conference Record of the 15th ACM Symposium on Principles of Programming Languages, (San
Diego, CA, January 13-15, 1988), ACM, New York (1988).

Horwitz88a.
Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,”

-23-

Proceedings of the SIGPLAN 88 Conference on Programming Language Design and Implementation,
(Atlanta, GA, June 22-24, 1988), ACM SIGPLAN Notices 23(7) pp. 35-46 (July, 1988).

Horwitz89.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Transac-
tions on Programming Languages and Systems 11(3) pp. 345-387 (July, 1989).

Kuck81.
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler
optimizations,” pp. 207-218 in Conference Record of the Eighth ACM Symposium on Principles of
Programming Languages, (Williamsburg, VA, January 26-28, 1981), ACM, New York (1981).

Lu79.
Lu, S.Y., “A tree-to-tree distance and its application to cluster analysis,” JEEE Transactions on Pat-
tern Analysis and Machine Intelligence PAMI-1(2) pp. 219-224 (April, 1979).

Miller85.
Miller, W. and Myers, E'W., “A file comparison program,” Software — Practice and Experience
15(11) pp. 1025-1040 (November, 1985).

Nakatsu§82.
Nakatsu, N., Kambayashi, Y., and Yajima, S., “A longest common subsequence algorithm suitable for
similar text strings,” Acta Informatica 18 pp. 171-179 (1982). (as cited in [Miller85])

Ottensteing4.
Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development
environment,” Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on
Practical Software Development Environments, (Pittsburgh, PA, April 23-25, 1984), ACM SIGPLAN
Notices 19(5) pp. 177-184 (May, 1984).

Rosen88.
Rosen, B., Wegman, M.N., and Zadeck, F.K., “Global value numbers and redundant computations,”
pp. 12-27 in Conference Record of the Fifteenth ACM Symposium on Principles of Programming
Languages, (San Diego, CA, January 13-15, 1988), ACM, New York (1988).

Sankoff72.
Sankoff, D., “Matching sequences under deletion/insertion constraints,” Proc. Nat. Acad. Sci.
69(1) pp. 4-6 (January, 1972).

Selkow77.
Selkow, S.M., “The tree-to-tree editing problem,” Information Processing Letters 6(6) pp. 184-186
(December, 1977).

Shapiro70.
Shapiro, R. M. and Saint, H., “The representation of algorithms,” Technical Reprot CA-7002-1432,
Massachusetts Computer Associates (February, 1970). (as cited in [Alpern88, Rosen88])

Tai79.
Tai, K.C., “The tree-to-tree correction problem,” JACM 26(3) pp. 422-433 (July, 1979).

Tichy84.
Tichy, W., “The string-to-string correction problem with block moves,” ACM Transactions on Com-
puter Systems 2(4) pp. 309-321 (November, 1984).

