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Abstract

We investigate properties of logic programs that permit refinements in their fixpoint
evaluation and shed light on the choice of control strategy. A fundamental aspect of a
bottom-up computation is that we must constantly check to see if the fixpoint has been
reached. If the computation iteratively applies all rules, bottom-up, until the fixpoint is
reached, this amounts to checking if any new facts were produced after each iteration. Such
a check also enhances efficiency in that duplicate facts need not be re-used in subsequent
iterations, if we use the Seminaive fixpoint evaluation strategy. However, the cost of this
check is a significant component of the cost of bottom-up fixpoint evaluation, and for many
programs the full check is unnecessary. We identify properties of programs that enable
us to infer that a much simpler check (namely, whether any fact was produced in the
previous iteration) suffices. While it is in general undecidable whether a given program has
these properties, we develop techniques to test sufficient conditions, and we illustrate these

techniques on some simple programs that have these properties.

*The work of R. Ramakrishnan was supported in part by an IBM Faculty Development Award and NSI grant
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1 Introduction

Recent work in the deductive database area suggests that logic programs may be efficiently
evaluated by first applying optimizing program transformations and then evaluating the fixpoint
of the rewritten program bottom-up [4, 5, 7, 12, 16, 18, 19, 22] It is generally proposed that the
fixpoint be computed using the Seminaive algorithm [3, 6, 2], which avoids repeating inferences.
However, this method requires that the new facts computed in each iteration be compared with
previously generated facts to eliminate duplicates, and this is a costly operation, especially in
the presence of non-ground tuples. (Eliminating duplicates now involves subsumption checks

rather than equality checks.)

In this paper, we examine Seminaive and related algorithms closely, and identify properties
of programs that enable us to replace expensive checks for duplicates by simpler checks. In
particular, subsumption-freedom — informally, the property that if two facts are generated
then neither subsumes the other — allows us to simply check whether any facts at all were
produced in the previous iteration, and to avoid the significant additional cost of checking if

any of these facts is subsumed by other (previously) generated facts.

We show that the class of subsumption-free programs is quite large; in particular, every par-
tial recursive function can be computed by such a program. Further, common Prolog programs
such as reverse and append are subsumption-free. Intuitively, it appears that the property

holds for a large class of deterministic programs.

We show that it is in general undecidable to determine whether these properties hold for a
given program. However, we develop techniques to prove that programs have the subsumption-
freedom property. These techniques are sufficiently powerful to deal with the programs consid-
ered in this paper, including a class of programs that compute all partial recursive functions.
The fibonacci program, presented below, is illustrative of subsumption-freedom and the tech-

niques needed to establish it.

Example 1.1 Counsider the fibonacci program:
rl: fib(I,N) : — I >2, fib(I1,N1), fib(12, N2),
plus(11,1, 1), plus(12,2,1),plus(N1,N2,N).
72 fib(0,0).
r3: fib(1,1).



This program is subsumption-free, based on the following observations: No fact can be
produced by more than one rule. Further, consider the first rule. Given a head fact, the
instance of the body that generated it is uniquely determined. (To show this, we must establish
the functional dependency fib; — fiby, over the relation for fib computed by the program.
This is an inductive proof, and we consider formal techniques to establish such dependencies
later in this paper.) Also note that only ground facts can be generated. Thus, every fact is
produced by a unique rule, through a unique instantiation of that rule. It follows that there is a
unique derivation tree for each fact, and so no fact that is produced in a Seminaive evaluation is
subsumed by another; an observation that permits us to avoid the cost of duplicate elimination.
(The Not-So-Naive evaluation strategy that is described later is essentially Seminaive evaluation

without a subsumption check.) O

The program properties identified in this paper are also useful in identifying classes of
programs for which Prolog’s evaluation strategy is complete, and in studying the choice of

different control strategies that are now viable alternatives in logic program evaluation [15].

The rest of this paper is organized as follows. In Section 2, we extend parts of the theory
of logic programs to deal with multisets rather than sets, which is necessary for our study of
duplicates. We define a class of bottom-up fixpoint evaluation algorithms that we study in
later sections, and present definitions of some important algorithms in this class. In Section
3, we define derivation trees and extend the multiset-based approach of Section 2 to deal with
trees. We also characterize the fixpoint algorithms described in Section 2 in terms of the trees
that they generate. In Section 4, we introduce some important properties of programs, namely
subsumption-freedom, duplicate freedom, finite-subsumption, and finite-forest. We show how
these properties enable us to use simpler fixpoint algorithms. In Section 5, we prove that these
properties are undecidable. We also show that all partial recursive functions can be computed
by programs that have the most restrictive of the properties that we study, namely subsumption-
freedom. In Section 6, we present necessary and sufficient conditions for subsumption-freedom
and duplicate-freedom. While these cannot be effectively tested, they allow us to develop
testable sufficient conditions, and we do this in Section 7. In doing so, we extend the notion
of functional dependencies to relations that contain non-ground tuples, and study a class ol

relations whose tuples correspond to rule instantiations.




2 Bottom-Up Fixpoint Evaluation

The treatment of bottom-up evaluation of logic programs (or Datalog programs) in the literature
has considered the evaluation as a computation of relations, and hence has used sets to describe
the process [24, 3, 6, 2, 1]. Since our interest is in the occurrence of duplicate atoms (tuples)
during the computation, we first extend portions of the existing theory to use multisets of
atoms, rather than sets. We also extend most treatments by generating non-ground atoms in
a manner similar to [9]. This involves a further extension, since we must now consider the

possibility that newly generated atoms might be subsumed by previously generated atoms.

We denote by ground(X) the set of ground instances of elements of X. We assume the
existence of at least one constant, so every syntactic construct has a ground instance. We
use a partial function mgu(ty,t,) which returns a most general unifier of the terms ¢; and {5,
if the terms are unifiable. We say that a < b under the subsumption ordering if a = b6 for
some substitution 6. If A and B are multisets then ¢« < Biff 3b € B a < b, and A < B iff
VYa € A a < B. We denote by mazims(X) the set of maximally general elements of X under
the subsumption ordering. In addition to sets and multisets, we will also use in this paper a
restricted type of set, called an irredundant set or irrset. Irrsets are sets in which no element
is subsumed by another. Union of irrsets X and YV is mazims(X UY). Subtraction of irrsets

X-Yisgivenby {z |2 € X,Vye Y z £ y}.

We now define multisets and operations on them in some detail, since we use them exten-
sively and also use some non-standard operations (such as col, and a non-standard notion of

multiset difference).

Definition 2.1 (Multisets) A multiset is a collection of elements that are not necessarily
distinct. The number of occurrences of an element in a multiset is its multiplicity in the
multiset. We denote the multiplicity of an element z in a multiset M by mult(z, M). The
cardinality card(M) of a multiset M is the sum of the multiplicities of each element of 1/.
A multiset is finite if its cardinality is finite. We define x € M iff mult(z, M) > 0. When a

multiset is enumerated we use delimiting brackets. For example, M = [a,b,b,c] is a multiset

with mult(b, M) = 2.

Given a multiset M, set(M) is the set of elements of M, that is, set(M) = {z | x € M}.

The union of two multisets A; and Ms, denoted as M; & M,, is a multiset in which the



multiplicity of an element is the sum of its multiplicities in M; and Mj. This is extended to
obtain the union of an infinite chain of multisets as S = limp—co Sn, Where the multiplicity of
any s in S is the least upper bound — in Z U {co} — of the multiplicities of s in Sn. M; C M,

denotes multiset containment: for every element z € My, mult(z, My) < mult(z, M2).

The difference of two multisets M; and M,, denoted as M; — Ms, is a multiset in which
the multiplicity of an element z is mult(z, My) if mult(z, M3) = 0, and is 0 otherwise. Note
that this differs from the usual definition of multiset difference, in which the multiplicity of an
element in X — Y is defined to be maz(m — n,0), where m is its multiplicity in X and n is its
multiplicity in Y. We have chosen a different definition in order to reflect our use of multisets.

in which taking a difference corresponds to the operation of duplicate elimination.

We introduce a “coloring” operation on multisets that is useful for providing constructive

definitions of multisets in terms of a defining property.

Definition 2.2 (Colored Sets) Let M be a multiset, and let C be an (infinite) ordered list of
colors ¢1, ¢y, . ... For every element, say a, with multiplicity n > 0, color the copies of a with
€1,Ca, .. .Cn, and denote these distinct colored elements as ay,as, . .., an. The set containing all

the elements obtained by thus coloring elements of M is a colored set, denoted as col(M).

The inverse operation, col™!(§), is defined to yield a multiset 3 in which the multiplicity

of an element a is equal to the number of colored copies of @ in the colored set S.

Finally, we introduce a multiset constructor that allows us to define multisets from a set of

tuples (a relation in the database sense) through projection on columns.

Definition 2.3 (Multiset Constructor [..]) Let R be a set of n-tuples, and let 7 be a vector
of k integers in the range 1...n. For every n-tuple { € R, consider the k-tuple (t;,,...,1;,).
The multiset M denoted by [¢|R] is defined to contain every such k-tuple m, with a multiplicity

equal to the number of tuples ¢ of R such that m = (t;,...,%;,)-

Formally, each element of our multisets is an equivalence class — a class of all syntactic
objects that are equivalent modulo variable renaming. (A variable renaming is a substitution 6
that is a bijection on the set of all variables.) However we will (slightly less formally) treat our
multisets as containing objects where variable names are not significant. Different elements, or
different occurrences of the same element, will be represented by objects which have no common

variables.




Throughout this paper we will assume a fixed program P. Readers who are accustomed to
the practice, common in the deductive database literature, of viewing the program as distinct

from the set of facts should note that in this paper, a program includes the set of facts as well.

We will use the following schema of a bottom-up fixpoint evaluation algorithm:
So =100 =F
bnt1r = f(Sn,bn)
Snt1 = g(Sn, bnt1)
S = iMpnco On
where F is the set of facts, or rules with empty bodies, in the program P, and f and g are

some functions depending on the multisets S,, é, and dp41.

In order to give algebraic expression to some forms of differential bottom-up computation
we introduce a special operator, W(X,Y), defined on multisets X and Y where ¥ C X, that
essentially captures the notion of a rule application:

W(X,Y)=[1]|R], where R is the set of tuples (hf,r,d;,...,dx) such that:

| h :— by,...,by is a variant of a rule r of P, k > 0,

dy,...,dg € col(X),
3i € 1...k such that d; € col(Y), and
8 = mgu((by,...,bx),(col™*(dr),...,col" (dk)))

Intuitively, W only allows deductions from X that use the “new” facts Y, and the multi-

plicity of a fact (h#) is the number of times that it is deduced.

In our analysis we represent the current known facts as a set (or multiset or irrset) and
assume that inference of new facts from this set is performed simultaneously by all rules in the
program. Refinements of this analysis are possible for more flexible inference strategies, such

as those of [13, 20, 1]. However we do not pursue this point further.

We now define the class of evaluation strategies that we consider, and some related termi-

nology.

Definition 2.4
Let b, —5,.1CY,CS, forn>0, and S_1 = Sog =6y = F.
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bnr1 = dup_elim(W(5,,Y5))

Spr1 = dupelim(S, @ bnqr)

S = dup-elim(limp_,00 Sn)

GC = set(S5)

IGC = mazims(S)

where F is the set of facts in the program P, dup_elim is the identity function for multiset
data structures, set for sets, and maxims for irrsets. The set GC is the set of generated conse-
quences of the program under this evaluation, and IGC is the irrset of irredundant generated

consequences.

The algorithms are defined to terminate (at Step n+ 1) when Sp41 = Sn. Consequently an
algorithm terminates iff § is finite. When the data structures are multisets it suffices to test
whether 8,41 = 0. When sets (irrsets) are used, we must test whether 6,11 C S (respectively,
bny1 < Sn). We note that, in regard to early termination, irrsets are always (as good as or)
better than sets, which are always (as good as or) better than multisets. In particular the choice
of data structure — set, multiset, or irrset — can make the difference between termination and

non-termination.

Example 2.1 Consider the following program.

p(s(X)) = p(X).

p(X).

q C—q.

q.

Evaluation of p will terminate only if irrsets are used. Similarly, evaluation of ¢ will not

terminate if multisets are used. O

We can verify the correctness of these evaluations with respect to the least Herbrand model

M of P and some other semantics of P.

Proposition 2.1 Consider evaluation strategies that fit into the scheme defined above.

1. For multiset and set computations, the generated consequences GC of a program are in-

dependent of the evaluation strategy. Furthermore, ground(GC)= M.

2. For multiset, set and irrset computations, the irredundant generated consequences IGC' of

a program are independent of the evaluation strategy. Furthermore, ground(IGC)= M.




Proof: It can be shown by induction that for set and multiset data structures
set(Sy,) is invariant over all evaluation strategies (we denote this set by GCy), and

for all data structures mazims(Sy) is invariant over all evaluation strategies. O

GC is the minimal S-model of P as defined by [9]. It was recently shown [10, 11] that GC
and JGC are fully abstract semantics for logic programs under an operational (respectively.

declarative) definition of observable program behaviors.

We present algebraic definitions of some fixpoint evaluation strategies that are the focus of
this paper, by instantiating the general schema. There are variants correspor/lding to algorithms
that either check whether generated facts are subsumed by existing facts (using irrsets as the
data structure), check whether generated facts are equal to existing facts (using sets), or do no
such checking (using multisets). To distinguish different avatars of the same algorithm we will

subscript the name of the algorithm with M, S or I when (respectively) multisets, sets or irrsets

are used.

Definition 2.5 Naive evaluation.
bpr1 = dup_elim(W(S,, S»))
Sp+1 = dup-elim(Sy, @ bnt1)
In Naive evaluation (N), every possible derivation using the set of known facts is made in
each iteration, until no new facts are generated. The set version of Naive evaluation is what is

usually referred to by this name in the literature.

Definition 2.6 Seminaive evaluation.
6n+1 = dup_elim(W(Sn, 0 — Sn—l))
Sny1 = dup-elim(Sy @ bnt1)

The set version of Seminaive evaluation (SN) is usually proposed as the bottom-up fixpoint
evaluation algorithm of choice. The set of facts produced in iteration n (6,) is compared
with the set of already known facts (S,_1) to identify the new facts produced (6, — Sn-1)-
Only derivations that use one of these new facts are carried out in iteration n 4 1. This
avoids generating many duplicate facts by avoiding repeated derivations. In addition, duplicates
generated in the same iteration are eliminated by the set data structure. However, the costs
of identifying the new facts can sometimes outweigh the benefits of avoiding duplicates. With

this in mind we introduce a new fixpoint evaluation strategy:



Definition 2.7 Not-So-Naive evaluation.
Spy1 = dup_elim(W(5,,6,))
Spy1 = dup-elim(Sy, @ bp41)

Not-So-Naive evaluation (NSN) relaxes the condition that every derivation of a fact must
use a new fact, by only requiring that every derivation must use a most recently generated fact.
In comparison with SN it does not avoid some redundant derivations since a newly generated
occurrence of an already known fact will cause a (redundant) derivation. Nonetheless, it does
avoid repeatedly deriving a fact from the same occurrences of known facts. Since in this paper

we will only use the multiset version of NSN evaluation, we will use NSN for NSNyy.

Example 2.2 The following program illustrates the difference between SN and NSN.
d :—c.

c :—b.
b :— a.
a.
b.

At the first step, both evaluation strategies generate ¢ and a second occurrence of b. SNg
eliminates the duplicate b. In the next step both SNp; and SNg generate only d, since ¢
was the only new fact found at the previous step. In contrast NSN generates both d and a
second occurrence of ¢, since both b and ¢ were most recently generated. The final result of the
computation for each strategy is [a,b,b,¢,¢c,d,d] for NSN, [a,b,b,¢,d] for SNp1 and [a,b,c,d]
for SNg. NSN evaluation takes one more step to terminate than either version of SN. (To see
the difference with respect to N, note that NSN, unlike N, does not generate b in the second

step.) O

3 Derivation Trees

A derivation tree is a representation of a proof that P |= a, where a is the label of the root of

the tree. Every node in a derivation tree for a corresponds to an inference in the proof of «.

Definition 3.1 Let P be a program. We define derivation trees in P as follows:

e Every fact h in P is a derivation tree for itself, consisting of a single node with label h.




o Leth :— by,by,..., by be a new variant of a rule r in P, let d;, ¢ = 1,...,k be atoms
with derivation trees t;, and let 8 be the mgu of (by,...,bx) and (dy,...,dg). Then, the
following is a derivation tree for hf: The root is a node labeled h8, and each t;, 1 =1...n,

is a child of the root. Each arc from the root to a child has the label r.

Note that the substitution 6 is not applied to the children of k8 in the second part of the
above definition. Thus, a derivation tree records which set of (previously generated) facts is
used to generate a new fact using a rule, rather than the set of substitution instances of these
facts that instantiated the rule. The height of a derivation tree is defined to be the number of

nodes in the longest path (which is always from the root to a leaf).

Let atoms(t) be the label on the root of derivation tree t, and extend this to a multiset of
trees X by atoms(X) = [1 | R] where R is the set of tuples (atoms(t),t’) such that t € X,
' € col(X) and t = col™!(t). The function atoms abstracts the generated atoms from the

derivation trees that generate them.

Definition 3.2 Let P be a program and let a be a fact. The multiset of all derivation trees for a

in P is denoted by DT(P,a). The multiset of all derivation trees in P is DT(P) = J, DT(P,a).

We can view the evaluation strategies described above as acting on derivation trees instead
of atoms. With appropriate definitions for the operations used in an evaluation, the multiset of
atoms S computed in an evaluation is simply an abstraction of the multiset of derivation trees

S’ computed by the same evaluation.

We redefine some of the operators used previously to behave differently on multisets of
derivation trees. These definitions will be used only in this section. set(X) denotes a maximal
subset of X in which the label of every root node is different and mazims(X ) denotes a maximal
subset of X in which no label of a root node is subsumed by the label of another. When the
data structures are sets or multisets, X — Y is the submultiset of X obtained by deleting from
X all trees t such that atoms(t) € atoms(Y). When the data structures are irrsets, X — 1" is
the subset of X obtained by deleting from X all trees ¢t such that atoms(t) < atoms(Y). The
operation @ remains the same for multisets of trees, but for sets and irrsets we take the union
operator to be XU(Y — X'), where Y — X is defined above for each data structure. The function

corresponding to W is W



W!'(X,Y)=[1]|R], where R is the set of tuples (¢,7,%1,...,t) such that:
h :— by,..., b is a variant of a rule r of P, k > 0,
t1,...,t € col(X),
t,col™1(ty),...,col " (tx) are derivation trees with roots hf,ds, ..., ds.
the root of ¢ has arcs labeled r and children col™'(#;),.. . col™Y(tg),
3i € 1...k such that ¢; € col(Y'), and
6 = mgu((by,...,bk), (d1,...,dr))

If we use the above operations and the function W', each evaluation strategy defines mul-

tisets S, and ¢/, of derivation trees.

Proposition 3.1 For any evaluation strategy under definition 2.1 and any choice of data struc-

tures, atoms(Sh) = S, and atoms($}) = 6,.

If X is a multiset of derivation trees, let X|<, (X|n) denote the submultiset of X of trees
of height less than or equal to n (exactly n). The following result shows that NSN evaluation
produces all the proofs that can be generated from P. Combined with the above result, it

characterizes the output of NSN evaluation.

Lemma 3.1 Under NSN evaluation, S!, = DT(P)|<n and 6], = DT(P)|, for n 2 0. Thus
§" = DT(P) when NSN evaluation is used.

Proposition 3.2 NSN evaluation generates S = atoms(DT(P)).

Definition 3.3 A collection of derivation trees in program P for a set of facts has the Semi-

naive property if the following holds:

1. For every non-root node in every tree: If the label of the node is a, then the height of the

subtree rooted at this node is equal to the height of the smallest tree in DT (P, a).

2. For every pair of non-root nodes - possibly in different trees - with the same label, the
subtrees rooted at these nodes are identical. (Thus, whenever a label a is associated with

a non-root node, the subtree rooted at this node is uniquely determined.)

Note that there may be more than one collection of derivation trees (for a set of facts in

a program P) with the Seminaive property. Intuitively, these differ in the subtree associated

10




with internal nodes that have a given label; however all subtrees associated with an internal
node having a given label a must have the same height, which is the height of the smallest tree

in DT(P,a).

Proposition 3.3 The set of derivation trees constructed in an SNy evaluation of a program P

has the Seminaive property.

4 Some Useful Properties of Programs

In this section we present some properties that enable a more complex and computationally
expensive evaluation strategy or data structure to be replaced by a simpler strategy and/or
data structure. In particular, we can refine the well-known Seminaive evaluation strategy by

replacing subsumption tests by the much simpler check for emptiness.

A program P is subsumption-free if atoms(DT(P)) is an irrset. A program P is duplicate-
free if atoms(DT(P)) is a set. Essentially, P is subsumption-free if subsumption tests are
unnecessary for some evaluation strategies. Similarly, P is duplicate-free if tests for duplicates

(i.e. use of the set data structure) is unnecessary for some evaluation strategies.

Example 4.1 Consider the following program.

p(X,Y) :— X =5

p(X,)Y) =Y =5.
This program is subsumption-free. However, the following program is not:
q(X) - p(X,Y), X =5Y =5.

p(X,Y) - X =5

p(X,Y) :—=Y =5.

The reader is invited to verify that the definition of subsumption-freedom presented in this
paper makes this distinction correctly. (Seminaive evaluation and Not-So-Naive evaluation
perform identically on the first program. However, the fact ¢(5) is produced twice in the second
program, and Seminaive evaluation would discard this fact when it is produced a second time.

unlike Not-So-Naive evaluation.)

An alternative definition of subsumption-freedom that might seem natural is the following:
A program is subsumption-free if for every ground fact p, there is a unique tree such that p

unifies with the root. Under this definition, neither of the above programs is subsumption-free.

11



However, our intent is to capture the behavior of fixpoint evaluation algorithms. As discussed
in [16], neither p(5,Y’) nor p(X,5) can be discarded since each represents facts not represented

by the other, although p(5,5) is represented by both. O

It follows from Proposition 2.1 and Proposition 3.2 that P is subsumption-free (duplicate-
free) iff atoms(DT(P)) = IGC (atoms(DT(P)) = GC). In Section 6 we will present more

detailed characterizations that are more amenable to practical approximation.

One measure of the cost of an evaluation is the number of inferences performed. It is clear
that, for a fixed evaluation strategy, an algorithm using irrsets performs fewer (or the same)
inferences than an algorithm using sets which, in turn, performs fewer (or the same) inferences
than an algorithm using multisets. Similarly, for a fixed data structure, if &, — Spno1 €Y, C 27,
for every n > 0 then an evaluation strategy using Y, performs fewer (or the same) inferences
than an evaluation strategy using Z,. Thus, for example, SN performs fewer (or the same)

inferences than NSN.

Theorem 4.1 In terms of the number of inferences, SNy = NSN for subsumption-free programs

P.

Proof: The number of inferences made at step n + 1 is card(W(Sn,Yn)). For
NSN, W(S,,Yn) = atoms(DT(P)|n4+1) and so the total number of inferences made
by NSN is card(atoms(DT(P))), which is equal to card(IGC). As observed earlier,
SNy performs fewer or the same number of inferences as NSN. However SN1 must
perform at least as many inferences as card($) = card(IGC). Thus SNy and NSN

perform the same number of inferences. O

We can obtain several similar results.
Proposition 4.1 In terms of the number of inferences,
1. SNg = NSN for duplicate-free programs P.

2. SNy = SNg for programs P where no element of GC strictly subsumes another.

A multiset has finite character if every element has finite multiplicity. A multiset has

the finite subsumption property if it has finite character and every element subsumes only

12




finitely many elements. A program P has the finite forest property if atoms(DT(P)) has finite
character. A program P has the finite subsumption property if atoms(DT(P)) has the finite

subsumption property.

Note that the following trivial rule in a program would destroy the finite subsumption and

forest properties whenever the relation p in M is non-empty: p(X) : — p(X).
Theorem 4.2 If SNy terminates, then NSN terminates, for programs P with the finite sub-

sumption property.

Proof: If SNy terminates then /GC is finite, and by Proposition 2.1 mazims(S)
is finite, where S is the set computed by the (possibly non-terminating) NSN eval-
uation. By Proposition 3.2, § = atoms(DT(P)). Hence, by the finite subsumption
property, for every a € mazims(S) there are only finitely many b € § such that

b < a, and each b has finite multiplicity. Thus S is finite, and so NSN terminates.
]

With a similar proof we can obtain:

Proposition 4.2 If SNg terminates, then NSN terminates, for programs P with the finite
forest property.

5 Decision Problems

For Datalog programs, we can test whether the properties hold, although the test in general

involves more work than evaluating the program.

Theorem 5.1 For Datalog programs P, it is decidable whether P

1. is subsumption-free.
2. is duplicate-free.
3. has the finite forest property.

4. has the finite subsumption property.

13



Proof: SNg evaluation of Datalog programs is guaranteed to terminate. Suppose it
terminates at step n. Consider the multisets S, and S}, in a NSN evaluation, where
m = 1+ card(set(S,)). We have the following characterizations of the properties,

justified below:
o P is subsumption-free (duplicate-free) iff Sy, is an irrset (a set).

o P has the finite forest property iff there is no tree in S}, in which the label of

the root also labels an interior node, modulo variable renaming.

¢ For Datalog programs, the finite subsumption and finite forest properties are

equivalent.

It follows from Proposition 3.1 and Lemma 3.1 that IGC C GC C §,_1. Us-
ing this, P is duplicate-free (subsumption-free) iff § = GC (§ = IGC) iff NSN
evaluation also terminates at Step n and S,_; is a set (irrset) iff Sy is a set (irrset).

If P does not have the finite forest property then some atom has infinite multi-
plicity in atoms(DT(P)). It follows that 8/, has an element ¢ (of height m). Since
some branch of ¢t has m nodes, there must be an atom a that occurs at least twice
in this branch. The subtree rooted at the highest such occurrence must appear in
§! . Conversely, if S!, contains a tree ¢ in which the label a of the root also labels
an interior node (modulo variable renaming), then we can construct infinitely many
trees for a as follows: We can replace the subtree of ¢t rooted at the interior node by
a copy of t (under an appropriate variable renaming) to obtain a larger tree t' for

a. Similarly we can replace the subtree by ¢’ to get t” and so on. O

This proof extends to any class of programs for which SNg always terminates (i.e. GC is finite)

except for Part 3 (the finite subsumption property).

Sebelik and Stepanek [21] showed that every partial recursive function can be expressed as
a logic program, by encoding standard rules (e.g. [26]) for defining partial recursive functions
into definite clauses. We use their encoding scheme to prove that all partial recursive functions

can be expressed as subsumption-free logic programs.

Theorem 5.2 [21] Every partial recursive function can be computed by a logic program con-

structed using only predicate definitions of the following form:
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f:(X,0).

fs(X, s(X)).

L J

fmi( X1, X, Xi).

o feompose(X,2Z) +— g1(X, Y1), gu( X, Yi), M(Y1, ..., Yk, Z).

pr(O,XQ,...,Xn,Z) .- g(Xz,...,Xn,Z).
Forl8(X1), Xay oo s X Z) 1 = for X1y s X V), 1( X1y oo, X, ¥, Z).

fmin(X,2) : = 9(X,0,Y),r(X,0,Y,Z).
r(X,U,0,U).
r(X,U,s(V),Z) : — g(X,s(U),Y),n(X,s(U),Y, Z).

where g, 41, ..., gk, h are previously defined predicates.

For each partial recursive n-ary function f there is program P in the above form with least
model M defining a n+1-ary predicate F' where f(aq,...,a,) = b iff F(ay,...,an,b0) € M.
A query q is said to be satisfiable by a program P if the existential closure of ¢ holds in the
least model of P. Clearly satisfiability of queries for the class of programs defined above is

undecidable, by reduction of the “halting problem” for partial recursive functions.

Lemma 5.1 Consider programs defined according to the above scheme. If a,b € GC, a # b,

then a and b do not unify. Furthermore, no duplicates are generated in NSN evaluation.

Proof: Predicates defined according to the above scheme are partially ordered
such that p precedes ¢ if p is used to define q. Our proof proceeds by induction
on this partial order. Let the result hold for all predicates preceding p (Induction
Hypothesis 1). We prove that it also holds for p.

We note that if @ and b are generated by different rules, they cannot unify, since
no two rule heads unify. Suppose that they are generated from the same rule. We
proceed by cases according to the scheme. All cases are straightforward, except for
composition ( feompose), primitive recursion ( f,r) and the rules for r used in defining
minimization { fimin).

First we note that for every ground fact in M there is a unique ground instance

of a rule with this fact as the head and with every body fact in M. The existence
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of at least one such instance is clear, and since no two rule heads unify, all such
instances must come from the same rule. It is straightforward to verify that for
every predicate defined by M the last argument is functionally dependent on the
other arguments. Application of this fact to the predicates in the appropriate rule
gives uniqueness.

Suppose there are two unifying facts, f; and fo, generated by the rule for feompose-
Let (gi1,.-.,91k, h1) € GC*+1 unify with the body of the rule, with mgu 6 to
produce f;. Similarly, let (g21,...,92k, h2) € GC*+1 unify with the body of the
rule, with mgu o to produce f;. Since f; and f; unify, there is a ground unifier a.
Consider t; = (g11,-- -, 91k, h1)0a and t3 = (ga1, . - -, g2k, h2)oa.

As we noted earlier, corresponding to the ground head fact fj« there is a unique
ground instance such that the body facts are in M. If ¢; and t; do not unify, then
let 1 and v be grounding substitutions for ¢; and ¢;. ¢;4 and tov must be different.
The facts of t; 4 and tov are in M, since they are instances of facts in GC, and this
gives a contradiction. If ¢; and ¢, unify then g;; and go; unify for every 7, and Ay
and ho unify. By the induction hypothesis g1; and go; are equal for every 4, and hy
and hy are equal. Thus f; and f, are equal. By the second part of the induction
hypothesis, h; and g;; are generated only once. Thus f; is generated only once.

Consider a = fyr(t1,...,tn,t) € GC. We use induction on the number of rule
applications m used to produce a to prove that it does not unify with any other fact
in GC. We observe that the first argument must be ground, and is s*(0), where & is
the number of applications of the recursive rule used to generate a. Thus, the only
facts that @ might unify with are produced by the same number of rule applications.
The claim holds for m = 0 by the outer induction hypothesis. Let the claim hold
for fewer than m applications. It must then hold for m applications, by the same
argument used for feompose-

Consider the rules defining 7. Again we use induction on the number of rule
applications. The facts produced are of the form r(X, U, s(V),s*(U)) after n ap-
plications of the recursive rule. Consequently, two facts produced using different
numbers of rule applications cannot unify. The rest of the argument proceeds as for

for- O
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The next result follows almost immediately.

Corollary 5.1 Fvery program defined according to the above scheme is subsumption-free.

Proof: We must show that atoms(DT(P)), is an irrset. That it is a set fol-
lows from the second part of the preceding lemma and Proposition 3.2, and so
atoms(DT(P)) = GC. That it is an irrset now follows from the first part of the

preceding lemma, since a and b not unifiable implies that @ does not subsume b. O

By combining the Sebelik-Stepanek theorem and the previous corollary we have that the

class of subsumption-free logic programs is as expressive as the class of all logic programs:

Theorem 5.3 Fvery partial recursive function can be computed by a subsumption-free logic

program.

Thus, although the properties that we consider are decidable for function-free programs,

the addition of a single unary function symbol results in undecidability.

Theorem 5.4 [t is undecidable whether an arbitrary logic program

1. is subsumption-free.

2. 1is duplicate-free.

3. has the finite subsumption property.

4. has the finite forest property.
Proof: Satisfiability of a query (say ¢) is undecidable for the class of programs
defined in Theorem 5.2. From Corollary 5.1, these programs are subsumption-
free. Let p be a new 0-ary predicate, and let P’ be a new program constructed
from a program P in this class by adding the fact p and the rule p : — p,q. P’ is

subsumption-free (duplicate-free, has the finite subsumption property, has the finite

forest property) iff ¢ is unsatisfiable in P. O
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6 Characterizations

Although deciding whether these properties hold is undecidable, we have the following necessary

and sufficient conditions for a program to be subsumption-free. Suppose P is the multiset of

rules [rq,..

consisting

.»Tn). Let F(X) = set(W(X, X)) and let F; denote the function F for a program

of the single rule r;.

Theorem 6.1 A program P is subsumption-free if and only if it satisfies the following condi-

tions:

L.

2.

Ve € F;(IGC) Yy € F;(IGC) z £ y when i # j.

For every rule r;: h : — by,...,br in P, if g € F,(IGC) then g uniquely determines
(dy,...,d) € IGCF such that p is the mgu of (by,...,bg) and (di,...,dx), and hp < g.

Proof: It is straightforward to show that if (1) or (2) does not hold then P cannot
be subsumption-free (using the fact that every element of IGC has a corresponding
derivation tree).

If P is not subsumption-free then IGC is a submultiset of atoms(DT(P)).
Consider atoms a such that a € atoms(DT(P)) — IGC or, if that multiset is
empty, atoms a that have duplicates (i.e. have multiplicity greater than 1 in
atoms(DT(P))). Choose a from these atoms so that it has a derivation tree i,
of minimal height. Let dy,...,d label the children of the root and r,, label the arcs
from the root. Since the height is minimal {d;,...,dx} C IGC.

There is an atom b € IGC such that a < b, since a € GC. Now b has some
derivation tree t, # t, with arcs from root labeled r, aﬁd children labeled fy,..., fi.
Although it may be that f; ¢ IGC, there are g; € IGC such that f; < g; for
i=1,...,1. These g; have derivation trees t;. So b has a derivation tree t; where
the subtrees of the root of t, are replaced by t1,...,%. (Clearly the root should be
labeled by a more general atom than b, but since b € IGC it must be equal.)

Thus a € F,(IGC) and b € F,(IGC), for some m, n. If m # n then (1) does
not hold. If m = n, (2) is violated unless g; = d; for ¢ = 1,...,k, which implies
a = b, by definition of a derivation tree. Thus we are in the case where P only

generates duplicates, and ¢, = t,. But, since t, # tb, some g; has two different
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derivation trees. That is, g; has duplicates in atoms(DT(P)) and has a smaller

derivation tree than ¢,, which contradicts the minimality of the height of ¢,. O

If we replace IGC by GC in the conditions of the above theorem then we obtain a second
characterization of subsumption-free programs. The proof is essentially the same, but slightly

simpler.

Similarly we have:

Theorem 6.2 A program P is duplicate-free if and only if it satisfies the following conditions:

1. F(GC)N F;(GC) = 0 when i # j,

2. For every rule 7;: h : — by,...,by in P, if g € Fi(GC) then g uniquely determines
(di,...,dr) € GC¥ such that i is the mgu of (by,...,bx) and (dv,...,dx), and g = hp.

Currently, we have no comparable characterization of the finite forest and finite subsumption
properties. We present the following example (due to J.F. Naughton) to show that a simple
generalization of the characterization for Datalog programs (in the proof of Theorem 5.1) is not

sufficient.

Example 6.1

Mip(X) = p(s(X)).
r2:p(X) - q9(X).
r3:q(s(X)) = q(X).
r4 : ¢(0).

No derivation tree contains a “loop”. Nevertheless p(s°(0)) for example has infinitely many
derivation trees, since for each k we can generate ¢(s*¥%(0)), then p(s5t#(0)), and then p(s°(0)).

Thus p(s°(0)) has derivation trees of height 5 + 2k for every k£ > 1. O

7  Functional Dependencies Over GC and M

Clearly, the conditions presented in the previous section cannot be tested. However, they help
us develop testable sufficient conditions, as we demonstrate in Section 8. Before we do so. we

need to develop the notion of functional dependencies in the context of relations that contain
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possibly non-ground tuples, since such dependencies play a central role in the conditions that
we will explore. Informally, we will associate relations with rules such that each tuple denotes
the use of the rule to generate a new program fact from a set of previously derived facts.
Functional dependencies over these relations allow us to make assertions of the form that each
fact is generated using a unique set of facts. With the additional condition that no two rules

can generate the same fact, we essentially obtain the sufficient condition that we seek.

We begin by extending the notions of relations and functional dependencies to allow for
facts that contain (possibly non-ground) terms, rather than just constants. A (generalized)
relation is a set of (possibly non-ground) facts with the same predicate name (which is also
the name of the relation). We sometimes refer to facts in a relation as tuples, using relational
terminology. Let & = (t1,...,tn) be a tuple of terms. Then { is a template for a relation R if
every fact in R is an instance, not necessarily ground, of £. In this case we call R a -relation.

By choosing # to be a tuple of distinct variables, any relation can be viewed as a i-relation.

For fixed #, let U and V be (respectively) the set of argument positions in  and the set of
variables that appear in f. Let § = UU V. Let f be a fact in a t-relation, so that f = t0; for
some substitution 8. For any I C S, say I = {uy,...,uk, v1,...,v} where u; € U and v; € V.
let § = (fuyy--«>tugsV1,--.,0). Then f[I] denotes the tuple 38;. Similarly, for a t-relation R.
R[I] denotes {38¢|f € R}.

A functional dependency (FD) I — J where I,J C § is said to hold over a t-relation R
iff for every pair of facts f and g in R, whenever there is a variable renaming o such that
f[Ilo = g[I], there is a variable renaming 6 such that f[I,J]6 = g[I,J]. This definition is, in
fact, symmetrical in f and g since a variable renaming is invertible. We say a set T' of I'Ds

holds over a relation R if every element of T holds over R.

We present the following axioms for inferring FDs over t-relations. The first three axioms
are Armstrong’s axioms for FDs (originally introduced for ground relations); the other two
axioms are specific to i-relations, and reflect the constraints introduced by the arguments of

the template 7.

Azioms for FDs over t-relations

1. I,JC 5, 1C J implies J — I.

2. I,JJKCS§,I - K,K — Jimplies [ — J.
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3. ,LJJKCS, I — Jimplies [ UK - JUK.
4. I € U, X €V, X appears in position [ in 7 implies {I} — {X}.

5.1 €U, X CV, X is the set of variables that appear in position I in ¢ implies
X — {I}.

When an FD f can be derived from a set F' of FDs using these axioms, we write F' F f.
The following theorem expresses the soundness and completeness of our axioms as a method

for inferring FDs on i-relations.

Theorem 7.1 Let f be an FD and F a set of FDs. Consider the arioms defined above for «
fized template t. F & f iff for every t-relation R, if F' holds over R then f holds over R.

Proof: The soundness of the axioms is straightforward. Before proving complete-
ness we introduce some notation. Let J = J; U Jy where J; C U and Jo, C V. Then
var(J) denotes the set of variables that either occur in { in an argument position
of Jy or appear in J;. It follows from axioms 4 and 5 that - J — war(J) and
Foar(J) — J.

Let f be I — J and let X C V be the largest set of variables such that F - [ —
X. (It is not hard to see that X is well-defined.) Let ¢ and b be two terms that are
not equal up to renaming. Let 6, be the substitution that maps every variable in V'
to a, and let 6, map every variable in X to a and the remaining variables to b. Let
R be the {-relation {i6,,#0;}. Clearly an FD K — [ holds over R iff var(K) € X
orvar(L) C X.

Suppose that F' ¥/ f. Then var(J) € X since otherwise F F X — J and
so F' = f. Consequently f does not hold over R. On the other hand, suppose
that an FD K — L in F does not hold over R, that is, var(K) C X and, for
some variable z, z € var(L) — X. Then we can conclude FF + X — {z} (since
FrX - K, FrK— L FrL—wvar(L), FFvar(L)— {z}), which contradicts
the maximality of X. Thus F holds over R. O

In order to capture the application of a rule to generate facts, we associate a f-relation R

with rule 7 in program P as follows:
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o FEach argument position of the (head or body) literals of rule r corresponds to an argument

position of R. { is the tuple of terms in these argument positions in 7.

o Let the body of 7 be by,...,bg, let {di,...,dr} € GC, and let § = mgu((b1,...,0x),
(dq,...,dx)). Then, the relation R contains a tuple such that the value in each argument

position is the term in the corresponding position of 6.

We denote by ground(R) the relation of all ground instances of R. Thus R and ground(R)
are f-relations, where £ is the tuple of all argument positions in rule r. The relationship between

a relation R and its ground version ground(R) is expressed by the following proposition.

Proposition 7.1 Let R be a i-relation and ground(R) its corresponding ground version. Sup-
pose that the language allows the expression of at least two ground terms. For any FD I — J,

if I — J holds over ground(R) then I — J holds over R.

Proof: We prove the contrapositive. Suppose f does not hold over R, that is, there
are facts f and ¢ in R and a variable renaming o such that f[I]o = g{I], but f{I,J]
and g[I, J] are not equal modulo variable renaming. By corollary 12 of [14] there is
a grounding substitution o for one of the facts, say g, such that g[, J]a is not an
instance of f[I,J]. Let B be a ground extension of & to all variables of fo and g.
So foB and gB are in ground(R). Then f[I]loB = g[I]8 but f[I,J]oB # g[I,J]B.
Thus fopB and g are facts of ground(R) showing that I — J does not hold. O

The restriction on the language is seen to be necessary by considering the relation R =
{(X,Y),(X,a)} when only one ground term, the constant a, is expressible. Thus ground(R) =
{(a,a)}. If I denotes the first position and J denotes the second position then I — J holds in
ground(R), but not in R. Under the restriction on the language, the converse of this proposi-
tion does not hold. For example, if R is simply {(X,Y)} then I — J holds in R, but not in
ground(R), since ground(R) contains {(a,a),(a,b)} where a # b.

As the proposition shows, FDs over ground(R) and M are stronger than FDs over R and
GC, and so occur less often. This can make a difference to our reasoning about programs as a

later example will show.

In order to reason about R, it is convenient to introduce a family of relations R, that

are defined analogously to R, using GC,, instead of GC. Intuitively, these relations represent
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approximations to R, computed after n iterations of a bottom-up fixpoint computation of

program P.

We use Head to denote the set of argument positions corresponding to argument positions
in the head of r, and Body to denote the remaining argument positions. Note that R,[H ead]

consists of the facts in GC,4; generated by .

We observe that GC can be partitioned into a set of relations with predicate names that
appear in the program P. FDs over such relations are of the form p[I] — p[J], where I and J
are sets of argument positions in p. We will refer to FDs over this collection of relations as F'Ds
over GC. Since a predicate name uniquely determines the relevant subset of GC, this should

cause no confusion.

Let T be a set of FDs over GC. In order to reason about 7', we consider corresponding FDs
over the relations R for program rules. For each FD, say p[K] ~ p[L],in T and every p-atom
in the body of a rule r, there is a corresponding FD R[K'] — R[L'], where K’ and L’ are the
argument positions in R corresponding to argument positions K and L in the p-atom of r. Let
T, be the set of all such FDs for a given r. Similarly, for a given rule 7 let T}, be the set of FDs

over R corresponding to the FDs in T acting on the head of r.

The following proposition states a simple and useful connection between T' and Tj.

Proposition 7.2 Let T be a set of FDs that holds over GC for a given program. Then, for

every rule r in the program, Ty holds over R.
We have the following sufficient condition for establishing FDs over GC.

Theorem 7.2 An FD p[K] — p[L] holds over GC if there ezists some set T of FDs over GC
that includes the FD p[K] — p[L] such that the following holds:

o For every pair of facts f € Fi(GC) and g € F;(GC), where r; and v; are different rules
defining q, and every FD q[I] — ¢[J] on q in T, either:

— there is no variable renaming o such that f[Ilo = g[I}, or

- flI,J)o = g[I,J] for some variable renaming o.

o For every rule r in P (and its corresponding relation R ), whenever Ty holds in R. T},

holds in R.
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Proof: We prove, by induction on n, that every FD in T holds over GC,, for every
n. It then follows that every FD in T holds over GC, and, in particular, p[K] — p[L]
holds over GC. The base case is trivial. Let r be a rule in the program P.

If the elements of T are FDs over GC,, then the corresponding elements of T}
are FDs over R,,. By the second condition it follows that every element of T}, is an
FD over R,. Now R,[Head] is the set of facts in GCpr41 generated by r, so the
subset of T’ corresponding to T} holds over this set. By the first condition no other
rule generates a fact that destroys a FD in T. Since this argument applies to every

rule of P, the elements of T are FDs over GCp41. O

It is also useful to consider a similar result for FDs over the least Herbrand model M (which
is equal to ground(GC)). The development is similar to the above, with the following changes:
Instead of GC, we consider relations corresponding to program predicates over M, instead of
R, we consider ground(R), and instead of F; we use ground o F;, which is equivalent to the van

Emden-Kowalski function T' for the rule r; [24].

We have the following sufficient condition for establishing FDs over M. The proof is similar

to that of the previous theorem, and is omitted.
Theorem 7.3 An FD p[K] — p[L] holds in M if there exists some set T of FDs over M that

includes the FD p[K| — p[L] such that the following holds:

o For every pair of facts f € ground(F;(M)) and g € ground(F;(M)), where r; and r; are
different rules defining q, and every FD q[I]| — q[J] on q in T, either:

- f[I]#g[I]: or
- f[I,J]:g[I,J].

o For every rule r in P, whenever Ty holds in ground(R), T holds in ground(R), where
Ty and Ty, are defined over ground(R).

The following proposition shows that detecting that an FD holds over GC is in general

undecidable.

Proposition 7.3 Let p be a predicate and let I and J be subsets of the set of argument positions

of p. It is not decidable for arbitrary program P whether p[I] — p[J] holds over GC.
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Proof: Consider a program P consisting of fact p(0,1) and rule p(0,2) : — ¢
defining p, and a program P’ not using or defining p (where ¢ is some body not
containing p). Then p; — p; holds over GC iff ¢ is unsatisfiable in P’, and this is

undecidable. O

The proof also shows that the problem of determining whether an FD holds over M for an
arbitrary program is undecidable. Similarly, the corresponding problem for FDs over R and

ground(R) is not decidable, which can be seen by further adding the rule r : — p(X,Y’) to P.

Faced with uncomputability, we suggest the following methodology for establishing FDs:

To establish an FD d over R, find a set T of FDs over relations of GC such that:
e TyHd

and for each FD p[I] — p[J]in T
o Let f beafactin F;(GC) and g be a fact in F;(GC), where r; and r; are rules

defining p. Then, f[I] and g[I] do not unify.

e For every rule r defining p, T) F Th.

Theorem 7.4 The above methodology is sound.

Proof: The second condition implies that 7' holds over GC, by Theorem 7.2.
Consequently Ty, holds over R. By Theorem 7.1 and the first condition, d is an FD

over R. O

We do not consider how to test the above conditions in this paper. However, fairly simple
tests are sufficient for all the examples considered in this paper, including programs constructed
using the Sebelik-Stepanek scheme. For example, to test the first part of the second condition,
it is sufficient to establish that h;[I] and h;[I] do not unify, for every pair of heads h; and h; of

different rules of P defining p.

The methodology is easily modified to establish sets of FDs over GC; to establish a set T”
of FDs over GC, we must find T O T' which satisfies the second condition. It is also easily

adapted to establish FDs over ground(R): we must simply consider FDs over M instead of GC,
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and define Ty and T} to be FDs over ground(R). Clearly it can also be modified to establish
sets of FDs over M.

Our work generalizes results of Reddy [17] and Debray and Warren [8], who also present
techniques for inferring FDs. Reddy infers FDs over M; we generalize his results by inferring
FDs over GC and R, in addition to M. Debray and Warren infer FDs in which a set of
arguments that must be bound to ground terms determine the rest of the arguments. (Mode
inference is used to identify these sets of arguments.) They are able to infer FDs in some
situations where the determined arguments may be non-ground; thus, they infer certain FDs
over GC. Further, they use more sophisticated criteria to determine when the sets of facts
generated by two rules are disjoint; these criteria can be used to refine our approach as well as
Reddy’s. However, they do not reason directly in terms of GC or M, which limits their use of
the transitivity axiom. As a consequence, Reddy’s algorithm infers certain FDs over M that

they cannot infer.

Reddy and Debray-Warren both rely upon mode inference to determine which arguments
are ground in a call (of a top-down evaluation method such as Prolog). We expect that such
a mode analysis can be used in conjunction with our results as well. Indeed, similar (but not
identical) analyses are an essential part of program transformations used in the bottom-up
approach to logic program evaluation [4, 16]. The work of {17] and (8] on FD inference was
carried out in the context of the problem of identifying functional calls in logic programs. A call
is functional if it instantiates a set of “input” arguments to ground terms, and the remaining
(“output”) arguments can be instantiated in only one way. This property can be phrased as an
FD. Our techniques also allow us to deal with FDs over GC and R, in addition to their ground
counterparts, and this may allow the detection of functionality — extended suitably in terms

of GC, by not requiring the “input” arguments to be ground — in some additional cases.

8 A Sufficient Condition

We present a sufficient condition for subsumption-freedom that is powerful enough to establish
the subsumption-freedom of the class of programs defined by Sebelik and Stepanek; in essence,
we strengthen a non-subsumption stipulation in the characterization presented in Section 6 to

a non-unifiability stipulation. Further, we consider ground(R).
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Theorem 8.1 Suppose that the following conditions hold for a program P:

o f1 € F(GC), fo € F;(GC),i# j implies f1 and fa do not unify.

o For every rule v, ground(R)|[Head] — ground(R)[Body].

Then P is subsumption-free.

Proof: We show that for all fi, fo € GC, f; and f; do not unify. If f; and f; do
not unify, then certainly one cannot subsume the other. Using this, we show that
atoms(DT(P)) = GC = IGC, and so P is subsumption-free.

For the first part we use induction on n, with the following induction hypothesis:
For all f1, fo € GCy, f1 and f, do not unify or fi = fo. The base case is trivial.
Suppose fi, fo € GCpra1, and f; and fo unify with ground unifier a. Then, by the
first condition, f1, fo € F;(GC,) for some rule r; with body b,...,b.

Let (di1,...,dit) € GCF unify with (by,...,b) giving mgu 6; to produce f;, for
i =1,2. Let t; = (di1,-..,dix)b0i = (b1, ...,bg)0ix for ¢ = 1,2. Suppose t; and i,
do not unify. Let ¢} and ¢} be ground instances of t; and t; respectively, so t; € MF
for i = 1,2, and t] # t5. Hence ground(R) contains tuples corresponding to fia, 1]
and faa,t,. But fie = foa, so this contradicts the second condition. Thus ¢; and
to unify. It follows that (dyy,...,d1x) and (doy, ..., d2x) must unify, and so dy; and
doj unify for j = 1,...,k. By the induction hypothesis dy; = do; for j = 1,...,k,
and hence f; = f,.

The proof that atoms(DT(P)) = GC follows the proof above, using as induction
hypothesis atoms(DT(P)|,) = GC,. We suppose [f, f] C atoms(DT(P)|n41) and
similarly to the above proof, both occurrences of f must be generated by the same
rule 7; from atoms(DT(P)|,). t1 and t; are defined as before, and by the same
argument as above must unify. It then follows that both occurrences of f are
generated by the same rule from the same tuple of atoms in atoms(DT(P)|,). Thus
(using the induction hypothesis) they have identical derivation trees, that is, no

duplicate f is generated. Hence atoms(DT(P)|n41) = GCpp1. O

From the proof of the previous theorem we can derive a stronger result:
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Corollary 8.1 Under the conditions of the previous theorem, the elements of GC are pairwise

non-unifiable.

We now illustrate the use of this theorem with some simple examples. We remark that the
theorem is applicable to the class of programs defined by Sebelik and Stepanek; indeed, it can
be seen as an abstraction of the proof that this class of programs is subsumption-free. We use
pi to denote the 7*" argument position in a relation for predicate symbol p, and in writing FDs

we omit the set notation.

Example 8.1 Consider the program for naive reverse:
rl:reverse(X.Y,W) : — reverse(Y, Z), append(Z, X .nil,W).
r2 : reverse(nal, nil).
r3:append(U.V,X,UY) : — append(V,X,Y).
r4 : append(nil, X, X).

First, we must show that at the ground level, the head fact uniquely determines the body
fact. That is, for each rule r the head determines the body in ground(R). This can be
established by first considering the set of FDs T = {reverse; — reversey; append,, appends —
appends} over M. We can easily show that for every rule, any head dependency in the table
follows by applying the axioms to the dependencies for the body literals. Furthermore, 71
cannot generate a fact whose first argument unifies with nil, and r3 cannot generate a fact
whose first two arguments are of the form nil,z. Thus T holds over M, using the methodology
of Section 7. It is now straightforward to show that, for the non-trivial rules r1 and 73, the

head determines the body in ground(R).

We must also show that no two facts produced by different rules unify; this follows because
different rule heads do not unify. From Theorem 8.1, it follows that this program is subsumption-

free.

Note that although our sufficient condition deals with ground(R), it allows us to show
subsumption-freedom of programs that generate non-ground tuples, as in this example. (The
given program generates all possible tuples in append and reverse; to consider the behaviour
when it is used to reverse a given list, we could consider the program obtained by the Magic

Templates transformation [16].) O

Example 8.2 The following example illustrates that the technique is equally applicable to

programs containing mutual recursion:
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rl:even(X) 1= plus(Y,1,X),o0dd(Y).
72 : even(0).
r3:o0dd(X) : —  plus(Y,1,X),even(Y).
From the dependency plus,, pluss — plusy, and the axioms for FDs, we can show that‘ the
head determines the body in ground(R) for each rule. Further, the first rule cannot generate
even(0), and so no fact can be generated by two different rules. Thus, the conditions of the

previous theorem are satisfied, and it follows that the program is subsumption-free. O

9 Discussion of the Sufficient Condition

Theorem 8.1 describes a sufficient condition for subsumption-freedom, and is one of our main
results. While this theorem is quite powerful, as we have seen, it is worth attempting to develop
other sufficient conditions that either generalize or complement it. The following example
demonstrates that there are some quite simple programs that cannot be determined to be

subsumption-free by using Theorem 8.1.

Example 9.1 The sufficient condition for subsumption-freedom that we have presented does
not utilize FDs over non-ground relations. Consequently, it might be that dependencies hold
over GC and R that could allow us to establish this property (using more powerful sufficient
conditions), but such a set of FDs does not hold over the ground counterparts. Consider the

following program:
qU) : = s(U,V).

s(X,Y).
The dependency s; — s holds only on GC, not M. Thus, we can see that the program is

subsumption-free (since the above dependency allows us to show that the head determines the
body in the R relation corresponding to the first relation), using Theorem 6.1. However, our

sufficient condition for subsumption-freedom (Theorem 8.1) cannot establish this. O

From an examination of Theorems 6.2 and 8.1, it is natural to consider whether simply
replacing the second condition of Theorem 8.1 by the corresponding condition on R would
yield a more powerful sufficient condition. Unfortunately the condition is no longer sufficient.

as the next example shows.
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Example 9.2 Consider the program P:
o X,Y) : =  p(X,Y,Z).
p(U,V,5).

p(U, f(W),6).
P is not subsumption-free since the facts ¢(U, V) and ¢(U, f(W)) are generated, and the former

subsumes the latter. However the head determines the body in the relation R for the first rule,

and so the proposed condition would (incorrectly) infer that P is subsumption-free. O

The examples suggest that although we need to develop stronger sufficient conditions, rea-
soning with GC and R in addition to their ground counterparts, their development is not
straightforward. However the techniques we have developed for establishing FDs over non-

ground relations provide a starting point.

10 Conclusions and Future Work

We have studied bottom-up fixpoint evaluation techniques for logic programs and identified
some important properties that permit novel optimizations. We have developed a framework
for reasoning about properties like subsumption-freedom by associating relations with rules of
a logic program, extended the notion of functional dependencies to reason over such relations,
and presented methods for establishing such functional dependencies. In particular, we have
obtained a testable sufficient condition for subsumption»ﬁeedom that is powerful enough to

deal with a class of logic programs that can compute all partial recursive functions.

This work raises a number of issues that need further study. The foremost problem is to
develop stronger suffient conditions for detecting subsumption-freedom and duplicate-freedom.
The finite forest and finite subsumption properties present a more difficult task; we must
formulate characterizations that are amenable to efficient approximation, and then develop

sufficient conditions from them.

On a different note, given two programs with property P, what properties can be guaranteed
for the union of the two programs? In general, neither duplicate-freedom nor the finite forest
property is preserved. Under what conditions on the two programs can we guarantee that some
property is preserved? If not, how do we utilize the properties of the individual programs in

evaluating the fixpoint of the union? If a program has a property P, what can we say about
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the program obtained by applying various program transformations such as Magic Sets [4, 16]?

The optimization of fixpoint evaluation is critical to the efficiency of the bottom-up approach
to logic program evaluation. We believe that the results in this paper have practical and

theoretical significance, and point to an important new direction for further research.
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