THE MULTI-PROCEDURE EQUIVALENCE THEOREM

by

David Binkley, Susan Horwitz and Thomas Reps

Computer Sciences Technical Report #890

November 1989






The Multi-Procedure Equivalence Theorem

DAVID BINKLEY, SUSAN HORWITZ, and THOMAS REPS
University of Wisconsin — Madison

Program dependence graphs have been used in program optimization, vectorization, and parallelization. They have
also been used as the internal representation for programs in programming environments, as well as for automatically
merging program variants.

This paper concerns the question of whether program dependence graphs are *adequate” as a program representa-
tion. Previous results on the adequacy of program dependence graphs have been limited to a language without pro-
cedures and procedure calls. Our main result is a theorem that extends previous results to a language with procedures
and procedure calls. The theorem shows that if the program dependence graphs of two programs are isomorphic then
the programs are strongly equivalent.

CR Categories and Subject Descriptors: D.3.3 [Programming Languages): Language Constructs — control struc-
tures, procedures, functions, and subroutines; D.3.4 [Programming Languages]: Processors — compilers, optimiza-
tion; E.1 [Data]: Data Swuctures — graphs, trees

General Terms: Theory

Additional Key Words and Phrases: activation tree, aliasing, control dependence, control-flow graph, data dependence,
data-flow analysis, program dependence graph, strong equivalence, system dependence graph

1. INTRODUCTION

Dependence graph representations of programs have been used in program optimization, vectorization, and
parallelization [Kuck72, Towle76, Kuck78,Kuck81], as the internal representation for programs in a
language-based programming environment [Ottenstein84], and for automatic program integration
[Horwitz88]. The semantic equivalence of programs with isomorphic program dependence graphs was
first demonstrated in [Horwitz88a), the main result of which was the proof of the following theorem:

THEOREM. (EQUIVALENCE THEOREM). If P and Q are programs with isomorphic program dependence
graphs, then for any initial state ©, either both P and Q diverge when initiated on &, or both halt with the
same final state.

Restated in the contrapositive the theorem reads: Inequivalent programs have non-isomorphic program
dependence graphs.

The language treated by Horwitz et al. contains scalar variables, assignment statements, conditional
statements, and while-loops. This paper extends the Equivalence Theorem of [Horwitz88a] to the Multi-
Procedure Equivalence Theorem, which applies to programs that include procedures and procedure calls.
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To distinguish between the more limited language of [Horwitz88a] and the language treated in this paper,
we call programs with procedures and procedure calls “systems”. The graphs used to represent systems are
called system dependence graphs. We prove the semantic equivalence of systems with isomorphic system
dependence graphs by reducing this question to the question of the semantic equivalence of programs with
isomorphic program dependence graphs.

The proof proceeds as follows: Given systems S and T with isomorphic system dependence graphs, when
S is initiated on an arbitrary initial state G, either S diverges or S terminates. In the case that § diverges, we
show Lhat T also diverges. In the case that § terminates, we show that S and T can be transformed into pro-
grams Sand T (with no procedures or procedure calls) such that when initiated on state o, S and T produce
the same final states as S and T respectwely, and § and T have isomorphic program dependence graphs.
By the Equivalence Theorem, S and T are semantically equivalent, from which it follows that systems §
and T are also semantically equivalent.

The proof relies on two lemmas, the Expansion Lemma and the Flattening Lemma. The Expansion
Lemma demonstrates that, given systems S and T with isomorphic system dependence graphs, “in-line”
expansion of corresponding procedure call statements produces systems S° and T’ such that (1) §’ is
semantically equivalent to S, (2) T” is semantically equivalent to T, and (3) the system dependence graphs
of §’ and T’ are isomorphic. Fora language without recursion, the Expansion Lemma alone is sufficient to
show the existence of programs S and T as described above, so that the Multi-Procedure Equivalence
Theorem follows from the Equivalence Theorem.

To prove the Multi-Procedure Equivalence Theorem for a language with recursion, we consider an arbi-
trary initial state & on which execution of system S terminates. Because S terminates, the number of pro-
cedure calls made during its execution is finite. The Flattening Lemma proves the existence of a “flatten-
ing” operation such that Flatten(S, o) is a system that, when initiated on state o, makes no procedure calls
and produces the same final state as does system S when initiated on 6. The flattening operation involves a
sequence of call-statement expansions that remove executed call statements. The Flattemng Lemma also
proves that applying this sequence of expansions to system T produces a system, T, such that T and
Flatten(S, ¢) have isomorphic system dependence graphs. The final step in the proof of the Multi-
Procedure Eqmvalence Theorem is to show that it is possible to transform systems Flatten(S, ) and T to
programs S and T with the properties described above.

The remainder of the paper is organized as follows. Section 2 summarizes the definition of the system
dependence graph given in [Horwitz90]. Section 3 states and proves the Multi-Procedure Equivalence
Theorem. Section 4 discusses related work.

2. SYSTEMS AND SYSTEM DEPENDENCE GRAPHS

A system consists of a main program and a set of auxiliary procedures (we assume that in a system all
called procedures exist). Systems are written in a language with scalar variables, assignment statements,
conditional statements, call statements, while loops, and a restricted kind of “output statement” called an
end statement. An end statement, which can only appear at the end of the main program, lists zero or more
variables; when execution terminates, only those variables will have values in the final state. Intuitively,
the variables named by the end statement are those whose final values are of interest to the programmer.

We assume that all parameters are passed using call-by-reference parameter passing. The minor adapta-
tions needed to handle call-by-value and call-by-value-result are straightforward. Call-by-reference
parameter passing is the most interesting of the three because it introduces the possibility of aliasing. We




also assume that systems contain no global variables; systems with global variables can be transformed into
semantically equivalent systems without global variables by converting global variables into additional
reference parameters.

2.1. The System Dependence Graph

This section summarizes the definition of system dependence graphs given in [Horwitz80]. A system
dependence graph includes a program dependence graph, which represents the system’s main program,
and a collection of procedure dependence graphs, which represent the system’s auxiliary procedures (both
program dependence graphs and procedure dependence graphs will be referred to as PDGs when the dis-
tinction between the two is irrelevant). PDGs are connected to form the system dependence graph by inter-
procedural dependence edges that represent dependences between a call site and the called procedure.

One of our goals in designing the system dependence graph is that the graph should consist of a straight-
forward connection of the program dependence graph and procedure dependence graphs. By “straightfor-
ward connection”, we mean that the endpoints of interprocedural dependence edges should be the vertices
associated with call sites and procedure entry, rather than arbitrary vertices in the calling and called pro-
cedures. To achieve this goal the system dependence graph models the following non-standard, two-stage
mechanism for run-time parameter passing. When procedure P calls procedure Q, parameter addresses are
transferred from P to Q by means of intermediate temporary variables. A different set of temporary vari-
ables is used when Q returns to transfer values back to P. Before the call, P copies the addresses of actual
parameters into the call temporaries; procedure Q then initializes formal parameters from these tem-
poraries. Occurrences of formal parameters in procedure Q are implicitly dereferenced. Before returning,
Q copies return values into the return temporaries, from which P retrieves them.

The vertices used to represent a call statement in a PDG are determined from interprocedural summary
information [Banning79]. Two kinds of interprocedural summary information are determined for each pro-
cedure P:

GMOD (P)
the set of formal parameters that might be modified by P itself or by a procedure (transitively) called
from P.

GREF (P)
the set of formal parameters that might be referenced by P itself or by a procedure (transitively)
called from P.

The program dependence graph for the main program of system § contains the following vertices:

1)  adistinguished entry vertex labeled “Enter Main™;

2)  an initial-definition vertex labeled “x :=InitialState (x)”, for each variable x in the main program of
system S that may be referenced before being defined;

3)  afinal-use vertex labeled “FinalUse(x)” for each variable x appearing in the end statement;

4)  avertex representing each non-call statement and control predicate;

5)  for each call statement of the form “call P (...)”,
a)  a call-site vertex (which is considered a predicate vertex that always evaluates to true — see

below),

b)  an actual-in vertex labeled “f,, := AddrOf (p)”, for each actual parameter p corresponding to



formal parameter f € GMOD (P)v GREF (P), and
¢)  an actual-out vertex labeled “p :=f,,,”, for each actual parameter p corresponding to formal
parameter f€ GMOD (P).

The procedure dependence graph for a procedure P contains the same vertices as a program dependence
graph except:

1) the entry vertex is labeled “Enter P”;

2)  initial-definition vertices are labeled *“x :=0", where x is a variable local to p;?

3)  there are no final-use vertices;

4) there is a formal-in vertex labeled “f = f,”, for each formal parameter f € GMOD (P)w GREF (P);
and

5) there is a formal-out vertex labeled “f,,, := f”, for each formal parameter f€ GMOD (P).

The edges of a PDG represent dependences among procedure components.> An edge represents either a
control dependence or a data dependence. The source of a control dependence edge is always the entry
vertex, a call site vertex or a predicate vertex. A control dependence exists between v, and v,, denoted by
V1 —>, v, if v, occurs on every control-flow graph path from v, to the end of the control-flow graph along
one branch emanating from v; but not the other. A control dependence edge v —>, v, is labeled by the
truth value of the branch in which v, always occurs.

A method for determining control dependence edges for arbitrary programs is given in [Ferrante87];
however, because we are assuming that programs include only assignment, conditional, call, and while
statements, control dependence edges can be determined in a much simpler fashion. For the language
under consideration here, procedure P’s PDG contains a control dependence edge from vertex v, to vertex
v, iff one of the following holds:

1) v, is the entry vertex, and v, represents a component of P that is not nested within any loop or con-
ditional; these edges are labeled true.

2) v, is the entry vertex and v, represents either a formal-in, formal-out, initial-definition, or final-use
vertex; these edges are labeled true.

3) v, is a call-site vertex and v, represents either an actual-in vertex or an actual-out vertex associated
with the call statement; these edges are labeled true.

4) v, represents a control predicate, and v, represents a component of P immediately nested within the
loop or conditional whose predicate is represented by v. If v, is the predicate of a while-loop, the
edge v, —>, v, is labeled true; if v, is the predicate of a conditional statement, the edge v, —. v
is labeled true or false according to whether v, occurs in the then branch or the else breach, respec-
tively.*

! By definition parameters in GMOD (P) are only potentially modified. Thus for x € GMOD (P) procedure P may retum the initial
value of x. For this reason, a PDG includes an actual-in vertex (part 5b) for each parameter in GMOD (P).

2 We assume that on entry to a procedure all the local variables of the procedure that may be referenced before being defined are ini-
tialized to zero.

3 In the rest of this section, we use the term “procedure” as a generic term referring to both the main program and the auxiliary pro-
cedures.

4 In other definitions that have been given for control dependence edges, there is an edge from the predicate of a while statement to it-
self labeled true. By including the additional edge, the predicate’s outgoing true edges consist of every program element that is
guaranteed to be executed (eventually, assuming all loops and procedures calls terminate) when the predicate evaluates to true. Our
control dependence edges are technically the forward control dependence edges defined in [Cytron89).




There is a data dependence edge from vertex v, to vertex v, if reversing the relative order of the com-
ponents represented by v, and v, may alter the program’s computation. In this paper, PDGs contain two
kinds of data-dependence edges, representing flow dependences and def-order dependences. The data
dependence edges of a PDG are computed from a control-flow graph representation of the procedure.’

A PDG contains a flow dependence edge from vertex v, to vertex v, (denoted by v, —>v,) iff all of
the following hold:

1) v, is a vertex that defines variable x.

2) v, isa vertex that references variable y or is an actual-in vertex that references the address of y.8

3)  xand y are potential aliases [Banning79, Cooper89].

4)  Control can reach v, after v, via a path in the control-flow graph along which there is no intervening
definition of x or y.

Note that clause (4) does not exclude there being definitions of other variables that are potential aliases of x
or y along the path from v, to v,. An assignment to a variable z along the path from v, to v, only over-
writes the contents of the memory location written by v, if x and z refer to the same memory location. If z
is a potential alias of x, then there is only a possibility that x and z refer to the same memory location; thus,
an assignment to z does not necessarily over-write the memory location written by v, and it may be possi-
ble for v, to read a value written by v;.

Flow dependences can be further classified as loop-carried or loop-independent. A flow dependence
vy —>y v, is carried by loop L, denoted by v; —>,. ¢y v, if in addition to 1), 2), 3), and 4) above, the fol-
lowing also hold:

5)  There is a path in the control-flow graph that both satisfies the conditions of 4) above and includes a
backedge to the predicate of loop L.
6) Bothv, and v, are enclosed in loop L.

A flow dependence v, —>;v, is loop-independent, denoted by v; —>;; v, if in addition to 1), 2), 3), and 4)
above, there is a path in the control-flow graph that satisfies 4) above and includes no backedge to the
predicate of a loop that encloses both v, and v,. Itis possible to have both v; ~>;. ) v, and vy —>; v,.

A PDG contains a def-order dependence edge from vertex v, to vertex v, iff all of the following hold:

1) v, and v, define variables x, and x,, respectively.

2)  x; and x, are potential aliases.

3) v, and v, are in the same branch of any conditional statement that encloses both of them.
4)  There exists a witness vertex vi such that vy —>,v3 and vy —>vs.

5)  v; occurs to the left of v, in the procedure’s abstract syntax tree.

A def-order dependence edge from v, to v, with witness v3 is denoted by v =>4, (v,) V2.

Note that a PDG is a multi-graph (i.e., it may have more than one edge of a given kind between two ver-
tices). When there is more than one loop-carried flow dependence edge between two vertices, each is
labeled by a different loop that carries the dependence. When there is more than one def-order edge
between two vertices, each is labeled by a different witness vertex.

¥ A description of the control-flow graphs used to compute data dependence edges appears in Section 2.2.

6 Recall our goal of having the endpoints of interprocedural dependence edges be either vertices associated with a call site or vertices
associated with procedure entry. By treating the actual-in vertex for parameter y as a use of y, this vertex, rather than vertices that
represent uses of the corresponding formal parameter, becomes the target for flow dependences from definitions of x in the calling pro-
cedure.



Connecting the PDGs to form the system dependence graph is straightforward, involving the addition of
three kinds of interprocedural edges. Call edges represent the control dependence of a called procedure on
the corresponding call site; parameter-in and parameter-out edges represent data dependences between
formal and actual parameters. Interprocedural dependence edges connect the call site, actual-in, and
actual-out vertices representing a call to procedure P with the entry, formal-in, and formal-out vertices,
respectively, of procedure P’s PDG. A system dependence graph has an interprocedural dependence edge
from v to v, iff one of the following holds:

1) v, is acall-site vertex and v, is the called procedure’s entry vertex; this edge is a call edge.

2) v, is an actual-in vertex labeled “f;, :=AddrOf (p)” and v, is a formal-in vertex labeled “f:=f;,":
this edge is a parameter-in edge.

3) v, is a formal-out vertex labeled “f,, :=f" and v, is an actual-out vertex labeled “p = o™y this
edge is a parameter-out edge.

Example. Figure 1 shows a program to sum the numbers from 1 to N and its system dependence graph.

2.2. Control-flow Graphs

Understanding the proof of the Multi-Procedural Equivalence Theorem (in particular the Path Blocking
Lemma and the Expansion Lemma) requires having a more complete understanding of the control-flow
graphs that represent the procedures of a system. A procedure’s control-flow graph contains a unique start
node, a node representing each assignment statement, call statement, if predicate, and while predicate in the
procedure, and a sequence of assignment nodes representing each call statement’s parameters. This
sequence is composed of nodes that represent the copying of actual parameter addresses to call tem-
poraries, followed by nodes that represent the assignment of return temporaries to actual parameters. The
actual-in and actual-out vertices representing a call statement in a PDG correspond directly to the parame-
ter nodes representing the call statement in the procedure’s control-flow graph.

In addition, a procedure’s control-flow graph starts with a sequence of formal-in nodes that copy values
from call temporaries to formal parameters, and ends with a sequence of formal-out nodes that copy values
from formal parameters to return temporaries. The formal-in and formal-out vertices in a PDG correspond
directly to the formal-in and formal-out nodes, respectively, of a procedure’s control-flow graph.

Example. Let procedure P have two formal parameters x and y. Assume that GMOD (P)={x} and
GREF (P)={x, y} (recall that which values are transferred to and from a called procedure is determined
from interprocedural summary information [Banning79]). The statement “call P(a, b)” is represented by
the four node sequence:

>

The first two nodes are actual-in nodes; the last node is the only actual-out node.




program procedure Add (x, y)
sum =0, x=x+Yy
i=1; return
while i <N do

call Add (sum, i);
callAdd (i, 1)
od
end(sum, i)

N =InitialState (N)

Edge Key

T
e CONLIOL

— = flow

e}z loop-carried flow

JRR = def-order

- - — D interpro-
cedural

Figure 1. An example system and its system dependence graph. The boldface arrows represent control dependences,
dotted arrows represent def-order dependences, solid arrows represent loop-independent flow dependences, solid ar-
rows with a hash mark represent loop-carried flow dependences, and dashed arrows represent interprocedural depen-
dences. Note that there is no formal-out vertex for parameter y in procedure Add because y is not in GMOD (Add).



3. THE MULTI-PROCEDURE EQUIVALENCE THEOREM

The following definitions are used in the statement and proof of the Multi-Procedure Equivalence
Theorem.

Definition. Two systems S and T are strongly equivalent iff for any state o, either S and T both diverge
when initiated on & or they both halt with the same final state’, If § and T are not strongly equivalent, we
say they are inequivalent.

Definition. A region is either the list of top level statements in a procedure or the list of statements
immediately nested within a conditional statement or while-loop.

Definition. Two systems, S and T have isomorphic system dependence graphs (written Gs= Gr) iff the
vertices of Gs and G have identical contents (labels) and there exists a 1-1 correspondence between the
edge sets of Gg and Gr.

When systems S and T have isomorphic system dependence graphs, the statements in each region in sys-
tem T are a permutation of the statements in the corresponding region in system § such that the reordering
in T preserves the dependence edges in Gy.

Qur principal result is the following theorem:

THEOREM. (MULTI-PROCEDURE EQUIVALENCE THEOREM). If S and T are systems with isomorphic sys-
tem dependence graphs then S and T are strongly equivalent.

This theorem is an extension of the (single procedure) Equivalence Theorem [Horwitz88a], which states
that two programs (without procedures or procedure calls) that have isomorphic program dependence
graphs are strongly equivalent.

To prove the Multi-Procedure Equivalence Theorem we reduce the question of system-dependence-
graph equivalence to that of program-dependence-graph equivalence. For terminating executions of a sys-
tem this is done by rewriting the system into an equivalent program without call statements. The correct-
ness of the rewriting is demonstrated by the Expansion Lemma, the Aliasing Information Lemma, the Path
Blocking L.emma, and the Flattening Lemma.

The Expansion Lemma demonstrates two properties: (1) given two systems with isomorphic system
dependence graphs, the “in-line” expansions of corresponding procedure call stateraents in the main pro-
grams of the two systems produce systems with isomorphic system dependence graphs; and (2) if S” is the
system resulting from the expansion of a call site in system S then § and S’ are strongly equivalent.

The Aliasing Information Lemma is used to prove part (1) of the Expansion Lemma. The Aliasing
Information Lemma relates the procedure dependence graphs of two procedures under different sets of
aliases. In particular, if two procedures have isomorphic procedure dependence graphs given some set of
aliases, then the two procedures will continue to have isomorphic procedure dependence graphs given a
subset of the set of aliases. The Path Blocking Lemma is also used to prove part (1) of the Expansion
Lemma. The Path Blocking Lemma relates paths in the control-flow graph for the main program of system
S with paths in the control-flow graph for the main program of system T. If one of a particular set of
definitions occurs on every path from a to b in the control-flow graph for the main program of §, the Path
Blocking Lemma asserts that one of the corresponding set of definitions occurs on every path from the
node corresponding to a to the node corresponding to b in the control-flow graph for the main program of
T. '

7 Recall that the final state is defined only on variables that occur in the end statement of the main program.




The Flatiening Lemma demonstrates that for an arbitrary fixed initial state ¢ on which system § ter-
minates, a system S can be constructed by expanding call sites in § such that § and S are strongly
equivalent, and S makes no procedure calls when initiated on ©. The lemma also demonstrates that if sys-
terns S and T have isomorphic system dependence graphs and T is constructed by a parallel expansion of T,
then S and T have isomorphic system dependence graphs.

To prove the Multi-Procedure Equivalence Theorem we argue by cases depending on whether S ter-
minates when initiated on an arbitrary state.

(1) If § terminates, the Flattening Lemma is used to prove the existence of two systems strongly
equivalent to § and T that are in the language used by Horwitz et al (i.e. that contain only main pro-
grams and no procedure calls) and that have isomorphic program dependence graphs. This reduces
the question of system-dependence-graph equivalence to that of program-dependence-graph
equivalence.

(2) If S diverges, we show that T also diverges.

3.1. The Aliasing Information Lemma

Reference parameters introduce the possibility of aliasing into a system. Variables x and y of procedure P
are potential aliases if they both refer to the same memory location during some execution of procedure P.
The alias information associated with procedure P is the set of pairs (x, y) such that x and y are potential
aliases in P. Note that the presence of the pair (x, y) in the alias information for procedure P implies only
that there potentially exists an execution of procedure P in which x and y both refer to the same memory
location. It does not imply that x and y must refer to the same memory location in all executions of pro-
cedure P [Banning79, Cooper89].

Our first lemma concerns the procedure dependence graphs that would be constructed for two pro-
cedures given different sets of aliasing information. Consider two procedures P and Q that have iso-
morphic PDGs given some set of alias information A. The lemma asserts that if aliases are removed from
A, procedures P and Q will continue to have isomorphic procedure dependence graphs. A corollary of the
Aliasing Information Lemma states that adding aliases to the alias information for a procedure does not
remove edges from the procedure’s PDG.

LEMMA. (ALIASING INFORMATION LEMMA). If procedures P and Q have isomorphic procedure depen-

dence graphs under alias information A, and A’ is a subset of A, then procedures P and Q have isomorphic
procedure dependence graphs under alias information A’.

PROOF. Let y represent the isomorphism between PDGp and PDGg, under alias information A.
Changes in alias information do not affect the vertex sets of PDGp and PDGg. We will show that for
every edge @ —> b in PDGp under A’ there is an edge y(a) —> y(b) in PDGg under A” (by symmetry, for
every edge y(a) —> y(b) in PDGy, there is an edge a —> b in PDGp).

Control Edges.

Aliasing does not affect the nesting structure of a program, therefore PDGp and PDGg have iso-
morphic control dependence subgraphs under A’

Flow Dependence Edges.
We must show that, for every flow-dependence edge a —>¢b in PDGp under A’, there is an edge
y(a) —>;y(b) in PDGg under A’. First we show that the edge a —>,b is also in PDGp under A. In
this case (because PDGp = PDGy under A), the edge y(a) —;y(b) is in PDG under A; in a second
step we show that this implies that the edge w(a) —>,y(b) is also in PDGg under A”. Note that, by
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the definition of flow-dependence edges, vertex a represents the definition of a variable x, vertex b
represents the use of a variable y, and (x, y) isin A"

1.  The presence of the edge a —>;b in PDGp under A" means that there is a path in P’s control-flow
graph from vertex a to vertex b, along which neither x nor y is defined. Adding aliases to A’ (chang-
ing from A’ to A) does not change the existence of this path; since (x, y) is in 4, there must be a
flow-dependence edge a —¢b in PDGp under A.

2. Because PDGp=~PDG under A, the flow-dependence edge y(a) —>,y(b) is in PDGg under A.
The presence of this edge means that there is a path in Qs control-flow graph from y(a) to y(b)
along which neither x nor y is defined. Removing aliases from A (changing from A to A”) does not
change the existence of this path; since (x, y) is in A’, there must be an edge y(a) —>ry(b) in PDGg
under A”.

Def-Order Edges.
We must show that, for every def-order edge a —>4,y b in PDGp under A’, there is an edge
W(@) =0 yey W(b) in PDGy under A’. The proof is similar to the one for flow-dependence edges.
Again, by the definition of def-order edges, vertex a represents the definition of a variable x, vertex b
represents the definition of a variable y, vertex ¢ represents the use of a variable z, and the alias pairs
(x, ), (x, z),and (y, z) must all be in A",

1.  The presence of the def-order edge a —>4 (b in PDGp under A’ means that there are flow-
dependence edges a —>;c and b —>¢c in PDGp under A’. By the argument given above, these
flow-dependence edges are also in PDGp under A. All alias pairs in A” are also in A, and changes in
alias information do not affect the relative positions of vertices a and b; thus, the def-order edge
@ 4,y b must be in PDGp under A.

2. Because PDGp=PDG under A, the def-order edge W(a) —>a (y(ey W(b) is in PDGg under A. By
the flow-dependence-edge argument the edges y(a) —>,y(c) and y(b) —>,w(c) are in PDGy under
A’. The change in alias information from A to A’ does not affect the relative positions of y(a) and
y(b); thus, the def-order edge W(a) —> 4 () Y(b) must be in PDGg under A,

Thus each edge in PDGp under alias information A’ has a corresponding edge in PDGg under A”. By
symmetry, procedures P and Q have isomorphic procedure dependence graphs under A”. [

COROLLARY. If @ —> b is in PDGp under alias information A’, and A’ is a subset of A, then a —> b is in
PDGp under A.

PROOF. The corollary follows from the control edge argument and the first cases of the flow and def-
order edge arguments in the proof of the preceding lemma. ]

3.2. The Path Blocking Lemma

The Path Blocking Lemma relates control-flow graph paths for procedures with isomorphic PDGs. In par-
ticular, if P and Q have isomorphic PDGs, the lemma provides the conditions under which, if all paths from
node a to node b in P’s control-flow graph are “blocked” by a set of definitions D, then all paths from the
node that corresponds to a to the node that corresponds to b in @’s control-flow graph are blocked by the
corresponding set of definitions. (A set of definitions blocks all control-flow graph paths from a to b if at
least one of the definitions occurs on every path from a to b.)

The Path Blocking Lemma relies on the Statement Blocking Lemma, which relates control-flow graph
paths through individual statements or regions. The reference to “corresponding statements” of procedures
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P and Q (with isomorphic PDGs) in the Statement Blocking Lemma refers to the correspondence defined
by the isomorphism for individual statements, with the obvious extension for regions.

LEMMA. (STATEMENT BLOCKING LEMMA). Assume procedures P and Q have isomorphic procedure
dependence graphs. Let S be a statement or region in P, and S’ be the corresponding statement or region
in Q. If a set of definitions blocks all control-flow graph paths from the beginning of S to the end of S, then
the corresponding set of definitions in Q blocks all paths from the beginning of S’ to the end of §’.

PROOF. The proof is by structural induction. First, we note that § can be neither a while-loop nor a list
of while-loops: Because a while-loop may execute zero times, there is a path from the beginning of a
while-loop to its end that includes only the loop predicate. It is not possible for a definition to block this
path; thus § cannot be a while-loop. (Similarly, there is a path from the beginning of a list of while-loops
to the end of the list that includes only loop predicates; thus S cannot be a list of while-loops.) Now we
present cases for the other four statement types.

Case l. § is an assignment statement. The path from the beginning of S to the end of S contains a single
node, therefore a single definition blocks all paths through S. The isomorphism between PDGp and PDGg
implies that the corresponding definition blocks all paths through §*.,

Case 2. § is a conditional statement. For the set of definitions to block all paths through §, they must
block all paths through the true branch of § and all paths through the false branch of S. By the inductive
hypothesis all paths through the true branch of S’ and all paths through the false branch of S’ are blocked
by the corresponding set of definitions. Because all paths through S’ must contain either the true branch or
the false branch of S*, the set of definitions in Q blocks all paths through §’.

Case 3. S is a call statement. There is a single path through the control-flow graph representation of §.
Therefore a single definition is sufficient to block all paths through statement S. The isomorphism between
PDGp and PDG, implies that the corresponding definition in Q blocks all paths through §”.

Case 4. § is a region (statement list). For all paths through a list of statements to be blocked by a set of
definitions it is necessary and sufficient that the set of definitions block all paths through one of the non-
- while-loop statements in the statement list. Therefore, the inductive hypothesis implies that the set of
corresponding definitions in Q block all paths through §°.

We conclude that all paths from the beginning of S’ to the end of S’ are blocked. [

The Statement Blocking Lemma deals with a path from the beginning of a statement to the end of the
same statement. The Path Blocking Lemma generalizes the Statement Blocking Lemma to paths between
two nodes that are not necessarily at the beginning and end of some statement. In the Path Blocking
Lemma, however, it is required that there exist a flow dependence edge from the vertex at the beginning of
the path to the vertex at the end of the path.

LEMMA. (PATH BLOCKING LEMMA). Assume procedures P and Q have isomorphic procedure depen-
dence graphs; let y represent this isomorphism. If procedure P contains a definition a, of a variable x, and
a use b such that (1) a —>¢b, and (2) every control-flow graph path from a to b includes a definition d; that
defines an alias of x, such that d; —>¢b, then in Q's control-flow graph, every path from y(a) to y(b) con-
tains a definition y(d;).

PROOF (Sketch). Let D be the set of definitions d; in procedure P. For D to block all paths from a to b, it
is necessary that, on every path from a to b, there is some statement S; such that D blocks all paths from the
beginning of §; to the end of §;. It can be shown (using cases on the relationship between a and b in the
control-dependence subgraph of procedure P’s PDG) that in fact if D blocks all paths from a to b, there is a
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single statement S that appears on all paths from a to b such that D blocks all paths from the beginning of §
to the end of § (this part of the proof is omitted for brevity).

The Statement Blocking Lemma ensures that the set of definitions (D) in Q blocks all paths through §*
(the statement corresponding to S). It can be shown (again using the control dependence subgraph of pro-
cedure P’s PDG and the fact that the flow edges y(a) —>,y(b) and, Vd € D, y(d) —>,y(b), imply a def-
order edge (@) —>a ey W(di) OF W(d;) =y Y(a) for some i) that S occurs on all paths from y(a)
to w(b). Thus, y(D) blocks all paths from y(a) to y(b). O

3.3. Expansion

The expansion of the statement “call P(...)” in the main program replaces the call statement with a list of
statements constructed from the body of procedure P. To avoid naming conflicts, variables in procedure P
whose names conflict with variables in the main program are renamed so that the same name is not used by
both the caller and the callee. Renaming is also used to account for any aliasing introduced by the call
statement: If the statement “call P(...)” aliases two or more formal parameters, then the same (new) name is

used in place of all aliased formal parameters. (Recall our assumption that systems contain no global vari-
ables.)

The statement list that replaces a call statement is composed of four sections: Transfer-in, local initiali-
zation, body, and transfer-out. Transfer-in statements transfer values from actual parameters to formal
parameters. This is accomplished by including an assignment statement of the form “(possibly renamed)
formal parameter := actual parameter” for each formal parameter in GMOD (P)u GREF (P). Local initial-
ization statements initialize local variables; there is one local initialization statement of the form *“(possibly
renamed) local variable := 0” for each local variable of P that may be referenced before being defined. The
body statements are the statements from the body of procedure P (with local variables and formal parame-
ters appropriately renamed). Transfer-out statements are assignment statements that transfer values back
the caller’s name space. There is a transfer-out statement for each variable in GMOD (P).

There is a subtle but important difference between the transfer-in and transfer-out statements introduced
in an expansion and the actual-in and actual-out nodes in the control-flow graph used to compute data
dependences. Actual-in and actual-out nodes use two different names for each formial parameter (e.g. for
parameter x, x;, and x,,) so that no dependences exist between actual-in and actual-out vertices. For a
given formal parameter x, the name x is used in both the transfer-in and transfer-out statements.

Example. Figure 2(a) shows a system composed of a main program and a single recursive procedure.
Figure 2(b) shows the system after the call statement in the main program has been expanded. The expan-
sion is a rewriting of the program’s text. The fact that the call to procedure P represents an infinite recur-
sion does not affect the expansion. Figure 2(c) classifies each of the expanded program’s statements as

either old (those that exist in the system before the expansion), transfer-in, local initialization, body, or
transfer-out.

3.3.1. The Expansion Lemma

LEMMA. (EXPANSION LEMMA). Let S and T be systems with isomorphic system dependence graphs; let ¢
represent the isomorphism. If §' is the system constructed by expanding one call site in the main program
of S, and T’ is the system constructed by expanding the corresponding call site in the main program of T,
then: (1) S and S’ are strongly equivalent; (2) T and T’ are strongly equivalent; and (3) there exists an iso-
morphism between G and Gy-.
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program program Statement Classification
a=1 a:=1 old
call P(a, b)
end x:=a transfer in
y=b transfer in
procedure P (x, y) a' =0 local initialization
local a
X =X4y body
X =x+y call P (a’, x) body
call P (a, x)
return a=x transfer out
end
procedure P (x, y)
local a
X =Xx+y old
call P(a, x) old
return
(@ - ®) ©)

Figure 2. The figure shows a simple system (a), and the system after expansion of the call site in the main program ®).
In (c) each of the new system’s statements is classified as one of old, transfer in, local initialization, body, or transfer
out.

PROOF. (1),(2). (Sketch). The standard execution of a procedure call using call-by-reference
parameter-passing copies into a new activation record the address of each actual parameter. The called
procedure then computes its results using the values associated with these addresses. The set
GMOD (P)u GREF (P) represents a safe approximation to the variables whose values are accessed by the
called procedure through the addresses placed in the activation record. The set GMOD (P) represents a
safe approximation to the variables defined by the called procedure through addresses placed in the activa-
tion record. Therefore, all that the statements of transfer-in and transfer-out do is make explicit the vari-
ables used and the results computed by the called procedure.

If the call statement introduces an alias between two formal parameters x and y then the address copied
into the activation record for x is the same as the address copied into the activation record for y. This map-
ping of two formal parameters to the same location is preserved in the expansion by renaming x and y to
the same new identifier, xy. The renaming also preserves the aliases both introduced and propagated by the
call statements occurring within the expanded procedure.

We conclude that systems S’ and 7 are strongly equivalent to systems S and T, respectively.

(3). For every procedure P in system S, the Aliasing Information Lemma ensures that P has isomorphic
PDGs in Gy and Gr-. We must demonstrate that the PDGs of the respective main programs of §” and 7"
are isomorphic and that Gs- and Gy~ have isomorphic call, parameter-in and parameter-out edges. We do
this by first demonstrating that each vertex in PDGyy;, of Gy has a corresponding vertex in PDGyygin Of
Gr. Second, we show that each call, parameter-in, and parameter-out edge in Gy has a corresponding
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edge in Gy and that each edge in PDGy, of Gy has a corresponding edge in PDGyyy, of Gp-. By sym-
metry, each vertex in PDGyy,;, of Gy has a corresponding vertex in PDGyy;, of Gg- and each edge of Gy
has a corresponding edge in Gg-; thus, there is an isomorphism between Gg- and Gr-.

Vertices

Assume that the call statement that was expanded in § is “call P(...)". We first demonstrate the
existence of a 1-1 mapping, ¥y, from the vertex set of G-, denoted by V(G ), into the vertex set of Gp.
We consider four possibilities for a vertex v € V(Gg): 1) v is in Gg, 2) v represents a body statement, 3) v
represents either a transfer-in or transfer-out statement, or 4) v represents a local initialization statement.

Case 1) v € V(Gy)
If ve V(Gs) then yw(v) € V(Gy). Since the only vertices removed by the expansion are those that
represent the expanded call statement and y(v) is not any of these, a corresponding vertex exists in
Gy,

Case 2) v represents a body statement
Vertex v represents a statement (possibly with renamed variables) from procedure P’s body. Thus v
is a copy of a vertex in PDGp of Gs. Since the expansion of the corresponding call statement in T
also includes procedure P’s body and the same renaming is done, there is a copy of y(v) in G-

Case 3) v represents either a transfer-in or transfer-out statement
By definition there is a 1-1 correspondence between the vertices that represent transfer-in (respec-
tively, transfer-out) statements in G- and the actual-in (actual-out) vertices of the expanded call site
in Gg. The same is true in Gy~ and Gy. By assumption there is a 1-1 mapping from the vertices of
Gs onto the vertices of Gy. Thus the composition of these three mappings yields a 1-1 mapping from
the vertices representing transfer-in (transfer-out) statements of S’ into the vertices representing
transfer-in (transfer-out) statements of 7”.

Case 4) v represents a local initialization statement
In both S and T the same set of local variables may be referenced before being defined in procedure
P. Therefore there is a 1-1 correspondence between the local initialization vertices in G- and Gy

Edges
We demonstrate that the edge sets are isomorphic by considering the four edge types separately.

Case (I). Interprocedural Dependence Edges.
Let a —>; b be an interprocedural dependence edge in Gg-. By definition, interprocedural depen-
dence edges connect corresponding pairs of vertices (actual-in vertices to formal-in vertices, formal-
out vertices to actual-out vertices, and call site vertices to procedure entry vertices). Therefore, there
is an interprocedural dependence edge y'o(a) —; y'o(b) in Gy corresponding to a —; b.
Let y'; represent the isomorphism between the interprocedural dependence edges of G- and Gp-.
Case (H). Control Dependence Edges.
Let e’€ E (Gs-) be a control dependence edge. (E(G) denotes the edge set of graph G.) We con-
sider two possibilities for e’.
Case 1) e’ € E(Gy)
The isomorphism between G and Gy implies y(e") € E (Gr). The expansion does not change
the nesting structure of statements; thus y(e’) € E (Gr).
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Case 2) e’ ¢ E(Gy)

The source of edge e’ is either the vertex w on which the expanded call statement was control
dependent, or a vertex that is a copy of a vertex in PDGp. In both cases, e” corresponds to an
edge e in PDGp. This correspondence is as follows: If the source of e” is w then the source of
e is procedure P’s entry vertex. If the target of e’ is a vertex representing a transfer-in or
transfer-out statement then the target of e is a formal-in or formal-out vertex, respectively. If
the target of e’ is a vertex that represents a local initialization statement then the target of e is
an initial definition vertex. Otherwise the end-points of e’ are copies of vertices from pro-
cedure P’s PDG. Edge e € E (Gy) therefore y(e) € E(Gr). In G- the expansion introduces a
copy of y(e) corresponding to e”.

Let ', represent the isomorphism between the control dependence edges of Gs- and G-

Case (III). Flow Dependence Edges.

To show that the PDGs for the main programs of §* and T’ have isomorphic flow dependence edges,
we classify flow dependence edges based on their end-points (Table 1 shows which end-point combi-
nations are possible). An edge is in one of two classes:

Class 1: | old — old, old —> transfer-in, transfer-out —> old, transfer-out —> transfer-in
Class 2: transfer-in —> body, transfer-in —> transfer-out, body —> body, body —> transfer-out,
local initialization —> body

We consider Class 1 and Class 2 edges separately. In each case assume e’ =a’—>b’ € E(Gs)
where a’ defines a variable x that is used at b (there is no aliasing in the main program). Let CFGs
denote the control-flow graph for the main program of system S and let s denote the call statement in
S that has been expanded in §’.

Case 1) ¢’ is in Class 1
For class 1 edges we first demonstrate that edge e’ corresponds to an edge
e=a—>¢be E(Gg). We do this by observing that the end-points of e’ correspond to vertices

b

a—b old  transferin locdl initialization body  transfer out
old 1 1 - - -
transfer in - - - 2 2

a | local initialization - - - 2 -
body - - - 2 2
transfer out 1 1 - -

“1” — Class 1 edges

“2" — Class 2 edges

“

— either by construction or by the use of renaming, an edge with these end points is not possible.

Table 1. Table 1 shows which end-point combinations are possible and which are not possible. For example,
old —>local initialization is not possible because, by construction, local initialization statements reference no vari-

ables; fransfer in —>transfer in is not possible because transfer in statements assign to variables in one name space
and reference variables from the other.



—16—-

a and b in Gy, and then demonstrating that an x-definition-free path exists from a to b in CFGy.
By assumption, edge e has a corresponding edge y(e) in Gr. The final step is to demonstrate
that there is an edge in Gy~ corresponding to y(e).

We demonstrate that e’ corresponds to e by showing that a assigns to x, b uses x, and there
exists an x-definition-free path from a to b. First consider the end-points of e’. If a’ represents
a transfer-out statement of §’, then a is an actual-out vertex in Gg. a assigns to x, because a
transfer-out statement assigns to the same variable as the corresponding actual-out vertex. If
b’ represents a transfer-in statement of S’, then b is an actual-in vertex in Gg. b references x,
because a transfer-in statement references the same variables as the corresponding actual-in
vertex. The remaining possibility is that @ or b represent old statements but old statement are
unchanged by the expansion. We conclude that a represents a definition of x and that b
represents a use of x. We must now demonstrate that there is an x-definition-free path in CFGg
from ato b.

Edge e’ implies the existence of an x-definition-free path p’ from a’ to b’ in CFGgy. If p’
does not contain any of the nodes representing the statements added by the expansion then p’
occurs in CFGg. Otherwise, the nodes added by the expansion can appear on p’ in one of two
places: (1) in the middle of p” but not at either end of p’, or (2) at either one or both ends of p’.
For (1) p’ is composed of five segments that contain nodes representing: (a) old statements, (b)
transfer-in statements, (¢) local initialization and body statements, (d) transfer-out statements,
and (e) old statements. For (2) p’ is composed of three (possibly empty) segments that contain
nodes representing: (f) transfer-out statements, (g) old statements, and (h) transfer-in state-
ments. These segments have corresponding segments in CFGg, thus there is a path in CFGg
corresponding to p’. The correspondence is as follows: (a), (¢), and (g) exist unchanged in
CFGg, (b) and (h) correspond to segments composed of actual-in nodes in CFGs, (d) and (f)
correspond to segments composed of actual-out nodes in CFGg, and (c) corresponds to a null
(empty) segment in CFGg. We now demonstrate that the path in CFGy is also x definition
free. Segments (a), (¢), and (g) are unchanged in CFGg-, therefore they are x-definition-free.
In CFG; (b) and (h) are composed of actual-in nodes. Because actual-in nodes assign to inter-
mediate temporary variables their existence on the path will not kill a definition of x. Finally,
in CFGg (d) and (f) are composed of actual-out nodes. Because actual-out nodes represent
assignments to the same variables as transfer-out statements and p” does not kill x, the actual-
out nodes on the path in CFG; do not kill x. The existence of an x-definition-free path from a
to b in CFGg implies there is an edge e =a —> ;b in E (Gy).

Gy is isomorphic to Gy, therefore there is an edge y(e) € E (Gr). This edge implies there is
an x-definition-free path p from y(a) to y(b) in CFGy. We demonstrate that an x-definition-
free path exists from y’y(a) to y(b) in CFGy-. If the path in CFGy does not contain any of
the nodes that represent the call statement corresponding to s then the same path occurs in
CFGy-. Otherwise, the nodes added by the expansion can appear on p in one of two places: (1)
in the middle of p but not at either end of p, or (2) at either one or both ends of p. For (1) p is
composed of four segments that contain the following: (a) nodes representing old statements,
(b) actual-in nodes, (c) actual-out nodes, and (d) nodes representing old statements. For (2) p
is composed of three (possibly empty) segments that contain the following: (e) actual-out
nodes, (f) nodes representing old statements, and (g) actual-in nodes. These segments have
corresponding segments in CFG, thus there is a path in CFGy- corresponding to p (for a path
containing (b) and (c) the corresponding path in CFGy- also includes nodes representing
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local-initialization, and body statements). The correspondence is as follows: (a), (d), and (f)
exist unchanged in CFGy-, (b) and (g) correspond to segments composed of nodes representing
transfer-in statements in CFGp, (c) and (e) correspond to segments composed of nodes
representing transfer-out statements in CFGy-. We now demonstrate that the path in CFGy is
also x definition free. Segments (a), (d), and (f) are unchanged in CFGy-, therefore they are x-
definition-free. In CFGy (b) and (g) are composed of nodes representing transfer-in state-
ments. Transfer-in as well as local-initialization, and body statements assign to variables in
procedure P’s name space. If P has a parameter or local variable named x, then that variable is
renamed as part of the expansion, therefore nodes representing transfer-in, local-initialization,
and body statements do not kill x. Finally, in CFGp (c) and (e) are composed of nodes
representing transfer-out nodes. Because transfer-out statements assign to the same variables
as actual-out nodes and p does not kill x, the nodes representing fransfer-out statements on the
path in CFG- do not kill x. The x-definition-free path from y’y(a) to y'o(b) implies there is
an edge ¥'o(a) —>¥'o(b) € E (Gr) that corresponds to e”.

Case 2) e’ is in Class 2
As in the proof of Case 1, we first show that e’ corresponds to an edge e =a —>;b € E (Gs).
By assumption, y(e) € E(Gr). Arguing by contradiction, we show that the expansion intro-
duces a corresponding edge in Gp-. Although the proof for Case 2 is similar to the proof of
Case 1, the edge e in Case 1 occurs in the main program’s PDG, while in Case 2, e occurs in
the PDG for procedure P. This make the proof more difficult because of the possibility of
aliasing in procedure P.

In general, the aliasing information for procedure P is a superset of that introduced at s.
However, the Corollary to the Aliasing Information Lemma tells us that if e exists under the
assumption that the only aliases are those introduced by call statement s, then e will continue
to exist in the presence of additional aliases. Therefore, we need only demonstrate that e’
corresponds to an edge e in PDGp assuming that the only aliases are those introduced by s.

We demonstrate that e’ corresponds to ¢ by showing that a assigns to a variable x, b refer-
ences y (an alias of x), and there exists a path from a to b on which neither x nor y are
redefined. The proof of Case 2 is complicated by the renaming that occurs during expansion to
account for aliasing introduced at s. We first consider the end-points of e’ assuming that no
renaming because of aliasing has occurred at a” or b” (thus x and y are the same variable). We
then factor in the effects of the renaming.

If a’ represents a local initialization statement then a is the corresponding initial-definition
vertex that assigns to x. If a’ represents a transfer-in statement of S’, then a is a formal-in ver-
tex in Gg. a assigns to x, because a transfer-in statement assigns to the same variable as the
corresponding formal-in vertex. If b’ represents a transfer-out statement of S, then b is a
formal-out vertex in Gg. b references x, because a transfer-out statement references the same
variable as the corresponding formal-out vertex. The remaining possibility is that a or b are
body statements but body statements are copies of the statements in procedure P and therefore
are unchanged by the expansion.

We now consider the effects of renaming on x and y. If a” assigns to a renamed variable
(e.g. xy) then b’ references that same renamed variable. In system S, a assigns to one of the
aliased components (e.g. x) of the variable assigned to at a” and b references one of the aliased
components (e.g. y). In addition, call statement s must introduce an alias between these vari-
ables (i.e. x and y).
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Thus, a represents a definition of x, b represents a reference of y, and, either s introduces an
alias between x and y or x and y are the same variable. To show that a definition-free path
exists from a to b we first observe that a copy of the control-flow graph for procedure P
appears unchanged (except for node renaming) in CFGg, therefore there is a control-flow
graph path from a to b in the control-flow graph for procedure P in system S. This path is free
of any assignments to either x or y: An assignment to x (or y) on this path would be subject to
the renaming. The renamed assignment would kill the assignment at a’, thus no such assign-
ment can exist. Therefore there is an edge e =a —>;b in PDGp of Gs.

Gy is isomorphic to Gr, therefore y(e) is an edge in PDGp of Gp. This edge is shown in
Figure 4(a). We demonstrate that a corresponding edge exists in G+ by contradiction; assume
there is no corresponding edge in Gy-. If no edge yo(a”) —>¢'o(b") exists in Gy then the
definition at y'o(a”) must be killed on all control-flow graph paths from y'o(a”) to Yo (b") by
an assignment at some node corresponding to a vertex Wo'(c;") (where yo'(c;”) assigns to z; and
the call-site corresponding to s aliases z; and x.) Assuming there are three paths from y(a) to
w(b) the relevant portion of 7”’s system dependence graph is shown in Figure 4(b). The y(c;)s
block all the paths from y(a) t y(b) in CFGr, therefore because y(a) —>;y(b) € E(Gr), the
Path Blocking Lemma a c; exists on every control-flow graph path from a to b in CFGgs. In
systems S and T call statement s introduces the same aliases. Because s aliases z; and x in S, in
CFGy, each c; represents a kill of the definition at a’. A ¢;’ exists on all paths from a” to b’,
thus the definition at a’ is killed by the definition at some c;” on all paths from a’ to b in
CFGgy; this is a contradiction because we have assumed there is an edge a’—>;b” in Gy
Therefore there must exist an edge in Gy corresponding to e”. (The relevant portion of §”’s
system dependence graph is shown in Figure 4(c).)

In both cases if e’ is loop-carried then the backedge in CFGs- is also a backedge in CFGr, thus
the edge corresponding to e’ is carried by the same loop.

Let '3 represent the isomorphism between the flow dependence edges of G- and G-

Case (IV). Def-order Edges.
To show that the PDGs for the main programs of §" and T” have isomorphic def-order dependence
edges, we consider two cases (recall that a def-order edge is defined in terms of two flow dependence
edges with the same target): 1) the two flow dependence edges are in Class 1; 2) the two flow depen-
dence edges are in Class 2. It is not possible that one flow dependence edge is in Class 1 and the
other is in Class 2, because the target of a Class 1 edge is either an old or a transfer-in vertex, while
the target of a Class 2 edge is either a body or transfer-out vertex. Let e’ be the def-order edge
@’ —>4(» b’. This assumes a’ occurs to the left of b” in the main program’s abstract syntax tree, a’
and b’ are nested in the same branch of any conditional statement that encloses both of them, and
a’—>¢c’ and b’ —>; ¢’ are flow edges such that a” and b’ define variable x and ¢’ references x.
Case 1) a’—>;c”and b” —>¢c” are in Class 1
The first half of the argument for Class 1 flow dependence edges (Case III above) implies that
a —>;c and b —>;c are flow dependence edges in Gs. Because the expansion does not change
the relative positions (in the abstract syntax tree) of a and b, a def-order edge e =a —> () b
corresponding to e’ exists in Gg. Gy is isomorphic to Gy, thus a def-order edge y(e) exists in
Gr. By Case III above, W'3(a”—>;c”) and y’'3(b" —>pc”) are flow-dependence edges in Gr-.
Because the expansion does not change the relative positions of y(a) and y(b), there is a def-
order edge corresponding to y(e) (and thus to e”) in Gy-.
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(a). The flow edge y(a) —>,y(b) exists in Gr, therefore there must be a control-flow graph path from y(a) to y(b)

vl

that contains no assignments to x or y.

WYolc" ) Yolc's):

(b). If there is no flow edge Wo(a") —>,Wo(b") in G- then there must exist assignments (at Wo(c”;)) on all control-
flow graph paths from y'g(a’) to Y5(b") in CFGy. This example assumes three such paths exist. Variables x, y, 2, 5,
and 2, are all renamed xyz, 2,24 because they are all aliased by statement s.

a” (xyz12,23:= """

c3':

CttXY212223

(c). The flow edge a’ —>b” exists in G5". However, there are assignments to the renamed variable (xyz,2,23) on all
paths from a” to b’. This 1s a coniradiction.

Figure 4. The contradiction in case 2 of the flow dependence argument of the expansion lemma.

Case 2) @’ —>pc” and b’ —>pc’ are in Class 2

The first half of the argument for Class 2 flow dependence edges (Case III above) implies that
a —>¢c and b —>c are flow dependence edges in PDGp of Gg. Because the expansion does
not change the relative positions of a and b, a def-order edge e =a —>4, ) b corresponding to
e’ exists in PDGp of Gs. Gy is isomorphic to Gy, thus a def-order edge y(e) exists in Gy. By
Case III above, y'3(a’ —>,c¢’) and y'3(b" —>¢c”) are flow-dependence edges in Gp-. Because
the expansion does not change the relative positions of y(a) and y(b), there is a def-order
edge corresponding to y(e) (and thus to e”) in Gp-.

Let y’4 represent the isomorphism between the def-order edges of G- and Go-.
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We have demonstrated that every edge in G- corresponds to an edge in Gy-. In each case the symmetric
argument shows that each edge in G- corresponds to an edge in Ggr. We have also demonstrated that
these edges have the correct endpoints. Therefore the two graphs Gy and Gp- are isomorphic (the isomor-
phism is the conjunction of 'y, 5, W3, and y's). [

COROLLARY. (BODYLESS EXPANSION COROLLARY). Let S and T be two systems with isomorphic system
dependence graphs. If a call statement in the main program is replaced by only transfer-in and transfer-
out statements, the third assertion of the lemma still holds. That is, the two graphs G and G- are iso-
morphic.

PROOF. For procedures in §* and T’ the result follows from the Aliasing Information Lemma. For the
main program the result follows from the proof of the Expansion Lemma with a straightforward
simplification for Class 2 edges.

3.4. The Flattening Lemma

The Flattening Lemma demonstrates that for a particular initial state, it is possible to transform a program
with procedure calls into an equivalent program in which no procedure calls are executed.

Definition. The invocation tree for the execution of a program (on some initial state) represents the pro-
cedure invocations made during the execution. Nodes of the tree represent particular activations of pro-
cedures. Edges represent the procedure calls (invocations) made during each activation. The size of an
invocation tree is the number of nodes in the tree.

Definition. For a particular invocation of a procedure (i.e. a node in the invocation tree) we classify each
call site in the corresponding procedure as either used or unused. A used call site in activation 4 is a call
site that is responsible for at least one of a’s children in the invocation tree. Used call sites are executed at
least once during the particular invocation of the procedure. An unused call site in activation a is a call site
that gives rise to none of a’s children in the invocation tree.

Note that it is possible for a call site in a program to be both used and unused at different nodes in the
invocation tree.

LEMMA. (FLATTENING LEMMA). Let S and T be systems with isomorphic system dependence graphs. If
G is a state on which S terminates then there exist programs S and T such that: (1) S are S are strongly
equivalent; (2) T and T are strongly equivalent; (3) the size of the invocation tree for S when initiated on &
is 1; and (4) S and T have isomorphic system dependence graphs.

PROOF. Let IT be the invocation tree for § when initiated on state . Because S terminates, /7T is finite.
Let callsite be a used call site in the root activation of IT (the root activation corresponds to the initial exe-
cution of the main program); suppose that callsite represents a call to procedure P. We construct from S a
new system S, by expanding procedure P at callsite. We construct T, by expanding T at the correspond-
ing call site.

The key observation is that the invocation tree for §; is smaller on o than /7. This is because all invoca-
tions of procedure P from callsite have been removed and no new procedure invocations have been intro-
duced. Callsite is a used call site, therefore at least one such invocation exists. (If callsite is enclosed in a
while-loop, it may produce more than one child in the invocation tree.)

By repeated expansion we construct a finite sequence of systems each having a smaller invocation tree
than its predecessor. Let S be the final system in this sequence (i.e. the size of the invocation tree for S
when initiated on state ¢ is 1). If So=S and S, =S then by the Expansion Lemma S; and §;,; are strongly
equivalent for 0 <i < n. This implies that § and S are strongly equivalent. By a similar argument T and T
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are strongly equivalent. The Expansion Lemma also implies that G5=G7. This follows from the pairs of
isomorphic graphs; Gso zGT”, GS, =GT‘, ce Gs_ =GT_, where GS, = Gy, GT,, = Gr, GS. = Gy and GT. =
Gr. O

3.5. The Multi-Procedure Equivalence Theorem

Given two systems S and T with isomorphic system dependence graphs, we use the results from the Flat-
tening Lemma to construct two systems that are equivalent to S and T, respectively, but have only main
programs. This construction rewrites S and T into the simpler language used in [Horwitz88a]. The Multi-
Procedure Equivalence Theorem then follows from the (single procedure) Equivalence Theorem.

THEOREM. (MULTI-PROCEDURAL EQUIVALENCE THEOREM). If § and T are systems with isomorphic
system dependence graphs then S and T are strongly equivalent.

PROOF. The proof is by contradiction. Assume that S and T are inequivalent, and that G is an initial state
that demonstrates the inequivalence.

Case 1) Suppose S terminates when initiated on state ©.
We will demonstrate that T also terminates on ¢ and produces the same final state as does S on ¢ by
constructing from § and T two programs S and T such that:

(1)  §and§ are equivalent on o;

(2) Tand T are equlvalent on o;

(3) the main programs of S and T contain no call statements;

(4) the main programs of S and T have isomorphic program dependence graphs.

The (single procedure) Equivalence Theorem, together with (3) and (4) above, guarantees that pro-
grams S and T are strongly equivalent; thus, they produce the same final state when initiated on .
This, together with (1) and (2) above, guarantees that programs S and T also produce the same final
state when initiated on o, contradicting the assumption that ¢ is a state for which § and T are ine-
quivalent.

First, by the Flattening Lemma there exist programs S and 7 such that:

(1) S andS are equivalent on o;

(2 Tand Tare equivalent on o;

(3) Gs=Grand

(4) nocall statement in S is executed when § is initiated on state ©.

To construct § and T from Sand T we must remove the call statements from S and T while preserving
the equivalence of S and S and of T and T on 6. We must also guarantee that G5 = Gr. We begin by
observing that, because none of the call statements in S are executed when § is initiated on &, we can
replace each call statement with an arbitrary list of statements without affecting the final state. We
do not know, a priori, that none of the call statements in T are executed when T is initiated on o;
however, by a careful choice of the list of statements with which call statements in both Sand T are
replaced, we can demonstrate that this is indeed the case.

We construct § and T from S and T by replacing each call statement with a list of transfer-in state-
ments, an abort statement, and a list of transfer-out statements. Because an abort statement has no
incoming or outgoing data dependence edges, the Bodyless Expansion Corollary ensures that § and T
have isomorphic system dependence graphs. The main programs of S and T include no call state-
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ments, and have isomorphic program dependence graphs (as defined in [Horwitz88a]); thus, by the
(single procedure) Equivalence Theorem, S and T produce the same final state when initiated on ©.

As noted above, S and S are equivalent on 6 because S executes no call statements when initiated
ong. All that remains to be shown is that T and T are equivalent on G. This follows from the fact
that T does not abort on G (because it is strongly equivalent to S which does not abort on ). The
only difference between T and T is the substitution of transfer-in, abort, and transfer-out statements
for call statements; thus since T executes none of its abort statements, T executes none of its call
statements, and T and T are equivalent on G.

Case 2) Suppose S does not terminate when initiated on state G.
For G to be a state that demonstrates the inequivalence of programs S and T, it must be that T ter-
minates. However, then the argument given in Case 1 holds for T (i.e. S must terminate). This con-
tradicts the assumption that S does not terminate when initiated on state o.

In either case o fails to demonstrate the inequivalence of § and T. Because o is an arbitrary initial state
we conclude that programs § and T are strongly equivalent. [J

4. RELATED WORK

This paper studies the relation between program semantics and the dependence graphs used as intermediate
program representations. [Horwitz88a] began this study with the proof of the Equivalence Theorem. In
this paper we have extended this semantic foundation for dependence graphs to a language that contains
procedures and procedure calls.

The data dependence edges used in this paper (as well as those in [Horwitz88a]) are somewhat non-
standard. Ordinarily, def-order dependences are not included, but two other kinds of data dependences,
called anti-dependences and output dependences are used instead.?

For flow dependences, anti-dependences, and output dependences, (in the absence of aliasing) a program
component v, has a dependence on component v, due to variable x only if execution can reach v, after v,
and there is no intervening definition of x along the execution path by which v, is reached from v;. There
is a flow dependence if v; defines x and v, uses x; there is an anti-dependence if v, uses x and v, defines x;
there is an output dependence if v, and v, both define x.

Although def-order dependences resemble output dependences in that they both relate two assignments
to the same variable, they are two different concepts. An output dependence, denoted v —>, v4, between
two definitions of x can hold only if there is no intervening definition of x along some execution path from
v, to v,; however, there can be a def-order dependence v —>, v, between two definitions even if there is
an intervening definition of x along all execution paths from v, to v,. This situation is illustrated by the
following example program fragment, which demonstrates that it is possible to have a program in which
there is a dependence v{ —34, v, but not vy —>, v,, and vice versa:

(11 x:=10
[2] if P then
(31 x:=11
4] x=12
[51 &

[6] y:=x

® As with flow dependences, anti-dependence and output dependence may be further characterized as loop-independent or loop-carried.
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The one def-order dependence, [1] — 4, (6 [4], exists because the assignments to x in lines [1] and [4]
both reach the use in line [6]. In contrast, the output dependences are [1] —, [3] and [3] —>, [4], but
there is no output dependence [1] —>, [4].

The Multi-Procedure Equivalence Theorem still holds if the system dependence graph is defined to have
output dependence edges rather than def-order dependences edges. Because a system’s def-order depen-
dence edges can be determined given the flow dependence edges and loop-independent output dependence
edges, if the system dependence graphs (having output dependence edges) of two programs are isomorphic,
then their system dependence graphs (having def-order edges) are isomorphic; consequently, by the Multi-
Procedure Equivalence Theorem, they are strongly equivalent.

The motivation for the (single procedure) Equivalence Theorem was as the semantic basis for the (single
procedure) program integration algorithm of [Horwitz88]. The Multi-Procedure Equivalence Theorem has
a similar motivation; we intend to use the Multi-Procedure Equivalence Theorem as the first step in provid-
ing the semantic basis for a multi-procedure program integration algorithm.

The program integration algorithm of [Horwitz88] uses program slicing to identify sub-computations of
a program. The slice of a program is defined as a reachability problem on the program’s dependence
graph. The system dependence graph was introduced in [Horwitz88b] to compute the interprocedural slice
of a program.

The definition of the system dependence graph used in this paper differs from the one given in
[Horwitz88b] in that is does not include the summary edges defined in [Horwitz88b]. Summary edges
represent a transitive path of dependence edges (both interprocedural dependence edges and internal
dependence edges) from an actual-in vertex to an actual-out vertex, such that the path corresponds to a
valid procedure calling sequence. (i.e. a path cannot contain edges that represent a procedure being called
from one call site and returning to a different call site). The reason for including these edges is to simplify
operations on the system dependence graphs that involve traversing paths of dependence edges. Program
slicing is an example of such an operation. Summary edges do not affect the proof of the Multi-Procedure
Equivalence Theorem because they can be derived from a graph without summary edges.
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