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Abstract

The Prolog evaluation algorithm has become the standard for logic program evaluation,
and bottom-up methods have long been considered impractical because they compute irrel-
evant facts. Recently, however, bottom-up evaluation algorithms that retain the focusing
property of top-down evaluation have been proposed, and in view of these algorithms the
choice between top-down and bottom-up methods needs to be re-examined.

In order to motivate a closer look at bottom-up methods, we identify certain classes of
logic programs for which bottom-up evaluation provides polynomial time evaluation algo-
rithms where Prolog takes exponential time. We also demonstrate that techniques such as
predicate factoring can provide a further O(n) improvement, when they are applicable. We
argue that no one evaluation method is uniformly preferable, and suggest that a choice of
the appropriate method must be made by the compiler based on the given program. We
present several results that shed light on this choice.

The bottom-up approach can be refined in a number of ways, and we show how vari-
ous results in the literature can be combined to provide a coherent evaluation framework.
Further, we indicate how ideas in the tabulation literature for functional programs can be
adapted to improve the memory utilization of bottom-up methods. We also consider the
program transformation techniques pioneered by Burstall and Darlington, and study their
relationship to deductive database program transformations such as Magic Templates. The
comparison indicates that the bottom-up approach, with the refinements discussed in the
paper, often achieves the same gains as these sophisticated transformation systems, and
thus illustrates the power of the approach.

To keep this paper self-contained, we have included brief surveys of all the techniques
that we discuss. We have not attempted to be comprehensive in our survey; it is our hope
that the reader will be motivated to pursue these ideas in greater detail by following up on
the references.

1 Introduction

Traditionally, logic programming language implementations have evaluated programs top-down.
Recent developments in evaluation of database queries have provided a means of evaluating logic
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programs bottom-up while still retaining the focusing properties of top-down evaluation, based
in large part on optimizing program transformations.

Example 1.1 As a simple example of the power of the bottom-up approach, consider a defi-
nition of transitive closure

H(X,Y) - e(X,W),((W,Y).
HX,Y) = e(X,Y).
query(Y) = t(5,Y).

If e is cyclic, Prolog will not terminate on this program. However, even e is not cyclic, there are
values for e such that Prolog takes time O(2") to find all answers to the query and terminate.

To evaluate the original query bottom-up, we first obtain the following program by first
applying the Magic Templates' transformation and then factoring:

mI (W) - fi(W).

m 1% (5).

Fi(Y) - m it (X),e(X,Y).
query(Y) = JUY).

Evaluating this program using Seminaive bottom-up always terminates and computes the an-
swer to the query in time linear in the answer size.

Essentially the same program results if Magic Templates plus factoring is applied to versions
of the transitive closure expressed with different forms of the recursive rule, including the left-
recursive and binary recursive forms upon which Prolog does not terminate for any values of e.
This example is presented in detail in Section 5. U

This is an example where the bottom-up approach based on program transformations has
notable success. Even on programs for which the transformations do not achieve such large
gains, the Magic Templates transformation ensures that no irrelevant goals or facts are gen-
erated, and in many cases significant advantages accrue when bottom-up evaluation is used,
primarily because:

o With memoing, it implements a form of dynamic programming, which eliminates a great
deal of redundant computation, and

o It is sound and complete, and thus the declarative semantics of the program is preserved.
This non-procedural approach allows for much more flexibility in program transformation
and optimization.

In this paper, we survey and extend recent results that make the bottom-up approach
practical. Our objective is two-fold: We wish to provide a broad introduction to the results in
this area, and we also wish to demonstrate that the state of the art in logic program evaluation
has advanced to the point where we now have available several complementary evaluation
methods. These alternative methods use a variety of control strategies, and thus we see a real
exploitation of the separation between logic and control that is possible with logic programs.

1Barlier versions of the algorithm were called Magic Sets. See Section 3 for details.



It is our thesis that future implementations should consider a wide range of options and use
them effectively by making intelligent compile-time decisions about what evaluation method to
use. We present several results that shed light on this choice, but these should be viewed as a
starting point; the problem is a challenging one.

There are also several results in the functional programming literature that are applicable
to the evaluation of logic programs, or that suggest ways in which methods for logic program
evaluation, especially bottom-up methods, can be further refined. These connections currently
are not well understood. An important link to the bottom-up approach, which is based on
memoing intermediate results, is provided by the studies on tabulation [Bir80, Coh83]. These
studies examine how memory can be intelligently utilized in memoing computations, based on
a careful compile-time analysis of the source program. These schemes are quite ingenious, but
are of limited generality. We suggest that the basic ideas could be developed in the context
of the Magic Templates transformation, gaining generality at the expense of less than optimal
memory utilization. We do not explore this in detail here, due to space constraints, but provide
illustrative examples of the potential gains.

We also consider the relationship between program transformation systems proposed for
functional programs — primarily the one proposed by Burstall and Darlington [BD77] — and
the program transformations used in the bottom-up approach. We bring out some important
differences in the underlying assumptions and ob jectives, and compare their relative power. Not
surprisingly, the functional program transformation systems are capable of more sophisticated
transformations, but they require programmer guidance, and are very senmsitive to changes
in the program. The bottom-up transformations are more robust, in that they are typically
independent of the set of facts in predicates that are not defined by rules of the program, and
they are carried out entirely by the compiler. The surprising aspect of this comparison, rather,
is that they do remarkably well relative to the more sophisticated functional transformations,
especially if refinements that are suggested by the tabulation studies are incorporated.

The rest of this paper is organized as follows. There are three broad parts: (1) A review
of the bottom-up approach, including program transformations and fixpoint evaluation, (2) A
discussion on the choice of methods, including a comparison of Prolog and bottom-up evaluation,
and (3) A review of results from the functional programming literature, and the refinements
that they suggest for the bottom-up approach.

We introduce notation and preliminary definitions in Section 2, and present a summary of
the bottom-up evaluation method based on the Magic Templates program transformation and
Seminaive fixpoint evaluation in Section 3. In Section 4, we demonstrate that the bottom-up
approach does significantly better than Prolog on certain classes of programs. We present a
survey of some related program transformations used in the bottom-up approach in Section 5.
The survey in Section 5 is not intended to cover the deductive database literature; rather it isa
selective treatment of a body of work that together offers a coherent framework for bottom-up
evaluation.

In Section 6, we examine bottom-up fixpoint evaluation more closely, and present some
important program properties that are used subsequently to guide the choice of method for
computing fixpoints. Section 7 extends the properties introduced in Section 6 and applies them
to the comparison of the behavior of several bottom-up methods and Prolog.




We consider results from the functional programming literature in Section 8, first presenting
the ideas on intelligent tabulation and indicating how they could be applied in the bottom-up
approach, and then presenting some program transformation systems and comparing them with
the bottom-up approach. We present our conclusions in Section 9.

Due to space limitations, we have not considered any of the recent results on parallelizing
bottom-up computations (e.g., [CW89, Don86, G5T89, Ram90, VG86, WS89)]). This is one of
the areas in which we believe that the bottom-up approach shows great promise.

2 Notation and Preliminary Definitions

The language considered in this paper is that of Horn logic. Such a language has a countably
infinite set of variables and countable sets of function and predicate symbols, these sets being
mutually disjoint. It is assumed, without loss of generality, that with each function symbol f
and each predicate symbol p, is associated a unique natural number n, referred to as the arity
of the symbol; fand p are then said to be n-ary symbols. A 0-ary function symbol is referred
to as a constant. A term in a first order language is a variable, a constant, or a compound
term f(t1,...,t,) where fis an n-ary function symbol and the ¢; are terms. A tuple of terms is
sometimes denoted simply by the use of an overbar, e.g., I.

A substitution is an idempotent mapping from the set of variables of the language under
consideration to the set of terms, that is, the identity mapping at all but finitely many points.
A substitution o is more general than a substitution 6 if there is a substitution ¢ such that
@ = @ o 0. Substitutions are denoted by lower case Greek letters 0,0, ¢, etc. Two terms ¥
and t, are said to be unifiable if there is a substitution o such that o(t1) = o(t2); o is said to
be a unifier of t; and t5. Note that if two terms have a unifier, they have a most general unifier
that is unique up to renaming of variables.

A clause is the disjunction of a finite number of literals, and is said to be Horn if it has
at most one positive literal. A Horn clause with exactly one positive literal is referred to as a
definite clause. The positive literal in a definite clause is its head, and the remaining literals, if
any, constitute its body. A predicate definition consists of a set of definite clauses, whose heads
all have the same predicate symbol; a goal is a set of negative literals. We consider a logic
program to be a pair (P, Q) where P is a set of predicate definitions and @ is the input, which
consists of a query, or goal, and possibly a set of facts for “Jdatabase predicates” appearing in
the program.

We follow the convention in deductive database literature of separating the set of rules with
non-empty bodies (the set P) from the set of facts, or unit clauses, which appear in @ and are
called the database. P is referred to as the program, or the set of rules. The motivation is
that the rewriting algorithms to be discussed are applied only to the program, and not to the
database. This is important in the database context since the set of facts can be very large.
However, the distinction is artificial, and we may choose to consider (a subset of ) facts to be
rules if we wish. The meaning of a logic program is given by its least Herbrand model [VEKT76].

Following the syntax of Edinburgh Prolog, definite clauses (rules) are written as

P-q, - 5qn.



read declaratively as ¢, and gz and ...and g, implies p. Names of variables begin with upper
case letters, while names of non-variable (i.e., function and predicate) symbols begin with lower
case letters.

We will use derivation trees in several proofs:
Definition 2.1 Given a program P and input @, derivation trees in (P, Q) are defined as
follows:

o Every fact h in @ is a derivation tree for itself, consisting of a single node with label A.

e Let r be atule: h:—by,bg,...,bpin P,let d;, i =1...k be atoms with derivation trees %;,
and let 6 be the mgu of (b1,...,bx) and (dy,.. .,dg). Then, the following is a derivation
tree for h8: The root is a node labeled h#, and each ¢;, i = 1...n, is a child of the root.
Each arc from the root to a child has the label 7.

Note that the substitution 8 is not applied to the children of k8 in the second part of the
above definition. Thus, a derivation tree records which set of (previously generated) facts is
used to generate a new fact using a rule, rather than the set of substitution instances of these
facts that instantiated the rule. The height of a derivation tree is defined to be the number of
nodes in the longest path (which is always from the root to a leaf).

3 The Bottom-Up Approach

The bottom-up approach that we consider consists of a two-part process. First, the program
is rewritten in a form so that the bottom-up fixpoint evaluation of the program will be more
efficient; next, the fixpoint of the rewritten program is computed by a bottom-up iteration.
Subsection 3.1 describes the initial rewriting, while Subsection 3.2 investigates the computation
of the fixpoint of the rewritten program.

Both these steps can be refined further. In Section 5, we discuss several program transfor-
mations that can be used in conjunction with the Magic Templates algorithm in the rewriting
step. We consider refinements of fixpoint evaluation in Sections 6 and 8.2.1.

3.1 The Magic Templates Rewriting Algorithm

As described in [BR87, Ram88], the initial rewriting of a program and query is guided by a
choice of sideways information passing stralegies, or sips. For each rule, the associated sip
determines the order in which the body literals are evaluated.

We first present a simplified version of the Magic Templates algorithm, tailored to the
case that sips correspond to left-to-right evaluation with all bindings propagated, as in Prolog.
We generalize to allow a different choice of sip for different goals at the end of this section.
The reader is referred to [Ram88] for a more general algorithm capable of implementing more
sophisticated sip choices, and also for a detailed discussion of bottom-up fixpoint computation
in the presence of non-ground facts.

The idea is to compute a set of auxiliary predicates that contain the goals. The rules in the
program are then modified by attaching additional literals that act as filters and prevent the
rule from generating irrelevant tuples.




Definition 3.1 The Magic Templates Algorithm
We construct a new program P™9. Initially, P™9 is empty.

1. Create a new predicate magic.p for each predicate p in P. The arity is that of p.

2. Tor each rule in P, add the modified version of the rule to P™9. If rule r has head, say,
p(%), the modified version is obtained by adding the literal magic.p(%) to the body.

3. For each rule r in P with head, say, p(), and for each literal ¢:(%;) in its body, add a magic
rule to P™. The head is magicgi(f;). The body contains all literals that precede ¢; in
the sip associated with this rule, and the literal magic.p(?).

4. Create a seed fact magicg((€)) from the query.

Example 3.1 Consider the following program.

s9(X,Y) - flat(X,Y).
s9(X,Y) - up(X,U),sg(U,V),down(V,Y).
sg(john, Z)?

For a choice of sips that orders body literals from left to right, as in Prolog, the Magic Templates
algorithm rewrites it as follows:

sg(X,Y) .- magicsg(X,Y), flat(X,Y).

sg(X,Y) .- magicsg(X,Y),up(X,U),sg(U, V), down(V, Y).
magic-sg(U, V) .- magicsg(X,Y),up(X,U).

magic-sg(john, Z).

O

We present some results that characterize the transformed program P™ with respect to
the original program P, from [Ram88]. The following theorem ensures soundness.

Theorem 3.1 ([Ram88]) (P,Q) is equivalent to (P™,Q) with respect to the set of answers
to the query.
Definition 3.2 Let us define the Magic Templates Evaluation Method as follows:

1. Rewrite the program (P, Q) according to the choice of sips using the Magic Templates
algorithm.

9. Evaluate the fixpoint of the rewritten program.

We hope that the slight abuse of notation in having the same name for the evaluation method
and the rewriting algorithm will not lead to confusion; the distinction should be should be clear
from the context. The second step above is presented in more detail in the next subsection.
The next theorem states that the computation generates no irrelevant facts or goals, and is
complete with respect to the least Herbrand model semantics.

Theorem 3.2 ([Ram88]) The Magic Templates Evaluation Method is a complete sip-method.



Informally, this means that the method evaluates all answers, and only generates goals and
facts that are required according to the choice of sips. For example, if we choose left-to-right
sips for all rules, this means that no goal or fact is generated that is not also generated by
Prolog (in the course of computing all answers, and assuming that Prolog does not enter an
infinite loop because of its depth-first search strategy).

The careful reader will notice that some joins are repeated in the bodies of rules defining
magic predicates and modified rules. The supplementary version of the rewriting algorithm
essentially identifies these common sub-expressions and stores them (with some optimizations
that allow us to delete some columns from these intermediate, or supplementary, relations). We
refer the reader to [BR87] for details.

We now describe a generalization of the Magic Templates algorithm that uses the notion
of adornments, similar to modes, to specialize rules for different goals. This generalization is
necessary in order to discuss the factoring optimization of Section 5.2.

An adornment for an n-ary predicate is defined to be a string of 1’s and 0’s. Argument
positions that are treated as free variables in the goal are designated as 0’s, and the other
argument positions, which are potentially restricted in the goal, are designated as 1’s.

Initially, the query is given an adornment in which every argument position that contains
only a variable that appears nowhere else is designated 0, and all other argument positions are
designated 1. Subsequently, for each rule that defines a predicate p, for every adorned version p*
of p (that is reachable from the adorned query predicate by this analysis), we create an adorned
version with head predicate p®. The choice of a sip — we may choose one sip per rule per
head adornment — induces adornments for each body literal: An argument position is 0 if it
contains just a variable, and that variable appears nowhere else in any literal that precedes the
given literal in the sip.

This algorithm generates a set of adorned rules from P, which we call P2, The Magic Tem-
plates algorithm can be generalized as a two-step transformation in which we first obtain P?
and then apply the algorithm of Section 3.1. Note that there is now a magic predicate associ-
ated with each predicate in P, instead of with each predicate in P. A simple optimization is
to delete all argument positions corresponding to 0’s from the magic predicates, based on the
observation that these positions always contain distinct variables. In the sequel, we will refer to
the above two step transformation with this optimization as the Magic Templates algorithm.
Example 3.2 To see the result of the above modifications, observe that P™? for the program
of Example 3.1 is now:

sg'%(X,Y) - magicsg'®(X), flat(X,Y).

5¢'°(X,Y) - magicsg'®(X),up(X,U),sg*(U, V), down(V,Y).
magic-sg'O(U) - magicsg'%(X), up(X,U).

magic_sg'%(john).

i

3.2 Iterative Fixpoint Evaluation

We describe two refinements of ordinary bottom-up fixpoint evaluation, called Seminaive and
Not-So-Naive evaluation. Seminaive fixpoint evaluation, which is cited as the method of choice




in the deductive database literature, makes the improvement that derivations are not repeated
in subsequent iterations, by ensuring that in each iteration, only rule instantiations that utilize
a new fact generated in the previous iteration are considered. Not-So-Naive evaluation performs
a similar optimization, considering only rule instantiations that utilize a fact generated in the
previous iteration. However, it does not do duplicate elimination, and so a rule instantiation
may be redundantly considered if a fact generated in the previous iteration was also generated
earlier. This represents a trade-off in that we avoid the cost of duplicate elimination, but face
the possibility of redundant derivations. For some classes of programs, it can be shown that
redundant derivations will not arise, and Not-So-Naive evaluation is then the method of choice.

We follow the presentation in [MR90] in the rest of this section, with some simplifications.

Let us first define a binary operator Wp, whose role is similar to that of the well-known TP
operator of [VEK76]:

Wp(X,Y)={h0| h :=by,...,brisaruleof P,
6 is mgu of (by,...,b) and (dy,...,d),
Y C X,{d1,...,dx} C X, and
k> 0and {d,...,di}NY #0.}

Intuitively, Wp only allows deductions from the set of facts X that use the “new” facts Y.
We now define Seminaive iteration. In the following definition, set is an operator that takes
a multiset and returns a set, and subs is an operator that takes a multiset and returns an
irredundant set. (An irredundant set, or irrset, is a set of elements such that no element
subsumes another.)

Definition 3.3 Seminaive Iteration (SN)
Let §.1 = 8o =060=F.

bny1 = dup_elim(Wp(Sn, 6, — Sn_1))

Spy1 = dup-elim(Sp U 6ny1)

S = limp oo Sn

GC = set(S)
where F is the set of facts, or rules with empty bodies, in the program P, and dup_-elim is
either set or subs. We refer to the variant with dup_elim = set as SNg, and the variant with
dup_elim = subs as SNj.

In Seminaive iteration, the set of facts produced in iteration n (6,) is compared with the
set of known facts (S5,) to identify the new facts produced (6, — Sn-1). Duplicates generated
within the same iteration are eliminated by the set operation. Only derivations that use one of
these new facts are carried out in iteration n + 1. This avoids generating many duplicate facts
by avoiding repeated derivations. The algorithm terminates (at step 7 + 1) when Sp4q = Sn; -
we must test whether 6,41 C S,. Consequently, Seminaive iteration terminates if and only if S
is finite.

In the following definition of Not-So-Naive iteration, note that S and 6 are in general
multisets. Also, we use “S; @ So” to denote the operation of adding to the multiset Sy all
elements of S, that do not already appear in 5;.

Definition 3.4 Not-So-Naive Iteration (NSN)
Let S_1=So=6=F.



6n+1 = WP(Sm 6n)
Snt1 = Sn @ by
S = limy oo Sn
GC = set(5)

In Not-So-Naive iteration, only derivations that use one of facts produced in iteration n ()
are carried out in iteration n + 1. Note that neither the comparison with the set of previously
known facts nor the set operation is carried out, unlike in Seminaive iteration.

The set GC is the set of generated consequences of the program.

Let ground be an operator that takes a set of possibly non-ground facts and a domain D and
returns the set of ground facts containing only constants from D that are instances of the input
set. The following result shows that the above iterative methods are consistent with the usual
least Herbrand model semantics of [vEK76]; here implicitly D is the domain for the program
in question. We denote the least Herbrand model of the program by M.

Proposition 3.1 The set of generated consequences GC of a program computed using Semi-
naive (SNs or SNi) or Not-So-Naive Iteration is such that ground(GC) = M.

We note that ordinary fixpoint evaluation — frequently called “Naive” (N) iteration in the.
deductive database literature — corresponds to the case where the second argument of Wp in
the definition of Seminaive Iteration is replaced by Sy.

Example 3.3 The following program illustrates the difference between N, SN and NSN.

d -

8 & o

s a8 oo

Note that SNg and SN; behave identically on this program. Consider SN and NSN. At the
second step, both evaluation strategies generate ¢ and a second occurrence of b. SN eliminates
the duplicate b. In the next step SN generates only d, since ¢ was the only new fact found at
the previous step. In contrast NSN generates both d and a second occurrence of ¢, since both b
and ¢ were most recently generated. The final result of the computation for each strategy
is [a,b,b,¢c,¢c,d,d] for NSN, and [a,b,c,d] for SNg. NSN evaluation takes one more step to
terminate than SN. To see the difference with respect to N, note that NSN, unlike N, does not
generate a in the second step and b in the third step. O

3.3 Related Work

We present a brief discussion of related work. The reader is referred to [BR86] and to the recent
deductive database literature for more details.

The first version of the Magic Templates algorithm was introduced in [BMSU86). As defined
in that paper, it was only applicable to linear Datalog rules; it was generalized to range-
restricted logic programs in [BR87]. These versions of the algorithm were called Magic Sets.
It was generalized to full logic programs in [Ram88], and given the name Magic Templates. In
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this paper, although many of the examples we consider could be handled by the Magic Sets
version rather than the Magic Templates algorithm, we will still refer to the algorithm used as
“Magic Templates.”

The generalization from Magic Sets to Magic Templates utilizes non-ground tuples, and in
the database context, it is desirable to restrict the computation to deal only with ground tuples.
It was shown in [U1189] that the Magic Sets transformation, in conjunction with some additional
rewriting, could deal with all Datalog programs — even programs that are not range-restricted
— without generating non-ground tuples.

Several other variants of the Magic Sets idea have also been proposed. For example, it is
possible to compute supersets of the magic sets without compromising soundness. Although
this results in some irrelevant computation, it may be possible to compute supersets more
efficiently than the magic sets themselves [SS88]. Another variant is based on combining the
computation for different rules by computing the union of certain relations, taking advantage
of the structure of the Magic Sets transformation [HL89].

We have chosen to present the Magic Templates algorithm in detail since it can be described
simply as a source-to-source program transformation, and allows for easy consideration of a
number of related program transformations and fixpoint evaluation techniques. However, it
should be noted that several related methods have been proposed for restricting a bottom-up
computation to generate only facts relevant to the query, and much of our discussion carries
over to these methods as well.

The Alexander method was proposed independently of the Magic Sets approach in [RLK86].
Tt is essentially the supplementary variant of the Magic Templates method, described in [BR87].
The main difference between the Alexander method and this variant — both of which deal
only with range-restricted programs — is that the former does not utilize adornments, and is
restricted to use a single, left-to-right sip for each rule, for all possible goals. The Alexander
method also does not deal with function symbols, although this is easily remedied. Seki has
generalized the method to deal with non-ground facts and function symbols, and has called the
generalized version Alexander Templates [Sek89]. This generalization is also restricted to use a
single left-to-right sip for each rule, for all possible goals.

The Magic and Alexander methods are based on program transformations. Other methods
use a combination of top-down and bottom-up control to propagate bindings. Pereira and War-
ren presented a memoing top-down evaluation procedure based on Earley deduction [PW83].
This evaluation procedure may be viewed as a top-down evaluation procedure that incorporates
memoing. Vieille has proposed a method called QSQ [Vie87, Vie86] that can be viewed as fol-
lows. Goals are generated with a top-down invocation of rules, as in Prolog. However, there are
two important differences: 1) whenever possible, goals and facts are propagated set-at-a-time,
and 2) all generated goals and facts are memoed. If a newly generated goal is already memoed,
this is recognized by duplicate elimination.

In Alexander Templates, facts are generated bottom-up in response to previously identified
goals, similar to the Magic Templates method. However, there is a significant difference with re-
spect to the Magic Templates method as well. Not only are all generated goals and facts stored,
the parent-child relationship between each goal and its immediate subgoals is also recorded. We
can think of the method as generating a directed acyclic graph (dag) of goals starting with the
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query goal. (This is a dag, rather than a tree, since each new goal is compared with the set of
previously known goals to eliminate duplicates. This could potentially lead to incompleteness
if a goal generates itself recursively, but this problem is dealt with by iterating the generation
of goals and facts until no new goals and facts can be generated.) This dag structure is used to
send answers back to the parent goal, and thus serves as an index. This should be contrasted
with the Magic Templates method, which does not build the dag structure. The parent-child
connections are essentially recovered through “joins” in the rules.

We remark that Vieille has also proposed an optimization, called global query optimization,
that seeks to exploit the dag structure at the expense of some additional run-time overhead.
An intriguing issue is how QSQ with global optimization and Magic Templates with factoring
— which is an optimization described in later sections — compare. Dietrich and Warren have
proposed a method called Extension Tables that is very similar to QSQ [DW8T].

Finally, Kifer and Lozinskii have proposed a method called Filtering, which is based on
constructing a rule-goal graph [KL86, KL88]. There is a node in the graph for each predicate,
and for each rule, and arcs from predicate nodes to each rule node in whose body it appears,
and from rule nodes to the predicates that they define. The idea is to compute the fixpoint by
propagating tuples along these arcs, and to restrict the computation by attaching “filters” to
arcs. The role of filters is similar to that of magic facts, although their generation is governed by
a set of rules for propagating filter conditions through arcs, rather than a compile-time program
transformation.

4 The Case for Bottom-Up Evaluation

In the past, bottom-up methods have not been seriously considered for the evaluation of logic
programs because of a serious drawback: no techniques were known that avoided computing
an unbounded number of irrelevant facts. Now that such techniques are known, it is worth
reconsidering bottom-up approaches.

In this section we highlight some advantages that can be obtained due to bottom-up evalua-
tion. These advantages are striking enough to suggest that in many cases bottom-up evaluation
will be the method of choice; however, we reiterate that we do not claim that this will always
be the case.

4.1 Declarative Semantics and Ease of Programming

A fundamental difference between Prolog evaluation and bottom-up evaluation is that the
bottom-up approaches do mot compromise the declarative semantics. It is frustrating and
confusing to a novice Prolog programmer to discover that

HX,Y) - e(X,W),t(W,Y).
HX,Y) - e(X,Y).

and
H(X,Y) = (X, W),e(W,Y).
H(X,Y) = e(X,Y).
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do not produce the same result under Prolog.

The issue of the desirability of a declarative semantics for logic programs has been discussed
at length elsewhere, and we do not have much to add here except to note that if declarative
semantics can be provided with as much or greater efficiency as procedural semantics, there is
little reason not to maintain the “pure” declarative semantics of the language.

4.2 Redundant Derivations and Memoing

The Prolog evaluation algorithm has the property that it does not remember which facts have
already been derived. This means that if there are many ways in which a given fact can be
derived, in searching for answers Prolog may redundantly search large portions of the problem
space.

Since bottom-up evaluation memos all facts, it never repeats a derivation. On programs P
such that Prolog multiply derives facts in P, bottom-up evaluation can provide dramatic im-
provements in running time.

The relationship between memoing and redundant derivations is discussed more fully in
Section 8. Here, we state two propositions about classes of programs for which bottom-up
evaluation is polynomial time while Prolog is exponential time.

The first class we consider is motivated by the transitive closure example. Here the problem
is that for some values of the database (facts) in the program P, there are an exponential
number of ways a given fact can be proven by P. The transitive closure has received a great
deal of attention in the deductive database literature — in fact, the inability of relational
database systems to express the transitive closure was one of the original reasons for extending
database technology to provide logic-based query languages [AU 79]. If logic-based languages
are to succeed as database query languages, they must evaluate queries on the transitive closure
efficiently.

As a demonstration of the inefficiency of Prolog on some instances of the transitive closure
problem, consider the following example.

Example 4.1 Consider again the following form of the transitive closure.

HX,Y) - e(X,W),t(W,Y).
e(X,Y).

and the query
7~ #(1,Y).

Furthermore, suppose we wish to find all answers to the query, as is usually the case in database
semantics. First, if e contains cycles, Prolog will not terminate in its search for all answers.
However, even without cycles, there are sets of facts on which Prolog is extremely inefficient.
For example, suppose that e contains the facts

e(1,2). e(1,3). e(2,4). e(3,4).
e(4n — 3,4n — 2). e(4n—3,4n—1). e(4n —2,4n). e(4n — 1,4n).
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In searching for all answers Prolog’s backtracking strategy produces an Q(2") evaluation pro-
cedure. Note that it is not essential that one search for all answers at the top level in order
to see this inefficiency — if the ¢ goal occurs in some rule to the left of a goal that cannot be
satisfied, the same behavior results even under single answer semantics. O

If the transitive closure is rewritten using the Magic Templates transformation, we obtain
the program
m(1).
m(W) = m(X),e(X,W).

HX,Y) - m(X),e(X,W),t(W,Y).
HX,Y) - m(X),e(X,Y).
Omne can verify that evaluating the resulting program bottom-up by the Seminaive method

results in a polynomial time algorithm.
The following definition generalizes the previous example.
Definition 4.1 A program P and query q is right-linear if it is of the form
(X,¥) - L(X,T,W),1(W,7)
t(X,Y) - £(X,Y).

where X, Y, W, and U are vectors of variables, £ and £ are conjunctions made up of predicates
that are not mutually recursive with ¢, and ¢ binds the columns of ¢ corresponding to the vector
of variables X.

Proposition 4.1 Let P be a right-linear Datalog recursion defining a predicate t, and suppose
that € and L are satisfiable. Then there exists a database for P of size n such that Prolog
is Q(2") on P.

Proof Consider the following database for P

L(e1,e)- L(e1, ). L(ez, ). L(e3,3)-

L(53,Cnmz). L(€tn3,Canc1). L(Cin—z)Tam). L(Cin-1,Can)-

B(Can, Tin)-

and let the query ¢ be
oY) - #@,Y)

Then there are (2") derivations of ¢(¢7, 3,), and Prolog will search each one. O

Note that since bottom-up evaluation is polynomial time on any Datalog program, it is
polynomial on right-linear programs P.

Another class of programs for which bottom-up computation is polynomial time while Prolog
is exponential is exemplified by the standard definition of the Fibonacci numbers.
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Example 4.2 . Consider the following definition fib(N,X ), where X is the Nth Fibonacci
number.

Fib(0, 1),
Fib(1,1).
be(N,X1 + Xz) - N> 1,f2b(N—- l,Xl),f'I:b(N— Z,Xg).

On this program, Prolog makes Q(¢"+¢") calls to fib, where ¢ = (1++v5)/2and ¢ = (1-v5)/2.
If we rewrite using Magic Templates, we get

m_fib(N).

m_fib(N — 1) - m_fib(N),N > 1.
m_fib(N—2) = m_fib(N),N > 1.
fib(0,1).

Fib(1,1).

Fib(N, X1+ Xa) = m_fib(N),N > 1, fib(N — 1, X1), fib(N - 2, X3).

which can be evaluated in polynomial time by Seminaive iteration. O

The cause of this type of redundancy is different than that exhibited on right-linear rules.
Here, while there may be only one derivation tree for any fact implied by the program, that
single derivation tree contains the same subtree replicated an exponential number of times.

One common situation in which this form redundancy occurs is in programs with a recursive
rule with two recursive subgoals such that in any derivation of a sufficiently large fact, the
subtrees Tooted at these recursive subgoals contain the same subgoal. In the following, we
consider programs in which the head contains a term T', and the two recursive subgoals in the
body contain the terms ¢(T') and d(T'), where ¢ and d are functions that reduce T' to subterms
of smaller size. (We will return to this class of programs in Section 8, where ¢ and d are called
“descent conditions,” after [Coh83].)

Definition 4.2 Let r be a recursive definition of the form

p(T7 R) - —‘B(T)v P(C(T), Rl)ap(d(T)7 R2)7 R(Rla R27 R)
p(T,re) - B(T).

Then 7 is n-callable on a term t if
o For i > n, B(c'(t)) and B(di(t)) are true, and

o For 0 < i < n, ¢i(t) and di(t) are well-defined and at least one of B(c*(t)) and B(di(t)) is
false, and

e For any values of Ry and Ry, there is a value of R such that R(R1, Rz, R) holds.

For example, the Fibonacci program is (n — 2)-callable on any positive integer n.

Proposition 4.2 Let r be the recursion

p(T,R) - _"B(T)vp(C(T)vRl)vp(d(T%RZ)v‘R'('Rl’R27R)-
p(T,ro) :- B(T).
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Suppose that there erist constants ki and ko such that for any sufficiently large term t we have
that ¢*1(t) = d*(t), and suppose that there is a constant a such that for any term t of size an,
the recursion r is n-callable. Then the number of subgoal calls made by Prolog in the evaluation
of the goal p(t, R) is ezponential in the size of t.

Proof The number subgoal calls made by Prolog in evaluating r on an n-callable term is
given by the recurrence
T(n) T(n—c1)+ T(n — dy);
T(1) = 1.

where ¢; and cq are constants such that if ¢ is of size n, c(t) is of size n — ¢; and d(?) is of size
n — dy. If we set k = max(c;,d;), we can write

T'(n) 2T'(n — k);

T'(1) = 1.

T(n) > T'(n).

Since T'(n) = Q(2"), the proposition is proved. O
Note that this implies that on any program satisfying the conditions of Proposition 4.2,
Prolog is exponential time in the size of the term T', whereas bottom-up evaluation is polynomial.

4.3 Optimizations Made Possible by the Declarative Semantics

One of the most important benefits of a purely declarative semantics is that it allows powerful
optimizations. A typical Prolog optimizer has to ensure not only that the optimized program
defines the same set of facts as the original program, but also that the Prolog interpreter has
the same behavior on both programs. That is, both programs must produce the answers in the
same order, and, more importantly, the interpreter cannot terminate on the original program
yet go into an infinite loop on the optimized program. These restrictions severely limit the
optimizations that can be considered.

One example of a powerful optimization made possible by the declarative semantics of
bottom-up is factoring [NRSU89a]. For example, Prolog is O(£(2")) on the transitive closure
program, and Magic Templates is O(§(n?)); factoring the Magic program results in a program
whose Seminaive evaluation computes only O(n) facts. This is typical of the improvement
over Magic Templates when the factoring optimization applies. Factoring and several other
program optimizations that are made possible by adopting declarative semantics are discussed
in Section 5.

4.4 The Down-Side of Bottom-Up

As we've tried to illustrate in this section, bottom-up evaluation can in many cases provide
orders of magnitude improvements in efficiency over Prolog. However, there are also drawbacks
associated with evaluating bottom-up.
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When only one answer is required, the deterministic control strategy of Prolog may allow the
programmer to order the search so as to minimize the time taken to find the first answer; this
is not possible with bottom-up evaluation unless some additional facility for specifying control
is provided. Providing such a facility — for example, in the form of regular expressions that
determine the order of rule applications in each iteration — could, in general, compromise the
completeness of bottom-up evaluation. (Of course, Prolog’s depth-first strategy is not complete
either.)

This must be tempered by several factors. First, the search for a single answer at one
level often requires searching for all answers at a lower level in the computation tree. Second,
the explicit use of Prolog’s control strategy to direct the search requires that the programmer
think in terms of the Prolog implementation, rather than the declarative semantics of the
program. Further, the search space may be such that depth-first search does more work to
find the first answer than a breadth-first search (which is typical of bottom-up evaluation).
Third, optimization strategies such as projection pushing, discussed in Section 5.4, improve the
performance of bottom-up evaluation significantly for some single-answer queries.

A perhaps more important issue to consider is the following. While it is known that the
approach of Magic Templates rewriting plus Seminaive bottom-up evaluation is never worse
than Prolog by more than a constant factor [Ram88, U1189] (under the assumption of constant
time table lookup operations), the constant factors in the running time for bottom-up evaluation
may be larger than the associated constant factors in the top-down Prolog evaluation of the
same program.

As one example, consider the transitive closure program; each time Prolog applies the
recursive rule, it “remembers” the current instantiation of e(X, W) on the run-time stack.
Suppose, for example, that Prolog has the instantiations e(1,2), e(2,3), .., e(n—2,n—1) on
the stack, then applies the nonrecursive rule to deduce t(n—1,n). Now in order to infer (7, n),
for 1 < i < n, Prolog can just read the e facts off the stack.

The situation in bottom-up evaluation is different — instead of reading the corresponding
e facts off the stack, we must look up the e facts in relation e. Given appropriate indexing,
this overhead can be minimized, but it is still there. The problem is worse in programs that
compute terms built up of function symbols, where indexing is not as straight forward.

If bottom-up evaluation is asymptotically better than Prolog, the constants are not signif-
icant as larger and larger instances of the problem are considered. Even if ¢; is much larger
than ¢g,the parameter n does not have to be very large before c1n? is smaller than cp2". Also,
as bottom-up evaluation technology matures, we can expect the difference in the constants in
the asymptotic running time expressions for Prolog and bottom-up evaluation to grow smaller.
However, it is probable that there will be significant classes of programs — for example, those
that deterministically manipulate structures such as lists and trees — for which the constants
result in faster Prolog execution.

An especially significant source of overhead in bottom-up evaluation is the duplicate elim-
ination that is done on every iteration of Seminaive evaluation. An interesting new area of
research deals with when this duplicate elimination can itself be eliminated. In this paper we
review early results in this direction; the interesting general trend is that in cases where Prolog
can be expected to perform well, duplicate elimination is not necessary. We remark that the
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need for duplicate elimination is not peculiar to bottom-up evaluation; for example, Prolog can
be made complete by adding loop-detection, which is essentially duplicate elimination on the
set of goals that are generated.

5 Some Important Program Optimizations

In this section, we survey a number of optimizations that apply to positive Horn programs
and guarantee query equivalence in the least fixpoint model. That is, the same set of answers
according to the declarative semantics of logic programs is computed. Note that no further
guarantees are offered: no equivalence is guaranteed with respect to other program predicates,
nor is any ordering preserved in the generation of answers.

The optimizations considered here are the Counting algorithm, the factoring optimization,
techniques for deleting redundant rules and literals, and techniques by which “existential”
queries (queries for which a single answer — any answer — suffices) can be optimized. These
optimizations, like the Magic Templates optimization, attempt to rewrite the program so that
the computation of the fixpoint of the rewritten program is more efficient than the computation
of the fixpoint of the original program. The Counting algorithm may be viewed as an alternative
to the Magic Templates algorithm that is less generally applicable, but that sometimes performs
better. We present a detailed comparison in Section 7.1. Factoring is a program optimization
that is often applicable to programs that are generated by the Magic Templates algorithm; it
always improves the program when it applies. The other optimizations are independent of the
Magic Templates algorithm, and can be used freely in conjunction with it; these optimizations
also have the desirable property that they always improve the program if they are applicable.

This survey is not intended to be comprehensive, but rather to provide an indication of the
flexibility that is available when we only need to preserve the declarative semantics. Ensuring
that the declarative semantics is preserved has long been viewed as a bar to efficient evalua-
tion; the results surveyed here indicate that it can sometimes be considerably more efficient to
guarantee this semantics, rather than an operational semantics.

5.1 Counting

Counting is a refinement of the Magic Set approach. Whereas the Magic Set method restricted
the computation to relevant facts, Counting additionally computes indices for each fact that
indicate why it is relevant, and this additional information is used to delete some literals from
rule bodies and to reduce the arity of some predicates by deleting some argument positions.

Counting was originally proposed in [BMSU86], and was refined in [SZ86]. As in the case of
Magic Sets, these versions of the algorithm only applied to (programs containing only) range-
restricted linear rules; the algorithm was generalized to deal with all range-restricted rules
in [BR87].

Counting can be understood as a two-step refinement of Magic Sets. Syntactically, the
version presented in [BR87], called Generalized Counting (GC), simply adds some index fields
to predicates in the Magic program and is applicable to any logic program. The additional
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indices enable a further optimization, called the semijoin optimization?, for some programs.
Since the indices require additional computation, the method is obviously useful only when
this optimization applies, and is thus only useful for a proper subset of the programs on which
Magic Sets can be used. The applicability is further limited because the computation of the
indices may sometimes cause non-termination.

We refer the reader to [BR87] for a detailed presentation of the method, and present only
the intuition behind the index fields. We also sketch the semijoin optimization, and present an
illustrative example.

Recall that we limit ourselves in this paper to a left-to-right choice of sips. We can there-
fore think in terms of (a loop-checking, complete version of) Prolog executing the adorned
program P*¢ in order to understand how goals are generated. Thus, for every goal that is
generated, there is a chain of goals such that the following holds: The first goal is the original
query, and each goal is generated by instantiating a literal in the body of a rule; the rule must
have been invoked by unifying the head literal with a predecessor goal. In each goal that is
generated, we include an index value that essentially encodes the chain associated with it. Let
goal G unify with the head of rule r, and solutions to the first £ — 1 body literals instantiate
the kth literal to generate goal G1. Let the index value I be associated with goal G. The index
value for G1 is essentially the pair (7,k) concatenated to I. The index value for the original
query is simply “0”.

Goals correspond to magic facts, as we noted earlier. In the Counting program, magic facts
are called count facts. The index value for a non-count fact is simply the index value of the
goal for which it was generated as an answer.

Index values can be encoded in various ways; we will not consider the details.

We now explain the semijoin optimization, for the case of left-to-right sips, and an adorned
program that contains a single recursive rule. Consider an occurrence p*(t) of the recursive
predicate in the body of the recursive rule. Suppose that the following holds for every such
occurrence:

1. If a variable appears in a bound argument position of p*(f), it does not appear to the
right of p®(f), or in a free argument position of the head literal.

9. If a variable appears in a free argument position of the head literal or in a body literal to
the left of p(%), it does not appear to the right of p®(%), or in a free argument position of
the head literal.

Then, the following optimization can be applied to the Generalized Counting program:
1. The arity of p® is reduced by deleting the bound argument positions.

2. All body literals to the left of the right-most occurrence of p* in the recursive rule are
deleted.

2This name is unfortunate; there is an eponymous well-known database optimization, and while there is some
similarity in the intuition — hence the name — the two are distinct.
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Example 5.1 Consider the program of Example 3.2 again. Before the semijoin optimization,
the Counting algorithm generates:

sgl0(X,Y,I) .- count_sg'®(X,I), flat(X,Y).

sg'%(X,Y,I) « count_sg*®(X,I),up(X,U),sg*®(U,V, I+ 1),down(V,Y).
count_sg®(U,I +1) : count_sg’®(X,I),up(X,U).

count_sg*°(john,0).

Note that the index values have been encoded in a simple way that takes advantage of the fact
that there is a single, linear recursive, rule; thus, we need only record the number of goals in
the chain from the query goal. The semijoin optimization applies, and the resulting program
is:

sg'o(Y,I) .- count_sg*®(X,I), flat(X,Y).

sg'%(Y, I) - sg'%V, I+ 1),down(V,Y).

count_sg'®(U,I+1) : count_sg'®(X,I),up(X,U).

count_sg'°(john, 0).
O

Unless otherwise stated, we assume that the semijoin optimization is applicable and has
been performed, and in the sequel, simply refer to the Generalized Counting program with this
optimization as the Counting program pent,

5.2 Predicate Factoring

The basic idea behind predicate factoring is to replace a predicate by two predicates of strictly
smaller arity. We present a simplified description that is tailored to the case of programs
obtained by applying the Magic Templates algorithm described in Section 3.1. Our presentation
is through the use of examples, and we do not describe sufficient conditions for the optimization
to apply in general. We refer the reader to [NRSU89a] for a detailed treatment.

In essence, we seek to take advantage of the magic predicates to replace the original predicate
in P™9 by its projection onto its 0 argument positions. Thus, the original (non-magic) predicate
in P™¢ is factored into the magic predicate, which computes the 1 argument positions, and this
new predicate, which computes the 0 argument positions.

Example 5.2 We begin with a familiar example, transitive closure. While efficient algorithms
are known, the rewriting algorithms presented in [NRSU89b] were the first to automatically
derive unary programs for single-selection queries, for all three forms (left-linear, right-linear,
non-linear) of the recursive rule. We achieve the same result here by first applying the Magic
Templates transformation and then factoring the rewritten program. To illustrate the technique,
we consider a single program that includes all three forms of the recursive rule, although any
one would suffice. It should be evident that we would also obtain a unary program if the original
program contained just one of the recursive rules. Consider the program and single-selection
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query below:

HX,Y)
#(X,Y)
#X,Y)
#X,Y)

- WX, W), t(W,Y).
(X, W), H{W,Y).
X, W), e(W,Y).
e(X,Y).

t

query(Y) = t(5,Y).
The Magic Templates algorithm rewrites this to:

mO(W)
m1%(W)
m129(5).
#19(X,Y)
11°(X,Y)
$119(X,Y)
t10(X,Y)
query(Y)

-

m'°(X), 119X, W).
m 19 X),e(X,W).

m10(X), 119X, W), 11W,Y).
m119(X), e(X, W), t1*%W,Y).
m_t10(X), 1% X, W), e(W,Y).
mA10(X), e(X,Y).

bt(5), fi(Y).

If we identify m#1® tuples with goals in a top-down evaluation, we see that only the last
occurrence of 10 in a rule body generates new goals, and further, the answer to a new goal is
also an answer to the goal that invoked the rule. In fact, every answer to a subgoal is also an
answer to the query goal m#1°. A second observation is that if ¢ is generated as an answer to a
subgoal, then a new subgoal m_#!%(c) is also generated. These observations lead us to conclude
that it does not matter to which subgoal an answer corresponds; its role in the computation is
the same in any case. That is, $'%(X,Y) can be factored into b¢(X) and fi(Y) in the Magic

program. Doing this yields:

mAO(W) -
mAO(W) -
m119(5).
bi(X)

bi(X) =
bt(X) -
bi(X) -
1Y) -
fi(Y) :-
Ft(Y) -
1Y) -
query(Y)

m11°(X), bt(X), ft(W).
m19(X),e(X,W).

m.11°(X), bt(X), ft(W), bt(W), f(Y).
m19(X), e(X,W),bt(W), ft(Y).
mA1°(X), bt(X), ft(W), e(W,Y).
m119(X),e(X,Y).
m10(X),b(X), ft(W), bt(W), f(Y).
m10(X), e(X, W), bt(W), ft(Y).
mA10(X), bt(X), ft(W), e(W,Y).
mt19(X),e(X,Y).

bt(5), fH(Y).

Applying some simple syntactic optimizations, which are discussed in [NRSU89a}, we finally

obtain the following unary program:

mAO(W) - fYW).

mt19(5).

fuY)

query(Y)

m1%(X),e(X,Y).
- fu(Y).
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The above example is illustrative of a general approach to optimizing programs, in which
we first apply the Magic Templates transformation and then factor. When we factor a Magic
program and separate the 1 and 0 arguments, we can no longer associate each subgoal with its
answers. In effect, we compute a set of goals and a set of facts such that each is an answer to
some goal. To show that this optimization is applicable, we must establish two things:

o Every answer to a subquery is also an answer to the original query.
o No spurious subqueries or answers are generated.

We remark that the factoring technique is applicable to logic programs, although the suf-
ficient conditions presented in [NRSU89a] are only applicable to Datalog programs. To deal
with logic programs, we must first transform them into Extended Datalog programs, that is,
Datalog programs with infinite base relations. This allows us to use the sufficient conditions
of [NRSU89a].

The following algorithm takes as input a program P and produces as output an Extended
Datalog program P¢®t.

Definition 5.1 (Extended Datalog Program) Let P be a Datalog program. Then the cor-
responding Extended Datalog Program is constructed from P by doing the following for every
rule 7 in P and for every term ¢ in r.

o Replace every occurrence of ¢ in 7 by a new variable, say X.

o Let t contain n distinct variables and constants. Then, add a literal with predicate
name 7; and n + 1 arguments to the body of 7. The first n arguments are the variables
and constants of ¢, and the last argument is the variable X. These new predicates all
denote base relations (with a possibly infinite number of tuples in them).

It is easy to extend the proofs of [NRSU89a] to show that if the sufficient conditions for
factorability are satisfied by P®*%, then P can also be factored.

Example 5.3 Suppose we want to find all postfixes of a list. The following Prolog program is
a straight forward way to do so.

pf(X, X).
pf([H|T],T1) - pf(T,T1).

and suppose the query is pf([z1,Z2, ..., ¥n), Y)?. Prolog, if asked to compute all answers, and
Magic Templates without factoring will establish the facts pf([zi, ..., Tp), (2, en@n]) for 1 <2 <
n and i < j < n. Thus, Prolog and Magic Templates establish n? facts.

Now consider the Extended Datalog version of the program:

pf(X7 Xv)'
pf(X,Y) = list(H,T, X),pf(T, Y).
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where list(H,T,X) is true if X is the list [H|T]. Applying Magic Templates to the query
pf([zlv weey mn], Y), we get:

mpf%[z1, .., Tn])-

m.pf1O(T) - mpfO(X), list(H, T, X).
pfP(X,Y) - mpflOX),eq(X,Y).
pfYX,Y) - mpf1X),list(H,T, X),pf*T,Y).

Now we factor to obtain:

m—pflo([ml’ wrey zn])

m-pflo(T) - m_prO(X), l'iSt(H? T, X)

bpf(X) - mpfl9X),eq(X,Y).

fpf(Y) - m_pfm(X), GQ(*X: Y)

bpf(X) - mpfI(X), list(H,T, X),bpf(T), fpf(Y).
fpf(Y) - mopf'X),list(H,T,X),bpf(T), fpf(Y).

Optimizing gives

m_p (X1, ..., Xn]).

m-pf(T) - mpfX),list(H,T, X).

bpf(X) - mpfloX),eq(X,Y).

fpf(Y) - mpfl%X),eq(X,Y).

bpf(X) - mopfX),list(H, T, X),bpf(T), fpf(Y).

(This last rule can be further optimized.) Evaluating this program bottom-up will compute the
answer to the query, but only establishes O(n) facts. O

Another example is the program:

member(X, [X|T]).
member(X,[H|T]) = member(X,T).

and the query member(X,[z1, ..., z,])? Prolog and Magic Templates without factoring compute
member(z;, [Ziy...,Tn)) for 1 <i < mand i < j < m, whichis n? facts, whereas Magic Templates
with factoring only computes O(n) facts.

5.3 Bounded Recursion and Redundant Literals

In many cases providing a purely declarative semantics allows for optimizations much more far-
reaching than would be possible under a procedural semantics. One interesting optimization
that has been studied in some detail by the theoretical database community is that of bounded
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recursion, where a recursive program is bounded be if it can be replaced by a nonrecursive
program.

Note that here we are not asking when recursion can be replaced by iteration; rather, we are
asking when a logic program containing recursive clauses has an equivalent finite logic program
in which no clause is recursive.

Example 5.4 The following example is from [Nau89a].
buys(X,Y) : likes(X,Y).
buys(X,Y) :- trendy(X),buys(Z,Y).

In English, a person X buys a product Y if either X likes Y, or X is trendy and a person Z
has bought Y. This recursive program is equivalent to the following nonrecursive program:

buys(X,Y) :- likes(X,Y).
buys(X,Y) :- trendy(X),likes(Z,Y).

O

In general, detecting bounded recursions is undecidable. A rich classification of sets of
programs for which detecting boundedness is decidable or undecidable has been developed in
the literature; see, for example, [CGKV88, Ioa86, GMSV87, Nau89a, NS87, Var88].

A related question is when a literal is redundant in a given program. Naughton [Nau89b]
defined a predicate p appearing in a clause C to be recursively redundant if, for any set of base
facts, there is a constant k such that any fact provable by that clause has a derivation tree
in which there are at most k instances of p. If a predicate is recursively redundant, then the
program can be rewritten so that no instance of that predicate appears in any recursive rule.

Example 5.5 The following example is taken from [Nau89b].

buys(X,Y) : likes(X,Y).
buys(X,Y) : knows(X,W),buys(W,Y),cheap(Y).

Here the predicate cheap is recursively redundant; an equivalent program is

buysl(X,Y) :- likes(X,Y).

buys2(X,Y) knows(X, W), likes(W,Y), cheap(Y).
buys2(X,Y) : knows(X,W),buys2(W,Y).

buys(X,Y) = buysl(X,Y).
buys(X,Y) = buys2(X,Y).
]
In related work, Sagiv [Sag88] defined a literal to be redundant if the semantics of the
program are unchanged by deleting the literal. His algorithm for detecting redundant literals
is interesting in that it is based on the chase procedure for inferring data dependencies. More

detail about detecting and eliminating redundancy from recursive Datalog programs appears
in [NS89].
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5.4 Projecting Arguments

Query optimization for relational database queries exploits the commutativity of selection and
projection operators with respect to the join operator whenever possible, in order to reduce the
size of relations that are being joined. This is often referred to as “pushing” selections and
projections. Pushing selections is achieved through the use of the Magic Templates transfor-
mation; the introduction of recursion makes it necessary to compute auxiliary sets. Pushing
projections has also been explored, and the gains can be significant. We will illustrate the idea
through examples, and refer the reader to [RBK88] for details.

Example 5.6 Consider the transitive closure program of Example 1.1, but with the query
query(Y) = t(.,Y). The underscore “” indicates that we do not care about the value in the
first argument position; we simply want the set of values that appear in the second argument
position of ¢ (with some arbitrary value in the first argument position). Note that such queries
are likely to arise during the course of query optimization. O

An adornment that distinguishes don’t-care argument positions (d) from the rest (needed
or n) was used in [RBK88] to push projections. An adorned program is generated using an
algorithm similar to that described in Section 3.1. The different nature of the adornments is
reflected in how we determine adornments for body literals from the adornment for the rule
head: In choosing an adornment for a body literal, an argument position is d if it contains only
a variable that does not appear anywhere else in the rule, except possibly as the argument in
a d position of the head; all other argument positions are n.

Example 5.7 Consider a simplified version of the transitive closure program:

H(X,Y) - UX,W),e(W)Y).
H(X,Y) = e(X,Y).
query(Y) = t(.,Y).

The adorned program — using n and d adornments — is:

(X,Y) - (X, W),e(W,Y).
"(X,Y) - e(X,Y).
query(Y) = t4(,LY).

It is easy to see that the d argument positions can be uniformly deleted, and this leaves us with
a program in which the recursive predicate is unary. U

The previous example illustrated how the adornment algorithm can sometimes push the
projection through recursion and thereby reduce the arity of recursive predicates. (The ob-
servation that pushing projections could reduce arity of recursive predicates was first made by
Aho and Ullman [AU79], and later Kifer and Lozinskii [KL86]. The adornment algorithm above
generalizes their results.) The acute reader will have observed that more can be achieved —
the recursive rule may be deleted entirely.

Algorithms for deleting redundant rules and literals can be utilized to detect this; in fact,
since such opportunities are frequently created by pushing projections, we can devise special
algorithms for rule and literal deletion that exploit this. The following example illustrates the
power of the techniques developed in [RBK88] for this purpose.
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Example 5.8 Consider the transitive closure program of Example 1.1 with the query
query(Y) - (., Y).

The adorned program — using n and d adornments, and deleting d argument positions — is:

t(Y) - (W), t"(W,Y).
t(Y) - (X, W), t"™(W,Y).
19(Y) - (W), e(W,Y).
t(Y) - e(X,Y).

m(X,Y) - (X, W), (W, Y).
(X, Y) - e(X, W), (W,Y).
"m(X,Y) - (X, W),e(W,Y).
"(X,Y) - e(X,Y).

query(Y) = (V).

Notice that the adorned program contains more rules than the original program. (This could
happen with 1 and 0 adornments as well.) The additional information in the adornments can,
however, be used to delete several of the rules. The following program is finally obtained using
the techniques of [RBKS88]:

t9n(Y) - e(X,Y).

query(Y) = t9(Y).
O

5.5 Linearizing Programs

An interesting class of program transformations has recently been explored by a number of re-
searchers [IW88, ZYT, Sar89, RSUV89]. The objective is to transform a program that contains
non-linear rules into an equivalent one that contains only linear rules; this may make some of
the other transformations surveyed in this paper applicable, or permit simplifications in the
implementation of the fixpoint evaluation phase. We do not consider these results here due to
space limitations.

6 Derivation Trees and Refinements of Fixpoint Evaluation

In Section 5 we discussed optimizing program transformations that seek to produce a trans-
formed program whose fixpoint can be computed more efficiently than the fixpoint of the original
program. In this section we consider properties of programs that allow optimizations in the
actual computation of the fixpoint.

The set of derivation trees for a program can be used to abstract and analyze many opera-
tional aspects of program execution, and is referred to extensively in this section. (Recall that
derivation trees were defined in Section 2.) Foremost among these are duplicate and redundant
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derivations, and an analysis of the set of derivation trees can reveal a variety of potential opti-
mizations. Examples of such optimizations include elimination of checks for duplicate facts and
identification of properties such as commutativity and linearizability of rules. In addition, even
if such strong properties do not hold for a given program, it may be possible to avoid many
redundant derivations through the judicious use of control during fixpoint evaluation. These
issues are discussed in more detail in the following sections.

6.1 Duplicate Freedom and Finite Forest Properties

We observe that the collection of derivation trees for a program is in general a multiset if we
admit the possibility of the same rule (including rules with empty bodies, i.e. facts) appearing
twice in the original program. Let P be a program and let a be a fact. The multiset of all
derivation trees for a in P is denoted by DT(P,a). The multiset of all derivation trees in Pis
DT(P) = U, DT(P,a).

Let atoms(t) be the label on the root of derivation tree , and let us extend this to multisets
of trees by atoms(X) = [atoms(z) | = € X]. (We use [.. ] as the multiset constructor.) The
function atoms abstracts the generated atoms from the derivation trees that generate them.
Definition 6.1 A program P is subsumption-free if atoms(DT(P)) is an irrset. A program P
is duplicate-free if atoms(DT(P)) is a set.

Example 6.1 Consider the following program.

p(X,Y) = X=5.
p(X,Y) == Y =5.

This program is subsumption-free. However, the following program is not:

q(X) - p(X,Y),X =5Y=5.
p(X,Y) - X=5.
p(X,Y) - Y =35
0
The following result, from [MR90], shows that NSN evaluation — which performs no
expensive check for duplicates — performs as well as SN evaluation for programs that are
subsumption-free.
Theorem 6.1 ([MR90]) In terms of the number of inferences,

1. SNy = NSN for subsumption-free programs P.
2. SNg = NSN for duplicate-free programs P.

A multiset has finite character if every element has finite multiplicity. A multiset has
the finite subsumption property if it has finite character and every element subsumes only
finitely many elements. A program P has the finite forest property if atoms(DT(P)) has finite
character. A program P has the finite subsumption property if atoms(DT(P)) has the finite
subsumption property.

Note that the following trivial rule in a program would destroy the finite subsumption and
forest properties whenever the relation p in M = ground(GC) is non-empty: p(X) : = p(X).

These properties are important for termination.
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Theorem 6.2 ([MR90]) 1. If SN terminates, then NSN terminates, for programs P with
the finite subsumption property.

2. If SNg terminates, then NSN terminates, for programs P with the finite forest property.

Sufficient conditions for subsumption-freedom are presented in [MR90]. These conditions
seem to apply to a large class of Prolog programs; intuitively, it is required that no two rules
produce the same fact, and that the evaluation of a rule be deterministic. In [MFPRR9], it is
shown that if the original program is subsumption-free, this property can be utilized effectively
in the bottom-up evaluation of the program rewritten according to the Magic Templates algo-
rithm. More precisely, it is shown that the rewritten program can be evaluated in a particular
way — that essentially differs from NSN in that subsumption checks are performed on all magic
predicates — that computes the same set of derivation trees as NSN evaluation of the original
program. Thus, if the original program is subsumption-free, no subsumption checks need be
performed on any non-magic predicates in the rewritten program.

6.2 Determinacy and Functional Goals

The determinism required by the sufficient conditions for subsumption-freedom can be formu-
lated in terms of functional dependencies [MR90]. An important class of such dependencies
are functional goals, that is, goals for which there is a single answer. Sufficient conditions for
a goal to be functional have been developed in [Red84, DW89]. Such goals can be optimized
in a number of ways; for example, backtrack points need not be maintained in a Prolog-style
evaluation. Indeed, if only the declarative semantics is to be preserved, it may be possible to
simply apply evaluation techniques for functional programs, rather than logic programs. We re-
mark that although functionality was only considered for programs that generated ground facts
in [Red84, DW8], the techniques in [MR90] — developed in the somewhat different context of
establishing sufficient conditions for subsumption-freedom — enable us to identify functional
computations that generate non-ground goals and facts.

6.3 Algebraic Properties of Programs

The fixpoint evaluation of a logic program can be refined by taking certain algebraic properties
of the program into consideration. Such refinements, and techniques for detecting when they
are applicable, have been investigated by several researchers [Hel88, IW88, Mah85, Nau88b,
RSUV89]. We discuss these ideas briefly through examples.

Example 6.2 We begin with an example that illustrates commutativity of rules. The idea has
been studied in all of the references cited above, and several sufficient conditions are known for
detecting when this property holds.

r:p(X,Y) - a(X,2),p(Z,Y).
ro:p(X,Y) - p(X,Z),b(Z,Y).
r3:p(X,Y) - X,Y).

It can be shown that applications of rules r; and ry commute. That is, r1.72 = 72.71. This fact
can be utilized to avoid many redundant derivations by evaluating the fixpoint of the program
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as follows: first apply rule ra, then apply 72 as often as possible, and finally apply r; as often
as possible. O ‘

Example 6.3 This example illustrates decomposability, which was studied by Maher [Mah85].
Informally, a program is decomposable if its fixpoint can be computed as the union of the
fixpoints of two programs that are subsets of the original program. Consider the following
program, which generates all positive even numbers:

1 : even(X) .- even(s?(X)).
rq : even(s?(X)) - even(X).
T3 : even(s?*(0)).

It can be decomposed into the following programs:

1 : even(X) - even(s¥(X)).
'y : even(s2*(0)).

'3 : even(s*(X)) - even(X).
"4 : even(s%*(0)).

The first program, r'1,7'y, computes all positive even numbers less than s?*, and the second

rogram, 7's, 7’4, computes all even numbers greater than sk o
s I3 9

Ioannidis presents an algebraic formulation of Datalog programs that is particularly suited
to reasoning about such properties of programs [TW88].

Naughton [Nau88b] defines a class of recursions called separable recursions. While commu-
tativity is not explicit in the definition of the class, the rules of a separable recursion do in
fact commute, and the algorithm presented for separable recursion evaluation depends upon
commutativity for its correctness. A discussion of the relationship between commutativity and
separability appears in [Ioa89)].

We can view SN and NSN iteration as acting on derivation trees instead of atoms. With
appropriate definitions for the operations used in an evaluation, the multiset of atoms 5 com-
puted in an evaluation is simply an abstraction of the multiset of derivation trees S’ computed
by the same evaluation. We note that the properties we have discussed in this section can be
understood as essentially assuring us that it is sufficient to construct a set of derivation trees
that is a proper subset of the set of all derivation trees of the program. For example, commuta-
tivity allows us to avoid generating derivation trees in which applications of rules 7y and rule 7o
are interleaved. An approach based on analyzing derivation trees and proving containment
theorems between sets of derivation trees is presented in [RSUV89].

The derivation tree approach is also explored by Helm [Hel88]. In contrast to [RSUV89], he
does not attempt to directly establish properties such as commutativity. Rather, he performs a
compile-time analysis based on directly testing containments of (fragments of ) derivation-trees,
and uses the results to guide the development of iterative control ezpressions that govern the
fixpoint evaluation of the program, thereby avoiding redundant derivations. His approach is
noteworthy in that it is able to avoid some redundant derivation even when the program does
not satisfy algebraic properties such as commutativity. Further, the results of the more powerful
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containment tests of [RSUV89] and other sufficient conditions for various algebraic properties
can be incorporated into the approach by using them to guide the generation of iterative control
expressions.

7 On Choosing an Evaluation Method

In this section we explore in more detail properties of logic programs that help determine when
a particular evaluation method can be expected to perform better than another. For clarity of
exposition, in this section we assume that the the rewritten programs (Magic Templates and
Counting) are range-restricted. This implies that only ground goals and facts are generated.

We begin by investigating the choice between Magic Templates and Counting. We show
that, informally, if a program P is such that there is only one way to derive each fact in the
Counting program, Counting and Magic Templates derive the same number of facts in the
evaluation of P. This is significant because it has been suggested that since Counting can be
extremely inefficient in the presence of duplicates, it should only be used when there are no
duplicates. Our result suggests that using Counting provides the greatest benefit when there
are a small but nonzero number of duplicate derivations in the counting program.

Next we turn to the question of comparing Magic Templates bottom-up with Prolog top-
down. Here we are considering the “pure” subset of Prolog - that is, with occur-check, and
without cut, assert, meta-level predicates, and so forth. Since the structure of a computation in
Magic Templates and in Prolog are so different, we must first develop some common framework
in which the two can be compared. Toward this end we define Prolog Trees, and the program
PoPt. The Prolog trees for a given program and query capture the behavior of Prolog in evalu-
ating that program and query in a static set of derivation trees. PPt is a simple modification
of P™9 such that the set of NSN trees for P°P! (generated from a program P and a query ¢)
correspond closely to the set of Prolog trees for P and g.

With the definitions of Prolog trees and the program P°P*, we compare the behavior of
Prolog and bottom-up on several classes of programs.

7.1 Counting and Magic

In many cases, the Counting rewriting algorithm produces programs that are more efficient
than the corresponding Magic program [BR88, MSPS87]. However, if there are facts in the
program that can be generated in multiple ways, the Counting rewriting can be worse than
even the most straightfoward bottom-up approach — ignoring the query and computing the
entire queried relation using the original, unrewritten program program. The following example
shows how this can occur.

Example 7.1 Consider the following program.

HX,Y) = a(X,W),4W,Z),bi(Z,Y).

H(X,Y) = ax(X,W),4W,Z),baZ,Y).
HX,Y) = to(X,Y).
q(Y) - t(co,Y)?
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The corresponding counting program is

ent_t(c0,0).
ent (W, 2 I)
entd(W,2+x I +1)

ent (X, I), a1(X, W).
ent (X, I),ax( X, W).

1

tc(Y,J) - entt(X,J),to(X,Y).
te(Y,1/2) - te(Z,1),0(Z,Y).
te(Y,(I-1)/2) te(Z,1),b(Z,Y).

t

q(Y) - te(Y,0).

(Here for clarity of exposition we have deleted some unnecessary indices that would be produced
by the full Generalized Counting rewriting.)
Suppose that we have the facts a1(co, €1), ar(e1, €2), - - a1(cn-1,¢n) and the facts az(co, €1),
az(c1,€2), - - - B2(Cnt, ¢z ). Then the bottom-up evaluation of the rewritten program will gener-
“ate Q(2") facts in cnt.t. Note that simply evaluating the original unrewritten program bottom-
up can never generate more then n? facts in t. O

This exponential behavior of Counting is not only manifested over specially designed re-
lations — it occurs even over randomly generated sparse relations [Nau88a]. Intuitively, the
inefficiency arises when some facts can be derived in many different ways, because counting
stores a fact corresponding to each derivation.

The next theorem establishes the somewhat surprising fact that if the Counting program
is duplicate-free, then it computes at least as many facts as the corresponding Magic pro-
gram. Since the Counting transformation can sometimes degrade performance significantly,
even introducing non-termination, it is important to be able to determine when it obtains an
improvement. It has been noted that Counting can be shown to terminate, by a compile-time
analysis, for several programs that recursively manipulate structures like lists. Programs like
list reverse and append are good examples; in general, this class includes many deterministic
programs in which the recursive predicates contain an argument position in which the values are
monotonically decreasing in successive iterations. Since the Counting version of such programs
is typically duplicate-free, the following theorem indicates that on such programs we should
not expect to see an improvement over the Magic program in terms of the number of facts
computed — which was the original motivation for the Counting algorithm.

Theorem 7.1 If the Counting program for goal Q is duplicate-free, then the Magic program
computes no more facts than the Counting program.

Proof In the following, for a predicate p in the original program, we will use p™9 to denote
the adorned relation in the program produced by the Magic Templates transformation, and will
use mag-p to denote the corresponding magic predicate. Similarly, we will use p°™ to denoted
the adorned relation in the program produced by the Counting transformation, and cnt_p to
denote the corresponding counting relation.

We begin by partitioning the adorned relation p™? by grouping the tuples in p™¢ according
to the vector of values in the free columns. Consider a partition p™? (@1,b), p™(az, b), «e
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p™9(ay;,b). We show that either the Counting program has duplicates or else there are n
distinct facts in the Counting program corresponding to these n facts in the Magic program.

Because the n facts p™9(ag, b), p™(az,b), . . ., P (Tm, b) appear in p™4, by definition of the
Magic Templates transformation the n facts p(a, b), p(az, b), ..., P™(@,b) appear in p in the
original program. Also by definition of the Magic Templates transformation, in order for the n
facts p™9(az, b), p™(az, b), ..., P™(@x,b) to appear in p™, the n facts mag.p(a1), mag-p(@z),
... mag.p(@;) must appear in mag.p.

But by definition of the Counting and Magic transformations, for every tuple mag._p(@)
in mag_p, there exists an I such that the tuple cnt_p(, I)is in cnt_p. This follows because
the rules defining cnt_p are just the rules defining mag-p with the addition of index fields.
Also, from the definition of the Counting transformation, if cnt_p(a, I) appears in the counting
relation for p, and p(@,bd) is a fact in p in the original program, then p°™(b, I') appears in p°™.

Hence we must have the n facts ent_p(ay, 1), ent-p(az, I2), - - -, cnt-p(an, I,) and the n facts
peri(b, 1), p™(b, I2),. . ., p°™ (b, I,) in the counting program.

Now there are two cases to consider. Either the I; are distinct, in which case for every fact
in the Magic program there is a corresponding fact in the Counting program; or they are not,
in which case the Counting program is not duplicate free. O

Theorem 7.1 demonstrates that with respect to the number of facts produced, the advantages
of Counting over Magic Templates must appear in programs for which Counting is not duplicate-
free. However, the number of facts generated is not the only issue determining performance.
Counting introduces integer index fields that can be used effectively as a physical index. In
programs that manipulate list structures, for example, this may make Counting better than
Magic Templates.

7.2 Bottom-up Evaluation and Prolog

In this subsection we consider the relationship between bottom-up evaluation and Prolog. First,
in Subsection 7.2.1 we develop some definitions and technical results that are useful in this
comparison; next, Subsection 7.2.2 we use these definitions and results to define and discuss
well-behaved and strictly well-behaved programs.

7.2.1 Prolog Trees and P

We now turn our attention to properties of programs that determine the relationship between
top-down Prolog evaluation method and bottom-up Magic Templates evaluation. In order to
state these properties, we need to provide a basis for comparing the work done by the two
strategies.

For this purpose derivation trees are not sufficient, for they only contain information about
successful derivations, and ignore the process of finding those derivation trees. A more detailed
set of trees is necessary; we call such trees Prolog trees.

There are two types of nodes in “Prolog” trees. Goal nodes reflect goals that have been
set up through the course of the evaluation; fact nodes reflect facts that have been deduced.
In order to make the connection between Prolog top-down and Magic Templates bottom-up
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computation more explicit, we label a goal corresponding to a prolog call g(¢) with m.g(c). The
intuition here is that the magic facts for g are exactly the ¢ goals that Prolog must try to solve.

Definition 7.1 Let P be a logic program, and let g(c) be a top-level goal (query) on P. Then
the set of Prolog trees corresponding to Prolog evaluation of (g, P), which we will denote by
Tp(P, q), are defined follows. Initially, we start with Tp(P, q) empty.

o First, add to Tp(P,q) a tree (consisting of a single goal node) corresponding to the top-
level goal, m._g(c).

o Let 7 be a rule po(Xo) == p1(X1),...,Pe(Xk), and suppose that at some point Prolog
invokes  with the goal po(c)?. This means that at this point 7p(P,q) contains a tree
with root m_po(c). Let Ty be the subtree rooted at m_po(c). Furthermore, there must be
a substitution #; such that 8; = mgu(Xo, co). Then add the following tree to Tp(P,q).

— The root of the new tree is m_p;(c1), where ¢; = X16;.

— The node m._p;(c;) has a single child. The node for the child is m_p(co); this child
node itself has the tree T} its only child.

o If the subgoal m_p;y(c1) returns with failure, exit this rule invocation (at this point no
more trees are added to 7p(P,q) due to this rule invocation.)

o Suppose that for 1 < i < k, subgoal m_p;(c;) succeeds with answer p;(c;). Then it must
be the case that for 1 < j < %, goal m-p;(c;) succeeded with some answer pj(c}), where
¢} can be written as X;616;...6;. Then add the following goal tree to Tp(P, q).

— The root is m.p;(¢;), where ¢; = X610, ...0;_1.

~ There are 7 children p;(c}), for 0 < j <2, where ¢} = X;610;...0;. The derivation
trees T}, for 0 < j < ¢, are rooted at their corresponding nodes.

o If rule 7 succeeds on goal m._po(co) With po(cp), and with the dth literal in the body
instantiated to pi(c}), then it must be the case that ¢} = X;0;...6;. Then add the
following tree to Tp(P,q).

— The root is po(ch), where ¢ = X102 .. . Ok.

— There are k children py(c}), ..., pr(ck). The trees Ty,...,T) are rooted at the
corresponding nodes.

Note that the set of Prolog trees for a given program and query may be infinite. While
we have described the set of Prolog trees procedurally, based upon the behavior of Prolog
in evaluating a program, we do not mean to imply that the set of all Prolog trees for a given
computation can be enumerated by following a Prolog execution of the program. This is because
in general, some Prolog trees will be generated “after” Prolog finishes an infinite branch of the
computation. Our intended interpretation of the preceding definition is that the set of Prolog
trees for a computation is exactly the set of trees corresponding to a Prolog execution in which
all infinite branches are completely evaluated, possibly generating an infinite set of trees.
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Example 7.2 Counsider the program

p(X) = p(X),r(X).
p(1).
r(1).

a(X) = p(X).

Here Prolog will loop forever on the initial call to p(X). The set of Prolog trees is infinite. One
infinite subset of trees within this set, defined inductively, consists trees of the following form:
the tree for k = 0 is just the node p(1). For all £ > 0, the root of tree k is the fact p(1). The
root of tree has has two children: the left child is the tree for k -- 1, while the right subtree is
the fact 7(1). O

In the following we wish to prove theorems relating the behavior of Prolog on a given
program P and query ¢ to certain properties of the NSN trees for P™9, which we denote by
Tnsn(P™9,q). Technically speaking, the “g” in Tnsn(P™,q) is redundant, because enough
information to determine g is contained in P™9. However, we retain the ¢ for consistency
with our way of denoting the Prolog trees for P and ¢: Tp(P,q). The situation is complicated
because the NSN trees for P™ can contain spurious infinite trees due to “loops” created by
the interaction between the magic predicate instances in the modified rules of P and the magic
predicate instances in the magic rules.

Example 7.3 Consider the following program P:

Q(XAa Y) - p(-X.7 Z)ap(27 Y)
p(X,Y) - b(X,Y).
b(5,5).
query(Y) = ¢(5,Y).
The corresponding magic program P™9 is

1) mq(5).

2) mp(X) = ma(X).

3) mp(Z) - mq(X)ap(X‘,Z)‘

4) ¢X,Y) - mg(X),p(X,Z2),p(Z,Y).
5) p(X,Y) - mp(X),b(X;Y)'

6) b(5,5).

Now consider evaluating this program bottom-up using NSN. On the first iteration we will infer
the fact mp(5) using Rule 2). On the second iteration we will infer p(5, 5) using Rule 5). This
in turn will imply mp(5) on the following iteration, from Rule 3). But now we have entered a
loop where mp(5) derives p(5,5), which derives mp(5), ad infinitum. O
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To avoid this situation we define a new program, P°?*. The following definition distinguishes
between the magic rules and the modified original rules of the program P. A magic rule is a
rule in which some predicate introduced by the Magic Templates rewriting algorithm appears
in the head.

Definition 7.2 Let P be a program, and P™9 be the corresponding magic program. Then PP
is formed by deleting all magic predicates from the non-magic rules of P™9.

The program P°P* has the desirable property that the spurious loops mentioned above do
not arise. However, it has the undesirable property that many facts that can be proven in PP
are irrelevant — that is, they do not appear in P™J. This can be avoided by focussing our
attention on the relevant portions of P°P*, that is, the NSN trees in P°Pt that have roots that
appear as facts in GC(P™).

Definition 7.3 Let P be a program, and ¢ be a query on some predicate appearing in P.
Then the relevant trees with respect to Q in P°P*, denoted Rel(Tnsn(P°P,q)), are all trees ¢ in
Tnsn(P°P) such that the root of ¢ is in GC(P™?).

Lemma 7.1 For a program P and a query g, there is a tree of height k with a goal m_p(c) at
the root in Rel(Tnsn(P°Pt, q)) if and only if there is a tree of height k with m_p(c) at the root in
Tp(P,q). Similarly, there is a iree of height k with a fact p(c) at the root in Rel(Tnsn(P°Pt,q))
if and only if there is a tree of height k with p(c) at the root in Tp(P,q).

Proof Given in Appendix A. O

7.2.2 Well-Behaved and Strictly Well-Behaved Programs

We now apply the notions of P°P* and Prolog trees to relate the behavior of top-down Prolog
and bottom-up Magic Templates on classes of programs.

The following property, well-behaved, is related to the finite forest property of Section 6.1.
The key difference is that well-behaved considers only the facts that are relevant to a particular
query. The motivation for this restriction is that both Prolog and Magic Templates only
compute relevant facts, so their respective behavior on irrelevant facts has no bearing on the
choice of which method to use.

Definition 7.4 (Well-Behaved) Consider a program P (including a goal q), and P™ accord-
ing to the Prolog sips. Let P°Pt he P™9 with the magic predicates deleted from the modified
original rules of P. Let Tnsn(P°Pt, q) be the set of NSN trees for Port. P is well-behaved if
each fact in GC(P™9) unifies with the roots of only a finite number of trees of Ty sn( PP, q).

The following property, strictly well-behaved, is stronger than well-behaved.

Definition 7.5 (Strictly Well-Behaved) Consider program P (including a goal ¢), and P™9
according to the Prolog sips. Let P°P* be P™9 with the magic predicates deleted from the
modified original rules of P. Let F be the set of facts in GC(P™?). Let Tnsn( PP, q) be
the set of NSN trees for P°Pt. P is strictly well-behaved if there are no two trees t; and t; in
Tnsn(P°P, q) such that the roots of both trees appear in GC(P™9) and the root of ?; is the
same fact as the root of t;.

Theorem 7.2 P™ is duplicate-free if and only if P is strictly well-behaved.
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Proof (P™ duplicate-free — P is strictly well-behaved.) Assume P is not strictly well-
behaved. Then there is some fact in F with two distinct trees. By adding subtrees for magic
facts to these trees, we get two distinct trees in P™9. This uses the fact that there is a magic
fact in P™9 corresponding to each goal that appears in a tree of 7p(P,g), which in turn follows
from Lemma 7.1.

(P strongly well-behaved — P™7 duplicate-free.) In this direction we use the notion of the
§-height of a tree. The §-height of a tree in P™ is the height of the tree after all magic facts
other than the root (and their subtrees) are deleted. /

Assume that P™ is not subsumption free. Then there must be two distinct trees in P™9
with the same root, which is a fact in F. If these trees have different §-heights, then clearly
there are two trees for the same fact in P°P%,

Consider the case where the trees have the same 6-height. Let d be the minimal height such
that there exist two distinct trees in P™9 with the same root in F and of é-height d. If these
trees differ in a subtree not rooted in a magic fact, then clearly there are corresponding trees
in P°P* so P is not strictly well-behaved. If these trees differ in a subtree rooted in a magic
fact, then we have a contradiction to the fact that d was minimal. O

Theorem 7.2 is important for two reasons. First, it may be of use in a test to decide
if P™9 is duplicate-free, since in general both the magic rules and the original program P
are simpler than P™9 (witness the interaction between the magic rules and modified original
rules in Example 7.3.) Second, Theorem 7.2 gives us insight into the relationship between P
and P™9. As noted, in general there can be complex interactions between the magic rules
and the modified original rules; the theorem tells us that these interactions cannot give rise
to violations of subsumption freedom where there were none in the original program or in the
magic rules.

Lemma 7.2 For a program P and a query Q, if P is strictly well-behaved, then for each tree
with root v in Rel(Tnsn(P°P,q)), there is ezactly one tree with root v in Tp(P,q).

Proof Given in Appendix A. O

The following theorem is useful in relating the termination and completeness of Prolog on P
to properties of the NSN trees of PP,

Theorem 7.3 (Prolog Computation 1) Prolog generates each goal and fact only a finite
number of times if and only if P is well-behaved.

Proof If Prolog generates a goal or a fact infinitely often, then there must be Prolog trees
of unbounded height for this goal/fact. (There are Prolog trees of unbounded height for a given
goal or fact if for any k, there is a Prolog tree T' with the goal or fact at the root such that T'
is of height greater than k.) This follows since

o For a given Prolog program, there are only finitely many Prolog trees of a given bounded
height, and

e Prolog only generates a goal or fact a finite number of times with the same Prolog tree.

Let f be a goal or fact that is generated infinitely often by Prolog. By Lemma 7.1, this implies
that there are NSN trees of unbounded height for f in 7p(P°P%,q), and that f appears in
GC(P™). This in turn implies, by the definition of well-behaved, that P is not well-behaved.
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The other direction is again symmetric — if P is not well-behaved, then there must be
some fact f such that f appears in GC(P™) and f is the root of trees of unbounded height
in Tnsn(P°P, ¢). This in turn implies by Lemma 7.1 that there are unbounded Prolog trees in
Tp(P,q) with f at the root, so Prolog generates f an infinite number of times. O

The following theorem is useful in determining when bottom-up evaluation can be guaran-
teed to terminate.

Theorem 7.4 If P is well-behaved, all base predicates are finite, and all magic predicates are
safe in P™, then all predicates are safe in P™9.

Proof If P is well-behaved, then by definition of well-behaved any fact in GC(P™?) appears
as the root of only a finite number of trees in 7; ~nsn(P°Pt, q). This in turn implies that for any
fact f appearing in GC(P™9), there is a bound on the maximum height of any derivation tree
for fin P°Pt.

Similarly, since we are given that all magic predicates are safe in P™9, there is a bound on
the maximum height of any derivation tree for any magic fact in GC(P™). But then since
every derivation tree in P™ is simply a derivation tree in P°Pt, possibly with the addition of
nodes for magic facts (and their associated subtrees), there is a bound on the maximum height
of any derivation tree for any fact in P™9. This, together with the finite number of rules in
P™9 and the finite number of facts in the base relations for P, implies that all predicates are
safe in P™9. [

Corollary 7.1 (Prolog Computation 2) Prolog is complete if P is well-behaved, every base
predicate is finite, and every magic predicate is safe in P™e,

Proof By Theorem 7.4, if P is well-behaved, every base predicate is finite, and every magic
predicate is safe in P™9, then there is a bound on the maximum height on any derivation tree
in Tnvsn(P°P?) for a fact f in GC(P™9). This, by Lemma 7.1, implies that there is a bound
on the maximum height of any tree in Tp(P,q). If every tree in 7p(P, q) is of bounded height,
and every base relation is finite, then there are only a finite number of trees of finite height for
Prolog to search, hence Prolog must be complete. O

Corollary 7.2 Completeness of Prolog is decidable for range-restricted Datalog programs n
which base relations contain only ground facts.

Proof All range-restricted Datalog programs in which base relations contain only ground
facts are safe. Maher and Ramakrishnan [MR90] have proven that for Datalog programs, the
finite forest property is decidable; this proof can be modified to show that for Datalog programs,
well-behavedness is decidable. Hence by Theorem 7.4, completeness of Prolog is decidable for
ground Datalog programs. O

Lemma 7.3 Seminaive bottom-up evaluation of P™9 terminates if and only if all predicates
are safe in P™9.

Proof Suppose some predicate p in P™ is not safe. By definition of safety, this implies
that there are an infinite number of facts for p in GC(P™?). Since bottom-up evaluation is
complete, and computes all of GC(P™), and computes only a finite number of tuples on each
iteration, bottom-up evaluation of P™¢ cannot terminate.
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Suppose that all predicates in P™ are safe. By definition of safety, this implies that there is
only a finite number of facts for each predicate in P™. Since Seminaive bottom-up evaluation
either computes new facts on each iteration or terminates, it must eventually compute all facts
and then terminate. O

This leads to the observation that bottom-up evaluation is preferable if P is not well-behaved
— Prolog is not complete, and bottom-up evaluation (of P™) is complete.

Now, a more positive side to Prolog:

Theorem 7.5 If P™ is duplicate-free, each fact and goal is generated at most once by Prolog.

Proof By Theorem 7.2, if P™ is duplicate-free, then P is strictly well-behaved. Then
by Lemma 7.2, there is a unique Prolog tree for each fact. Thus each fact and goal must be
generated at most once by Prolog. O

Corollary 7.3 If P™ is duplicate-free, Prolog is linear in the size of the set of facts computed.
Corollary 7.4 If P™ is duplicate-free, Prolog is polynomial in the size of the EDB.

However, note that Prolog may not be complete unless P™7 is also safe.

8 Connections to Functional Program Transformations and
Tabulations

In previous sections we reviewed the bottom-up approach to logic program evaluation, observed
that there are several alternatives within this approach, and examined its relationship to a top-
down method. We have tried to establish the thesis that there are a number of comparable
choices of evaluation method, and a compiler must make an intelligent choice based on the
given program. In the same spirit, we now study some results from the functional programming
literature, and illustrate how methods for logic program evaluation can be refined using similar
techniques. Our study only indicates the possibilities, and makes no attempt to cover the
literature comprehensively.

Our discussion is in three parts. We begin by introducing some of the ideas in func-
tional program transformation, drawing primarily upon Burstall and Darlington’s pioneering
work [BD77]. This work has somewhat different objectives and assumptions from the program
transformations in the bottom-up evaluation literature, and it is interesting to compare them.
Next, we present work on tabulation, or memoing, which is closely related to the bottom-up
approach of retaining all derived facts. This work points to an important new direction of
research in bottom-up evaluation, which is the effective utilization of memory through compile-
time garbage collection. We follow the presentation in [Bir80, Coh83]. Finally, we consider
how this work relates to bottom-up evaluation of logic programs. We apply the tabulation
results to refine the Magic Templates approach in a simple way, and then compare this with
the Burstall-Darlington approach using a number of examples.

Our conclusions can be summarized as follows:

1. The functional approaches use specialized techniques and hints from the programmer to
effect very sophisticated transformations. The objective is to build systems that enable
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a programmer to develop efficient programs from declarative functional specifications.
The bottom-up approach deals with logic programs, and also achieves somewhat greater
generality since it is independent of the set of facts in base relations. It is more appropri-
ately viewed as a collection of techniques for compiler optimization than as a system for
developing programs from specifications (although the distinction is one of degree).

2. The bottom-up approach typically matches the functional approach in time complexity,
but uses considerably more space.

3. Applying techniques from the tabulation literature to the bottom-up approach shows
promise in improving the space utilization of the bottom-up approach.

8.1 Functional Program Transformations

In this section, we describe the transformation approach proposed in [BD77)].

Burstall and Darlington propose to transform functional programs, expressed as recursion
equations, using a library of transformation rules. We begin by establishing a correspondence
between recursion equations and the formalism of logic programs. It is actually easier to show
such a correspondence for adorned programs. (See Section 3.1 for a definition of adorned
programs.)

Any set of recursion equations can be thought of as an adorned program P2, However,
the reverse is not true — an adorned program that corresponds to a set of recursion equations
must satisfy a number of constraints not satisfied by adorned programs in general.

Intuitively, if an adorned program corresponds to a set of recursion equations, each adorned
predicate denotes a function; f(c) = d is represented as a tuple p'°(¢,d). For each adorned
literal p®(%), there is at most one rule with head predicate p® such that the bound arguments of
the head unify with the bound arguments of 7. That is, if the function denoted by p® is invoked
with some arguments, at most one program rule is applicable.

Additionally, in the relation associated with p® in the least Herbrand model, the set of bound
arguments must functionally determine the set of free arguments, for all adorned predicates p®.
That is, p® is indeed a function from the set of bound arguments to the set of free arguments.
(Recall that there are techniques to test these conditions; see Section 6.2.)

In the remainder of this subsection, we will only consider adorned programs that satisfy
these additional restrictions which guarantee that they correspond to recursion equations.

Burstall and Darlington allow the following transformation rules: Definition, Instantiation,
Unfolding, Folding and Abstraction. In addition, laws such as commutativity and associativity
can be used. Definition adds new rules to the adorned program P°¢ (that preserve the conditions
for restriction to recursion equations). Instantiation adds a substitution instance of an existing
rule to P24, Unfolding adds a rule that is formed by taking a rule of P?? and expanding a body
literal using a rule (also in P%?) that defines it. Folding is essentially the inverse of unfolding; it
adds a new rule that is formed from a rule of P*¢ by replacing a set of body literals b;...b; with
a single literal h. (There must be some rule r in P*? such that h - b;...b; is a substitution
instance of 7.) Abstraction puts a rule into a canonical form by replacing all occurrences of
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a term ¢ by a new variable X and adding the equation X = ¢ to the body. This allows us to
expose the structure of the rule in a way that facilitates generalization.

The repeated application of these transformation rules is guaranteed to preserve soundness in
that any inferred answer is in the Herbrand model; however, it may introduce non-termination.
Related sets of transformation rules, for the case of logic programs, have been investigated by
Tamaki and Sato [T'S84] and by Maher [Mah89]. The Tamaki-Sato transformation system is
shown to preserve the least Herbrand model, and the Maher system is shown to preserve the
Clark completion of the program.

Burstall and Darlington suggest the following strategy for applying their transformation
rules: Make necessary definitions, instantiate, and repeatedly try unfolding followed by appli-
cation of laws, abstraction and folding. They note that introducing the definitions and choosing
appropriate instantiations and abstractions often require hints from the user.

In earlier work, Burstall and Darlington developed a system in which transformation rules
converted recursive schemas into iterative schemas [DB73]; the system that we have discussed
arose out of a desire to transform programs extensively before eliminating recursion. In [DB73],
a transformation rule is specified as a schematic rewriting system with constraints on the
instances of the schemas for which the rule is valid. This is formalized using using second order
unification in [HL78].

We now present several examples, from [BD77], to illustrate the use of transformation rules;
the reader is urged to consult [BD77] for a detailed treatment.

Example 8.1 Consider the Fibonacci example:

Fib0(0, 1). Fibto(1,1).
Fib(N, X1 4+ X3) = N > 1, fib'%(N — 1, X1), fib'(N - 2, Xa).

We have seen that a top-down evaluation of this program is exponential time unless the results
of all calls are saved. The Burstall-Darlington system dramatically improves this program by
combining the two recursive calls into one. This requires a hint from the user, who must supply
the following definition:

FOO(N — 2,X1,X5) = N >1,fb%N —1,X1), fibl°(N — 2, X3).

Given this hint, the system tries a variety of applications of the transformation rules, and
produces the following program that runs in linear time and space:

Fib19(0, 1). Fib10(1,1).
FBON+2,U+V) = N320,g(N,U,V).
g'%(0,1,1).

g %N +1,U+V,U) == N >0,9(N,U,V).

O

Example 8.2 The following program computes factorials over the domain of non-negative
integers:

fact'®(0,1).

fact'®(N +1,X) = fact!®(N,M),X =(N+1)* M.
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This is a recursive program that is typically implemented in a top-down system with a stack.
As we return from calls, we must perform a series of multiplications. The execution takes linear
space and time. This can be improved by introducing an accumulator, which is a new field that
is used to carry along intermediate results. This requires intervention from the user in the form
of the following definition:

gUN, U, X) :- fact'®(N,M),X =Ux M.
The system then uses the transformation rules to obtain:?

fact®(N, M) - gMO(N,1, M).
41190, U, U).
g N +1,U, M) - g"'%N,U=(N+1),M).

This is a tail recursive program, and is easily translated into an iteration; for example, by apply-
ing the Magic Templates algorithm and factoring. (Note that the Magic Templé,tes algorithm
when applied to the original program yields a program that cannot be factored.) The program
can be executed in linear time and constant space. O

Example 8.3 The following program computes a list of factorials:

flist'®(0, nil).

flist'®(N +1,M.L) : fact'®(N +1,M), flist’®(N, L).
facti®(0,1).

fact’®(N +1,X) - fact®(N,M),X = (N +1)* M.

We have used the infix “.” to denote the cons operator. This program is inefficient in that it
makes no use of the computation of the first N factorials in computing the next factorial. The
Burstall-Darlington system again needs assistance in the form of the following definition:

gIO(N. U, V) = fact!O(N +1,U), flist'®(N, V).

This enables it to produce the following program, which improves upon the original by com-
bining the two recursions into one:

Flist'®(N + 1, M.L) . glO%N, M, L).
9'%%(0, 1, nil).
g'(N +1,(N +2)+M,M.L) :- g¢(N,M,L).

O
Example 8.4 We now consider the familiar naive reverse program:
reviO(nil, nil).
revl®(A.X, L) - rev'®(X, Ly), app*'®(Ly, A.nil, L).

appuo(nil, L, L)
app'(X.L1, Ly, X.L) + app'®(Ly, Lo, L).

3This actually requires an extra transformation rule called Redefinition.
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Prolog executes this in linear time and space. This program can also be improved through the
use of the accumulator technique. Given the following definition as a hint:

gl X,U,L) : rev'™(X,L),app'*®(Ly,U, L).

the Burstall-Darlington system will produce:

rev’®(A.X,L) - ¢"%X,Anil, L).
g (AL, U,W) - app''®(Anil,U, Z), gL, Z,W).
a11%nil, U, U).

This is again a tail recursive program. It can be executed in linear time and constant space. O

This completes our review of functional program transformations. We will compare these
results with the bottom-up approach in Section sec:perfmtab, after considering how the memory
utilization of the latter can be improved in the following subsection.

8.2 Tabulation and Compile-Time Garbage Collection

Evaluation methods may be viewed as identifying subgoals and generating solutions for them,
and often, it is the case that subgoals are identified in multiple ways. If there is a record of
what goals have been identified, and what solutions have been generated, it is possible to re-
use this information instead of computing it repeatedly. On the other hand, a table of goals
and solutions represents overhead in terms of both space and additional time to maintain it,
although the time spent on maintaining the table is likely to be significantly less than the
time gained through avoiding repeated computation. Thus, tabulation represents a time-space
trade-off in most situations; Prolog is an example of one extreme that does no tabulation, and
memoing methods represent the other extreme, tabulating all identified goals and solutions for
the remainder of the computation.

We will refer to methods that save intermediate results as tabulation methods, using Bird’s
terminology [Bir80]. There is a wide range of tabulation methods that differ in how much
intermediate computation they save. Elsewhere, we have used the term memoing method; we
will reserve this to refer to a subset of tabulation methods that save all intermediate results.

Bottom-up evaluation methods for logic programs typically save all generated goals and
solutions to these goals, whereas top-down methods — for instance, Prolog — often do not.
Tabulation is not limited to bottom-up methods; indeed, top-down methods that aim to be
complete must do some form of tabulation (for example, loop-checking in Prolog-style evalua-
tion).

In this section, we review work on tabulation that aims to determine at compile-time how
goals and solutions that are tabulated can be discarded as computation progresses. This allows
the development of techniques to allocate memory at compile-time in a way that re-utilizes
freed space. We will follow [Bir80] for the most part, and rely upon [Coh83] for the rest of
our overview. These papers deal with functional programs, and we will adapt the treatment to
logic programs where necessary.

A tabulation method that does not repeat any computation must have the following prop-
erties: No information (goals or solutions) that is still needed is discarded, and there is the
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capability to check if a new goal is already known, and if so to retrieve the set of known solu-
tions. Bird refers to a particular class of evaluation methods as ezact tabulations; these memoing
methods are top-down methods that save all generated goals and solutions until the execution is
completed. Bird’s description of exact tabulations is limited to the case of functional programs
that are well-defined; this implies that f(c) is never defined in terms of f(c), for any c.

When we consider logic programs, not only must we consider relational mappings rather
than functional mappings, which implies that at any time only a partial set of solutions may
be known, we must also contend with the fact that such cyclic definitions arise frequently —
for instance, Example 1.1 over a cyclic graph. To deal with these differences, it is necessary to
extend tabulation as defined by Bird; methods such as Vieille’s QSQ [Vie86, Vie87] are precisely
such generalizations (although they were derived independently). The Magic Templates method
is a bottom-up evaluation method that tabulates the same set of goals and solutions as QSQ,
although the control strategy is entirely bottom-up, and so can also be thought of as an instance
of (generalized) exact tabulation.

Exact tabulations are optimal in terms of time, but, to use Cohen’s forceful phrase, suffer
from “profligate and inefficient use of storage” and the associated disadvantages of slow table
access and table maintenance overhead. The challenge is to see if we can improve space uti-
lization through compile-time analysis to determine when tabulated goals and solutions are no
longer needed.

The basis of such an analysis is the dependency graph of a computation.

Definition 8.1 (Dependency Graph) The dependency graph D for a logic program and a
given query indicates how goals depend on each other, and is defined as follows.

1. The source node is the initial query ¢?.

2. The nodes of the graph correspond to goals. (These are “magic” facts in the context of
the Magic Templates algorithm.)

3. There is an arc from node ¢; to node g, if a solution to g; depends directly on a solution
to go. (The goal g; is generated from an instance of a magic rule in which g is the (only)
magic fact in the body.)

Bird requires dependency graphs to be acyclic, and this is necessary for a function to be
well-defined, but in general dependency graphs for logic programs need not be acyclic. (Indeed,
each node in the graph may be part of a cycle!) However, we will only consider programs with
acyclic dependency graphs in the rest of this paper.

For acyclic dependency graphs, the nodes can be arranged in a linear order such that i < j
whenever there is a path from n; to n; in the graph. Once such an order is identified, a tabulation
method can proceed by evaluating goals in ascending order, using previously computed values
as necessary. Further, this provides a starting point for determining when goals and solutions
can be discarded: If there is a constant N such that there is no arc from goal n; to any goal n;,
for i < j — N, then we need only retain the previous N goals and their solutions at any point
in the computation.

This simple estimate can be improved through pebble games played on the dependency
graph. A supply of labeled pebbles, which can be thought of as memory units, is given and
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at each move of the game, a pebble is placed on a node. The game ends when a pebble is
placed on the source node. The following rule must be obeyed: A pebble can be placed on
a node only when there are pebbles on all immediate predecessors (if any), and no node may
be pebbled more than once. The smallest number of pebbles with which we can cover the
graph corresponds to the minimum amount of memory needed to execute the program without
repeating any computation, and the sequence of moves describes how memory is to be assigned
in such an execution.

Consider the Fibonacci program from Example 8.1. Each goal corresponds to an integer,
and there is an arc from node I to the nodes I — 1 and I — 2. We leave it to the reader to
pebble this dependency graph using just two pebbles; two units of memory are all we need to
execute this program. Variations on the pebble game allow us to explore time-space trade-offs;
for example, relaxing the requirement that no node be pebbled twice permits some repeated
computation and in general reduces the number of pebbles required. We will not consider any
variations in this paper.

The problem that we must address is therefore to analyze the dependency graph for a pro-
gram at compile-time and to devise a pebbling strategy that uses as few pebbles as possible.
The analysis proposed in [Coh83] rests upon a study of descent functions, which describe how
immediate subgoals are derived from a goal. In our discussion of Cohen’s work, we will re-
strict ourselves to adorned programs that are equivalent to recursion equations, since this class
properly includes all the program schemas that he considers.

Consider the following program schema S, which generalizes the Fibonacci program:

(N, X) = pY(N),a'®(N,X).
flO(N7 X) - _"pl(N)v CIO(N‘a Nl)a flO(NhXAl)s dIO(N7 N2)7 flO(N% XIZ)’ bllO(Xla X'Q, X)

The functions ¢ and d are the descent functions for this schema. It is instructive to examine
the magic rules that are generated for the above program:

m-flO(Nl) - —‘pl(N)7 m_flU(N)’ clO(N’ Nl)-
m—flu(N2) - _"p‘l(N)a m—flo(N)’ le(N5 NZ)

These rules reflect the descent functions very directly; we return to this point in Section 8.2.1.
Cohen considers several conditions on descent functions for the schema &, and shows how a
program that is an instance of S can be pebbled by transforming it into an equivalent program.
(The transformations could, however, introduce non-termination.)
To translate his conditions from function to predicate notation, we use the following no-
tation. We say that ¢ = d if for any N, if Ny and Ny are such that we have ¢(N,N;) and
d(N, N3), then Ny = Nj. Also, we write ¢*(N, N1), where n > 2, as shorthand for

(N, Wy)e(W1, W) ....o(Wn, N1)

and d"(N, N,) for
d(N,W,)d(W1,Ws) ...d(Wn, Ny)

We say that ¢ and d commute if ¢(N, W;)d(W;, N1) and d(N, Wa)e(Wsy, No) implies Ny = Na.
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The conditions considered by Cohen are the following: (1) ¢ = d, (2) there is some function g
and integers m,n such that ¢ = g™ and d = g", (3) there are integers m,n such that ¢c™ = d",
and ¢ and d commute, (4) ¢ and d commute. The four conditions form a hierarchy of strictly
weaker requirements, and the associated schema transformations are correspondingly more
complex. For three of the conditions, the resulting program uses constant space (with the same
time complexity as exact tabulation); for the last condition, linear space is necessary.

The transformations have the same general structure. Intuitively, they partition the depen-
dency graph into an ordered set of subgraphs such that nodes in one subgraph depend only upon
nodes in the next. (Recall that the dependency graph for a function is required to be acyclic.)
Then, they use a linear recursive program scheme to evaluate a node by first evaluating solu-
tions to nodes in the successor subgraph. Finally, the linear recursion is eliminated to obtain
an iterative program, which intuitively starts by computing solutions for nodes in subgraphs
with no successors (the base cases), and then proceeds to evaluate predecessor subgraphs one
by one.

It should be noted that in addition to the descent conditions, these transformations rely
upon some frontier conditions. The frontier conditions intuitively ensure that there is a clean
separation between terminal and non-terminal nodes in the (ordered) dependency graph; that
is, there is a terminal node such that all successors are terminal nodes and all predecessors are
non-terminal nodes. This separation simplifies the structure of the transformed program, but
it is not essential; in effect, initializing the iteration is harder, and subsequently, we must test
the condition p at each step.

As an example, consider the Fibonacci program. It is an instance of schema S that sat-
isfies descent condition (2), with g being the predecessor function. Further, it has the prop-
erty that p(z) implies p(g(z)), for all =, thereby separating the base cases from the recursive
goals. This is the frontier condition. Given a query fib1%(n,Y)?, we must first determine the
least k such that p(g¥(n)) is true. This allows us to initialize the iteration with the tuple
fib1%(g*(n), a(gF(n))). The computation then proceeds by repeatedly applying the following
rule until we generate fib'%(n,y):

fib(N, X) - c°1(N,N1),fiblO(Nl,Xl),dOl(.N,Nz),fibm(Ng,Xg),b“o(Xl,Xg,X).

We rely upon the fact that g is invertible, that is, given g(n) we can determine 7. In the above
rule, this amounts to using ¢ and d with adornment 01 in this phase of the computation. Note
that the frontier condition enables us to delete the test for -p. Further, we can always discard
all but the two most recently generated tuples.

The class of transformations that Cohen describes are based on pebbling the dependency
graph, but it may often be the case that this graph has no uniform structure. A compromise
then is to pebble a graph that is uniform and has embedded in it the dependency graph. This
in general requires us to compute goals that we are not required to compute by the original
program; it is the addition of these irrelevant goals that gives us the desired uniformity. Bird
calls such schemes overtabulation methods.

We will not describe these transformations in greater detail here; the reader is asked to
consult [Bir80, Coh83].
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8.2.1 Magic Tabulation

The rules in a program produced by the Magic Templates algorithm (a magic program, for
brevity) are of two kinds: “magic” rules, which define “magic” predicates, and “modified” rules,
which define adorned predicates and use the magic predicates to restrict the set of generated
facts. We observed a close connection between the descent functions and the magic rules
introduced by the Magic Templates algorithm in our discussion of the Fibonacci example.

It is always the case that the magic rules correspond to the use of the descent conditions
to generate subgoals. For certain programs, including instances of the schema considered by
Cohen, it is possible to repeatedly use the magic rules and identify all magic facts — recall
that they correspond to the set of goals — before using the modified rules. This separation
may not always be possible; in particular, it may be necessary to generate some facts for
adorned predicates in order to identify new subgoals. Such a program is shown in Example 7.3.
However, where this separation is possible, the connection between the magic rules and the
descent conditions is direct.

We will assume that the magic facts are defined over a countable domain D with an asso-
ciated total order <. If m,n € D,n < m, we will use the notation m — n for the number of
elements [ of D such that n < [ and [ < m. Let us define a relation < over the set of magic facts
as my < mgq if and only if m; is generated by instantiating a magic rule such that mg is the
(only) magic fact in the body of the instantiated rule. We require that the following conditions
hold:

o There are no infinite decreasing chains or cycles according to <.
o If m(z1) < m(zs), then z; < 29, and we can identify a constant K such that zo -2 < K.

o Consider two magic facts m(z;) and m(z2). If there is no magic fact m(z) such that
m(z) < m(z1) (that is, = is a base case), and 2 < 21, then there is no fact m(y) such
that m(y) < m(zs) (z2 is also a base case).

Techniques for establishing monotonicity constraints (see e.g., [B589]) can be adapted to show
that these conditions hold. We say that programs satisfying these conditions are ordered.

Let p — ¢ hold if there is a rule with a p literal in the head and a ¢ literal in the body,
and let = denote the transitive closure of —. The predicates p and ¢ are mutually recursive if
p % g and ¢ = p. In particular, for every recursive predicate p, p 5 p.

We now define an evaluation method that works on a special class of logic programs and is
a refinement of the Magic Templates — Seminaive Iteration approach.

Definition 8.2 Magic Tabulation
Counsider a magic program P™ that satisfies the following:

1. If p* % p° and p° 5 p® in P™9, then m_p® — p° does not hold.
2. It is ordered.

Then, P™9 can be evaluated as follows:
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1. Apply the magic tules repeatedly, retaining only the facts generated at the previous
iteration, until no new fact is found. Additionally, retain all (magic) facts that generate
no new fact, and denote this set as M. (These are goals that correspond to the basis of
the recursion.)

2. Apply the modified original rules repeatedly. Additionally:

e On the first iteration, the set of magic facts is Mi; on each subsequent iteration 1,
i > 1, if m(z1) appeared in the magic set on iteration i, on iteration 7 + 1 replace it
with m(z2), where z; immediately precedes z; in the total order associated with D.

o After iteration i, discard all facts generated in iteration j, j < ¢ - K. (The constant
K is determined from the “ordered program” conditions.)

o Consider iteration i. If for every magic fact in M, the argument ¢ is such that ¢ < 2,
where c is the argument of the original query, then stop.

Note that the first condition is sufficient to ensure that all magic facts can be computed
without using any modified rules. Also, note that in general on iteration i there may be facts m
in M; such that m does not appear as a magic fact in P™?. This does not affect correctness,
but may affect efficiency. More sophisticated tabulation schemes that avoid this inefficiency are
presented in [NR89].

We state the following theorem, which follows from results in [NR89], without proof.

Theorem 8.1 The Magic Tabulation algorithm correctly computes all answers.

8.3 Performance of Magic Tabulation

We consider how the refined version of Magic Templates, which we dubbed Magic Tabulation,
works on the programs that we used earlier to illustrate the power of the Burstall-Darlington
system. We note that the Magic Tabulation approach does not rely upon user intervention,
and is totally correct, that is, it does not introduce non-termination.

In all these example, we will assume that a “seed” magic fact corresponding to the given
query is added to the magic program. Observe that the Magic Templates algorithm produces
a program whose Seminaive evaluation always matches the time complexity of the program
produced by the Burstall-Darlington system to within a constant factor. However, Seminaive
evaluation of the magic program uses considerably more space; Magic Tabulation, when it is
applicable, improves space utilization.

Example 8.5 Consider the Fibonacci program of Example 8.1. The Burstall-Darlington sys-
tem, with some user intervention, produces a program that runs in linear time and space. The
Magic Templates algorithm transforms the original program to:

m-fibl%(N — 1) - mofib!%(N),N > 1.
m fiblO(N —2) = m_fiblo(N),N > 1.
Fib19(0,1) . m_fib'(0).
fib1%(1,1) - m_fib1o(1).

FiBO(N, X1 + Xa) = m_fib!®(N), N > 1, fib'%(N — 1, X3), fib' (N - 2, X5).
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This program runs in linear time and space using Seminaive iteration; Magic Tabulation runs
in linear time and constant space. 0O

Example 8.6 Consider the factorial program of Example 8.2. The Burstall-Darlington system
transforms it to a program that runs in linear time and constant space. The Magic Templates
algorithm transforms the original program to:

m_fact!®(N) - m_fact'®(N +1).
fact!®(0,1) - m_fact'®(0).
fact!®(N +1,X) : m_fact'®(N +1), fact')(N,M), X = (N + 1) * M.

Seminaive iteration executes this in linear time and space; Magic Tabulation runs in linear time
and constant space. O

The previous two examples demonstrated that Magic Tabulation sometimes matches or
even improves upon the program produced by the Burstall-Darlington system. The following
example presents a program that is improved by the Burstall-Darlington system, but for which
Magic Tabulation is inapplicable.

Example 8.7 Consider the reverse program of Example 8.4. The Burstall-Darlington system
transforms it to a program that runs in linear time and constant space (assuming that the entire
list fits in unit space). The Magic Templates algorithm rewrites the original program to:

m-rev'®(X) - morevi®(A4.X).
m_app*®( Ly, A.nil) - mrev'®(A.X), rev!%( X, Ly).
m-appt®(Ly, Ls) i moapp''®(X.Ly, Ls).
rev'0(nil, nil) - morev'®(nil).

rev'9(A.X, L) m_revi®(A.X),rev'%(X, L1), app''°(Ly, A.nil, L).
app'1®(nil, L, L) - m_app'®(nil, L).
app'®(X.Ly, Ly, X.L) - m_app''®(X.Ly, L), app**®(L1, L2, L).

]

Seminaive evaluation of the magic program also runs in linear time and constant space, if we
assume that a structure-sharing implementation is used that stores a single copy of the list and
maintains tuples using offsets into this list. However, it is slower than the Burstall-Darlington
program by a factor of at least two, since the computation of the magic facts repeats much
of the work in applications of the modified rules; similarly there is at least a factor of two in
additional space.

Magic Tabulation is not applicable since Condition (1) is violated. However, the other
conditions are preserved, which suggests the following execution scheme that can be seen as an
extension of Magic Tabulation. Observe that: (1) app!'® and rev!® calls can both be evaluated
in constant space and linear time, and (2) Given a reverse fact, we can identify the corresponding
call — an m._rev!0 fact — and, by invertibility, the parent m_rev' call. This parent call together
with the revl® fact is enough to initiate the next app''® computation. Further, only two facts
(the m_rev!® and rev'® facts used to generate the app''© call) need be stored while waiting for
the app'1® call to return. This in turn generates a new rev® fact, and we can iterate. O
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The following example illustrates that the Burstall-Darlington system can significantly im-
prove the program in some cases where Magic Tabulation is not applicable. Further, there does
not seem to be any straightforward extension of Magic Tabulation that matches the program
produced by the Burstall-Darlington system.

Example 8.8 Consider the list of factorials program of Example 8.3. The Burstall-Darlington
system transforms it to the following program that runs in linear time and constant space
(assuming that each flist fact takes only unit space):

flist®(N + 1, M.L) . g'(N, M, L).
41%(0, 1, mil).
gON+1,(N+2)«M,M.L) - g(N,M,L).

The Magic Templates algorithm transforms the original program to:

m._fact®(N) - m_fact!®(N +1).

m_fact!®(N + 1) - m_flist!O(N +1).

m._flist!®(N) - m.flist'®(N + 1), fact'®(N + 1, M).

flist'®(0, nil) - m-flist'?(0).

Flist'O(N + 1,M.L) : m_flist!®(N + 1), fact'®(N + 1, M), flist'9(N, L).
fact'®(0,1) - m-fact'®(0).

fact'®(N +1,X) - m-fact!®(N + 1), fact!%(N, M), X = (N + 1)« M.

The magic program runs in linear time and space using Seminaive iteration. Magic Tabulation
is not applicable since Condition (1) is violated, and we cannot separate the computation of
the magic facts.

Tt looks like the best strategy using Magic Tabulation, or rather an extension of it, is to
materialize fact!®, which can be done in linear time and space, and to then use Magic Tabulation
to evaluate flist'?, essentially treating fact!® as a base relation.

We could use an approach similar to that used in the naive reverse example. That is, briefly,
we notice that both fact!® and flist!® calls can be set up and solved in constant space and
linear time. However, throwing away all the intermediate facts generated in evaluating a fact®
call causes a lot of redundant computation because the same call can be generated in many
ways. [

9 Conclusion

We have reviewed a collection of results on bottom-up evaluation of logic programs, and at-
tempted to place them in the perspective of a coherent approach to logic program evaluation.
The main conclusions, in our opinion, are the following:

1. No one evaluation method is superior for all programs; an intelligent compiler must choose
an appropriate method for a given program.

9. Efficient bottom-up evaluation methods are available that are sound and complete with
respect to the declarative semantics.
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Choosing a good evaluation method for a program is a hard problem, and we need good
heuristics — based on analytical, as well as statistics-driven, cost-estimation techniques —-
to guide this choice. We have presented some results that shed light on the choice of Magic
Templates, Counting, and Prolog evaluation methods for certain classes of programs. These
results are intended to illustrate the issues, rather than to be incorporated into a compiler
directly. Techniques that can be directly used in a compiler are sorely needed, and represent
an area for research.

The bottom-up approach that we have presented — and there is related work to which
much of our discussion applies — is based upon program transformations followed by bottom-
up fixpoint evaluation. The Magic Templates transformation ensures that the resulting fixpoint
computation generates no irrelevant facts. If a fixpoint method such as Seminaive evaluation,
which does not repeat inferences, is used, this implies that the performance of the bottom-up
approach is never worse than that of a top-down method (in particular, Prolog) by more than
a constant factor, assuming that we have constant-time access to memoed facts.

This assumption of constant-time access is clearly warranted for ground facts, where ex-
pected constant-time access can be guaranteed by the use of an appropriate hashing scheme
(see, for example, Carter and Wegman [CW79].) Tt is an important open problem whether the
same efficiency can be achieved in practice in the presence of nonground facts, where instead
of looking for an exact match or a given ground fact we need to search for general terms that
subsume a given general term.

The bottom-up approach can be viewed as a tabulation strategy that saves all generated
goals and facts until the end of the computation, and thus avoids repeated computation by
looking up previously computed results. On certain programs, for example the fibonacci pro-
gram, this results in polynomial execution where a non-tabulating method such as Prolog takes
exponential time.

A number of additional optimizing program transformations are known, and in conjunction
with Magic Templates, obtain significant additional gains in performance when applicable.
These optimizations rely upon the declarative semantics of the program, and thus the freedom
from an operational semantics often increases the efficiency of the computation.

While the performance of the bottom-up approach is never worse than a top-down method
by more than a constant factor, this constant can be significant for certain classes of programs,
especially when we take the cost of duplicate elimination into account. (Prolog does no dupli-
cate elimination, and is incomplete for this reason, in conjunction with its depth-first search.)
Refinements in fixpoint evaluation techniques may reduce this factor, although it is likely that
there will always be classes of programs in which an execution method such as Prolog is superior.

One promising refinement is to determine by a compile-time analysis that no duplicates
will be generated, and thus avoid checking for duplicates at run-time. It seems likely that
no duplicates are generated in a large class of Prolog programs; thus, such techniques could
be widely applicable. Other useful refinements are based upon controlling the order of rule
applications, and take advantage of properties such as commutativity.

A major drawback of the bottom-up approach is the amount of memory required, since
all generated goals and facts are stored. However, it may often be possible to reduce the
memory requirements by a compile-time analysis that indicates how we can discard facts that
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are no longer needed and re-allocate the freed space. Techniques for such compile-time garbage

collection have been considered in the functional programming literature, and adapting and

extending them to the bottom-up approach for logic programs is an important area for future

research.
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A  Proofs from Section 7

Lemma 7.1 For a program P and a query ¢, there is a tree of height k with a goal m_p(c) at
the root in Rel(Tnsn(P°Pt, q)) if and only if there is a tree of height k with m.p(c) at the root in
Tp(P,q). Similarly, there is a tree of height k with a fact p(c) at the root in Rel(Tnsn(P°P, q))
if and only if there is a tree of height k with p(c) at the root in Tp(P, q).

Proof The proof is by induction on k. For the “only if” direction, we use the following
induction hypothesis: For a program P and a query @,

o If there is a tree of height k with a goal m_p(c) at the root in Tp(P,q), then m-p(c)
appears in GC(P™9).

o There is a tree of height k& with a goal m_p(c) at the root in Rel(Tnsn(P°,q)) only if
there is a tree of height k with m_p(c) at the root in 7p(P,q)-

e There is a tree of height k with a fact p(c) at the root in Rel(Tysn (P, ¢)) only if there
is a tree of height k with p(c) at the root in 7p(P,q).

For the basis, k = 0, the only trees of height zero are the base facts. By definition of
Tp(P, q), the only Prolog tree of height 0 with a magic fact at the root is m_g(c), where g(c)?
was the original query. By definition of P™¢, this fact appears in GC(P™ ). By definition of
PPt there is a fact m.g(c) in P°P%, so by definition of Tysn(P°"), there is a tree of height 0
with m_g(c) as the root in Ty sn(P"). Also, by definition of Rel(Tnsn(P°P, q)), this tree is
in Rel(Insn(P°P, q)).

Again by definition of 7p(P,q), the only trees of height 0 in 7 p(P,q) with facts of the
form p(c) at the root are trees corresponding to the facts (rules without bodies) in P. By
definition of P°Pt, there is a fact p(c). in P°P! for each such base fact p(c) in P, and by definition
of Rel(Tnsn(P°Pt, q)), there is a tree of height 0 in Rel(Tysn(P°, q)) for each such fact. Hence
for each tree of height 0 in 7p(P,¢) with a fact p(c) at the root, there is a corresponding fact
in Rel(’INSN(POPt, q))-

Now suppose that the induction hypothesis holds for all ¢ < k. Consider a tree Tp in
Tp(P,q) of height k with a goal m.p;(c;) at the root. By definition of Tp(P, q), there are two
cases to consider:

1. The root m_p;(c;) has a single subtree with root m_p(c), where P contains the rule p(X)
i~ pi(Xj), ..., the rule was invoked with goal m.p(c), the unifier of X and ¢ is 6, and
¢j = X;0. Tn this case P°P* contains the rule mp;(X;) = m-p(X).
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The height of this subtree must be k¥ — 1. But then by the induction hypothesis, m_p(c)
must appear in GC(P™9), hence so must m.p;(c;). Also by the induction hypothesis,
there is a tree in Rel(Zysn(P°Pt,q)) of height k — 1 with m_p(c) as the root. This,
together with the definition of Tygn(PF,¢), implies that there is a tree of height k in
Rel(Tnsn(P°Ft, q)) with m_p;(c;) at the root.

2. The root m_p;(c;) has j > 2 subtrees with roots m_p(c), pi(e1), - - - pj-1(¢j-1), where P

contains the rule p(X) = p1(X1),- . »Pj-1(Xj-1),- .., and there are substitutions 64, ...,
6;—1 such that ¢; = X101, c2 = X802, ..., ¢j—1 = Xj_101. In this case PPt contains the
rule m_p;j(X;) - p1(X1), .- o Pj-1(Xj-1)-
The height of the tallest subtree of m_p;(c;) is k — 1, hence by the induction hypothesis
each of of m_p(c), pi(c1), --- Pj—1(cj—1) is in GC(P™9), hence so is m_p;(c;). Also
by the induction hypothesis there are trees for each of m_p(c),pi(c1),...,pj-1(cj—1) in
Rel(Tnsn(P°P,q)). Furthermore, the height of each of these trees is the same as the
height of its corresponding subtree in 7p(P,¢). This, together with the rule m_p;(X;) =
p1(X1),...,pj—1(X;-1) and the definition of Rel(Tysn(P°?,¢q)) implies that there is a
tree in Rel(Twsn(P°Pt, q)) with p;(c;) at the root of height .

In either case, the lemma holds for the case k.

The only remaining case to consider is that of a tree in 7p(P, ¢) with a fact p(c) at the root
and of height k. By definition of 7p(P, q), the root of this tree will have as subtrees the j trees
with roots py(c1),. - -, pj(c;), where P contains the rule p(X) = p1(X1), ..., p;(X;)-

Now in order for p(c) to have been generated by Prolog, there must have been a goal m._p(c')
generated such that there is a substitution 8 and ¢ = ¢’f and such that 6 can be extended to
a substitution @ such that ¢; = X160, ca = X8, ..., ¢; = X;0'. But this proves that the fact
p(c) must be in GC(P™9).

Finally, the height of the tallest of these subtrees must be k£ — 1, so by the induction
hypothesis there are corresponding trees in Rel(Tysn(P°P*, q)), hence there is a tree of height
k with p(c) as the root in Rel(Tnsn(PP,q)).

The “f” direction of the lemma is symmetric, and hence is omitted here. O
Lemma 7.2For a program P and a query Q, if P is strictly well-behaved, then for each tree
with root v in Rel(Tysn(P°P,q)), there is ezactly one tree with root r in Tp(P,q).

Proof Assume the contrary, that is, that P is strictly well-behaved, yet there is at least
one tree with root r in Rel(Tysn(P°P, q)) such that there are two trees with root r in 7p(P, g).
Let T of height k£ be the minimal height tree in Rel(Tnsn(P°,q)) such that there are two
trees, say t; and ty, with root r in 7p(P, q).

First we claim that ¢; and ¢, must both be of height k. This follows from Lemma 7.1, since
if either of ; or t, were of height k' # k, there would be a tree in Rel(Tnsn(P°, q)) of height
different than k with r at the root, contradicting the fact that P is strictly well-behaved.

Similarly, Lemma 7.1 and the assumption that 7 is minimal implies that for any subtree
of t; or t, the fact or goal at the root of the subtree appears as the root of exactly one tree in
Rel(Tnsn( PP, Q)).

If 7 is a goal m.p;(c;) there are four cases to consider:
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1. The root m_p;(c;) in t; has a single subtree with root m_p(c), where P contains the rule
p(X) == pj(X;)y-- -, the rule was invoked with goal m_p(c), the unifier of X and ¢ is 0,
and ¢; = X;6. Similarly, the root m_p;(c;) in t; has a single subtree with root m-p'(c),
where P contains the rule p'(X’) i~ p}(X}),..., the rule was invoked with goal m._p'(c),
the unifier of X’ and ¢’ is ¢, and ¢ = X}¢".

In this case P°P* must contain the rules m_p;(X;) - m-p(X) and m_p;(X;) = m-p'(X'),
which would imply two distinct trees in Rel(Tnsn(P°P, q)) with root m_p;(X;), contra-
dicting the fact that P is strictly well-behaved.

2. The oot m.p;(c;) in #; has j > 2 subtrees with roots m._p(c), pi(er), - Pi-1(cj=1),
where P contains the rule p(X) i~ p1(X1),. - +Pj—1(Xj-1)s . -, and there are substitutions
6y,...,0;-1 such that ¢; = X101, ¢ = Xoba, ..., ¢jo1 = Xj-10;_1. Similarly, the root
m_pj(c;) in t, has j' > 2 subtrees with roots m-p'(c’), pi(cy), - - pj_1(cj_1), where P
contains the rule p'(X) == p{(X1),. . »Pj_1(X}_1)» - -, and there are substitutions 01,051
such that ¢} = X161, ¢y = X465, ..., iy = Xj 1051
In this case P°P! contains the rule m_p;(X;) = m-p(X), p1(X1),. . »pj-1(A;-1) and the
rule m.p;(X;) = mp(X'), Pi(X1), - Pj_1(X}_1), which, again, would give two trees
in Rel(Tysn(PP,q)) with toot m.pj(c), contradicting the fact that P is strictly well-
behaved.

3. The root m.pj(c;) in ¢, has a single subtree with root m-p(c), where P contains the
rule p(X) ~ p;(X;),. .. the rule was invoked with goal m_p(c), the unifier of X and c
is 0, and ¢; = X;0. On the other hand, the root m.pj(c;) in ¢y has j' > 2 sub-
trees with roots m_p'(¢), pi(c}), ... Pj_1(cj_1), where P contains the rule p'(X) -
(X)) P 1(X}_1)s -, and there are substitutions 6;,...,0;., such that | = X161,
ch= X305, ..., ¢ = Xj_161.

Then the rules m_p;(X;) - m.p(X) and m_p;(X;) - mp(X"), pi(X7),. . WPi_1(XG_1)
must appear in P°P!, which, again, would give two trees in Rel(Tnsn(P°Pt, q)) with root
m_p;(c), contradicting the fact that P is strictly well-behaved.

4. This case is symmetric to the previous case, with the roles of #; and ?; reversed.

In all cases, we reach a contradiction.

The only remaining case to consider is that of 7 being a fact, say p(c), in which case the
root of ¢; will have as subtrees the j trees with roots pi(c1),-..,p;(c;), where P contains the
rule p(X) - pi(X1), - - ., pj(X;), and the root of ¢ will have as subtrees the j' trees with roots
pi(¢}), - - Piu(cq), where P contains the rule p(X) = pi(X1)s - - Pu(X D),

Now in order for p(c) to have been generated by Prolog, there must have been goals m-p(d)
and m_p(d') generated such that there are substitutions § and ¢, and ¢ = df and ¢ = d'¢’, and
such that 8 can be extended to a substitution ¢ such that ¢; = X1¢, c2 = X3¢, ..., ¢; = X;¢
while @ can be extended to a substitution ¢ such that ¢} = X1¢', ¢ = X3¢, ..., ¢ = X'
But this proves that the fact p(c) must be the root of two trees in Rel(Tysn(P°P, q)), again
contradicting the fact that P is strictly well-behaved.

In all cases we meet with contradiction, completing the proof. O
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