LOGIC FOR LOGIC PROGRAMMERS i
by
Kenneth Kunen

Computer Sciences Technical Report #8384

Qctober 1989

LOGIC FOR LOGIC PROGRAMMERS

Kenneth Kunen!

Computer Sciences Department
University of Wisconsin
Madison, WI 53706, U.S.A.
kunen@cs.wisc.edu

October 27, 1989

ABSTRACT

The goal of logic programming is that the program, or database, can be under-
stood by logic alone, independently of any execution model. Attempts to realize
this goal have made it clear that the logic involved must go beyond ordinary first-
order logic. This survey will explore several topics of current interest in the logical
meaning of logic programs, with particular attention paid to: (1) The meaning
of negation; this still remains problematical, although many partial results are
known. (2) The meaning of recursions; these imply a least fixed-point computa-
tion in deductive databases, and something else in Prolog. (3) The meaning of
the Prolog builtin predicates, such as the evaluation of numeric terms. (4) The
semantic meaning of the order in which a stream of answers is returned.

§0. INTRODUCTION.

This is a survey of some current issues regarding the declarative semantics of logic
programming. It will raise more questions than it answers. This Introduction explains
why you should care at all about declarative semantics, and outlines the questions which
will be discussed in greater detail in the rest of the survey.

Importance of declarative semantics. The key feature which separates logic
programming from other forms of programming is that the program says something in
logic, and any answers obtained are logical consequences of what the program says. Thus,
any answers obtained are guaranteed to be correct, by logic. At least, this is the ideal
behind logic programming. The following pages will explain why this ideal is not realized in
Prolog, and will explore how close we are to realizing it in any practical logic programming
language.

My description of ideal logic programming implies that a logic programming language
be set up as database query language. That is, the program (or database) is (or denotes) a
set of statements in predicate logic, and the program is run each time the user queries the

1 This research was supported by NSF Grant DMS-8501521.

database; in such a “run”, the computer decides whether the user’s query is a logical conse-
quence of the database. I'm not claiming that all desired applications of programming can
be so set up, but a lot of them can. Certainly, there are many “obviously” database-style
examples; the program may be a set of facts about parenthood and a definition of ances-
try, the query may be 7— ancestor(abraham, jacob), and the answer yes signifies that the
statement ancestor(abraham, jacob) is a logical consequence of the database. But also, a
call for a numerical computation can be phrased as a database query. For example, the
program may be a set of axioms about numbers, the query might be 7— factorlist(100, X),
and the answer X = [2,2, 5, 5] indicating that factorlist(100,[2,2,5,5]) is a logical conse-
quence of the axioms. Of course, the computer doesn’t know English, and the programmer
is responsible for the formal symbol, ancestor, really axiomatizing our informal notion of
the meaning of ancestor, or factorlist axiomatizing our usual understanding of a list of
factors. However, assuming we have correctly axiomatized our informal notion, we know,
by logic, that any answer obtained is correct; unlike other approaches to programming,
we don’t need to prove a correctness statement, which, if expressed formally, would be in
some formal language other than our programming language.

The program finds its answers by implementing some form of automated deduction.
Since automated deduction in general is plagued by the well-known combinatorial explo-
sion, it is reasonable to ask whether this style of programming is even feasible. The best
argument for feasibility I know of is given by Kowalski’s famous statement, “Algorithm =
Logic + Control” [15]. As I understand it, this means that the program (the Algorithm) is
(or denotes) a disjoint union of a set, S, of statements in predicate logic (the Logic) plus
a set of hints to the theorem prover which help it to find deductions (the Control). Only
the logic part is relevant to the correctness of answers; thus, if ¢ is a computed answer
(such as factorlist(100,[2,2,5,5])), then ¢ is a logical consequence of S, and the computer
will have found (something denoting) a formal proof of ¢ from S. With good control, the
computer will find proofs quickly; with bad control, the computer will find proofs slowly,
or maybe not at all.

This separation into logic and control makes logic programming at least seem feasible.
At our current stage of knowledge, we cannot expect computers to find, without guidance,
non-trivial conclusions from sets of axioms. This would require truly intelligent computers,
which exist only in science fiction. By making intelligence (control) the responsibility of
the programmer, it is at least conceivable that the computer can handle the formal logic
and guarantee correctness.

By declarative semantics, I mean the precise description of how to translate a logic
program into formal logic. The reason why this translation isn’t completely trivial is
discussed next. In this discussion, it is important to distinguish declarative semantics
from procedural semantics. The procedural semantics is an implementation-independent
description of what the interpreter does - that is, how it searches for a deduction. Note
the difference in issues. Given a language such as Prolog, it is fairly easy to describe its
procedural semantics; obviously, programmers must have a fairly good intuitive grasp of
that to be able to program, and it is easy to make this intuition mathematically precise.
Thus, the issues involved are how or whether to improve the procedural semantics. On the
other hand, it is not always clear what the declarative semantics s in a given language,

2

such as Prolog, let alone asking how to improve it in other logic programming systems.
We discuss these issues further in this paper; first let us see why it isn’t trivial.

Why isn’t it trivial - or, at least, all well known by now? It is all well known in the
case of pure Horn logic, so let us give an example here to see what the issues are. Now, as
for the logic part, the program is a set of Horn clauses. For example, consider the following
program, which gives two facts about parenthood (p), together with the definition of the
ancestor relation (a).

p(s,3). %l

p(j, k). %2

a(X,Y):~ a(Z,Y),p(X,Z). %3

a(X,)Y) :— p(X,Y). %4
This isn’t quite standard predicate logic, but there is an obvious translation into standard
logical syntax. Declaratively, the program simply stands for the following set, S, of four
sentences of predicate logic:

L. p(3,5)

2. p(5, k)

3. VXY, Z(a(Z,Y)ANp(X,Z) = a(X,Y))

4. VX, Y(p(X,Y) = a(X,Y))
Call this the naive reading of the program. For the query, 7— a(X, k), the answer X =1
is supported by the declarative semantics — meaning that the sentence a(z, k) is a logical
consequence of S. The relevant abstract procedural semantics is called SLD, which is really
just the search for a proof in a kind of Resolution. SLD is essentially a formalization of
what ordinary Prolog does, ezcept that it is non-deterministic — that is, it is free to choose
the clause or literal to reduce by next, whereas standard Prolog reduces left-right. Here,
the sequence of reductions in SLD is:

G‘(X$ k) —3 a(ka)ap(X7Z) 1 X =i,2=] a(.?ak) —tq])(Jak)) true)

where the subscript indicates the clause used in the reduction. SLD satisfies both a Com-
pleteness Theorem and a Soundness Theorem. Soundness says that any answer obtained
by SLD is indeed a logical consequence of the program. Completeness says, conversely,
that any answer which is a logical consequence of the program will be obtained by SLD;
more formally, if the query is 7— ¢ and o is a substitution such that V¢o is a logical con-
sequence of the naive reading of the program, then ¢ or some more general substitution
will be returned by SLD. The completeness theorem [3] was non-trivial at the time (1982),
but is by now well-known and in standard texts [21].

Note the role of control here. Completeness does not say that answers will be returned
by Prolog. In fact, in this example, Prolog will not return at all. In pure Horn Prolog, the
only control mechanism is the ordering of the clauses and the ordering of the literals in the
clause body, which is orthogonal to the declarative semantics. This ordering directs the
non-determinism in SLD. Here, if the two literals in the body of clause 3 are transposed,
the answer will be found by standard Prolog. Intelligence (control) is the responsibility of
the programmer. Some further remarks about the relation of control to completeness are
contained in §4.

In general, as we consider various questions about semantics, you should be aware of
the difference in importance between soundness and completeness theorems. Soundness
is of vital importance — it corresponds to the key feature of logic programming that the
correctness of any answer obtained is guaranteed by logic. Any “logic programming”
system which fails to be sound is not really logic programming. Completeness, although
nice, is not vital, and holds only partially in more complex situations. It is a little harder
to evaluate what completeness means in practical terms. For one thing, mathematical
completeness results talk about an answer being found eventually, not whether the answer
will be found in a feasible amount of time. Also, logic programming completeness results
usually refer to some non-deterministic search for deductions, and leave open the issue of
whether there is an easily implementable control strategy (see §4). Nevertheless, partial
completeness results are of interest and give us confidence that the claimed declarative
semantics has some relationship to the evaluation procedure.

Anyway, the reason that the subject is non-trivial and doesn’t end with SLD is that
pure Horn logic does not have sufficient expressive strength for many applications. In fact,
the whole subject can be discussed in terms of a tradeoff between ezpressive strength and
efficient evaluation.

Expressive strength by itself is no problem; one can always just use full first-order
logic; or, if necessary, second-order logic. However, these logics not correspond to efficient
evaluation procedures. We would expect our declarative semantics to be at least effective;
that is, the set of supported queries should be recursively enumerable. If this fails, then
there is no evaluation procedure in principle for the semantics. Of course, even if it
is effective, there remains the question of whether there is an evaluation procure which
can be made efficient with suitable control. So, we reject second-order logic immediately
because it is not effective. First-order logic is effective; that is, there are standard proof
procedures (such as Resolution) which will, in theory, enumerate all logical consequences
of a set of axioms. Nevertheless, we reject full first-order logic for now because we do not
know of an efficient evaluation procedure for it. Pure Horn logic seems promising because
we have an eflicient evaluation procedure for it, but it is too weak for many applications.

So, there has been much work, including, of course, within Prolog itself, which tries to
stay within the framework of the Prolog-style execution model, and add features to remedy
the lack of expressive power. Unfortunately, while these features have sometimes led to
efficient programming methods, their semantic meaning is often obscure or completely
non-existent. The challenge of finding a well-defined declarative semantics which yields
both expressive power and efficient evaluation has to a large extent not been met. In the
following sections we discuss a number of issues along this line — for now, we just briefly
outline the problems.

One issue, to which much literature has been devoted, is negation. The restriction in
a Horn clause, that the literals in the body must all be positive, seems too restrictive, so
it is natural to consider allowing the literals to be negative as well. For example, once we
have defined ancestor, it would be natural to talk about “—ancestor”. If we were only
concerned with expressive strength, there would be no problem here — but we would be
back in full first-order logic with its corresponding lack of efficient evaluation. Attempts to
have negation and preserve the standard Prolog execution model, have lead to the notion

4

of negation-as-failure. However, there is some problem defining precisely what negation-
as-failure means. There are by now several mathematically precise definitions, but then,
after making the semantics precise, it is not always clear whether it corresponds to an
efficient evaluation procedure, or even to any evaluation procedure at all. These issues are
discussed in more detail in §1.

Another issue, of particular interest now in deductive databases, is the issue of fixed-
points. The ancestor relation, a, as axiomatized above, is a standard example. In many
database contexts, it is desired not that a is just any relation satisfying the axioms, but
that it is the least such relation. There are semantic problems saying exactly what “least”
means, especially in the presence of programs with negation. For more details, see §2.

There are also semantic problems regarding the many built-in functions added to most
Prolog systems, such as numerical evaluation. If we actually wrote out the code for the
predicate factorlist discussed above, we would undoubtedly use the machine evaluation
for arithmetic operations. Problems involving the semantic meaning of this are discussed
in §3.

In the usual discussions of declarative semantics, a logical meaning is given only to
each answer individually as it is printed on the terminal. However, in practice, many
programs rely on the order in which the answers obtained. Whether this order can be
described in logic is discussed in §5.

The Ph.D. effect. This describes the tendency of many descriptions of declarative
semantics in the literature to require a Ph.D. in logic to understand. Is this bad? That
depends on whom we think we are talking to. There are two possible answers here. One
is that we talking among ourselves. This is OK if the point of the semantics is to prove
theorems about logic programming and its implementations. For example, once we fix
on a declarative semantics, we might wish to use it to prove that a given implementation
of Prolog, perhaps using some non-trivial optimizations or control mechanisms, is correct
in the sense that all the answers that it returns are correct according to this semantics.
However, if the point of declarative semantics is that the program has a meaning, it might
be desired that ordinary Prolog programmers be able to understand what their programs
mean. Such programmers will more-or-less understand ordinary first-order logic (which
means what you think it means) but may not be experts in fine points in model theory,
multiple-valued logics, etc. Perhaps these fine points may be necessary to explain arbitrary
pathological programs, such as ones with deeply nested or unusual uses of negation, but
we would hope that the ordinary kinds of programs which ordinary people write will have
ordinary explanations. We strive for this in the following, although we are not completely
successful yet.

Even if you have a Ph.D. in logic, you should bear in mind the following remark.
The point of logic programming is really that the program should have a simple and clear
translation into logic. Otherwise, there really is nothing special about logic programming,.
Anything can be formalized in logic, including the procedural semantics of any procedural
language. For example, one could write a set of sentences in predicate logic which axioma-
tizes the progression through time of an abstract computer working on a Pascal program.
But this axiomatization introduces a lot of new constructs which are not part of Pascal.
The challenge is to obtain the simplicity and clarity of pure Horn logic in a more expressive

5

programming language.

§1. NEGATION.

There are many cases where one wishes to use a negation in the body of a clause. For
example, if member is defined in the standard way, we may wish to call for not member,
as in the following simple program:

member(X, [X|Tazl]).

member(X, [V |Tail]) :— member(X, Tail).

addin(X,L,L) :— member(X,L).

addin(X, L, [X|L]) :— not member(X, L).
Here, addin adds a new element to the head of a list if it’s not already a member;
?— addin(a,[a,b],L) results in L = [a,b], whereas ?— addin(a,[c,b],L) results in L =
la, ¢, b].

Procedurally, the way Prolog arrives at M = [a, ¢, b] for ?— addin(a, [c, b], M) is known
as negation-as-failure. In the course of the derivation, the system considers the subgoal,
—member(a, [c, b]), whereupon it attempts to derive member(a, [c, b]) and fails; it then con-
cludes that the negation must be true. The question is whether this evaluation procedure
corresponds to anything declaratively meaningful.

If we simply consider the program as shorthand for its naive reading, as described in
the introduction, then there is no way the statement addin(a, [c, b], [a,c, b]) is supported
by the semantics, since the logic does not imply that —member(a, [c, b]). In fact, the naive
reading of any pure Horn definition is consistent with all predicates being universally true.
Clark [8] suggested saying that the logical meaning of a program is not exactly it’s naive
meaning, but something slightly more complicated, known now as the Clark completion.
The Clark completion contains the completed definition of each predicate. Roughly, instead
of the “natural” implications (=) read off the program, the completed definition is an iff
(<) statement which says that the only way a predicate can be true is via one of the
clauses in the program. For formal definitions, see [8,21,16]. We may get the completed
definition in two steps. First, replace each clause in the definition of the predicate by a
normalized one in which all the unifications are in the body. In the case of member, we
would have:

member(A,B) :— A =X,B = [X|Tail].
member(A,B) :—~ A = X, B = [Y|Tail],member(X, Tazl).

Second, we write, as the completed definition of member, the statement that these two
ways are the only ways member(A4, B) can be true:

VA,B{member(A, B) &
<3Taz'l(B = [A|Tail]) Vv 3Y,Tail(B = [Y|Tail] A member(A, Tail)) >}

6

We also need to add some axioms about equality to be able to derive —member(a,
l¢,b]). These axioms say, for example, that a # ¢ and a # b; these facts, taken for granted
in Prolog, do not follow by pure logic alone. More generally, Clark’s equality axioms
contains the usual axioms in logic about =, plus the universal closure of 7 # 7 whenever
71 and 1 are terms which are not unifiable. Then —member(a, [c, b]) does follow logically
from our equality axioms plus the completed definition of member.

The Clark completion gives semantic support to these negation-as-failure derivations
in Prolog. To express this support mathematically, one defines a formal deductive system,
called SLDNF (see [21]). SLDNF is, roughly, a mathematical formalization of what Prolog
actually does. SLDNF can then be proved to be sound, in the sense that any statement
derived by SLDNF is in fact a logical consequence of the completion of the program. We
now note some good and bad features of the completion approach. Remember, we are
trying to balance expressive strength with efficient execution.

On the positive side, we are adding the expressive strength of negation in examples
such as this, where we want to express it. In fact, in some sense, we are getting a little more.
With negation-as-failure, we don’t have to explicitly program “non-membership”. Thisis a
minor point here, but becomes very useful with a large relational database, where we don’t
have to explicitly list all tuples for which relations are false. As for efficient evaluation, we
are preserving the idea behind Prolog-style depth-first-search execution model, whereas a
more “naive” addition of negation would put us back into ordinary resolution logic. It is
true that the completion of a program is a little more complicated than it’s “naive” logical
reading, but this is still a relatively straightforward syntactic transformation — we can view
the program declaratively as an abbreviation for its completion.

Another good feature is that we are not changing the naive reading in the case where
there was no problem with it — namely, for affirmative answers to positive programs and
queries. That is, if P is a positive program and ¢ is a positive query, then ¢ follows from
the naive reading of P iff ¢ follows from the completion of P. Note, however, that even
here, the agreement is only in the case of affirmative answers to the queries. If the answer
is “no”, there has been a change. Say the query if 7— ¢. In the “naive” reading, “no”
meant only that the system has been unable to come up with a derivation of ¢, whereas
now it means that ¢ is refuted - i.e., —q follows from the completion.

A third positive feature is that the completion handles very neatly the non-monotonic
character of the logic. It is sometimes said that Prolog is an example of non-monotonic
reasoning — that is, the set of logical consequences of the program is not a monotonic func-
tion of the program. For example, you might have 7— —q return “yes”, but expanding the
program (for example, by adding g), 7— —¢ will return “no”. The notion of non-monotonic
logic seems very pathological to many logicians. Now, the only non-monotonicity is in the
passage to the Clark completion; after that, we use ordinary monotonic logic. For more
on the relation of Prolog to non-monotonic logic, see Przymusinski’s [26].

On the negative side, there are many semantic problems which make the situation not
quite as simple as it might seem. In specific, I mention five problems.

Problem 1. The statement that SLDNF is a formalization of what Prolog does must
be taken with a grain of salt. As with SLD, it is non-deterministic — presumably, this
non-determinism is handled by the “control”. More fundamentally, Prolog’s treatment of

7

negated non-ground literals is wrong (i.e., unsound), and would have to be revised to be
in accordance with SLDNF (see [21]). SLDNF requires that the interpreter flounder, or
produce an error message and quit, if asked to evaluate a negated non-ground literal. This
is done correctly in the language NU-Prolog [27].

Problem 2. The negation-as-failure interpretation renders control mechanisms such
as the cut or var unsound. In the purely positive case, these could be viewed as purely
control, with no logical meaning. As long as “no” meant “no proof found”, any mechanism
which serves only to prune the search tree is sound. But now, if a “no” to 7— ¢ means
that —¢ is supported, these are no longer sound. For a purely propositional example,

qg:— a,l,b.

q.

a.
In Prolog, ?7— ¢ will return a “no” so that ?— —q will return a “yes”, whereas ¢, rather
than —¢ follows from the program (either in its naive reading, or its completion). Thus,
it seems that in this interpretation of negation, the only valid control mechanism are ones
which affect the ordering of goals. A sound Prolog should really “flounder” here — more
generally, it should flounder rather than produce any negative answer to a goal or subgoal
if the search tree was pruned while searching for that answer.

Problem 3. SLDNF is not complete. Although there are completeness results for
specific classes of programs (see {7, 17, 18, 19]), the current belief now is that there is
no complete evaluation procedure which resembles Prolog and handles negation. But, as
explained in the Introduction, this is perhaps not a serious deficit. The partial completeness
results give us some confidence that the declarative semantics is on the right track, and
there is ongoing research into improving SLDNF to better handle negated goals. In any
case, the semantics is effective, since it is defined as the set of logical consequences of a
decidable set of axioms.

The three problems above might be called procedural problems — that is, the declar-
ative semantics seems clear enough, but we need to to revise Prolog somewhat to put it
into better conformity with the semantics. The next two problems are declarative ones, in
that they point out defects in the semantics itself.

Problem 4. The completion of the program can be inconsistent. The standard

example is:

q :— not q.

T.
The completed definition of ¢ is ¢ & =g, which is inconsistent. Thus, declaratively, any
statement follows from the completion; so, for example, a “yes” answer to 7— -7 is correct.
This is not a mathematical problem, but it does seem to violate the Prolog spirit. The
pathology in the definition of ¢ should not affect our reasoning about r, whose definition
does not at all involve g. More generally, we would expect a certain locality in the semantics
of Prolog resembling that of other programming languages. For example, if P = P; U P,
where P; and P, use disjoint sets of predicate symbols, then we would expect that the
answers to a query using only symbols of P, would be the same under the program P, as
under P.

One way out is to use 3-valued logic rather than 2-valued logic [12, 16]. Here, we have
a third truth value u, which could be read as “undefined” or “undetermined”. The idea
that 3-valued logic might be relevant to Prolog occurred first in [23,20]. Then, Fitting
[12] showed how, given any program, there was a natural construction of a 3-valued model
of the completion built on the Herbrand universe. This construction proceeded through
transfinite steps, and the semantics obtained from it was not effective. However, a related
3-valued approach, described in [16] is effective. There, we keep the Clark completion
unchanged, but say that a statement is supported by the semantics iff that statement is
true in all 3-valued (not necessarily Herbrand) models of the completion. The effectiveness
of the semantics follows from the fact that the set of logical consequences of a decidable
set of axioms is always recursively enumerable.

With either this semantics or Fitting’s, it is easy to prove the locality mentioned
above. Both approaches agree for propositional programs and queries; the differences
appear only when the programs use variables and function symbols. In the specific program
above, all 3-valued models for the completion give g the value u and r the value t; thus,
any interpreter which answers “yes” to ?— —r is now unsound, as expected. On the
propositional level, this is a complete success, in the sense that SLDNF is sound and
complete for this 3-valued semantics [16,17]. With terms and variables present, we still
have soundness; completeness is lost, but we would expect that anyway, as remarked above,
although there are completeness results [17] for specific classes of programs and queries.
For example, a query is called allowed iff every variable which occurs in it occurs in at least
one positive literal, and a program clause is called allowed iff its body is allowed and every
variable which occurs in the head occurs at least once in the body. If the program and the
query are allowed, then every answer substitution supported by the 3-valued semantics is
ground, and is computed by SLDNF. Unfortunately, many common Prolog programs are
not allowed, such as the standard definition of member.

A negative feature of this 3-valued semantics is the Ph.D. effect, mentioned in the
Introduction. Most ordinary programmers might be a little mystified by 3-valued logic, and
the correct choice of 3-valued truth tables is a little technical. This is partially ameliorated
by some sufficient syntactic criteria involving “strictness” [17], satisfied by many (but not
all) programs written in practice, which imply that the 3-valued and 2-valued semantics are
equivalent. More precisely, a program is called strict iff no predicate depends (hereditarily)
on itself negatively and no predicate depends on any other predicate both positively and
negatively. A query is called strict iff it does not depend on any predicate both positively
and negatively. The result in [17] says that if the program and query are both strict, then
2-valued and 3-valued logic support the same answers.

As another pathological example, the program consisting of the one clause, p :— p, is
strict, but the query, ?— p, -p is not. In 2-valued logic, a “no” answer is supported, since
=(p A —p) is a tautology. The 3-valued semantics allows a u value to p and hence to all
propositional formulas constructed from p, and does not support either a “yes” or a “no”

to this query. This corresponds nicely to the fact that Prolog will not halt with this query.

Unfortunately, non-strict constructions are not limited to such pathologies, and are in
fact common programming practice. For example, the definition of addin at the beginning
of this section is non-strict, since it depends on member both positively and negatively. In

9

this case one can verify that 2-valued and 3-valued logic agree on the “intended” queries,
of the form addin(«, B, X), where o and f are ground terms. However, if the query
is ?7— addin(a, L, L), addin(a, L, [a|L]), the 2-valued semantics supports a “no” but the 3-
valued semantics does not support any answer. The reason is that there are 3-valued models
for the completion which contain a (non-Herbrand) element A for which member(a, A) has
value u. As a curiosity, if you ask this query in Prolog, you “should” get an infinite loop,
but in fact, unless your Prolog does an occur check, you will get “infinite” term when L is
unified with [a|L]. The occur check is, of course, another problem with Prolog, but we do
not discuss it in this paper because it is really an implementation problem, not a semantic
one.

Non-strict programming is encouraged by Prolog’s if-then-else construct, which hides
an explicit “not”. For example, it is more efficient to program addin by the semantically
equivalent

addin(X,L,M) :— member(X,L) - M =L ; M = [X|L].
With this form, member is only called once in the evaluation of addin. Since the semantics
of this if-then-else immediately reduces to that of negation, it is not necessary to take up
if-then-else as a separate topic, but we point out that any program which uses it is not
strict.

There is ongoing research into weakening the strictness criterion to something which
really did include all programs and queries used in practice. If this succeeds, then ordinary
programmers could think in terms of ordinary 2-valued logic, even though 3-valued logic
would be required to understand arbitrary pathological uses of negation. One could even
have Prolog systems print a warning when such a pathological construct was used.

The purpose of this paper is not to dwell on the fine points of 3-valued logic, and
further examples will in fact satisfy the strictness criterion, so that we may emphasize
instead the further semantic problems which need to be discussed.

There are other approaches to avoiding the inconsistency problems with negation,
using modal logic [13] or intuitionistic logic [22]. They also suffer from the Ph.D. effect.

Problem 5. The completion semantics is not sufficiently expressive for many database
applications, and a wholly different approach has been advocated. This defect is not
sensitive to the distinction between 2-valued and 3-valued logic, and becomes apparent
even in programs which do not use negation at all. We take it up in the next section.

§2. MINIMAL MODELS.

There are many examples in database-style applications where the completion ap-
proach yields a semantics which is so weak in expressive strength that it becomes awkward
to express some very commonly used notions. Often, we want to say that a relation is
not just some relation satisfying the axioms, but the least such relation. By “least”, we
mean, roughly, that the relation being defined is to be false unless it “has to” be true,
in some sense which we must define precisely. In fact, this is the same motivation behind
negation-as-failure, where we considered member(a, [b,c]) to be false becauses it doesn’t
“have to” be true, but the Clark completion semantics doesn’t make things “least enough”
for some useful applications.

10

An example to illustrate “least” can be given even in the purely propositional setting,
although a propositional example will not correspond to an interesting application. If the
program is:

p:— p. »
then the naive reading, p = p, and the completed definition, p < p are both tautologous
- 1.e., say nothing about the truth of p. This corresponds to the fact that the query
?— p does not return in Prolog. A person who wants the least model would say that p is
false. Corresponding to this, an answer of “no” should be returned for 7— p, or “yes” to
?— —p. Clearly, such a system will not resemble the Prolog-style evaluation, but perhaps
it deserves further examination.

That it deserves further examination is apparent when we turn to predicate logic,
where we see some practical applications of this “least model” semantics. Let us return
to the transitive closure (ancestor) example above, with minor modifications. Actually, if
you want a program for the transitive closure of a given relation, p, several possibilities
come to mind; we write out two, t1 and 2, together with a small sample p:

p(a,b). p(b,a). p(c,d).

t1(X,Y) :— p(X,Y).

t1(X,Y) :— p(X,2),t1(Z,Y).

22(X,Y) :— p(X,Y).

t12(X,Y) :— t2(X, 2),t2(2,Y).
Then the least relation satisfying the definition of ¢1 given by the program (either in its
naive reading, or its completion) is the transitive closure of p. Likewise for t2 — i.e., the
two definitions define the same relation. However, from the point of view of Prolog, which
corresponds to logical consequences of the completion, these definitions are not equivalent,
and neither one of them correctly defines transitive closure.

The completed definition of #1 is:

VX Y(RUX,Y) & (p(X,Y) V3IZ(p(X, 2) NU(Z,Y))))
while the completed definition of ¢2 is:
VX, Y(#2(X,Y) & (p(X,Y) VIZ(#2(X, 2) A t2(Z,Y))))

Although the completion of this program is consistent with t1 and ¢2 being the correct
transitive closures, this is not required. In particular, the completion is also consistent
with ¢2 being true of everything. Thus, for example, the truth value of ¢2(c,a) is not
determined from the program; there are models of the completion in which it is true, and
other models in which it is false. This corresponds nicely with the fact that Prolog will not
return from 7— #2(c,a). On the other hand, the completion logically implies that t1(c, a)
is false, and Prolog will return a “no” to ?— t1(c,a). However, t1 also does not describe
the transitive closure, since the truth of ¢1(a,c) is not determined from the completion;
although t1(a, c) is false of the true transitive closure, there are models of the completion
in which t1(a,c) and t1(b,c) are both true. Again, this corresponds nicely with the fact
that Prolog will not return from ?— #1(a, c).

11

In this example, the problem is not with Prolog; what Prolog returns is in total
agreement with the completion semantics. The problem is with the completion semantics
itself. This sort of example was discussed by Van Gelder [28] and Przymusinski [25] as
illustrations of the weakness of the completion semantics. In fact, not only do these two
“natural” definitions of transitive closure not work — there seems to be no really nice way
of defining transitive closure at all in Prolog. There are some theoretical limitations; for
example [18] shows that there is no definition of tramsitive closure which is strict and
doesn’t use function symbols. Using function symbols, one can define it, although rather
awkwardly. The fact that you have to be rather tricky to program such a natural concept
in an efficient way may be considered to be negative feature of the completion semantics,
and leads one to think that the “right” semantics may be some sort of “least model”
semantics.

We are faced with two challenges. First, can we make mathematical sense out of this
notion of “least”? Second, even if we can, does it correspond to an efficient evaluation?
As usual in our attempt to balance expressive strength and efficient evaluation, there is no
problem finding logics strong enough to express transitive closure or any other concept we
want; the problem is whether these logics yield a feasible programming language.

As for mathematical sense, the answer is “yes”, at least for the vast majority of
programs one will see in practice. For positive programs, there is the van Emden - Kowalski
[11] minimal model. This model is built on the Herbrand universe (the set of ground terms)
and is the least model of the program, and also the least model of the completion. If the
query is also positive, this is equivalent to the previous approaches; that is, ¢ is true in the
minimal model iff ¢ is a logical consequence of the completion of the program iff ¢ is a logical
consequence of the naive reading to the program. But, these three approaches diverge as
soon as we consider negative queries, or even try to interpret a “no” to a positive query
as per negation-as-failure. In particular, this model gives formal support to our informal
remarks above about {p :— p} and the definitions of ¢1 and ¢2.

There is a natural extension to the minimal model in the case that the program is
stratified, due to Apt, Blair, and Walker [1] and Van Gelder [28]. Stratified means that we
can partition the set of all predicate symbols into strata, Py, P, ..., indexed by natural
numbers, in such a way that if p € P, and ¢ appears in the body of a clause defining p,
then ¢ € P; for some 7 < n; furthermore, if ¢ occurs negatively, then ¢ < n. In particular,
the predicates in Py have purely positive definitions. One may define a minimal model by
first minimizing the predicates in Py as per van Emden - Kowalski; then fixing these and
minimizing the predicates in P, and so forth.

There are, in fact, wider classes of programs, such as the locally stratified [25] ones,
for which one can define a (2-valued) minimal model in a natural way. If you want to a
semantics which includes all programs, it still seems natural to go to 3-valued logic. For
example, consider

p :— not q.
q :— not p.

The only 2-valued models of this program or of its completion have exactly one of p,q
true, and the other false, and there is no natural “least” one among these — so here it
would be natural to have p,q both u. Nevertheless, despite this pathology, one can make

12

sense, mathematically, out of the notion of a (2-valued) least model for the vast majority
of programs occurring in practice.

Next, is there an efficient way to compute this model? Consider first purely positive
programs, where van Emden and Kowalski [11] actually describes a bottom-up way of com-
puting the least fixed-point by successive approximation. This naive bottom-up execution
is inefficient, but there are many optimizations [5] which seem to be rather successful, at
least in a database setting, where there are no function symbols. For example, in the
case of transitive closure, a naive bottom-up evaluation would compute the full transitive
closure, bottom-up, to evaluate a specific query, whereas the optimized versions will only
compute as much of the transitive closure as is needed to answer the query.

These optimizations extend somewhat to stratified programs with no functions sym-
bols [4], as well as to some situations with function symbols. However, in the worst case,
the minimal model is highly undecidable [2], so that not only is there no efficient evaluation
for it, there is no evaluation procedure for it at all. More specifically, for each n, there is a
stratified program with n strata such that the set of supported answers is a complete 22
set.

So, which is the correct semantics to use (say, in the case of stratified programs,
where both approaches make sense)? It is easy to see that the completion semantics,
which considers all models for the completion, is always weaker than the minimal model
semantics, which picks out one such model. Declaratively, therefore, you would always
prefer the least fixed-point semantics, because of its greater expressive strength. However,
this expressive strength is meaningless unless coupled with an evaluation procedure. If you
are programming in a deductive database setting, where there are good optimizations for
computing least fixed-points, then of course you would opt for that semantics. However,
if you are programming with complex data structures represented by lists or other terms,
you should think in terms of the completion semantics, which, although weaker, gives a
more honest appraisal of what your program is really saying.

§3. BUILTINS.

Logic programming often requires some use of arithmetic. This leads to further seman-
tic problems. For example, Prolog usually contains the predicate is; the query ?7— X is 34
unifies X with 12. Of course, in theory, arithmetic could be axiomatized, and something
like ¢s could be defined in pure logic. We could think of the natural numbers as generated
by the constant 0 and the successor function s, and axiomatize is by:

plus(X,0, X).

plus(X,s(Y),s(Z)) :— plus(X,Y, Z).

times(X, 0, 0).

times(X,s(Y), Z) :— times(X,Y,T), plus(X,T, Z).

X 18 X :— numeral(X).

numeral(0).

numeral(s(X)) :— numeral(X).

X 1s TERM1+TERM2 :— V14is TERM1, V2is TERM?2, plus(V1,V2,X).

X 1s TERM1*TERM?2 :— V1is TERM1, V2 is TERM?2, times(V1,V2, X).

13

We might think of the numeral 3 as syntactic sugar for s(s(s(0))). Then X is 3 * 4 would
eventually unify X with s(s(s(s(s(s(s(s(s(s(s5(s(0)))))))))))), which we have decided to
sugar to 12. This is very nice for pure theory; for example, a similar argument will establish
that all computable functions on natural numbers can be programmed in pure Horn logic;
but this is obviously grossly inefficient in practice — and we’re ignoring the additional
complexity of negative and floating point numbers. The real situation is that numeric
terms are evaluated by the hardware to produce an answer. Prolog is not responsible for
the correctness of that evaluation, but uses it as a black box. Can we develop a sound
semantics to reflect the practical use of arithmetic in logic programming?

The way this is usually explained formally is that implicitly, the program contains, as
an infinite database, all true ground statements about zs, such as

12258 3%x4
36 2s 3x3 x4

and so forth. Numbers are now just unstructured constant symbols. Then the query
?— X is 3 x4 is simply answered as if by unification with the (implicit) database. This
semantics correctly reflects the situation that the Prolog is only evaluates expressions — it
does not include an axiomatization of arithmetic or decide the truth or falsity of quantified
numeric formulas.

This point of view is a good first approximation to the semantics, but there are still
problems amalgamating it with our formalization of negation-as-failure. We discuss the
completion semantics, but attempts to amalgamate it with the stratified negation semantics
would wind up with the same problem. What is the completed definition of s ? Naively,
it would be

VXVY(X isY & (X =12AY =3%4)V(X =36AY =33%4)V--")

That is, it would be an infinitely long statement. Although these are often treated in
mathematical logic, their use as a basis for Prolog semantics leads to two problems, which
I would call false advertising and non-effectiveness.

By “false advertising”, I mean that this semantics promises more than Prolog delivers.
For example, this semantics says that the answer to the query 7— X s X +1 is “no”, since
it fails to unify with any clause in the implicit database (or, since ~3X(X s X + 1) isa
logical consequence of the completion). In fact, this query produces an error in Prolog,
since Prolog only does numerical evaluation, and has no mechanism for reasoning about
number theory.

I will describe below a modification of the completion semantics which does not logi-
cally decide the truth of 3X(X ¢s X 4 1). Of course, this new approach has a very weak
expressive power compared to the naive approach using infinitary formulas. At first, this
seems bad, but of course it is really good, since the point of a declarative semantics is not
to be as strong as possible, but to have the property that the formal declarative meaning
we assign to a program is a good approximation of what the system can deliver.

By “non-effectiveness”, I mean that this semantics promises more than than any logic
programming can deliver in principle. Although Prolog doesn’t, a logic programming

14

system could reason about linear equations and inequalities; in fact the system CLPR
[14] does indeed do just that. This is possible because there happens to be an efficient
decision procedure for simple statements about + on the real numbers. But this does not
extend to + and * together, since this would allow questions about solutions to diophantine
equations. So, for example, as T ranges over terms built from variables, +, and *, the set
of queries of the form ?— 0 ¢s 7 to which the naive semantics supports a “no” is not
recursively enumerable. Here I am thinking of numbers as being natural numbers; but the
same problems happen if you think of numbers as being real or complex, since you can
define natural numbers anyway by

natural(0)
natural(X) :— natural(Y), X s ¥ + 1
and then relativize queries to natural.

A more honest approach is to say that the completed definition of is is the following
infinite set of finite statements. For each ground numeric term, 7 whose value is n, we have
the statement VX (X is 7 & X = n). This does support the use of 15 in Prolog, where it
is supported only for specific ground numeric terms. It does not decide the truth value of
JX(X ¢s X +1). Since this is a decidable (but infinite) set of finite statements, the set of
all its logical consequences is recursively enumerable. This may be viewed as a restriction
on negation-as-failure; that is, 7— X 7s X + 1 does not return “no”, even though it fails
to unify with any clause in the database. In the formal semantics, 3X (X 7s X + 1) has
truth value u, not f.

There are a number of other built-ins provided by the system, such as lexical term
comparison and other numerical operations, whose natural declarative interpretation would
be as an infinite set of clauses which is implicitly contained in every program. A general
approach for handling these is described in [19]. The revised completion is always an infinite
set of finite statements. The idea is the following. If P is a possibly infinite program, we
accompany it by a set, D, of positive literals, which we call the “declarations”. We assume
that each element of D unifies with only finitely many heads of clauses in P. The informal
idea here is that we are applying negation-as-failure only to literals which are instances of
members of D. In the usual “default” case, for an n-place predicate p defined by the user
with finitely many clauses, D contains p(Xj,...,Xn,) - that is, negation-as-failure applies
to all uses of p. In the case of is, D contains all X is 7, where 7 is a ground term. Thus,
negation as failure does not apply to X 7s X +1, which is not an instance of any declaration,
but it does apply to to [A, B] is 2+ 3; in the formal semantics, 34, B([4, B] 7s 2 + 3) has
truth value f.

The completion is now an infinite set of finite statements, so that (assuming some
decidability conditions on D and P), the set of its logical consequences is recursively
enumerable. The completion always contains Clark’s equality axioms and the sentences
obtained by the naive reading of each clause in P. Next, for each o € D, it contains
an “iff” statement similar to the Clark completion. Say « has variables X3,...,X,, and
B :— ¢isin P, with 8 and « unifiable, with mgu o, where each X;o contains only variables
other than the X;. Say 7; = X;0. The normalized clause corresponding to o and 3 :— ¢
is & :— 1, where v is

... (Xs =1 A AXy =T A do)

15

where Y3 ...Y; enumerate the variables other than the X; which occur in the 7; and in
¢o. Let the m normalized clauses corresponding to o be a :— ¥, for ¢ = 1,...,m; then
the completion statement corresponding with « is

\V/Xll...Xn(a@'gb‘]V...\/d)m) ’

If m = 0, we replace the empty disjunction by false. Although we have written this as a
&, note that the < direction already follows from the naive reading of the clauses in P.

The right way to formalize the semantics of CLPR is to use the same sort of approach
we use for Prolog, but add in the axioms for densely ordered Abelian groups.

§4. CONTROL.

What is control, anyway? This is problematical even for purely positive programs
with positive queries, where all approaches to the declarative semantics seem to agree.
Consider the program:

PXY)i— p(X,T). %1

p(X,Y):= p(VY). %2

p(a,b). %3
Then VAYBp(A, B) is a semantic consequence of the program (even without passing to
the completion), and by the completeness for SLD, the identity substitution is returned by
SLD to the query ?— p(A, B). This answer is in fact obtained by using the three clauses
in the order 1,2,3. However, it is easy to see that there is no way of ordering the clauses to
have this answer returned in Prolog. In the order given, Prolog will keep applying clause
1, and never return.

In this particular example, there are more complex control schemes, not part of stan-
dard Prolog, which would work. For example, one could backtrack as soon as a subgoal is
subsumed by a parent goal. It would be easy to come up with more complicated examples
along these lines which defeats these schemes as well. Also, in practice, there are dangers to
incorporating such more intelligent control strategies. Besides the fact that subsumption
checks would decrease efficiency, real Prolog programming makes use of the fact that the
control is simple-minded depth-first search, and therefor predictable. With more complex
control mechanisms, the programmer might loose the necessary direct contact with the
deduction process. That is, we know Prolog is stupid, but that also means that we know
exactly what it will do.

Such examples cast doubt on the relevance of mathematical completeness proofs to real
programming. What exactly does the completeness of SLD mean in practical terms? We
would like to say that it means that any supported answer will be obtained with a suitable
tweaking of the control, but we don’t really know a definition of “control” which makes
this statement into a theorem, other than implementing some sort of breadth-first search
through the SLD tree, which, of course, negates the practical advantages of Prolog-style
search.

16

§5. ORDERING, LISTS, AND STREAMS.

The point of declarative semantics is that the correctness of any answer obtained
to a query is guaranteed to be correct — that is, to follow logically from the program.
However, often in Prolog programming, we depart from the database query mode and
write a program which calls for a specific side effect, such as a print statement. As a
simple example, say we have a database of people and facts about them. So, our database
contains, among other things, facts such as person(alice), person(bob), and so forth. Now,
say we want a simple routine which prints out all the people in the order listed. This is
standard in Prolog — for example, we could call ?— printall, defined by:

printall :— person(X), print(X),nl, fail.
printall.

Or, more primitively, we could just call 7— person(X), and type semicolons at the terminal,
safe in the knowledge that we will get the answers in the order in the database. In either
case, the problem is that the additional information contained in the order in which the
facts get printed, which is part of our informal understanding of the correctness of the
answer, is not expressed in the logic. Another way of thinking about it is that if bob
gets printed before alice, we would like to say that our interpreter is incorrect, but our
treatment of declarative semantics gives us no way of expressing this incorrectness. For
the query 7— person(X), bob and alice are logically correct answers, and for the query
printall, which contains no variables, the “answer” is, declaratively, just “yes” by the
second clauses, no matter what print means. In either case, the incorrectness of printing
bob first would have to be explained in terms of the side effect of printing the answer.

Of course, we would only expect the logic programming paradigm to apply in cases
where all we want from the computer is the answer to a question. There are programming
situations in which we really want the program to do something — e.g., control a robot
— presumably these situations do not fall under the heading of logic programming at all.
But what I am looking at is situations where we really only want the answer to a question
- i.e., something declarative, but the only convenient way to get it in standard Prolog is
to program with side effects.

Note the difference between this and the previous section. We have already seen the
relevance of ordering to control — how quickly the computer finds the answer — but that is
a different issue. Now we are looking at situations where the order in which the answers
are returned is involved in our informal idea of correctness, and we are asking how to make
this informal idea formal.

We could begin by using concepts already in Prolog. We could declare, in our seman-
tics, that the order of separate answers has no declarative meaning (that is, the implemen-
tation is not responsible for this), and demand that if an ordered sequence is important,
the user call for it as a list. Then, to get the list of answers to a query, you can use the
standard Prolog bagof, in the example under consideration now, you can simply query
?— bagof(X,person(X), L). Informally, this should unify L to the list of objects, X, sat-
isfying person(X), where the ordering is in the standard backtracking order in which the
answers would be computed in SLD.

17

Since the backtracking order depends on the order of the clauses, this bagof is not
usually considered to be declaratively meaningful (see [24]). However, one can in fact malke
sense of bagof. More precisely, for each query clause, ¢ with variables Xi,...,X,, one can
augment the program by defining a one-place predicate, bagofs(L), which “says” that L is
the list of n-tuples satisfying ¢. Of course, the definition of bagofs depends on the order
of the program. At first, this seems strange, but something like that is inevitable. Our
program said, person(alice) A person(bob). If you want the logic to imply that Alice is a
person before Bob, it seems to me that you have three options. (1) Have A non-commutative
~ this seems rather pathological. (2) Require the programmer to explicitly program in this
order by a statement such as ordered.persons|alice,bob]. (3) Have a predicate such as
bagof whose completed definition depends on the ordering in the program. Option (2) is
the logically most straightforward one, but might make the program awkward to edit and
update, since one would have to keep ordered_persons consistent with person. One may

then think of (3) as a shorthand for (2).

These options correspond exactly with the ones available with negation. (1) You
can take non-monotonic logic as the basic logic — this also seems pathological. (2) The
programmer can explicitly assert the completed definition — this would make programming
rather awkward. (3) (what we actually do) You can consider the program as shorthand for
its completion. The completed definition of a predicate such as person depends already
on all the clauses in the definition of person. The added complication is just that the
definition of bagofperson depends on the ordering of these clauses as well.

Nevertheless, since the reader may be bothered by such constructions, in further ex-
amples in this section, I will actually write a predicate calling for a list, along with the
bagof definition. The point I wish to make is that either way you do it, other seman-
tic issues are raised, involving the related problems of lazy evaluation and infinite data
structures.

If there are just a few answers and the order has declarative importance, it’s not too
hard to explicitly call for a list of answers. But, what happens if there is a long, or possibly
infinite list of answers? Although there are theoretical ways out of these problems, it is
not completely trivial to design the theory to correspond with a practical solution.

As a trivial database-style example, say you have your list of 1000 employees, ranked
in order of decreasing competence, and you wish to choose 2 distinct ones to form a
committee. Of course, you want the pairs printed out with the most competent pairs first
- first you maximize the competence of the weaker member. That is, if the people are
a,b,c,d,..., you want the pairs, (a,b),(qa,c),(b,c),(a,d),(b,d),(c,d),.... You don’t wish
them all printed out, but you may wish to backtrack through the first few to think about
compatibility. Now that we have seen that the people should really be stored as a list,
it’s easy to write a predicate, pair(X,Y’) which gives you all these pairs in its natural
backtracking order. Then ?— bagof((X,Y),pair(X,Y), L) will unify L with the list of
these in that order. If you don’t trust the declarative meaning of bagof, or if you realize
that you can do it more efficiently using the fact that the people listed are all distinct, you
might explicitly write a predicate, all_pairs(L), which returns this list:

18

person(a). person(b). person(c). person(d). % and 996 others

people([a, b, c,d,...]).

pair(X,Y) :— people(P), segment(S,Y, P), segment(Anything, X, S).

segment([], X, [X|Tail]). ,

segment([A|Rest], X, [A|Tazl]) :— segment(Rest, X, Tail).

all_pairs(L) :— people(P),ap(P, L).

ap([], [)-

ap([X|Rest],L) :— apl([X|Rest],[X|Rest], Rest, L).

apl(P,[X|Xs],[Y|Ys],L):— X =Y — apl(P,P,Ys, L);
(apl(P,Xs, [Y|Y3]’M)v L= [(‘Xv Y—)I‘]\/j])

apl(P, X s, [],[])-

Logically, there is no problem here, and in practice it’s not very hard to write the program.
However, it is clear that if this theory is to find practical use (that is, people will use
all — pairs), it is necessary to have some sort of lazy evaluation; otherwise, users would
have to wait until the whole list of 500500 pairs is developed in order to just see the first
few pairs. At first sight, this seems only a matter of designing a friendly user interface.
Let us say that, if a query ?— p(L) results in L being unified to a large list, the printer
could print the first 10 elements of the list as soon as they are known, print more, and
wait for the user to press a key. Let us say, if the key is ‘q’, no more is printed, and the
computation terminated, whereas if a carriage return is entered, the next 10 elements of
the list are printed. Then L is developed lazily, so that you see the first 10 lines as soon
as they are known. Similar things could be done with other large data structures.

This idea that a list may be used to represent a stream of answers is of course not new.
For example, it is used in concurrent prologs as a way of describing process communication.
There too, the list is computed lazily, as its consumer needs it, and you see the elements
of the list as they are being computed. Typically, the list remains incomplete during
the entire computation, and its elements are communicated to the user via explicit print
statements.

However, once we have decided on lazy evaluation, we do have a semantic problem
— namely, our semantics does not take into account the possibility of process failure. In
the particular case at hand, you might query ?— all_pairs(L), and retrieve the first ten
elements, L = [(a,b),(a,c), (b, c),(a,d),(b,d),(c,d),(a,e),(be),(c,e),(de)--- more ---
and then type a ‘q’ saying you had seen enough. Here, the intended declarative meaning
is clear; you have just seen the first 10 elements of the solution to the query. However, in
general, it is not clear that any declarative meaning be given to a stream of data, before
you have seen the entire stream; since there in fact need not be any answer at all — that is,
the deduction could in fact fail if it were carried out. In this example, this would happen if
we had omitted the last line in the program, in which case the correct answer to the query
would be “no”. Thus, it seems that unless it is restricted in some way to queries for which
we can prove in some way that there is an answer, it is not clear how to give a declarative
meaning to lazy evaluation.

In concurrent prologs, the fact that such use of streams and lazy evaluation is in fact
a more fundamental feature of the programming style, and not merely an add-on as we
are advocated, means that these semantic problems are relevant to concurrent prologs at

19

a much more basic level.

Besides the question of failure, an additional complication is due to the fact that
in many programs, the answers are either numbers or compound terms and the set of
answers in infinite. For a simple numeric example, consider the following (not very efficient)
program which backtracks through primes:

prime(2).

prime(Y) :— prime(X),nezt(X,Y).

primelist([2|Tail]) :— pl(2, Tail).

pl(P,[Q|Tail]) :— next(P,Q), % print(Q),nl,

pl(Q, Tail).

Here, we leave it to the reader to program a nezt(X,Y) which, given a positive integer
X, unifies Y to the next largest prime. This is intended to work with queries such as
?— prime(X), which will unify X successively with 2,3,5,.... Again, to make declarative
sense out of the order (an interpreter which returns 3 before 2 is incorrect), we are asking
the user to call for 7— bagof(X, prime(X), L); then, since the reader may still be bothered
by the bagof, we are writing it out explicitly a primelist(L) which unifies L to the list
of all primes. Of course, here the list is never completed, and standard Prolog simply
fails to return with the query primelist(L), although one could see this list printed as it
develops by including the (commented out) print statement (again, this has no declarative
meaning). In concurrent prologs, one might take this list and feed it to another process
(perhaps one which is computing primitive roots of unity modulo the various primes).

In this example, there is no process failure, but it is not clear whether any declarative
meaning can be given to an infinite stream. Let ¢ be the statement IL(primelist(L)).
With the “standard” semantics we have described here, neither ¢ nor —¢ is a semantic
consequence of the completion of the program. In the Herbrand universe, ¢ is false.
However, there are other models in which ¢ is true. One such model is described in Lloyd
[21], based on earlier work by Andreka, van Emden, Nemeti, and Tiuryn; here, too, the
goal is to find some way to describe perpetual processes in some declarative way. Here,
one starts with the Herbrand universe and completes it to a universe of all infinite terms.
If one takes this completed universe as the “standard domain”, then ¢ is true here, and
the L satisfying primelist(L) is the infinite list of primes. Of course, by fixing a standard
domain (which is now even an uncountable set), the semantics is no longer effective. Also,
we still have the same problem with process failure — that is, seeing part of the infinite
list, evaluated lazily, really has no declarative meaning. Suppose nezt were instead some
arithmetical predicate such that nezt(X,Y) picked out the next prime only if X < 107,
and otherwise would be simply false. Then ¢ would simply be false in all models of the
completion, and the first few numbers we saw would simply be the beginning of a failed
attempt to satisfy ¢.

In standard sequential Prolog, unlike in concurrent prologs, the notion of an incom-
pleted (and potential list) is not of fundamental importance, we have the following “way
out” of our semantic problems. Disregard the above comments on lazy evaluation and
lists of answers. Instead of formalizing bagof, we can, for each query clause ¢, variables
Xi,..., Xy, and natural number k, define a predicate answery (X1, ..., Xyn) which says
that (Xi,...,X,) is the k*® answer to ¢. We could then say that this is the declarative

20

meaning the the k*! answer obtained via backtracking. For example, if p(X) is defined by
the two clauses p(X) :— r(X,Y) and p(X) :— ¢(X), then we would have

answerp o(X) :— answer,o(X,Y).
answery o(X) :— not some_answer,g, answerg o(X).
some_answeryg :— r(X,Y).

Unfortunately, this definition, although formally meaningful, suffers from the Ph.D. effect,
and thus won’t sell. That is, the logic is rather hard to understand, and it introduces
complex nested negations even to simple positive programs. One could argue that all it is
doing is formalizing the procedural semantics; of course, the procedural semantics of any
programming language could be expressed within Prolog. The point of logic programming
is that the program has a simple and clear declarative meaning. Programs which call for
a list explicitly, as in the previous examples, do seem simple and clear enough, but we ran
into trouble making declarative sense of them.

§6. CONCLUSION.

As I said in the Introduction, this survey raises more questions than it answers. As of
now, one must say that the jury is still out on whether true logic programming is feasible.
If it is feasible, we have a truly new form of programming. If not, of course, Prolog-
style programming is still important, but it is what I would call logicish programming.
One may take the point of view that Prolog is simply a procedural language, which has
borrowed some ideas from logic, such as terms and unification, and which has built-in
backtracking and symbol processing features, which are useful for some sorts of problems.
Similarly, we view Lisp as a procedural language which has borrowed some convenient
ideas from functional languages. In that case, there is no need for a formal discussion of
declarative semantics. With this point of view, there are still many important issues to
discuss about Prolog (compiler optimizations, WAMs, architectures, etc.), but they do not
involve declarative semantics. Under this point of view, the issues raised in this survey are
mainly irrelevant.

Even granting the importance of declarative semantics, there are some important
issues related to it which have not been discussed at all. Perhaps many such will come to
mind to the reader, but the following two seem especially glaring:

System features. I mean here things like assert, retract, consult, and system calls.
Something like this seems to be necessary if we are to interact with the system, load files
produced by a text editor, etc. It seems hopeless to try to handle these declaratively.
Perhaps the cleanest way to handle them would be to separate them from the logic and
modify the Prolog front end to distinguish more clearly between queries and commands.
So, for example, any “query” which called a system call or a consult would be processed as
it is now, but the reply would contain a warning that there is no logical importance to the
answer. This would handle the “honest” use of such features. This would not handle the
situations where assert and retract are used in computations as a kludge for assignable
variables (i.e., the Pascal “x := 5” gets kludged to the Prolog assert(z(5))). In many
simple examples, this sort of kludge can be omitted by a little thought, but, for example,

21

graph algorithms which operate by marking and unmarking nodes are notoriously hard to
write efficiently in “pure” Prolog. It remains a subject for further research as to whether
the need for these database kludges could be eliminated by making the language more
expressive. ,

Other approaches. There are a number of well-known interactive theorem provers
which seem to conform to the “logic + control” paradigm, but which don’t resemble Prolog
at all. That is, they are implementations of logic, guaranteeing correctness, but they can
interact with the user, who provides intelligence (control). Examples are the Boyer-Moore
Theorem Prover [6], Constable’s Nuprl [10], and a number of Resolution-based systems
developed at Argonne (see [29]). Omne might say, however, that these are in a different
“position as is Prolog. Unlike Prolog, their logical foundations are unassailable; that is,
their declarative meaning is clearly and and unambiguously expressed within standard
predicate logic. However, also unlike Prolog, they are being advocated not as general-
purpose programming languages, but rather as tools for verification or aids in discovering
theorems. The claims for success for these systems are the kinds of statements that can
be verified, not how quickly they can do arbitrary computations. Prolog, by trying to
be a viable general-purpose programming language, has a much harder task to justify its
existence.

REFERENCES.

[1] Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative Knowledge,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufman, Los Altos, 1988, pp. 89-148.

(2] Apt, K. R. and Blair, H. A., Arithmetic Classification of Perfect Models of Stratified
Programs, in: R. A. Kowalski and K. A. Bowen (eds.), Logic Programming (Proceed-
ings of the Fifth International Conference and Symposium), MIT Press, 1988, pp.
765-779.

(3] Apt, K. R. and van Emden, M. H., Contributions to the theory of Logic Programming,
JACM 29:841-862 (1982).

[4] Balbin, L., Port, G. S., and Ramamohanarao, K., Magic Set Computation of Stratified
Databases, Technical Report 87/3, University of Melbourne, 1987.

[5] Bancilhon, F. and Ramakrishnan, R., Performance Evaluation of Data Intensive Logic
Programs, in J. Minker (ed.), Foundations of Deductive Databases and Logic Program-
ming, Morgan Kaufman, Los Altos, 1988, pp. 439-517.

[6] Boyer, R. S., and Moore, J. S., A Computational Logic Handbook, Academic Press,
1988.

[7] Cavedon, L., and Lloyd, J. W., A Completeness Theorem for SLDNF Resolution,
Technical Report CS-87-06, University of Bristol, 1987, to appear in J. Logic Pro-
grammang.

[8] Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.), Logic and
Databases, Plenum Press, New York, 1978, pp. 293-322.

[9] Clocksin and Mellish, Programming in Prolog, Springer-Verlag, 1981.

22

[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]

18]

Constable, R. L. et al, Implementing Mathematics with the Nuprl Proof Development
System, Prentice-Hall, 1986.

van Emden, M. H. and Kowalski, R., The Semantics of Predicate Logic as a Pro-
gramming Language, JACM 23:733-742-(1976).

Fitting, M., A Kripke-Kleene Semantics for Logic Programs, J. Logic Programming
2:295-312 (1985).

Gabbay, D. M., Modal Provability Foundations for Negation by Failure, to appear.

Jaffar, J. and Lassez, J-L., Constraint Logic Programming, Proceedings Fourteenth
ACM Symposium on Principles of Programming Languages, Jan. 1987, pp. 111-119.

Kowalski, R. A., Algorithm = Logic + Control, Comm. ACM 22:424-436 (1979).
Kunen, K., Negation in Logic Programming, J. Logic Programming 4:289-308 (1987).
Kunen, K., Signed Data Dependencies in Logic Programs, Technical Report #7109,
University of Wisconsin, 1987, to appear in J. Logic Programming.

Kunen, K., Some remarks on the Completed Database, in: R. A. Kowalski and K.
A. Bowen (eds.), Logic Programming (Proc. Fifth International Conference Sympo-
sium), MIT Press, 1988, pp. 978-992.

Kunen, K., Partial Negation-as-Failure, in preparation.

Lassez, J-L., and Maher, M. J., Optimal Fixedpoints of Logic Programs, Theoretical
Computer Science 39:15-25 (1985).

Lloyd, J. W., Foundations of Logic Programming, Second Edition, Springer-Verlag,
1987.

Miller, D. A., A Logical Analysis of Modules in Logic Programming, J. Logic Pro-
gramming 6:79-108 (1989).

Myecroft, A., Logic Programs and Many-valued Logic, Proc. of Symposium on Theo-
retical Aspects of Computer Science, Lecture Notes in Computer Science 166:274-286
(1984).

Naish, L., Negation and Control in Prolog, Lecture Notes in Computer Science #238,
Springer-Verlag, 1986.

Przymusinski, T. C., On the Declarative Semantics of Deductive Databases and Logic
Programs, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Pro-
grammang, Morgan Kaufman, Los Altos, 1988, pp. 193-216.

Przymusinski, T. C., Non-monotonic Reasoning vs. Logic Programming: A New Per-
spective, in: D. Partridge and Y. Wilks (eds.), Formal Foundations of Artificial In-
telligence, Cambridge University Press, London, 1988, to appear.

Thom, J. A., and Zobel, J. (eds.), NU-Prolog reference manual (ver. 1.1), Technical
Report 86/10, Machine Intelligence Project, University of Melbourne, 1986.

Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic Pro-
grams, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Program-
ming, Morgan Kaufman, Los Altos, 1988, pp. 149-176.

Wos, L, Automated Reasoning - 39 Basic Research Problems Prentice Hall, 1988.

23

