FACTOR REFINEMENT=3"
by
Eric Bach
James Driscoll
Jeffrey Shallit
Computer Sciences Technical Report #883

October 1989

Factor Refinement

Eric Bach* James Driscollt Jeffrey Shallit
Computer Sciences Dept. Math. and Comp. Sci. Math. and Comp. Sci.
University of Wisconsin Dartmouth College Dartmouth College

Madison, WI 53706 Hanover, NH 03755 Hanover, NH 03755
driscoll@cannon.dartmouth.edu
bach@cs.wisc.edu shallit@dartmouth.edu
Abstract.

Suppose we have obtained a partial factorization of an integer m, say m = mymg - - - m;.
Can we efficiently “refine” this factorization of m to a more complete factorization

e I1 ne

1<i<k

where all the n; > 2 are pairwise relatively prime, and k > 2?7 A procedure to find such
refinements can be used to convert a method for splitting integers into one that produces
complete factorizations, to combine independently generated factorizations of a composite
number, and to parallelize the generalized Chinese remainder algorithm.

We apply Sleator and Tarjan’s formulation of amortized analysis to prove the surpris-
ing fact that our factor refinement algorithm takes O((log m)?) bit operations, the same as
required for a single ged. This is our main result, and appears to be the first application
of amortized techniques to the analysis of a number-theoretic algorithm.

We also characterize the output of our factor refinement algorithm, showing that the
result of factor refinement is actually a natural generalization of the greatest common
divisor.

Finally, we also show how similar results can be obtained for polynomials. As an
application, we give algorithms to produce relatively prime squarefree factorizations and
normal bases.

University of Wisconsin, Computer Sciences Technical Report #883

* Research supported by NSF grants DCR-8504485 and DCR-8552596.
! Research supported by NSF grant CCR-8809573 and a Walter Burke award.

§ Research supported by NSF grant CCR-8817400, the Wisconsin Alumni Research Foun-
dation and a Walter Burke award.

I. Introduction.

Suppose we have obtained a partial factorization of an integer m, say m = mima.
Can we efficiently “refine” this factorization of m to another factorization

m= [] n, (1)

1<i<k

where all the n; > 2 are pairwise relatively prime, and k > 27

The need for factor refinement was pointed out by Bach, Miller, and Shallit in 1984
[B1]. The situation in [B1] is as follows: an algorithm Split(XV, M) is given to split N (i
e., write N = ab with 1 < a,b < N) in polynomial time. The algorithm works provided
that o(V)|M, where o(NN) denotes the sum of the divisors of N. Now we wish to produce
the complete factorization of N by repeated application of the algorithm. Merely running
Split(a, M) may not succeed, however, as M is not necessarily a multiple of o(a). (That
is, o(ab) = o(a)o(b) is guaranteed only when a and b are relatively prime.) Thus we need
to refine the factorization of N into relatively prime pieces in order to reapply the splitting
algorithm.

A second application involves consolidation of independent factorizations of a com-
posite number m. Suppose, for example, that we run the elliptic curve method of Lenstra
[L1] and the quadratic sieve of Pomerance [P] simultaneously, obtaining two different fac-
torizations, m = ab = cd. H. W. Lenstra has asked how we can efficiently combine these
factorizations. One way is to use factor refinement on the product m? = abcd, obtaining
m? = [[,<;cxni®; then we can show using our methods that m = [[;<;<x ni¢/? is a
factorization that incorporates all known factors of m. Our results show that this method
is essentially optimal, as it runs in the same time required for a single gcd on the inputs,

up to a small constant factor.

A final application is as follows: suppose we wish to solve instances of the generalized
Chinese remainder problem, where the moduli are not necessarily relatively prime. More
precisely, we wish to find solutions to the system z = z; (mod m;), 1 <¢ <r. Gauss [G3,
Art. 32] gave a polynomial-time method that converts pairs of congruences to a single
_ congruence, and so r — 1 applications of his method suffice to obtain z. However, suppose
we need to solve many such congruences for a single set of moduli {rm1,m2,...,m.}, and
we have O(log, mims - --m,) processors. How do we find a solution efficiently in parallel?

The usual method of finding idempotent elements [A1] works well in this situation if
the moduli are relatively prime, but they are not.

Our solution is to use factor refinement to preprocess the moduli {mi,ms,...,m;}
and convert them to a set of relatively prime numbers {n1°',n2°?,...,n,%} such that
there exist fi, f2,...,fs with

]‘cm(mlamﬁh"',mr): H nif‘.;
1<:<s

further, each m; can be written as [], i<s n;%i. This gives us a new system that has
exactly the same set of solutions as the old system, and it can be solved efficiently with at
most log, mymy - - - m, processors.

In this paper, we first show that we can compute the desired refinement (1) in
polynomial time. Our method is essentially as follows: given m = mim;, we compute
d = ged(m1,m2) and write

m = (m1/d)(d*)(mz/d).

This process is then continued until all factors are relatively prime. A similar method is
used in the case where there are more than two inputs, m = mymaz - - mg.

It is not difficult to show that our factor refinement algorithm uses O((log m)*) bit
operations. The point of the paper is to obtain a much better bound. We apply Sleator and
Tarjan’s technique of amortized analysis [T] to prove the surprising fact that our factor
refinement algorithm actually uses O((logm)?) bit operations, asymptotically the same
time required for a single gcd computation. This appears to be the first time amortized
techniques have been used in the analysis of a number-theoretic algorithm.

We also present an interesting and valuable characterization of the algorithm’s output,
which demonstrates that the decomposition (1) is actually a natural generalization of the
greatest common divisor.

Finally, we show how similar results may be obtained for polynomials. As an applica-
tion, we give algorithms to produce relatively prime squarefree factorizations and normal
bases.

II. Previous work.

Dedekind appears to have been the first to study integer factorization by the repeated
use of Euclid’s algorithm [D2]. His 1897 construction, however, is exponential and it does
not give as complete a factorization as ours.

In the recent past, most authors have been concerned with factor refinement algo-
rithms for polynomials rather than integers, although the underlying techniques are essen-
tially the same. In 1974, Collins [C2] gave a factor refinement algorithm for polynomials,
and stated results analogous to our Theorem 1, parts (b) and (c), without proof. (Such
results were also noted by von zur Gathen [G2].) Collins also gave a description of the
output, similar to our Theorem 3, but did not prove uniqueness. In 1980, Wang [W2]
discussed factor refinement for multivariate polynomials; in a 1984 paper dealing with par-
allel computation, von zur Gathen mentioned a refinement method that is exponential in
the number of input polynomials [G1]. The 1984 paper of Bach, Miller and Shallit [B1]
gave a factor refinement algorithm for integers. The uniqueness of the output was proved
by Kaltofen in 1985 [K1, K2], in the context of a general unique factorization domain.
Kaltofen also gave a characterization of a fully refined factorization that is similar to our
Theorem 3.

None of these authors gave explicit running times for factor refinement, beyond stating
that their methods ran in polynomial time. Explicit running times are known in some
cases, however, for a related algorithm that might be called “squarefree factor refinement.”
(Unlike our algorithm, the factors produced by this method are all squarefree.) Collins
[C3] analyzed such an algorithm for univariate polynomials with integer coefficients, and
Epstein [E] extended the analysis to Gaussian integer polynomials. Ben-Or, Kozen, and

3

Reif [B3] showed that a squarefree factor refinement of univariate polynomials over a
field of characteristic zero can be computed with an NC algorithm, assuming that a field
operation takes one time unit. This was later extended to fields of characteristic p by
Kaltofen, Krishnamoorthy, and Saunders [K3, K4], under a further assumption that pth
roots in the field may be computed in unit time.

There is also a connection between factor refinement and an 1985 algorithm of
Liineburg [L3]. The latter method takes as input two elements a, b from some principal
ideal domain, and finds another element r such that r | a, ged(r,b) = 1, and each prime
divisor of a/r divides b. Liineburg gave several applications of his algorithm, including the
two problems we will discuss in Section VII; he did not analyze its complexity.

III. The Factor Refinement Algorithm.

In this section, we describe an algorithm that successively refines a partial factorization
m = mima ... m, into relatively prime pieces.

First, however, we discuss the complexity model used throughout the paper.

Define
lem = 1, if n=0;
8N =11+ |log; [n|], ifn>0.

Thus lg n counts the number of bits in the binary representation of n.

We use the “naive complexity” model popularized by Collins [C1]. In this model, we
can multiply m by n in O((lgm)(lgn)) bit operations, and we can express m = qn + 7,
0 < |r| < |n|, in O((1g m/n)(Ign)) bit operations. From this, it is not difficult to show that
we can compute d = gcd(m,n) in O((lgm/d)(Ign)) bit operations, when m 2 n.

Now we state our first factor refinement algorithm:

ALGORITHM Refine

INPUT: Positive integers mj,ma,...,my 2 2.

OUTPUT: List of pairs Ly = {(n1,€1),(n2,€2),...,(ns,)} such that
(1) ngigs ni® =m;
(2) ged(ni,nj) =1 for all 7 # j;

comment The algorithm maintains a list L of pairs (n;, e;) such that m = [, ni®.
initialize n; « my, e; — 1,for 1 <: < r.
while there remain 7, j with ged(ni,n;) # 1 do

begin

d « ged(ni,nj);

remove pairs (n;, e;),(nj,e;) from L;

add the pairs (n;/d, e;),(d,ei + €;),(n;/d,e;) to L, except for

those pairs containing 1 as their first entry;

end;

output List of pairs L = {(n1,e1),(n2,€2),...,(ns,€s)}

4

We emphasize that the algorithm is nondeterministic: the order in which the pairs
n;,n; are examined is left unspecified. We will prove below in Theorem 3 that the output
of the algorithm does not depend on the order in which the pairs are examined.

Theorem 1. The algorithm Refine terminates, and on input my,ma,... My produces as
output a list of pairs Ly = {(n1,e1),(n2,€2),...,(ns,es)} such that

(a) H15igs ni® =m;

(b) ged(ni,n;) =1 for all i # j;

(c) Each m; is a multiplicative combination of the nj; that is, there exist integers a;j,
1<:<r,1<j<s such that m; :Hjnj‘“i.

Proof.

Let us refer to the process of replacing the pairs

(ni, €:), (nj, €5) (2)
with
(ni/da ei)’(d’ e + ej)’(nj/d7 ej) (3)
as a refinement step. We prove that the algorithm terminates after at most log, m refine-
ment steps.
The list of pairs L changes with each execution of a refinement step. To keep track of

how L changes throughout the algorithm, let us denote the list L after & refinement steps
as Lg. Thus Ly = {(m1,1),(m2,1),...,(my,1)}. We also write

Lk = {(nla el)(k)a (n27 62)(k)7 teey (n87 es)(k)},

where the upper subscript (k) is meant to indicate that we have executed k refinement
steps. Note that s is a function of k.

We claim that the sequence

Se= (" 1) (4)
is strictly increasing. To prove this, we show that Sk41 — Sk > 0. It clearly suffices to
consider how a refinement step changes the contribution of the terms corresponding to :
and j. The pairs in (2) above contribute e; +e; — 2 to Sk. They are replaced by the pairs
in (3) above. If neither m;/d nor m;/d is equal to unity, the contribution corresponding
to (3) in Sk+1 15 2e; +2¢; —3,50 Sp41— Sk =ei+ej—12 1. If one of m;/d, m;/d equals
unity (let us say m;/d), the contribution to Sk41 is e; + 2¢; — 2, so Sk41 — Sk =¢€; 2 1.
And finally, if both m;/d and m;/d equal unity, the contribution to Skt1 is €; + €5 — 1, s0
Sk+1 — Sk =1.

Now it is clear that Sz < log, m, so we have proved that the algorithm terminates

after at most log, m refinement steps, independent of the order in which the refinement is
done.

It is also clear that conditions (a) and (c) hold, for they hold at the start of the
algorithm and they are preserved by each refinement step.

Condition (b) holds, since the algorithm can terminate only if it is true.

5

It will follow from Theorem 10 of Section VI that we can compute the a;; such that
m; = [[;n;* using O((lgm)?) bit operations.

We observe that the bound of log, m refinement steps is tight, as the algorithm per-
forms r refinement steps on input my = 2", mg = 2.

Corollary 2. The algorithm Refine runs in polynomial time.

Proof.

Above we have seen that the algorithm requires at most log, m refinement steps. Each
refinement step involves finding a pair from the list with nontrivial gcd and then performing
two divisions. The list never contains more than log, m entries. Let T(m;,m;) denote the
time to compute ged(m;,m;); then our naive complexity bound given above implies that
T(mi,m;) = O((lg m;i)(lgm;)). Hence the time to find a pair with nontrivial ged is

Yo Tmi,mi) < Y e(lgmi)(lgmy)

1<i<y<|L| 1<i<jg|L|

<c Y (gmi(gm,)

1<i4,5 <L)

=c(Z lgm,-)2

1<i<|L]

< ¢ Z 1+ log, m;)?
1<z

< ¢(2log, m)?.

Hence a single refinement step can be done in O((lg m)?) bit operations, and so the entire
algorithm uses O((lgm)?) bit operations. ®

We will see below that this time bound of O((lgm)?) can be improved. For now, we
concentrate on giving a characterization of the output.

If p is a prime and p? | m but p®*! Jm, then we say p* divides m exactly, and we write
p® || m. We now generalize this familiar concept to the case where m is not prime:
Definition.

If n | m and ged(m/n,n) = 1, then we say that n divides m exactly, and we write
n || m.

(In the literature, n is sometimes called a unitary divisor of m.)

Now it is easy to see that the conditions (a)-(c) in Theorem 1 do not suffice to charac-
terize the output uniquely. For example, if m; = 30, m2 = 42, then the algorithm produces
the output Ly = {(5,1),(6,2),(7,1)}, while the set L' = {(2,2),(3,2),(5,1),(7,1)} also
satisfies conditions (a)-(c). Note that it is unreasonable to expect that Refine could produce
the output L', since 6/|30 and 6|]42 and thus “behaves like a prime number”.

Intuitively, the factor refinement algorithm produces only those factors of mm that we
could “reasonably expect to find”. We make this precise below.

First, we extend the idea of exact divisibility to sets of positive integers:

6

Definition.

Let N and M be sets of positive integers. We say that N divides M exactly (and
write N || M) if for all m € M and n € N, there exists an a > 0 such that n* || m.

Example: {2,3,5,7} || {5,6,7}.
Note that || induces a partial order on sets of integers.
We are now ready to characterize the output of the algorithm Refine:

Theorem 3. Let the input to Refine be M = {my,ma,...,m,}. Then the output of
Refine is the unique set of pairs Ly = {(n1,€1),...,(ns,€s)} such that

(a) [11<ics ni® = m, and n; > 1.

(b) gcd_(_n:,nj) =1 for all i # j;

(c) N = {n1,...,n,} divides M exactly; and

(d) N is maximal (for the ordering defined by ||) among all sets satisfying (a)-(c).

Proof.

Note that although earlier we claimed the output of Refine was a list, now we are
referring to it as a set. By Theorem 1, part (b), this is legitimate.

We have already seen that (a) and (b) hold above. To show (c) holds, it suffices to
observe that by Theorem 1, we have m; = [] R Hence n®* | m;, and since the n; are
pairwise relatively prime, we have ni®* || m;.

Now let us prove that N is maximal. Let R be any set of integers satisfying (a)-(c).
Let Li denote, as above, the list of pairs L after the k-th refinement step of the algorithm,
and let S(Lx) denote the set of first entries of the pairs in Lg. Thus N = S(Ly).

We will show by induction on k that R || S(Lg). This is true for k = 0 by assumption.
Now assume that R || S(Li); we need to show that R || S(Li41). It suffices to consider
what happens when the pair

(ni,ei), (nj, €5)
is replaced by
(ni/d, e;), (d, e; + 6]’), (nj/d, ej).

Since R || S(Lg), for any r € R there exist a,b such that r® || n; and r® || n;. Therefore,
pmin(a:d) || ged(ni,nj) = d. From this we see pe-min(a,) || . /d and pbmin@d) || n;/d.
Thus R || S(Lg+1)- Thus we see R || S(Lg) = N, so N is maximal.

To see N is unique, assume there is another set T with properties (a)-(d). Then N || T
and T || N. Let n € N. There must be a t € T with ged(n,t) # 1, for by (a) we have

H tjfj =m = H n;®.

1<j<k 1<i<s

Then there exist b,¢ > 0 such that n® || ¢ and t° || n. Then b = ¢ =1 and n =t. Thus
N=T =

IV. A modified refinement algorithm.

In this section and the next two, we are concerned with bounding the running time
of factor refinement.

Consider the factor refinement algorithm with exactly two inputs. We show that there
is an easy way to keep track of the pairs (nj, nx) with nontrivial gcd. To do this, we revise
the algorithm of the previous section so as to keep the pairs in an ordered list such that
only elements adjacent in the list can have a nontrivial ged. Let (n;,e;) refer to the ith
pair in the ordered list.

ALGORITHM Pair-Refine
INPUT: Positive integers m;, ma.

initialize n, « my, ny «— Mg, €; «— €3 « 1.
while there remains ¢ with both n;,n;4; # 1 do
begin
d — ged(ni,nit1);
replace the pairs (n;,e;) and (niy1,ei41) with
(ni/d,e;) and (niy1/d, eit1);
insert the pair (d, e; + ei4+1) as the new ¢ 4 1st pair;
end;
output List of pairs L = {(ni, e;)|ni # 1}

The algorithm is still nondeterministic in that the order in which the adjacent pairs
are selected is left unspecified. A deterministic algorithm can carry out the refinement
without generating pairs with n; = 1, or otherwise marking adjacent pairs with trivial
ged’s, by repeatedly refining on (n;,e;) and (nit1,ei41) until ged(ny,nip1) = 1, and then
incrementing 2.

Lemma 4. Algorithm Pair-Refine has the same input/output behavior as algorithm
Refine.

Proof. It suffices to show that after every refinement step only adjacent pairs have a
nontrivial ged. This is because when the algorithm terminates, every adjacent pair has at
least one component equal to 1; hence we may conclude that all the n; will be relatively
prime.

We proceed by induction on the number of refinement steps. Initially |L| = 2, and the
result is true. Assume the result is true after k refinement steps and we choose to refine
(ni,nit+1). Before the refinement step we have

R LT PRI PR LTES PR LS P
and after the refinement step we have
v 7ni-—1’n’i/d7 d’ ni+1/d’ni+2, ce

8

where d = ged(ni, ni+1). By induction we have ged(n,,n;) =1forr <i—1landr>:+1.
Hence ged(ny,ni/d) = 1for r <i—1andr >i+1. Putting e = n;/d, we see ged(nr,d) =
ged(ny,nife) = 1for r <i—1andr >+ 1. Also, ged(ni/d,nit1/d) = 1. By symmetry,
the same results hold for ged(n,,nit+1/d) for r < ¢ —1 and r > ¢ + 2. Thus the result is
true after k + 1 refinement steps as well. W

After we discovered the results in Sections V and VI below, H. W. Lenstra showed us
the following intuitive argument that refining the factorization m = mimz can be done in
O((log m)?) time:

Suppose we refine m = m;mg using the Pair-Refine algorithm above. We first write
m = (my/d)d?(mz/d) and then proceed to completely refine the leftmost pair, (mi/d), d.
After this is done, we are left with a new d, say d' < d, and we refine d',mz/d. Thus the
time to refine m, say T(m), is bounded by the time to refine (m;/d)d = m, the time to
refine d'(my/d) < my, and the cost of a ged. (We ignore the cost of the divisions, as they
can be subsumed in the ged cost.) Hence we find

T(m) < T(my) + T(m2) + c(lgmq)(1g m2).
If we replace this inequality with the equation,
T(m) = T(m1) + T(m2) + c(log m1)(log ms),

then we find the solution T(r) = (¢/2)(logn)?.

Some more details are required to make this argument precise: for example, we must
replace the c(logm;)(logms) term with c(lg m1)(lg m2).

Also, this simple and attractive proof does not seem to generalize easily to more than

2 factors. In the next section, we will prove the O((logm)?) time bound using amortized
analysis.

V. Factor Refinement with 2 Inputs: Amortized Analysis.

Definition. Let cg;v and cgea be constants such that the number of bit operations needed
to divide @ by b for @ > b > 1 is no more than cgiv(loga — logb + 1)logbd, and the
number of bit operations required to compute d = ged(a, b) for @ > b > 1 is no more than
cged(log a — logd 4 1) log b.

In this section, we use the techniques of amortized analysis to prove a quadratic
running time bound for the algorithm Pair-Refine.

The basic idea of the proof is to find a metric for the amount of progress that a single
refinement step makes, and then show that the cost of a single refinement step is not out
of line with the amount of progress made.

One simple minded metric is the total number of bits that remain to be refined, which
is roughly 3"i_, log n;. A single refinement step on the pair (n;,e;) and (ni41, ei+1) costs

9

roughly (logn; — logd)logniy1 (for n;y > nit1). Since n; and niy; are replaced by n;/d
and nit1/d, and the new pair (d,1) is added, the number of bits decreases by logd. If d
is “big”, that is d> > ni41, the cost of the step is O(llog d), where | = logm; +logma. If
all ged’s are big, then the total cost of the refinement would be O(l }; log d;) where d; is
the ged at the ith refinement step. Since the number of bits remaining decreases by logd
at each step, it follows that the), logd; is at most [. Thus, this argument shows that the
refinement takes O(I2) time, provided all the ged’s are big.

If, however, a ged is small, then the time for the refinement step is not at all in
proportion to the progress made, if progress is measured as the number of bits remaining.
(Consider a ged of 1 which makes no progress at all, but can have arbitrarily large cost.) If
all the gecd’s are small, then the cost of each step could be O(1?), an unpleasant prospect.
However, the result of finding a small ged is to place a small number between two large
numbers. This improves the situation, since now we must twice refine a large number
and a small number, whereas previously we would have had to refine two large numbers.
Although we have not substantially reduced the size of the problem, we have broken up
the problem into two more manageable pieces. Thus it seems natural to include in our
measure of progress the difference of the number of bits of adjacent n; in the list. If we
take this difference so that it is always < 0, then this measure of progress is 0 when all the
n; are the same. When we are done, all n; # 0 are adjacent to a 1, and the measure is at a
minimum. If a refinement step on (n;,e;) and (ni41, €i+1) has a small ged, then this new
measure of progress will decrease by O(log n;) and the cost for the ged is O(llogn;). Thus,
if all the gcd’s were small, the total cost would be O(!) times the sum of the decreases in
the measure. But the measure starts at no more that 0, and ends at no less that —2[(since
each element in the list differs in bit size from its two neighbors by at most twice its own
bit size). Thus, the total cost of the refinement, provided all ged’s are small, is O(?).

We now combine and make precise the preceding intuitive arguments.

Theorem 5. Ifl =logm; + logmsy, then Pair-Refine uses O(I%) bit operations.
Proof. We measure the progress after k refinement steps by

g—1 (k)
7
d, ==—c1(l+1) E log—-—(lk-j— ,
i=1" iy

where 2¢; = Cgea + 2cdiv. Let the amortized cost of the kth refinement step, Ag, be its
actual cost (in bit operations) Ck, plus the increase in the “potential function” ®. The

sum of the amortized costs of the refinement steps, Z£=1 A, is E£=1 (Cr + (®x — Pr-1)),
which is (E{zl Ck) + @5 — o, the total cost plus the net increase in potential. Thus

we conclude that the total cost is (Zi.—.q Ak) + ®9 — ®5. The initial potential @y is at
most 0 and the final potential ® is at least ~2¢;(I+ 1)! since every n; contributes at most
2logn; to S5} llog(ngf)/ng_{_)l)l and Y ;_, logn; < 1. Thus

f f
ch < ZAk + 2¢1(1 4+ 1)1

k=1 k=1

10

and therefore to show that Pair-Refine has O(I?) running time, it suffices to show that the
sum of the amortized costs is O(I?).

We now calculate the change in potential and the actual cost of a single refinement
(k)

step in order to determine the amortized cost of a step. Suppose the k+1st step refines n;

and ngi)l (neither of which can be 1). Then the change in potential due to the refinement
step 1s

dn{® n{® & ()
Prp1—Pr=—c(l+1) < log ——('-—k—)l + |log —a'—z-— + |log —5-| + |log y ’E*;cl)
i niy1 Nl
(k) (k) ()
n;_ n: 71
+ea(l+1) <Iog ——'(—k)l + 1og__(=_k_)_ + [log z:;) ,
i Mit1 Nita

where d = gcd(ngk),ngi)l), except when ¢ = 0 or ¢ = s — 1, when the terms involving no

and n,4q contribute nothing to the change in potential. From the triangle inequality we
see

d
\log%l - log——;—l <logd,
and hence
nt® ntF 2
Drp1 — P < (I +1) log—('—k)—« — |log —5-| — |log —5-| + 2logd | .
41 i+1

The actual cost for the step is the cost of the ged plus the two divisions. Because neither

ngk) nor ngi)l are 1, the actual cost is (without loss of generality, ngk) > ngi)l

cged(log ngk) —logd+1)log ”Ei)l + caiv(log ngk) —logd+ 1)logd

+ caiv(log ngi)l —logd+ 1)logd

< (cgea + 2ean)(1 + 1) logny
= 2¢y(1+ 1) logn{}).

(The time to add the exponents is not considered here, since the sum of the exponents is
no more than ! and thus all additions are easily accomplished in O(/?) time. Nor is the
time to maintain the list considered, since its length is O() and there are O(l) refinement
steps. To see that the length of the list and the number of refinement steps are both O(1),
observe that for every step with gcd d > 1, 3, logn; is reduced by logd. Also, there are
at most [elements of the list that are greater than 1, hence there are at most [+ 1 steps
with the ged equal to 1.)

Next we will show that the amortized time for each refinement step, (i.e. the actual
cost plus the increase in potential), is no more than 6ci (I + 1)log di, where dy is the ged
at the kth refinement step. There are three cases according to the relative magnitudes of

11

(k)

d = dk41, n; , and ”Ei)r We may assume that n

not affect the potential.

Ek) > ngi)l, since reversing the list does

Case I (ngk) > d? > nSf_)l): The change in @ can be seen to be

N R -
Dpp1 — P < ci(I+1) | log— —-log—c-i'i—- ——log—ﬁ)— +2logd

(k)
iy i

= 2c1(l + 1) logd.
Thus the amortized cost, the actual cost plus the change in potential, is at most
2¢1(1+ 1) log ngi)l +2¢1(1 + 1)logd < 6c1 (I + 1) log d,

since 2logd > log ngf_)l because d? > ”Si)r

Case IT (d2 > ngk) > ngf_)1> : In this case the change in @ is

() 4 d?
(Dk-f—l - (I)k S Cl(l + 1) <log -—n-l—('-é)—- — Iog —_(k_) - log -—@)— -+ ZIOg d)
Myl ni Tit1

= ¢1(1+ 1)(2log n'® — 210g d)
S 261(1 -+ 1)10g d,

(

since 2logd > log n,-k). As in Case I, the amortized cost is no more than 6¢;(/ 4 1)logd

: 2 (k)
since d° > n; ;.

Case IIT (ngk) > ng_’:_)l > dz): The change in @ is

N
D1 — P < (I +1) | log i log—d'z— ~ log D +2logd

= —2¢;(1 + 1) log ns 7V + 6¢1(1 + 1) log d.

Adding in the actual cost of 2ci(l + 1)log ngi)l shows that the amortized cost is at most
6c1 (I + 1)logd.

Thus, the sum of the amortized costs is at most 2£=1 6c1(l 4+ 1)logdr. But
Z{zl logdy < Isince initially Y :_, logn; = [, the kth refinement step reduces S logn;
by logdy (since (logn; + logniy1) — (log(ni/d) + logd + log(nit1/d)) = logd), and
S5 .logn; > 0. Thus, if the amortized cost for the kth step is 6ci(l + 1)logds, then

the sum of the amortized costs is < 6¢;1(I + 1) and hence the total cost of the algorithm
is <8cl(l+1)=0(?). ®

12

VI. Factor Refinement: Amortized Analysis of the General Case.

Now we consider the general case of computing a refinement of a product of ¢ numbers.
The refinement will be computed by taking a refinement of mymz ---m; and a new m;4,
as input and producing a refinement of mymz---mj+1. We call this step an augmenting
step. The augmenting step will be carried out as follows:

ALGORITHM Augment-Refinement

INPUT: mj41, Lj=(ni,e1),...,(ns,es),
the refinement of mq,mq,...,m;

OUTPUT: The refinement of my,ms,...mj41

initialize (m,e) — (mj41,1), Lj41 < empty list
while L; not empty and m # 1 do
begin
if First(L;) has first component unequal to 1 then
begin
L' « Pair-Refine((m, e), First(L;))
Lj+1 « Concat(Ljt1,Rest(L"))
(m,e) « First(L')
end
L; « Rest(L;)
end;
Lj+1 « Concat(Lj41,Rest(L;),(m,e))
output List of pairs (n;,e;) € Ljy1 with n; #1

Lemma 6. Algorithm Augment-Refinement, given a refinement of myms---m; and
m ;41 correctly computes the refinement of mima -« -mjm;iy.

Proof. Adding (m;+1,1) to the existing refinement produces a refinement of
mimg -« M;Mj41;

however, not all the pairs are relatively prime. Pairwise refining (m;41,1) and some other
pair (n;,e;) will produce a list of pairs that are relatively prime within this list, but
they are not all necessarily relatively prime with the remaining pairs. Observe that if we
pairwise refine (mj41,1) and (ni,e;), then only the first element of the resulting list will
not divide n;. Since n; is relatively prime to all of the other pairs of the original refinement
of mymy ---mj, it follows that all but that first element from the pairwise refinement of
(mj+1,1) and (ni, e;) are relatively prime to n,n2,...,ns. Thus only that first pair needs
to be refined with the remaining pairs of the original refinement. Continuing this process of
pairwise refining the first element of the last pairwise refinement with one of the remaining
elements gives a refinement with all of the n; relatively prime. ®

13

As in the case of refining a pair, there is an O({?) bound for the general case. The
main obstacle to the proof is the possibility of repeatedly pairwise refining elements of
greatly differing magnitude. Refining nyng, where ny 3> ns can require ((logn1)?) bit
operations (consider the case of 2" and 2). However, we will see that the cost of refining
such a pair in an amortized sense is O((log n)(log n2)), for n1,ng # 1.

Lemma 7. Exclusive of the refinement steps on the first and last pairs of the list, the
algorithm Pair-Refine on input (my,e;) and (maz, ez) uses O((log m1)(logmz)) bit opera-
tions.

Proof. Choose

8—2

®p = —c; min{l + logmy,1 + logms} Z
i=2

C
k
”S+)1

n

log

Since all refinement steps that do not involve the first or the last pair will have n; <
min{m;, ma}, the argument from Theorem 5 shows us that the amortized cost of a refine-
ment step that doesn’t involve the first or last pair will be at most

6c; min{1 + logmy,1 + log ms } log d;,

where d; is the ged computed for the refinement step. But) ;logd; is at most
min{log m1,logm;} since Zf;zl logn; is at most min{logm;,logms} after the initial re-
finement of m; and m, (unless m; and my are relatively prime, when the total cost is 0),
each refinement step on pairs other than the first or last reduces Zf__'_:zl logn; by logd; (the
ged at that step), each refinement step on the first or the last pair leaves Zf;; log n;
unaffected, and when the refinement is complete E:zl logn; > 0. Thus the sum of
the amortized costs of the refinement steps that do not involve the first or last pair is
O(min{1 + logmi, 1 + log m2}?).

We now consider the amortized cost of refinement steps on the first and last pairs,
because these may increase the potential even though their actual cost is not counted here.
Let ngk) be the ith list element after k refinement steps. Then -the increase in potential
due to refining the first pair at the kth step is seen to be

. d2 niF)
®ry1 — P = — ¢y min{l + logmy, 1 + logma} 1og—@5 + |log _QZH
(2 dny

(k)
+ ¢ min{1 + log my, 1 + log mz } (log n?k)) ’
ng

where d = gcd(ngk), ngk)). An easy calculation shows that this sum is at most ¢; min{1 +
logmy,1 + logmsa}logd. Since the sum of the logs of the ged’s from refinement steps
on the first two list elements is at most max{logmi,logms}, the total amortized cost of
refinement steps on the first two list elements is no more than ¢; min{1+logmy, 1+logms+

14

1} max{logmi,logmy} = O((logmy)(log m2)). The same is true for the amortized cost of
refinement steps on the last two list elements.

Adding the amortized costs of the steps not involving the first and last pairs to the
amortized costs of the steps involving the first and last pairs, we find that the total amor-
tized cost of the refinement is

O(min{1 + logmi, 1 + log mz}* + max{log m1,log mz} min{1 + log m1, 1 + log ma}

= O((log my)(log m3))-

The initial potential is 0 and the final potential is —O(min{log m1,log m2}?). Thus the to-

tal actual cost of all operations not involving the first and last pairs is O((log my)(log my)).
n

We now extend the above analysis to include the refinement steps on the first and last
pairs, showing that the amortized cost of a single pair refinement in a sequence of such
refinements is O((logm;)(log m3)). In this case we choose a somewhat different potential

function given by
' = ¢y Z(log n;)?,
1

where ¢y is a constant to be chosen later.

Lemma 8. There exists a constant ¢; such that for the potential function ®' the amortized
cost of a pair refinement of (my,e;) and (ma, e2), for my,ms # 1, is O((log my)(log m2)).

Proof. From the previous lemma, the actual cost of the pair refinement is O((log m,)(log m2))
plus the actual cost for operations involving the first and last pairs.

The initial refinement step involving both m; and m, has actual cost O((log m1)(log m2)).
We now consider the actual cost of subsequent refinement steps on nq (respectively, ny).

Let dx be the ged for the kth (for k > 1) refinement step involving n;. We have
ny < mi/dk—; and ny < dig—1. Thus, the actual cost of the kth refinement step involving
71 is

O((log —?};)(log de—1)) = O((log m1)(log dk—1) — (log dk-1)?)-

And thus the total cost is

0> (logmy)(logdi—1) =) (log dk-1)*) = O(logmy > logdi_1 — Y (logdk-1)*)

k>1 k>1 k>1 k>1
= O((logm1)(log ~35) — 3, (log di—1)*)
n
1 k>1

= O((logm1)? — (logm1)(logni™) = 3 (log di—1)?)

k>1
= O((logm1)? — (logn{")? = 3" (log dx_1)?),

k>1

15

where ngf) is the final value of n;. The second line follows because ngf) [T die = ma.

We now calculate the amortized costs both for those refinement that do not involve
the first or last element and for those that do.

For those steps that do not involve the first or last element the actual cost has been
seen to be O((log mz)(logm2)). Each of these operations decreases @' since

(logni)* + (lognit1)* > (log %)2 + (log d)* + (log ‘—m;l')z.

Thus the amortized cost of these operations is O((log m1)(log m2)) and hence it suffices to
show that the amortized cost of the refinement steps on n; and n, is O((log m1)(log m2)).

For each refinement step involving the first pair, the change in & is due to the addition
of the new d; in the list and the decrease to n;. Thus the net change to @' from refinement
steps involving nj is

- (Z (log di)? — (log m1)? + (logny”)2)

i>1

Sc (Z (log di_1)? — (logm;)? + (log ngf))z)

i>1

since d;—1 > d;. If we choose c; to be the asymptotic constant from the actual cost
computed above, we see that the amortized cost for the operations involving n; other than
the initial refinement step is < 0. The same is true for n,.

Thus, the amortized cost for a single pair refinement is O((log m;)(logm2)) for the
first refinement step, O((logm;)(logms)) for the refinement steps not involving n; or
n,, and < 0 for the remaining steps involving n; and n,. The total amortized cost is

O((logm;)(logmz)). ®

Theorem 9. Calculating a refinement of m = mymg - - - my by repeated augmentation
uses O((log m)?*) bit operations.

Proof. First we show that augmenting a refinement of mymg - -m; to a refinement of
mimsg - - miym4+1 has an amortized cost, relative to &', of

O((Y (logmita)(logm;)) + (log mis1)?).
j<i+1

Before the augmentation step let nS'ng? ---n% be the refinement of mymsy---m;. Note
that [];_; nj < [[j=; m;. In the augmentation step, mit will be pairwise refined with
n1, then what remains of m;4; will be pairwise refined with ng, and so on. From Lemma 8
the amortized cost of this augmentation will thus be

()((Z logm;y1 logn;) + (logmiy1)?) = O((log mis Z logm;) + (log mit1)?).

Jj=1 j=1

16

(The (logmit+1)? comes from the change in @' due to the addition of mi4;.)
Thus the total amortized cost of the [— 1 augmentations is

! 3—1 1
03" (logm; > logmi) + Y _ (logm;)?)
j=2 k=1 =1

!
= O(Z (logm;)(logms) + Z (log m;)?)

J#k
1
= 0((3_logm;)")
= O((log m)?).

Since the initial potential is 0 and the final potential is > 0, the total actual cost is
bounded above by the sum of the amortized costs. Thus refining by repeated augmentation
uses O((log m)?) bit operations. M

The final result of this section shows that once a refinement of m = mymg---m; is
computed, we can express each m; as a product of the n; in quadratic time.

Theorem 10.

Given the result of factor refinement, we can express each m; = [] j it using
O((lg m)?) bit operations.

Proof.

Using factor refinement, we have expressed m = [[; n;*. Now write out the n;’sin a
list L, each with multiplicity e;. For each mj, we do the following: trial divide by n;; if a
zero-remainder is encountered, we replace m; with mj/n;, remove n; from L, and continue
to trial divide by n;4;. Since H]- m; = [], ni, all the n;’s are used up when we are done.

The total time is
> Z(lg m;)(lgni) = O((lgm)?).

J

VII. Results on polynomials.

Many algorithmic results about the integers also hold for polynomials over a finite
field. In this section we indicate how factor refinement generalizes to this setting; our
main result is a quadratic running time bound analogous to Theorem 9. We also show
how factor refinement can be used to simply solve some problems in polynomial algebra.

Let k be a finite field. We assume that addition and subtraction of elements in k takes
O(log | k|) bit operations, and that multiplication and inversion (of a nonzero element) takes

17

O((log |k])?) bit operations. These assumptions will hold if k = GF(p) or k is implemented
with an irreducible monic polynomial with coefficients in GF(p), and arithmetic is done
by classical methods.

Let k[X] denote the ring of polynomials in one variable with coefficients in k. This
ring is a unique factorization domain: the units of this ring are nonzero constants, and
prime elements are irreducible polynomials [W1].

Let a and b be monic polynomials, with dega > degb > 0. We assume that g =
ged(a, b) — which we also assume to be monic - can be computed with O(deg(a/g) deg b)
operations in k, and that if b | a, then a/b may be computed with with O(deg(a/b)degb)
operations. These assumptions are true if one uses the Euclidean algorithm to find the
greatest common divisor, and does polynomial arithmetic by classical methods [K5].

We now indicate how to modify our analysis of integer factor refinement so as to derive
analogous results for polynomials.

First, we note that the algorithm Refine works as stated for polynomials in k[X],
and Theorem 1 is true in this case; here all references to “integers” must be changed to
“polynomials.” The proof of Theorem 1 will show that if the inputs my,...,m, are all
monic and of positive degree, then the algorithm terminates after at most d refinement
steps, where d is the sum of the degrees of the inputs.

The algorithm Pair-Refine also works for polynomials; the analog to Theorem 5 is the
following,.

Theorem 11. Let m; and my be monic polynomials in k[X], of degrees d; and dj, with
di,dy > 0. Let d = dy + d3. Then Pair-Refine uses O(d?) operations in k.

Proof (sketch). This is proved with the same calculation as Theorem 5, except for
the following modification: everywhere the logarithm of a number appears, it should be
replaced by the degree of a polynomial. For example, the potential function is defined

as follows. Let fl(k), ey fﬁk) be the polynomials occurring in the list of pairs after k
refinement steps. Then the potential function at this stage of the algorithm is

8—1
B = —c;d Y | deg f* — deg £{)].

=1

The similarity of this result to Theorem 5 may be strengthed by a notational conven-
tion that we now describe. If f is a monic polynomial in k[X], we denote its “nominal
length” in bits by log f. More precisely, this is

log f = (deg f)(log |kl).

With this convention, the ordinary algorithms for polynomials in k[X] have the same bit
complexity as corresponding algorithms for the integers, and we have the following result:

18

Corollary 12. Let m; and m, be monic polynomials in k[X], of positive degree. If
| = logmy + logma, then Pair-Refine uses O(I?) bit operations.

By similarly replacing logarithms by degrees in the appropriate potential functions,
one can prove polynomial analogs of Lemmas 6-8. These lemmas then imply the following
result:

Theorem 13. Let my,...,m; be monic polynomials in k[X], of positive degree. A
refinement of m = mymg---m; may be calculated by repeated augmentation using
O((S_ deg m;)?) operations in k. Hence this can be done with O((log m)?) bit operations.

Proof. Similar to that of Theorem 9; left to the reader. B

We now use factor refinement to solve two problems: squarefree decomposition, and
construction of normal bases for finite fields. Both of these problems have known polyno-
mial time algorithms; in both cases, however, factor refinement leads to simple algorithms
that are easy to analyze.

Many algorithms to factor polynomials in k[X] (such as Berlekamp’s [B4]) will not
work unless the input polynomial has at least two distinct factors. The simplest way to
guarantee this is to partially factor the input into squarefree polynomials; then nothing
presented to the factorization algorithm will be a power of an irreducible polynomial, unless
it is irreducible itself. The theorem below shows that this preprocessing may be done
essentially in quadratic time. We note that no known polynomial factorization algorithm
runs in quadratic time, although there are some that approach this bound asymptotically

(B2,S].

Theorem 14. Let k = GF(p) denote the finite field of p elements, where p is prime.
Let f € k[X] be a monic polynomial, of degree d > 2. Then we can produce a relatively
prime factorization f = fy'--- f&, in which each f; is squarefree, with O(d?) operations
in k. Hence this can be done using O((log f)?) bit operations.

Proof. The idea is to repeatedly apply factor refinement to f/ ged(f, f') and ged(f, f'),
rewriting factors of the form h(X)P as h(XP?) when they appear.

First, let f = gj'--- gerh?, where all factors appearing are pairwise relatively prime,
not necessarily irreducible, and e; < ez < --- < e, with no e; divisible by p. Then
f' = gh?, and f/gcd(f, f') is an associate of the squarefree polynomial g ---gr. Ap-
plying factor refinement to the inputs f/ged(f, f') and ged(f, f'), one finds the pairs
{(g1,€1),--.,(gr er),(RP,1)}. (This can be proved using Theorem 3, but it is easier just
to exhibit a sequence of refinement steps with this result.)

If h = 1, we have the required factorization. Otherwise, note that for h € GF(p)[X],
we have h(X)? = h(XP); applying this as much as needed, we obtain an expression m?* for
kP, where m is not a pth power. We now apply the algorithm recursively to m. The result
of this, together with the factors of g computed earlier, gives a squarefree decomposition.
To get a relatively prime decomposition, we apply factor refinement to all the factors thus

found.

19

For the analysis, we observe that everything up to the recursive step can be done
with O(d?) field operations. Since degm < d/2, the total number of operations to find a
squarefree decomposition will be at most a constant times

d2+-§—+§—z+...=0(d2).

This bound holds for the final refinement step as well, so the total number of field operations
is O(d?). The bit complexity bound follows easily from this. ®

The bit complexity bound also applies to fields k that do not have prime order, if these
fields are presented along with suitable information about their Galois groups. It suffices to
be able to compute the Frobenius automorphism z +— z? and its inverse in O((log |k|)?) bit
operations. This will be true, for example, if one knows matrices for these automorphisms,
or k is defined using a quadratic or cyclotomic polynomial. In general, however, such
matrices must be computed, and this takes O((n + logp)(log |k|)?) bit operations, when
|kl = p".

In positive characteristic, the running time bound of Theorem 14 appears to be new.
Musser [M] gave a squarefree decomposition algorithm for characteristic p, but he did not
analyze it. (For other polynomial time algorithms, see [D1], [G1], [K5].) In retrospect,
though, a quadratic time bound follows easily from the work of Yun [Y], who gave a
squarefree decomposition algorithm for polynomials over a field of characteristic 0.

As stated, Yun’s algorithm does not work in characteristic p, but it may be easily
modified so as to do so. The necessary modification results from the following observation.
Write f = fg?, where no irreducible polynomial divides f to a power p or higher. Then in
characteristic p, Yun’s algorithm computes the squarefree decomposition of f.

Yun showed that his algorithm uses O(M(d)log d) field operations, where M(d) de-
notes the time required to multiply two polynomials of degree d. With our assumptions,
this is O(d?logd); however, a more precise analysis shows that O(d?) field operations
suffice, and this is also true for our extension of his algorithm to GF(p)[X].

We now give another application of polynomial factor refinement. If & is a finite field
of p” elements, then by a normal basis of k over GF(p) we mean a set {by,...,ba—1} Ck
that forms a basis for k as a GF(p)-vector space, for which ¥} = b;;; (with subscripts
taken modulo n). It is a standard result of field theory that such a basis exists; it can be
computed in deterministic polynomial time [L2, L3]. (We are unaware of any bounds in
the literature more precise than this, although both methods cited have can be shown to
have the same complexity as ours.)

The standard construction of a normal basis for a finite field [J, p. 61] requires one to
factor polynomials over GF(p), and this cannot be done in deterministic polynomial time
by any known method when p is large. Here we show that if this construction is modified
so as to replace complete factorization by relatively prime factorization, then a polynomial
time algorithm also results.

20

Theorem 15. Let k be a finite field of p" elements, where p is prime. Then a normal
basis for k may be computed using O((n? + log p)(log |k|)?) bit operations.

Proof. Here is the construction. We consider k as a GF(p)[X]-module, where the

operation of polynomials on field elements is determined by (3 ¢; X Na = 3 ¢;a?’ . Then,
as GF(p)[X]-modules, we have

k= GF(p)X]/(X™ ~1).

Linear algebra now guarantees that for some b € k,

n-—1

bbP b ... P

are linearly independent; taking b; = b’ gives the desired normal basis.

To find b, let & = GF(p)(a), where « satisfies some irreducible monic polynomial
equation of degree n. For eachi = 0,...,n—1, find the monic polynomial f; € GF(p)[X] of
least degree for which f;(X)a! = 0. Now, apply factor refinement to the list of polynomials
foy- -y fn1. This will give pairwise relatively prime polynomials g1,...,gs for which

8
fi=Hg;‘j, i=0,...,n—1.
j=1

For j =1,...,s, find an index 7 for which e;; is maximized, let
hj = fi/9;",

and take 8; = h;(X)a’. Then take
b=> B
=1

The running time analysis is straightforward. We note only that it is more efficient
to use a matrix for the Frobenius map = +— zP than to repeatedly compute pth powers. B

We make some comments on randomized algorithms for this problem. If we define ¢(f)
for a monic polynomial f € GF(p)[X] to be the number of elements in GF(p)[X]/(f)*,
then a randomly chosen element of GF(p™) will generate a normal basis with probability

e(X™ —1)/pY

see [0]. In general, this is exponentially small. The running time of our deterministic
algorithm does not appear to be improved if a randomized method is used to factor X™ —1;
the bottleneck is in the computation of the annihilating polynomials f;.

21

However, Artin’s normal basis construction [A2], ostensibly for infinite fields, is a good
randomized algorithm for large p. For completeness we describe it here. Let k = GF(p)(a),
where « is a root of the irreducible monic polynomial f of degree n. Let

F(X)
(X —a)f'(X)

Choose t € GF(p) at random, and let b = g(t). Then if p > 2n(n — 1), the conjugates of
are linearly independent with probability at least 1/2. The entire computation, including
computation of a pth power matrix, uses O((n + log p)(log |k|)?) bit operations.

9(X) =

Finally, we discuss how factor refinement solves a problem discussed by Liineburg (L3].

Theorem 16. Let k be a finite field, and let a,c € k[X]. Let | = loga +logc. Then
we can find a polynomial r such that r | a, ged(r,c) = 1, and each prime divisor of a/r
divides ¢, with O(I%) bit operations.

Before giving the proof we note that Liineburg’s algorithm for this problem does not
run in quadratic time, as can be seen by considering inputs of the form a = f d ¢c= fgi-1,
where f and g are distinct irreducible polynomials.

Proof. Apply factor refinement to the pair (a,c). We obtain a = [] g%, ¢ =[] g:*, where
the ¢;’s are pairwise relatively prime. Then take

r = Hgf‘.

el=0

Evidently, Theorem 16 holds for integers as well.

VIII. Acknowledgments.

We would like to thank E. Kaltofen for bringing the-references [G2], [K1], [K2], [K3],
[K4], [W2], and [Y] to our attention.

H. W. Lenstra generously shared with us some proofs and applications relating to
factor refinement.

Part of this work was done while the third author was a visiting professor at the
University of Wisconsin, Madison.

References

[A1] D. Angluin, Lecture notes on the complexity of some problems in number theory, Yale University,
Department of Computer Science, Technical Report 243, August 1982.

[A2] E. Artin, Galois Theory, 2nd ed., South Bend, Univ. of Notre Dame Press, 1966.

22

[B1]

(B2]

(B3]

(B4]

[C1)

(C3]

(D1]

[D2]

(G3]
[J]

[K1]

[K2]

[K3]

[K4]

[KS]

(L1]

(L2]

E. Bach, G. Miller, and J. Shallit, Sums of divisors, perfect numbers, and factoring, Proc. 16th ACM
Symp. Theor. Comput. (1984), 183-190. (Revised version appeared in SIAM J. Comput. 15 (1986),
1143-1154.)

M. Ben-Or, Probabilistic algorithms in finite fields, Proceedings of the 22nd Annual Symposium on
Foundations of Computer Science (1981), 394-398.

M. Ben-Or, D. Kozen, and J. Reif, The complexity of elementary algebra and geometry, Proc. 16th
ACM Symp. Theor. Comput. (1984), 457-464. (Revised version appeared in J. Comput. Sys. Sci.
32 (1986), 251-264.)

E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comp. 24 (1970), 713-735.

G. E. Collins, Computing time analyses for some arithmetic and algebraic algorithms, Proc. 1968
Summer Institute on Symbolic Mathematical Computations, IBM Federal Systems Center, 1968, 195-
231. (Also appeared as: Computer Sciences Technical Report #36, University of Wisconsin, July
1968.)

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition ~
preliminary report, SIGSAM Bull. 8 (1974), 80-90.

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,
Proc. 2nd GI Conf., Lecture Notes in Computer Science #33 (1975), 134-183.

J. Davenport, On the integration of algebraic functions, Lecture Notes in Computer Science #102,
Springer-Verlag, 1981.

R. Dedekind, Uber Zerlegungen von Zahlen durch ihre gréSten gemeinsamen Teiler, Gesammelte
mathematische Werke, Vol. 11, F. Vieweg & Sohn, Braunschweig, 1932, 104-147.

H. Epstein, Using basis computation to determine pseudo-multiplicative independence, Proc. 1976
ACM Symp. Symb. Alg. Comput., (1976), 229-237.

J. von zur Gathen, Parallel algorithms for algebraic problems, SIAM J. Comput. 13 (1984), 802-824.

J. von zur Gathen, Representations and parallel computations for rational functions, STAM J. Com-
put. 15 (1986), 432-452.

C. F. Gauss, Disquisitiones Arithmeticae, Springer-Verlag, 1986.

N. Jacobson, Lectures in Abstract Algebra, Vol. III: Theory of Fields and Galois Theory, Van
Nostrand, 1964.

E. Kaltofen, Sparse Hensel lifting, Rensselaer Polytechnic Institute, Department of Computer Science,
Technical Report 85-12, 1985.

E. Kaltofen, Sparse Hensel lifting, Proc. EUROCAL ’85, Lecture Notes in Computer Science #204
(1985), 4-17.

E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders, Fast parallel algorithms for similarity of
matrices, SYMSAC ’86: Proc. 1986 ACM Symp. Symb. Alg. Comp. (1986), 65-70.

E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders, Parallel algorithms for matrix normal forms,
preprint.

D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, 1981.

H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. Math. 126 (1987), 649-673.

H. W. Lenstra, Jr., Finding isomorphisms between finite fields, manuscript (1989).

23

[L3] H. Liineburg, On a little but useful algorithm, Proc. AAEEC-3, Lecture Notes in Computer Science,
#229 (1985), 296-301.

[M] D. R. Musser, Algorithms for Polynomial Factorization, Ph.D. thesis, University of Wisconsin (1971).
(Also appeared as: Computer Sciences Technical Report #134, University of Wisconsin, September
1971.)

[O] O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36 (1934), 243-274.

[P] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in Computational
methods in number theory, Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam,
1982, pp. 89-139.

[S] V. Shoup, On the deterministic complexity of factoring polynomials over finite fields, Info. Proc.
Lett., to appear. (Also appeared as: Computer Sciences Technical Report #782, University of
Wisconsin, July 1988.)

[T] R.E. Tarjan, Amortized computational complexity, SIAM J. Appl. Discrete Meth. 6 (1985), 306-318.

[W1] B. L. van der Waerden, Algebra, Vol. I, 7th ed., New York, Ungar, 1970.
[W2] P.S. Wang, The EEZ-GCD algorithm, SIGSAM Bulletin 14 (2) (1980), 50-60.

[Y] D. Y. Y. Yun, Fast algorithm for rational function integration, Info. Processing 77, North-Holland,
493-498.

24

