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Abstract

The problem of detecting cyclic motion, while recognized by the psychophysical community,
has received very little attention in the computer vision community. In this paper cyclic motion
is formally defined as repeating curvature values along a path of motion. A procedure is
presented for cyclic motion detection using spatiotemporal (ST) surfaces and ST-curves. The
projected movement of an object generates ST-surfaces. ST-curves are detected on the ST-
surfaces, providing an accurate, compact, qualitative description of the ST-surfaces. Curvature
scale-space of the ST-curves is then used to detect intervals of repeating curvature values. The
successful detection of cyclic motion in two data sets is presented.
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1. Introduction

Many natural objects undergo cyclic motion. Examples include a human walking, a person
riding a bike, a running dog, a swinging pendulum, and a bouncing ball. The fact that people

perceive these motions as repeating demonstrates that the human visual system (HVS) is capable

of detecting cyclic motion. The study of humans’ ability to perceive a stimulus as cyclic! dates
back to the late 19th century [Bolt94] and has continued as an active area of research [Frai78].
While of the ability of the HVS to detect cyclic stimuli has been recognized [Frai78], there is lit-
tle research in the area. Most of the research concentrates on the human perceptual system’s
(HPS) ability to perceive auditory rhythm. In this paper we will examine the detection of cyclic
stimuli in vision.

The human perceptual system’s ability to perceive rhythm can be divided into three
categories: rthythmical grouping, forming strings of rhythmical groups, and experience of rhythm
[Frai78]. Rhythmical grouping is demonstrated by the fact that a series of identical sounds is
spontaneously perceived as groupings of two, three or four elements [Bolt94]. A similar result
has been obtained using light stimuli [Koff09]. Fraisse [Frai75] showed that rhythmical groups
are gestalt, meaning that each group constitutes a functional unit. These units are related to each
other by temporal order and pauses to form strings of rhythmical patterns. For example, a
rhythmical group follows another after a pause. When these patterns are then linked to what fol-
lows, rhythm is experienced. Clearly, the perception of rhythm can be accompanied by a recog-
nition of the rhythm. For example, when Gabrielsson [Gabr73] presented subjects with complete
musical patterns and measured their perception of rhythm, the subjects could also recognize the
pattern if they had heard it before. The analog of this in the visual domain was shown by Johans-
son [Joha73] using moving light displays (MLD). While the recognition of the rhythms was not
central to those studies, one can extrapolate from the results and conclude that the perception of

rhythm is accompanied by recognition. This paper addresses the detection of cyclic motion

within the context of motion recognition.

There has been considerable work examining the HVS’s ability to recognize movement that

contains cyclic motion, but the detection of the cycles was not the focus of the studies [Joha73].

'The psychology community refers to a repeating stimulus as "rhythmic" rather than "cyclic". The two are
used interchangeably in this paper.




Johansson’s MLD’s contained cyclic motion in the form of human walking, running, cycling and

dancing. When subjects were presented with an MLD of walking, they always recognized the
motion after the first one or two steps.

The cyclic motion of each joint in a walking MLD is clear in Figure 1.1. In addition to
each joint undergoing cyclic motion, the entire body is undergoing cyclic motion. Consider, for
example, the motion of the wrist from the time when the left hand is at the back of its swing until
the time that the left hand is again at the back of its swing. This constitutes one period of cyclic

motion of the body and is easily recognized when viewed as an MLD as well as when viewed in
real, natural scenes.

Unfortunately, Johansson’s work examined subjects’ ability to recognize the high-level
motion of an MLD, not any particular cyclic motion contained in the MLD. In this paper we
address the problem of recovering a cyclic motion description from an input sequence using
computational methods. This problem, while recognized by the psychology community, has
been largely ignored by the computer vision community. By addressing the computational issues
we can better understand the HVS’s ability to perform this task.

Shoulder ———— T T
Elbow —_—
Hip ———uy M
Wrist —

Knee T~ — T

Left Ankle —> C@\(—Y
Right Ankle—”

Figure 1.1. Typical motion paths of seven elements representing the motions of the right side
joints plus the ankle joint of the left leg of a walking person. [Joha73]




1.1. Properties of the Cyclic Motion Detection Problem

By examining the HVS’s ability to recover and describe cyclic motion, we can learn per-
tinent properties of the cyclic motion detection problem. Further, these properties give a better
understanding of the problem and suggest a form of a solution. These properties include: 1)
recognition of objects is not necessary for the recovery of cyclic motion; 2) many frames are
necessary before cyclic motion becomes evident; 3) cyclic motion does not depend on absolute

position; and 4) cyclic motion can occur at multiple scales.

Motion can be described at many levels, from low-level, detecting that something in the
scene has moved between two frames, to high-level, recognition of a "coordinated sequence of
events" [Godd88]. Most previous work has focused on low-level motion analysis. Frame dif-
ferencing of temporally-adjacent frames is one common method of low-level motion analysis
[Jain79, Jain79a, Jain81, Jain83, Jaya83, Ande85, Lec88].

High-level motion analysis, i.e., recognizing a coordinated sequence of events such as
walking and throwing, has been formulated previously as a process which follows high-level
object recognition [Hogg83, Akit84,Leun87, Leun87a]. Only recently have some researchers
considered high-level motion analysis as a process which does not depend on complex object
descriptions [Godd88, Godd88a, Godd89, Goul89].

In order to substantiate the hypothesis that motion recognition can occur before object
recognition, we will show in this paper that detecting cyclic motion in an image sequence can be
performed without prior recognition of the object undergoing the cyclic motion. Other results
also indicate that the perception of intermediate descriptions is accomplished prior to recognition
of the stimulus. For example, Barrow and Tenenbaum [Barr81] used photomicrographs of pollen
grains to argue that the HVS can recover surface shape and orientation without recognition.
When Gabrielsson [Gabr73] presented subjects with songs, they could detect rhythm within the
music even without having heard the song previously. These psychophysical results suggest that
intermediate-level descriptions can be recovered prior to object recognition. Further, it is reason-
able to conclude that if the HVS is presented with a "movie" of photomicrographs of pollen

grains moving in a cyclic fashion, that the HVS could detect the cyclic motion even though it
has no familiarity with the objects.

Since cyclic motion of non-recognizable objects, e.g., pollen grains, can be recovered,
static models of objects are not a necessary component of a solution. Rather than a model-based

solution, a motion-based solution is required. It is not the object itself that is the appropriate
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level of motion description, but rather the motion of lower-level primitives such as surfaces.

Cyclic motion is an important problem because it is a general example of an intermediate-
level motion description. It is a lower-level description than walking, for example, but it requires
more than simply making changes between a few frames explicit, as in low-level motion
analysis. Since cyclic motion is an intermediate-level description, one would expect that it
should be computed from a low-level motion description. The fact that even the simplest of
cyclic motions, e.g., a swinging pendulum, requires many frames before its cyclic behavior is

recoverable, suggests that the low-level motion representation must describe long-range motion
sequences.

Recently, there has been a trend toward using more than a few frames to analyze an image
sequence [Jain88, Aloi88]. Cyclic motion description requires long sequences of frames since
many frames are required before a motion repeats. These considerations suggest a low-level
representation that coherently represents many frames. Frame differencing is insufficient since
only the differences between two frames is made explicit. We choose to use dense spatiotem-
poral image sequences, created by "stacking" many frames together, as the low-level motion
representation. The concise, coherent nature of this representation has also lead others to use it to

examine long sequences of frames [Boll87, Bake88, Aloi88, Liou89].

Just as cyclic motion detection does not depend on the object undergoing the cyclic motion,
as we argued earlier, it also does not depend on the absolute position where the motion takes
place. It is not the position that is essential to characterizing cyclic motion, for example, but
rather how the object moves that is important. For example, the motion produced by a person
walking parallel to the image plane would be called cyclic. This perception of cyclic motion is
not dependent on the absolute position of the person because the person is never in the same

place at any two separate times. So the definition and detection of cyclic motion must be invari-
ant to position.

Finally, cyclic motion can occur at multiple scales. For example, consider a bird flying in a
cyclic pattern. The bird displays the cyclic motion of its flight pattern and also the finer cyclic

motion of its flapping wings. Thus, a complete cyclic motion description should describe all lev-
els of cyclic motion.

In summary, we have argued that cyclic motion detection and description

e does not depend on prior recognition of objects
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e does not depend on absolute position information
e must make use of long-range temporal sequences

e must be sensitive to multiple scales

The rest of this paper is organized as follows. In Section 2 cyclic motion is formally
defined as repeating curvature along a path of movement. Spatiotemporal (ST) surfaces are intro-
duced in Section 3 as the appropriate low-level motion description from which cyclic motion is
recovered. Section 3 continues by showing that cyclic motion in the scene which is preserved
under projection is retained by the ST-surfaces. In Section 4 it is shown how to recover the

cyclic shape of ST-surfaces using ST-curves and curvature scale-space.

2. A Formal Definition of the Cycle Detection Problem

Before we can define cyclic motion we must have a representation of motion. We need a
representation that makes the essence of cyclic motion explicit. One possibility is to represent
the motion of an object by its position over time. However, we are more concerned with what
kind of motion occurs rather than where it occurs [Rubi85]. Thus, it is not position that is essen-
tial to characterizing cyclic motion, but rather how the object moves that is important. For exam-
ple, the motion produced by a person walking parallel to the image plane is called cyclic. But
clearly this perception of cyclic motion is not dependent upon the position of the walking person
because they are never in the same place at any two separate times. We need a definition of
cyclic motion that is invariant to the position of the object. Curvature and torsion along the path
of movement of an object represents movement and is invariant to position. In fact, the curvature
and torsion along the path uniquely defines the path up to a rigid transformation [DoCa76].
However, for our purposes, curvature alone will be sufficient to describe how an object moves.
We choose this over torsion because it is possible that some object’s motion is restricted to a
plane, e.g., a swinging arm.. The torsion along this path of motion would always be 0 since tor-

sion along a planar curve is always 0. Curvature, on the other hand, will not always be 0.

In the remainder of this section we define the cycle detection problem for a single point and
then extend it to more complicated objects. Having defined cyclic motion, we will apply the
definition to spatiotemporal surfaces and curves. We will prove that if an object undergoes 3D
cyclic motion which is preserved under projection, then the resulting spatiotemporal surfaces

must retain this cyclic information. We will show how to place spatiotemporal curves on




spatiotemporal surfaces and how to use the curves to recover the cyclic information.

2.1. The Cycle Detection Problem for a Moving Point

Consider the situation of a single point moving in three dimensions. Let
o T - R3 o) = (x,p,1)

define the path of a point over the temporal interval T. Since o defines a path in 3-space it is a
space curve and therefore properties associated with spaces curves, such as curvature, can be

applied to the curve defined by o.. We make no assumptions about the smoothness of .

Let
 \aTETT
k) = G 4y +1)2
where
a=Pr b i A c=fft N
Y1 h I X X1 Y1

define the curvature at a(#). Since we made no assumptions about the smoothness of o it is possi-
ble that for some ¢, k() is undefined. In this case we will say that K(f) = . And for 4 and L, if
K(tl) = oo and K(t,) = oo then K(tl) - K(tz) = ().

We say that o undergoes Continuous Cyclic Motion if:
rnax{l KO —x@+@r—11))] :t € [tl,tz]} <€

With this definition, only two periods of cyclic motion are needed before it can be classified as
cyclic.

This definition refers to motion in the 3D scene. When we make use of this definition in
later sections, we will refer to 3D cyclic motion that is preserved under projection, i.e., cyclic

motion along the axes perpendicular to the line of sight. Nature does not usually conspire against



us so we assume that if there exists cyclic motion in the image sequence, then there existed
cyclic motion in the scene.

There are a few points worth making about the types of movement that would be con-
sidered cyclic under this definition. The definition looks for time intervals during which the cur-
vature in the intervals is equal. Consider a point moving in a straight line. The curvature is
always zero. So given any two intervals, the curvature will always be equal during these inter-

vals. In this degenerate case, a point displays cyclic motion with an arbitrary period.

Consider a point moving in a circle with constant speed. This is equivalent to the previous
case in that the point displays cyclic motion with an arbitrary period. But it also fails to distin-
guish the cycle where one period equals one revolution of the circle. Perhaps this is undesirable,
but in order to detect one revolution of the circle as one period the definition would have to be

sensitive to the position of the point over time which, as argued earlier, is undesirable in most
cases.

Goddard [Godd88, Godd88a, Godd89] used a change in angular momentum as the primitive
to detect movements such as walking. A point moving in a circle with constant speed does not
change its angular momentum, so it would also be missed using Goddard’s definition. Similarly,
the Trajectory Primal Sketch of Gould and Shah [Goul89] is not sensitive to such cases. A
definition of cyclic motion that is sensitive to such cases would only obscure the type of motion

of the point. As stated earlier, it is the type of motion that we wish to detect.

2.2. The Cycle Detection Problem for a Rigid Object

Given our definition of cyclic motion for a point, we now extend the definition to rigid
objects. This extension is motivated by the following theorem:

Theorem 2.1: If a point of a rigid body displays cyclic motion, then with probability 1 all other
points on the rigid body display cyclic motion with the same period.

Proof Sketch: Any instantaneous motion of a rigid body in three dimensions can be uniquely
described by a rwist [Coxe61]. A twist is described by an axis /, an angular velocity ®, and a
translational velocity v along /. Since a twist describes the motion of any rigid object, it can be
applied to an entire rigid object or a point on the rigid object. In other words, a point on a rigid

object can be thought of as a rigid object. Therefore, the point’s motion can be defined by a




twist. Since a twist is unique, the twist describing the motion of the point must be the same as
the twist describing the motion of the entire rigid object that contains the point. Let p ; be the
point feature of the solid object that displays cyclic motion. Let twist,, defined by /,, @, and v,
describe the motion for p; at time . The twists along the path of p ; determine the curvature of
the path of p,. Let x(p,, 1) define the curvature of p ; at time . In the simplified case where v
remains zero, x(p 7> ) equals rpl" where r”] p is the perpendicular distance from p ;o l‘ (Figure
2.1). In the case where v is not 0, the curvature along the path of movement of a point is a func-

tion of /, ®, v and their first and second partial derivatives with respect to arc length along the
path of movement.

We need to show that given the curvature of p ; atz, the curvature of another point pyattis
dependent upon the curvature of p, at t. That is,

K(p2’t) = 8K(plat)

r
. - . o P2t
for some 8. From Figure 2.1 it is clear that in the simplified case where v,=0,8= “— . Inthe
r
Pt
. . Tpat . . . . .
case where v, # 0, 8 is a function of , v and their partial derivatives. This shows that given
r
pht
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r
e Pt .
°p
I
e
""""" ° P2
l

Figure 2.1. A rwist at time t.




the curvature of p, at time ¢ we can find the curvature of any other point at time 1.

p; is the point undergoing cyclic motion. So the sequence of curvature values for p; is
repeating. The sequence of curvature values for p, is determined by the sequence of curvature
values for p,. So if p, is cyclic, p, is also cyclic. This assumes that Ty is never 0 so 0 is always
defined. In the continuous case, the probability that p, lies exactly on /, is 0. Therefore, with pro-
bability 1, if a point on a rigid object undergoes cyclic motion, then all other points on the rigid
object undergo cyclic motion with the same period.

a

This proof assumes the objects are moving in 3-space. One would like to know the effect of
the projection into a 2D image. In this initial study we assume objects do not rotate in depthz. So
if a point projects into the image in one frame, it will always project into the image. If a point

undergoes cyclic motion, its projection will also undergo cyclic motion, as will all other points
of the object that project into the image.

If any point on a rigid object undergoes cyclic motion, all other points on the rigid object
undergo cyclic motion with the same period. So we say a rigid object undergoes cyclic motion if

any point feature of the object undergoes cyclic motion. And a point undergoes cyclic motion as
defined in Section 2.1.

2.3. The Cycle Detection Problem for an Articulated Object

An articulated object is composed of rigid objects connected by joints. A rigid part of an
articulated object undergoes cyclic motion as defined above. We need a definition of cyclic
motion for a set of rigid objects connected by joints. - A set of rigid parts of an articulated object
undergoes cyclic motion if each rigid part undergoes cyclic motion and there exists a depen-
dency between the periods of cyclic motion. A dependency exists between solid parts if the ratio
of their periods remains constant. For example, the ratio of the period of a swinging forearm and

the period of the upper arm remains constant for a walking person.

This definition is motivated by the fact that most articulated objects that the human visual

system would classify as displaying cyclic motion have this dependency property. The definition

This assumption will be dropped in future work (see Section 5).




prevents jointed, rigid objects with no consistent pattern to the periods of their parts from being
classified as displaying cyclic motion.

3. Finding Cyclic Motion of Articulated Objects

We argued earlier for the need of a low-level motion representation that can describe long-
range motion sequences. Spatiotemporal (ST) volumes are a low-level motion representation
that can represent the motion of objects for arbitrary length sequences. These volumes are three-
dimensional structures that are built by "stacking” a dense sequence of image frames. The ST-
volume is a viewer-centered, three-dimensional (x-y-time) description. If we sample densely
enough in time and an edge operator is applied [Boll87], the ST-volume will contain surfaces
and volumes created by the surfaces. These surfaces and volumes represent object motion swept

out through time. ST-surfaces will be used to detect cyclic motion in the scene. This is made
possible by the following theorem:

Theorem 3.1: If a solid object in a scene displays cyclic motion such that the cyclic motion is

preserved under projection, the spatiotemporal surfaces that correspond to intervals of cyclic

motion will be piecewise isomorphic.

Proof Sketch: Consider a spatiotemporal surface such that there exist ridges on the surface and
every point on a ridge has the same value for the time coordinate. We call this ridge a temporal
ridge since it results from a nonsmooth change of velocity of an object at some time. Define a
patch of an ST-surface as the surface between two temporal ridges. Two surfaces are piecewise
isomorphic if the first patch of surface 1 is isomorphic to the first patch of surface 2, the second
patches are isomorphic, etc. A curve, C, in a sequence of frames generates an ST-surface. The
type of movement, translation, rotation or a combination of both, determines the surface gen-
erated by C. Given a parameterization of the ST-surface in terms of C and the movement of C,
an isomorphic mapping between the corresponding patches of the ST-surfaces can be defined.
Details of this proof are given in Appendix 1.

a

While ST-surfaces retain cyclic motion in an image sequence, methods are still required to
recover the cyclic behavior of the ST-surfaces. ST-curves, defined in the next subsection, are
used to recover the cyclic behavior of ST-surfaces. ST-curves are detected such that the curva-

ture along the curve is cyclic whenever the ST-surfaces are cyclic. Once the ST-curves are
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detected on the ST-surfaces, cyclic curvature along the curves is found using curvature scale-
space.

3.1. Spatiotemporal Curves

In this section we define the term spatiotemporal curve (ST-curve). We also show how to

detect ST-curves on spatiotemporal surfaces so that a set of ST-curves describes the surface.

Figure 3.1a shows a sinusoidal surface. Figure 3.1b shows the same surface represented by
a set of ST-curves. ST-curves are space curves and therefore properties such as curvature can be
applied. ST-curves will be detected on ST-surfaces such that a repeating pattern in an ST-curve

implies the ST-surface is cyclic. In Section 3.2 we discuss in depth how to detect ST-curves so
that they accurately represent the surface.

An ST-curve is any curve on a spatiotemporal surface such that the curve moves forward in
time, i.e., the time component of the curve is strictly increasing. Consider p ; and p,, two points
on a spatiotemporal surface (Figure 3.2). Let § ; and S, be two congruent surface patches that
contain p; and p,, respectively. That is, § ; and S, are neighborhoods of p, and p,. Since §; and

(a) ()

Figure 3.1. A surface and its representation with curves.

i1




Time

Spatiotemporal Surface

Figure 3.2. f, and f, are consistent since the tangent vectors of f; and f, at p; and p, are
congruent.

3, are congruent, there exists some translation, T, and/or rotation, R, which when applied to § ]
makes §, coincide with S,. Given an ST-curve f; containing p; and an ST-curve f, containing
Py f] and f, are inconsistent if there exists some neighborhoods of p 7 and p, §; and Sz, such
that S, and S, are congruent but the tangent vectors of f; and f, atp, and p, do not coincide after
translation T and rotation R. If f; and f, are never inconsistent, they are called consistent. In
other words, two ST-curves are consistent if they go in the same relative direction for any two

congruent neighborhoods of points-on the ST-curves. Note that f ; and f, can be different inter-
vals of the same ST-curve.

Theorem 3.2: If an ST-curve on a spatiotemporal surface is consistent and the surface represents

cyclic behavior, i.e., the surface is piecewise isomorphic, then the curvature of the ST-curve will
be cyclic.

Proof: If we can show that the curvature at every point of ST-curve f; within surface patch S,
equals the curvature at the corresponding point of ST-curve £, within congruent surface patch S,

f; must preserve any cyclic behavior present in the surface. So we must show that given a
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translation T and rotation R that makes S, and S, coincide, applying T and R to f; results in 1
having the same curvature as f, at every point.

Since the ST-curve is consistent, corresponding tangent vectors along the curve coincide
after a translation and rotation. Since the tangent vectors along f; and f, coincide, we are left to
show that rotation and translation of all the tangent vectors by T and R does not affect the curva-
ture of the space curve. This is equivalent to showing that translation and rotation of a space
curve does affect its curvature. This is a well know fact [DoCa76].

Since the curvatures of f; and £, are always equal for corresponding points, the ST-curves
will be cyclic whenever the ST-surface is cyclic.

O

All consistent ST-curves that lie on an ST-surface generated by the projection of a rigid
part will be similar. For example, consider an arm swinging in a scene such that the swinging
motion is preserved under projection. The projection of the swinging arm will generate an ST-
surface. All consistent ST-curves detected on this surface will be similar. In particular, Theorems
2.1 and 3.2 show that the ST-curves on this ST-surface will all be cyclic with the same period.
Using this property we can cluster ST-curves based on their cyclic behavior. In the current
implementation, we assume that if a group of ST-curves is cyclic with the same period, then the

curves lie on an ST-surface generated by the projection of a single rigid object or a rigid part of
an articulated object.

3.2. Detecting Spatiotemporal Curves

From Theorem 3.2, our only requirements for detecting ST-curves are that they move for-
ward in time and they are consistent. Currently, we also assume that no objects in the scene
undergo rotation in depth. This assumption was made only to simplify the procedure for track-
ing points and is not a fundamental limitation of the method. Section 5 describes a method of

detecting ST-curves that does not require the assumption of no rotation in depth.

We now propose two methods for detecting ST-curves on ST-surfaces: (1) using curvature
extrema, and (2) using principle curvature directions. Both methods satisfy our requirements that

ST-curves move forward in time and are consistent. The description of method 2 is briefly out-
lined in Section S.
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3.2.1. Using Curvature Extrema to Place Spatiotemporal Curves

If we take a temporal slice at time 0, we have the edge map of the image of a scene at that
time. These edge points can be connected into contours and the curvature extrema detected.
Doing this for each time slice and connecting corresponding curvature extrema over time defines
a set of ST-curves. Since curvature extrema are relatively sparse and we assume a dense sam-
pling of images (no more than a few pixel movement between frames), connecting the
corresponding curvature extrema is reasonable.

ST-curves associated with curvature extrema must be consistent. Since the object is rigid,
an ST-curve that is defined by correctly tracking a curvature extremum must correspond to a
unique point feature on the object. Therefore, when the ST-surface repeats because of cyclic
motion, a curvature extremum ST-curve will be repeating since it’s tracking a single point of the
object. This results in the ST-curve being consistent.

To experimentally test our method for detecting ST-curves, curvature extrema were tracked
in two sets of data. The first set of data consisted of 66 frames of a cube translating parallel to
the image plane. The first ten frames are shown in Figure 3.3. The second test data set consisted
of 33 frames of a single object with one joint and its two major parts undergoing a "flapping"
motion. The two parts "flap" with different periods. The first ten frames are shown in Figure 3.4.
The top half of the resulting spatiotemporal surfaces for the translating box and the flapping
wings are shown in Figures 3.5 and 3.6, respectively.

Test images were input as 128 by 128 binary images created by a Difference-of-Gaussian

edge operator. The outer contour of the first frame was computed and the curvature at each point
was calculated.

All curvature extrema, positive and negative, whose absolute value was at least three times
greater than the average of the absolute value of the curvature at all points were detected in each
frame. The curvature extrema in the first image were each linked to their nearest curvature
extremum in the next frame. The curvature extrema in the second frame were linked to the cur-

vature extrema in the third frame, etc. The linking of the extrema into ST-curves is shown in
Figures 3.7 and 3.8.

The ST-curve in the middle of Figure 3.8 started out following the curvature extremum
formed by the two rigid wings. But as the wings move this curvature extremum disappeared and

then reappeared. As can be seen, it failed to correctly follow this extremum from start to finish.
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Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

RS

ARV
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Figure 3.3. Ten frames of a translating box image sequence.

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10
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Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

K

I?’

Figure 3.4. Ten frames of a flapping wings image sequence.

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10
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order to better formalize these kinds of events.

3.3. Finding Repeating Patterns in Spatiotemporal Curves

Given a set of consistent ST-curves extracted from ST-surfaces, we can now infer cyclic
motion from cyclic structure in the ST-curves. All ST-curves which lie on an ST-surface gen-
erated by the projection of a rigid object, or rigid part of an articulated object, will have the same
period of cyclic motion. ST-curves that track other point features, such as surface markings or
vertices, will also have the same period of cyclic motion. We propose using curvature scale-
space to detect repeating patterns in ST-curves.

Curvature scale-space is used to detect repeating patterns in ST-curves for many reasons.
Curvature scale-space has many properties that make it desirable, regardless of the application.
These are discussed below. One property, however, is particularly relevant to the problem of
cyclic motion detection. Cyclic motion can occur at many scales. Since curvature scale-space
represents curvature over many scales, it is a natural representation to use. Fine cyclic motion,
e.g., the flapping wings of a bird, will be observable at fine scales in the scale-space, whereas

coarse cyclic motion, e.g., a cyclic flight path of a bird, will appear at coarse scales in the scale-
space.

By looking for repeating patterns in ST-curves, we are effectively matching portions of
space curves. Mokhtarian [Mokh88] used curvature and torsion scale-space for model-based
matching. Curvature and torsion scale-space can be constructed efficiently and they are sensitive
to small changes in a curve. Curvature and torsion scale-space images represent information at
multiple levels of detail. And scale-space images of curvature and torsion are robust since the
effect of missing data at end points has only a local effect on the scale-space. This is important

since we have to match portions of the scale-space generated from the middle of a space curve to
portions generated at the ends of space curves.

Yuille and Poggio [Yuil83] showed that torsion scale-space is unique by showing that
almost all curves can be reconstructed up to an equivalence class from the torsion scale-space.
The same has not been be proven for curvature scale-space, but curvature scale-space is rich
enough in detail that it is unlikely that curves with different shapes will give rise to similar cur-
vature scale-space images [Mokh§88].

Finally, curvature and torsion scale-space is position invariant. When looking for repeating

patterns we do not want to concern ourselves with spatial information; in most every case spatial

18



Time

Time

.................................

Figure 3.7. Spatiotemporal curves for the translating box image sequence.

-

.
P

P i R T i

(S

Time Into Page

Figure 3.8. Spatiotemporal curves for the flapping wings image sequence.
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information is not relevant. For example, when considering the repeating motion of a swinging
arm while walking, the position of the arm over time is not what is important because it is con-
stantly moving in the direction of walking; rather it is the series of movements that the arm
makes that is important. It is known that the curvature of an ST-curve is invariant to translation

and rotation [DoCa76] so the curvature scale-space is also invariant to translation and rotation.
The same can be shown for torsion of an ST-curve.

3.3.1. Curvature Scale Space

Mokhtarian [Mokh88] showed how to construct curvature and torsion scale-space images
for a space curve. For portions of the curve that are congruent, we expect the corresponding por-
tions of the scale-space to be similar since curvature scale-space is probably unique. Since
scale-space represents large features as well as small ones, we can use a coarse-to-fine search

procedure, first looking for repeating patterns at coarse scales where the matching is less compu-
tationally demanding, and then moving to finer scales.

Figure 3.9 shows several curvature scale-space images. The scale-space image of a 1D sig-
nal is guaranteed to be composed of "arches" [Witk87]. The feature$ in the curvature scale-
space images in Figure 3.9 resemble arches. To follow the similarity with the features in a 1D
scale-space image, we define a curvature scale-space feature to be an arch. This is consistent
with Mokhtarian’s definition of a feature [Mokh86, Mokh88].

Figure 3.9 shows features found in the curvature scale-space for the ST-curves in the

translating box image sequence. Figure 3.10 shows the features found in the curvature scale-

space for the ST-curves in the flapping wings image sequence.

To detect repeating patterns in the features, we used a uniform cost algorithm that is similar
to Mokhtarian’s [Mokh86]. The final result of the algorithm is a labeling of the features in cur-
vature scale-space that constitutes the best match of the repeating patterns in a given curvature
scale-space. The algorithm begins by creating a node for every possible pair of features in scale-
space. A match cost is computed for each node, measuring how different the two features are.
The higher the cost, the more dissimilar the features are. Next, the node with the lowest cost is
expanded. The cost of expansion is added to the node’s cost. Expansion of the lowest cost node

continues until a node reaches a solution, i.e. the repeating pattern has been verified over the
entire domain.

20



Curve

! ¢ yf\P\/\mv/\Jﬂv (DRB@E
2 o L] =2 = 3 = & |
] (DRBIAS)E)

3 ¢ s/ \ » 5 (D@)B)H)(6)(B)

4 ° (D@)(3)(4)(5)(6)

5 o 1JQQN/\7&p\ O@@EE)

6 ° ~/\/\vpvﬂy/\/\3 HRXBAE)
7 ° */\/\vﬂvmg/\/\3 HRXBAE)

«——— ArcLength —

Figure 3.9. Curvature scale spaces images for the spatiotemporal curves of the translating box
image sequence. The repeating patterns are shown on the right.
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The cost between two features is computed by translating one feature so that its top
corresponds to the top of the second feature. A measure of the difference of the two features is
then computed. The cost is normalized so that large and small features are treated equally. But

since it is desirable to match large features initially, the cost is reduced as a function of the size
of the features being matched.

In the initial creation of the nodes, the cost is further modified so as to favor following
paths that initially match temporally-adjacent periods rather than paths that match periods father
apart.

4. Results

Figure 3.9 shows the curvature scale-space images for the spatiotemporal curves of the
translating box image sequence. Next to each scale-space image are the detected repeating pat-

terns. The same is shown for the flapping wings image sequence in Figure 3.10.

Table 4.1 shows the approximate frames when the cycles start. After the best cycles were
detected, a threshold was used to eliminate weak matches, e.g. curves 1 and 3 for the flapping

wings sequence.

Table 4.1
Results of Cycle Detection
Translating Box Image Sequence Flapping Wings Image Sequence
Curve Starting Frame Numbers Curve Starting Frame Numbers
1 8 17 29 36 49 60 1 511182430
2 1020 30 39 49 59 2 No cycles found
3 91727364759 3 371216202429
4 919 30 39 49 60 4 No cycles found
5 1021334151
6 91930384858
7 91930374858
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5. Concluding Remarks

In this paper we defined a procedure for detecting cyclic motion based on tracking curva-
ture extrema in spatiotemporal images. A scale-space representation was then used to efficiently
detect repeating patterns. The results show that it is possible to detect cyclic motion without first
identifying the object(s) undergoing the motion. However, our results depended on two assump-

tions: objects do not rotate in depth and do not become occluded or disoccluded.

The first assumption was necessary because point tracking was used to detect ST-curves.
This assumption can be dropped if we use principle curvature directions to detect ST-curves.
Using the Implicit Function Theorem we can derive the First Normal Form of the spatiotemporal
surface using only the coordinate points, i.e. we do not need a parameterized or analytic descrip-
tion of the spatiotemporal surface. It is also possible to fit a surface to the neighborhood of points
known to be on the ST-surface [Besl86]. In both cases we can recover the coefficients of the
first fundamental form which then allow us to calculate the principle curvature directions for any
point on the surface. The ST-curves can then follow either of the principle curvature directions

with the constraint that the ST-curve move forward in time. ST-curves defined in this manner are
guaranteed to be consistent.

The assumption that moving objects do not become occluded or disoccluded was made
because a coarse-level analysis of spatiotemporal volumes and surfaces is not yet developed. We
have developed a motion representation hierarchy that consists of a low, intermediate and high
level. Cyclic motion description is an example of an intermediate-level motion description. ST-
surface and ST-volume interaction is another intermediate-level motion description. These
interactions describe, among other things, occlusion and disocclusion between objects. Once this

intermediate level is implemented, we can drop our assumption of no occlusion or disocclusion
in the image sequence.

When the repeating cyclic motion is as simple as the examples shown in this paper, the cur-
vature scale-space consists of spike-like features. Rather than using a uniform cost search, we
could alternately compute the Fourier transform of the scale-space image and recover the fre-
quency of the peaks. While this will work for simple repeating curvature values, it is not clear

how well it will work for more complicated repeating motions.
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Appendix 1: Proof Sketch of Theorem 3.1

Theorem 3.1: If a solid object in the scene displays cyclic motion such that the cyclic motion is
preserved under projection, then the spatiotemporal surfaces that correspond to intervals of

cyclic motion will be piecewise isomorphic.

Proof Sketch: Consider a spatiotemporal surface such that there exist ridges on the surface and
every point on a ridge has the same value for the time coordinate. We call this ridge a temporal
ridge since it results from a nonsmooth change of velocity of an object at some time. Define a
patch of an ST-surface as the surface between two temporal ridges. Two surfaces are piecewise
isomorphic if the first patch of surface 1 is isomorphic to the first patch of surface 2, the second
patches are isomorphic, etc. Let C be a closed curve in the image that is the result of the projec-

tion into the x-y plane of a solid object undergoing cyclic motion. Let

x = flu), y = g(u), a<u<b, flu)>0, g(u) >0

be a parameterization for C. As the object in the scene moves the curve in the image also moves.
We will now parameterize the surface, S, generated by C moving in the image. The resulting

surface will exist in x-y-t space. We will break the types of movement of C into three cases.

Case I: C Translates

Let v, and vy be the translational components of the curve in the x and y directions,

respectively. Let d, and dy be the displacement of C in the x and y directions, respec-
tively. We obtain the following map

H(u, 1) = (fu) + v+ dx, g(u) + tvy + dy, 3}
from the open set U ={(u, t) € R% a<u <bjc<t<d;c,d=0}into S.

Case II: C Rotates

Let (i, j) be the point about which C rotates. Let @ be the angular velocity of C. Let © be
the angle that a point on C has rotated through. We obtain the following map
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H(u, 1) = (i - f(w)|cos(tw), |j - gw)lsin(tw), 1)

from the open set U ={(u, 1) € R%a<u<bc<t<dyc,d= 0} into S. If necessary, dis-

placement terms can be added to the x and y components.

Case III: C Translates and Rotates

We simply combine the components of the parameterization for Cases II and II1.

It is possible that over some time interval, C will undergo a combination of these move-
ments, changing parameters with time. For example, C may translate at one speed for a time,
continue translating at a different speed, then rotate about some point for a time, and finally
rotate about a different point for a time. But we can simply break this sequence of movements
into separate parameterizations for each translation, rotation, non-movement and combination of
translation and rotation. One parameterization starts up where the previous one leaves off to give
a continuous surface. Each of these parameterizations define a piece of the surface. It is these
pieces that will be isomorphic. In the case where C accelerates, another parameterization can be

considered or the ST-surface generated by C while accelerating can be treated as a series of
translation and rotation changes.

Two surfaces are piecewise isomorphic if there exists a bijective function mapping one
patch to another patch. We need to show that given two surface patches, one patch generated by

C during one cycle of motion, the other patch generated by C during a corresponding cycle of
motion, the two patches are isomorphic.

We assumed that the cyclic motion of a rigid object is preserved under projection. This
means that for any point on the object, it displays cyclic motion under projection. Let S, and S,
be two surfaces patches that were generated by C at corresponding times in the cyclic motion of
C.Let Hg and Hg be the parameterizations of S, and S,, respectively. Let patch S, start at ;.
Since there are three different types of parameterizations we need to show that for any of these

parameterizations, corresponding patches are isomorphic.

Case I: Translation

Given the parameterization for two translating patches:
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H, ,)=fw+wv_+d_,gw)y+w_+d_,1)
51 x0T Y
Hsz(u, 1) =(fu) + W, + dxz, g(u) + tvy + dyz, 3}

we need to show that there exists a bijective mapping from §, to S,. The function:
h(y,t]) = [y,r] + [dy, —dy,, dy, —dy,, 12— 11]

where ¢, is the start time of patch § ;» is a bijection that maps points from §; to S,. S0 S,
and S, are isomorphic.

Case I1: Rotation

The definition of cyclic motion uses the curvature of the path of motion rather than the
position of the path. Suppose an object is undergoing cyclic motion such that this cyclic
motion is preserved under projection. All this says is that the curvature is repeating. Let
t; and 1, be two corresponding times in different periods. Since these times correspond
we know that the curvature at corresponding points is the same. Given that the projection
is rotating in the image plane, we need to show that there is only one possible center of

rotation for C that could give rise to the curvature values of the points of C over time.

The curvature of a point is equal to the inverse of the distance from that point to the the
center of rotation. Given that the curvature of point p ; on C is k;, its distance from the
center of rotation is 1/k,. We need to show that there is only one center of rotation point
such that the distance from that center of rotation point to p; is l/k; for all p; on C. We
will show this by assuming that two centers of rotation exist and show that C must then
be a straight line. Let (x], y 1) and (xz, ¥,) be the two centers of rotation. Position the
coordinate system so that y ; and y, are both zero and the y-axis is a perpendicular bisec-

tor of the line segment joining (x 1»Yp) and (x,, y,). See Figure Al.1.
Let (xp, yp) be a point distance d away from (x Y 1) and (xz, yz). We need to show that

(xp, yp) lies on the y-axis. In other words, we have to show that xp = (. The distances

from Gy 1) to (xp, yp) and from (x,, ¥,5) to (xp, yp) are:
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Figure Al.1. The distance from (x,y1) to (x,,Y,) equals the distance from (x2,y2) to0 (x,,p)-

d = NG, —x1)% + Op —¥1)° d = N0, —x2)% + (o —y2)*

respectively. Setting these two equal and solving for X, we find that x » equals 0. So we
have shown that if there are two possible center of rotation points then C must be a

straight line. Since C is assumed to be a closed curve, i.e. not a straight line, there can
only be one center of rotation.

Let (i, j) be the center of rotation point. There are two directions that C can rotate around
(i, j). But the curvature of the paths of the points of C for rotating one direction will be
the negation of the curvature values if C rotates in the other direction. So there is actually
only one direction that will give the correct curvature values for the points of C. We have

now shown that C must rotate in a unique direction around a unique point. Given the
parameterization for two rotating patches S; and S,:

Hg, (u,t) = (i - f (u)lcos(tw) + | j — g () |sin(tw), —{i ~ f (u)|sin(tw) + |j — g (u)|cos(tw), 1)
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Hs, (u,0) = (li - f () |cos(t@) + |j — g () sin(tw), —|i ~ f (u)|sin(tw) + |j - g (u)|cos(t®), 1)

we need to show that there exists a bijective function from $ ; to S,. The function:

cos((f1 — 1)) —sin((t; —22)w) 0
h([x,y,21) = [x,y,t] |sin((t; —t)®) cos((z; — 7)) 0
0 0 11— 1y

where ¢, is the start time of patch S;, 1s a bijection that maps points from § ;1085 5058,
and S, are isomorphic.

Case III: Translation and Rotation
We combine the translation and rotation of Case II and Case III to show that S 7 is iso-

morphic to §,. Since C is translating, the center of rotation of C is translating also. But it
remains unique for all ¢.

This shows that S, is isomorphic to S, in all cases. So the ST-surfaces generated by the
cyclic motion of C are piecewise isomorphic.

O
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