CODE GENERATION AND SEPARATE COMPILATION
IN A PARALLEL PROGRAM DEBUGGER

by

Jong-Deok Choi
Barton P. Miller

Computer Sciences Technical Report #874

August 1989

Code Generation and Separate Compilation

in a Parallel Program Debugger

Jong-Deok Choi

choi@cs.wisc.edu

Barton P. Miller
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin—Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

The Parallel Program Debugger (PPD) allows a programmer to find bugs by
following dynamic dependences in a program’s execution; this technique is
called flowback analysis. Flowback analysis requires the tracing of all variable
references and modifications. PPD avoids the overhead of this tracing by
recording only a subset of the program’s state during execution, and incremen-
tally filling in the missing details when the programmer makes queries about
execution dependences. There is a trade-off between overhead of the tracing
during program execution and the speed of generating the missing details during
user queries.

Our compiler is divided into four phases. This separation of phases allows
us to first compile separate files, and to generate code for these files. Second,
we perform interprocedural analysis using the data structures generated by the
first phase. Third, we modify the individual assembly files to account for optim-
izations to the tracing, and to generate tracing for shared variables. The last
phase links together all the individual files.

The compiling costs for our debugging system are several times higher
than the standard system compiler. Initial results show that there is a large exe-
cution time cost savings by carefully selecting the data to be traced during pro-
gram execution. The savings includes both the size of the trace file and execu-
tion time overhead. The most sensitive areas seem to involve small procedures,
long-running loops, or arrays.

Research supported in part by National Science Foundation grants CCR-8703373 and CCR-8815928, Office of Naval Research
grant N0O0014-89-J-1222, and a Digital Equipment Corporation External Research Grant.

Copyright © 1989 Jong-Deok Choi, Barton P. Miller.

To appear in Research Monographs in Parallel and Distributed Computing.

TR 874

1 TR 874

1. Introduction

Separate compilation introduces significant complexity to compilers that perform interpro-
cedural data-flow analysis for optimization [5] and for automatic parallelization [1]. This com-
plexity often defeats the benefits of separate compilation. The Parallel Program Debugger
(PPD), a debugging system for parallel programs running on shared memory multi-processors
(SMMP) [3, 9], does dependence and data-flow analysis similar to parallelizing compilers, and
must also contend with separate compilation.

PPD uses flowback analysis[2] to provide information on the causal relationships between
events in a program’s execution without re-executing the program during debugging. In
flowback analysis, the programmer sees, either backward or forward, how information flowed
through the program to produce the events of interest. In this way, the programmer can easily
locate bugs that led to the detected errors. By using a method called incremental tracing[9],
PPD is able to keep the program execution overhead of applying flowback analysis relatively
low, allowing us to generate only a small amount of trace during program execution. The
cornerstone idea of the incremental tracing is to generate a small amount of information, called
a log, during execution. We then incrementally fill the gap, during the interactive portion of
the debugging session, between the information gathered in the log and the information needed
to do the flowback analysis using the log.

The log allows us to transfer the cost of generating traces from execution time to debug-
ging time, and also partly to compilation time since we generate static information during com-
pilation. The log also enables us to detect data races in an execution instance of a parallel pro-
gram and to ensure repeatable execution behavior of a race-free parallel program.

We reduce the run time overhead of producing the log by applying interprocedural
analysis [5] and data-flow analysis [7] techniques commonly used in optimizing compilers.
However, there is a trade-off between the trace size during execution and response time during
debugging [9]; in general, small log size means low execution overhead, but with long
response time during debugging. While the size of log should be small enough so as not to
introduce an unacceptable performance degradation during execution, it should also be large
enough so as not to introduce unacceptable time delays in producing detailed traces during the
debugging phase. This paper describes the mechanisms used by PPD to apply these techniques
to separately compiled program modules.

In this paper, we are addressing the class of parallel programs that use explicit synchroni-
zation primitives, such as the semaphore, monitor, or Ada rendezvous. While we are not
addressing automatic parallelism, many of our techniques might be extended to such systems.
The techniques in this paper are described in terms of the C programming language [8], but
they should generalize to many procedural languages. We address a large part of the C
language, including primitives for synchronization, but we do not discuss pointers and dynamic
(heap) variables; that is a topic of current investigation.

This paper is organized as follows. Section 2 presents an overview of the strategies used
by PPD for debugging parallel programs, and Section 3 describes the run-time traces we gen-
erate. Section 4 describes the PPD compiler in detail. We provide performance measurements
of the various parts of PPD in Section 5. Section 6 summarizes the paper.

2. Overview of PPD

This section presents an overview of the PPD design. The various components work together
to provide an efficient way to debug parallel programs. The goal of the PPD design is to
minimize execution time overhead without unduly burdening the other phases of program
debugging.

2.1. Flowback Analysis and Incremental Tracing

Flowback analysis would be straightforward if we were to trace every event during the execu-
tion of a program. However, doing so is expensive in time and space. The user needs traces
for only those events that may have led to the detected error. The problem is that there is no
way to know what errors will be detected before the execution of the program; either the user
has to generate a trace of every event so that the traces will not lack anything important when
an error is detected, or the user has to re-execute a modified program that generates the neces-
sary traces after an error is detected. The first option is expensive, and most often not practical
for parallel programs because of unacceptable changes the debugger would introduce in the
timing of the interactions between processes. The second option is not practical for programs
that lack reproducibility, as is often the case with parallel programs.

We use incremental tracing to overcome the above difficulties. We generate coarse-
grained traces, called the log, during program execution. Then, during the interactive portion
of the debugging session, we use the log and other compiler-generated information to incre-
mentally produce the fine-grained traces needed to do flowback analysis. This method
transfers execution time costs into compile time and debug time. During compile time, we use
semantic analyses, such as interprocedural analysis and data flow analysis, to help reduce the
amount of information that needs to be generated during program execution. During debug
time, we amortize the cost of generating the fine traces over the interactive debugging session.
The traces are generated as the programmer asks about dependences in the program.

2.2. Three Phases in Debugging

We divide debugging into three phases: preparatory phase, execution phase, and debugging
phase. In the remainder of this section, we briefly describe each of these three phases. A more
detailed description of the three phases is given in [4, 9].

Preparatory Phase

During the preparatory phase, the PPD Compiler produces, along with the object code,
the following:

1) the emulation package that will generate traces during the debugging phase to fill the
gap between the information contained in the log generated during execution phase and
the information needed to do flowback analysis;

2) the static program dependence graph (static graph) that shows the static (possible) data
and control dependences among components of the program; and

3) the program database that contains information on the program text such as the places
where an identifier is defined or used.

4
A more detailed description of the static graph is given in [3,4].

Execution Phase

During this phase, the object code generates the normal program output and a log that
contains dynamic information about program execution. The log is used, along with the emu-
lation package, during the debugging phase to generate fine traces for the flowback analysis.
The log entries include prelogs, which contain the values of the variables that might be read
before the next logging point, and postlogs, which contain the changes in the program state
since the last logging point. The log entries and tracing are described in more detail in Section
3.

Debugging Phase

The goal of the debugging phase is to build a graph of the dynamic dependences in an
execution instance of a program, called the dynamic program dependence graph (dynamic
graph) [9]. Figure 2.1 shows an example dynamic graph. The debugging phase assembles
information from the previous phases: the static graph and program database generated during
the preparation phase, and the log generated during the execution phase. This information is
used by the PPD Controller, together with the emulation package, to generate the detailed
traces needed to build the dynamic graph.

sl d=a+b; —— : data dependence edge
s2 if (a>0) — - —— :control dependence
3 _ . edge
sg=sqrt (d) ;
s4 else oo : flow edge
$5 sq=sqrt (-d); O : singular node
- 56 a=a+sq;
: sub-graph node

Figure 2.1. An Example Dynamic Graph

5

The Controller also builds the parallel dynamic program dependence graph (or parallel
dynamic graph) [9] to debug parallel programs. The parallel dynamic graph is a subset of the
dynamic graph that shows the interactions between processes while hiding the detailed depen-
dences of local events.

3. Run-Time Traces

In this section, we describe the run-time trace (log) in more detail. First, we describe the run-
time trace we generate for non-shared variables. Then, we describe the Tun-time trace we gen-
erate for shared variables.

3.1. Non-Shared Variables

We amortize the cost of generating detailed traces, needed for flowback analysis, over the
interactive debugging session. The traces are generated incrementally as the programmer asks
about the dependences in the program.

As described in Section 2, two types of log entries generated at run time are the prelogs
and postlogs. The object code generated by the PPD compiler contains code to generate these
log entries. By using semantic analysis, we divide the program into numerous segments of
code called emulation blocks (e-blocks) [9]. A subroutine is a good example of an emulation
block. An e-block is also the unit of incremental tracing during debugging.

The USED set of an e-block is the set of variables that might be read-accessed by state-
ments of the e-block. The USED set is computed by a flow-insensitive analysis; a variable in
the set might not actually be read-accessed during the execution of the e-block. The DEFINED
set of an e-block is the set of variables that are write-accessed by statements of the e-block, and
is also computed by a flow-insensitive analysis. Each e-block starts with code to generate a
prelog and ends with code to generate a postlog. The prelog consists of the values of the vari-
ables in the USED set of the e-block, and the postlog consists of the values of the variables in
the DEFINED set. The PPD compiler also computes GUSED and GDEFINED sets for debug-
ging purposes. GUSED set of an e-block is the set of variables that might be read-accessed by
the e-block and by subroutines (transitively) called in the e-block. GDEFINED set is defined
similarly.

The only condition for several consecutive lines of code to form an e-block is that the
entry point for an e-block must be well defined. The entry point is where the prelog is made.
The postlog is made at the exit point where the control is transferred out of an e-block.

The number of e-blocks that we construct from a given program is crucial to the perfor-
mance of the system during the execution and debugging phases. While the number of logging
points should be small enough so as not to introduce an unacceptable performance degradation
during the execution phase, it should also be large enough so as not to introduce unacceptable
time delay in reproducing traces during the debugging phase.

PPD compiler constructs an e-block out of each subroutine and an e-block out of a loop.
Even though the size of a loop may be small, the execution time for these components may be
long and may introduce unacceptable time delay in reproducing the traces. The PPD compiler
constructs e-blocks from the loops so that the debugging phase can proceed without excessive

time spent in re-executing the loops.

Small and frequently called subroutines can also be a problem. If we make an e-block out
of each small subroutine, the amount of logging done during the execution phase may be large
enough to introduce unacceptable performance degradation. To avoid this problem, PPD com-
piler provides an option to not make e-blocks out of the subroutines that correspond to leaf
nodes in the call graph. In this case, the direct ancestor subroutines of these leaf subroutines
inherit the USED sets and the DEFINED sets of the leaf subroutines, and perform the logging
for the descendent subroutines.

3.2. Shared Variables

We use the log to generate detailed traces of events at debug time. However, for parallel pro-
grams with shared variables, the prelogs and postlogs described so far are not enough to pro-
duce the same debug-time traces as the traces that might have been generated during the execu-
tion phase. We need to save more run time information to ensure the reproducibility of parallel
programs. Such additional information usually includes the values of the shared variables. We
identify the additional information that we have to generate and where in the program we have
to generate that information using the simplified static graph [4,9] built at compile time. The
simplified static graph is a subset of static graph that abstracts out everything except for the
potential interactions between processes. There is one simplified static graph for each subrou-
tine in the program.

Once we build the simplified static graphs of a program, we compute the synchronization
units of the program. The synchronization unit roughly corresponds to the set of basic blocks
that might be executed between two synchronization operations such as P and V semaphore
operations. We apply interprocedural analysis in computing the synchronization units of a pro-
gram [4]. Thus, each synchronization operation is associated with two synchronization units:
one starting from that synchronization operation and the other terminating at that synchroniza-
tion operation. PPD compiler generates code after each synchronization operation to produce
an additional log entry for the synchronization unit starting from that synchronization opera-
tion. The log entry consists of the values of the shared variables read-accessed by the basic
blocks of the synchronization unit. PPD compiler also generates code immediately before each
synchronization operation to-produce -an-additional log-entry: for the-synchronization unit ter-
minating at that synchronization operation. The log entry consists of the bit vector of the basic
blocks of the synchronization unit. This trace entry is used to detect data races during execu-
tion.

4. Multi-Phase Compilation

The PPD compiler consists of four phases as shown in Figure 4.1. During the first phase, the
compiler generates assembly code with labels in it to uniquely identify the places where future
modifications might be needed. The decisions on logging code optimization are made during
the second phase. Modification of the assembly code files are made during the third phase
using the information generated during the second phase. These assembly code files are assem-
bled and linked together during the fourth phase to yield the object code and the emulation
package (described in Section 2). Piecewise data structures generated during the first three

7
phases are also merged into global data structures during this fourth phase.

The first phase is a single module phase. During this phase, the compiler generates two
assembly code files (one to be executed during run-time and the other to be executed during
debug-time) from each source module. The compiler also generates local static program
dependence graphs and a local program database for each module (file) during this phase; these
local information files lack any interprocedural information.

The second phase is an inter-module analysis phase. During this phase, the compiler does
interprocedural and shared-variable analysis of the program, using the static graphs and the
program databases generated during the first phase. Based upon the results of these analyses,
the compiler generates global information such as global static program dependence graphs,
that has the interprocedural information. It also makes decisions on log optimization and on
logging for shared variables.

The third phase is another single module phase, during which the compiler modifies each
assembly code file generated during the first phase using information from the second phase.

The fourth phase is an inter-module merge phase, during which the assembly files are
assembled and linked into the object code and the emulation package. Also pieces of global
information generated during the second phase are merged into one global program database
during this phase. We describe each phase in more detail in the following sections.

4.1. First Phase (Single Module Phase I)

Figure 4.2 shows the first phase of compilation for two example source modules (‘‘x.c’’ and
“‘y.c’’). During this phase, the compiler generates two assembly files for each source module:
one for the object code and the other for the emulation package. It also generates, for each
source module, a local static graph file and a local program database file.

In generating the assembly files, the compiler does not optimize the logging code; it con-
structs one e-block out of each subroutine, and one e-block out of each loop. For nested loops,
it currently constructs only one e-block from the outermost loop. Each e-block in the object-
code assembly files starts with code to generate a prelog entry and ends with code to generate a
postlog entry. However, these assembly files do not have logging code for the shared variables
accessed in each-synchronization unit. Logging for shared variables is.determined during the
second phase, and logging code is inserted into the assembly code files during the third phase.

SINGLE MODULE
PHASEI

INTER-MODULE
ANALYSIS

INTER-MODULE
MERGE

Figure 4.1. Overview of Four Phases of Compiling

=
o
--:[--4

c-compiler

i global-id database | = STomTroommommommommommemsomsoosoeseocoesosooees j
} (PPD/gid)

: active element I T A 5111 1 A et !

Figure 4.2. Single Module Phase (I)

To ease the modification of the assembly files, the compiler inserts unique labels at places
in the assembly files where logging for shared variables might become necessary. Unique
labels are also inserted into the assembly files to delimit the code related to the construction of
e-blocks. These labels are used, during the second and third phases, to identify the places
where the logging code should be optimized. A more detailed description of the modifications
is given in later sections. "

The static graphs generated during the first phase lack any interprocedural information.
The program.database contains information about symbols declared in each module. It also
contains the USED and DEFINED set information for each e-block. Symbols such as variables
or subroutine names are assigned unique identifiers during this phase. Such identifiers, not
symbolic names, are used throughout the compile phases in identifying each symbol. The local
program database also contains information to map the identifiers into symbolic names. In
compiling several modules of a program, the compiler maintains the same identifier for a glo-
bal name by using the global-id database. Whenever a new global symbolic name is met in
compiling a module, the compiler consults with the global-id database to see if the global name
is already assigned an identifier, and uses it if already assigned. If the name has not been yet
assigned an identifier, the compiler assigns a new identifier to the global symbolic name and
registers it in the global-id database.

—— global static graph
\ PPDIx.sdg oo oo oo oo :
; PPD/y.sag | . GUSED, GDEFINED sets |
— for each e-block ; ’
i (PPD/gudfile) P
... P
to the fourth phase
~
oo 'm'""""""'""""""""": > A
— shared variables —
! accessed in each SU :
imerprocedural/ | T
shared-variable log information §
analysis » for each e-block and SU >
; (PPD/nudfile) : P 7
to the third and the fourth phases
,5 routine to dump out e-pointers 5
{ PPD/x.pdb | ! (PPD/flush_ptr.s) 5
{ PPDIy.pdb ! R
L e-pointer identifiers |
; (PPD/flush_ptr.data) E

SU: synchronization unit
Figure 4.3. Inter-Module Analysis Phase

4.2. Second Phase (Inter-Module Analysis Phase)

The second phase, shown in Figure 4.3, is the interprocedural and shared-variable analysis
phase. During this phase, the compiler builds the static call graph of the program, and com-
putes the global used and defined sets of each e-block. The static call graph built by PPD is
unique in that there is one node for each e-block; the nodes in the graph correspond not only to
the subroutine call sites in the program but also to loops that constitute e-blocks. During this
phase, the compiler also builds the global static graphs using the static call graph, the local
static graphs, and the GUSED and GDEFINED sets.

The compiler decides how to optimize the logging code using the call graph and the
GUSED and GDEFINED sets. The compiler first determines non-eblock subroutines — sub-
routines that will not form e-blocks. Subroutines corresponding to the leaf nodes in the static
call graph are typically in this class. However, a subroutine that either contains a loop or con-
tains accesses to a static variable (in the C Language) always forms an e-block. The compiler
next identifies the parent e-blocks that call those non-eblock subroutines; these parent e-blocks
will do the logging for the non-eblock subroutines. Last, the compiler decides what changes

10

need to be made to the logging code of the parent e-block. The information about the changes
to the logging code is recorded in file PPD/nudfile. PPD/nudfile is used in the later phases.

The compiler also computes the synchronization units and the sets of shared variables
read in each of them. This computation uses the static graphs and local program databases.
The compiler then generates logging code for shared variables and identifies the places in the
assembly code where the logging code should be inserted. The resulting information is also
recorded in PPD/nudfile.

Postlogs generated by the same e-block are linked in a list [3]. ‘‘E-pointers’’ is an array
that contains pointers to the last log entry made by each e-block and is updated during program
execution. The e-pointer array needs to be written to a file when the execution terminates. The
compiler generates an assembly file that will write the e-pointer array to the log file when the
program terminates. PPD/flush ptr.s is the assembly file that contains the code to write out the
e-pointers. This file will be compiled and linked with the object code during the fourth phase.
PPD/flush_ptr.data is the file containing the list of e-pointers written by PPD/flush_ptr.s. This
file is used by the Controller, when debugging is initiated, to match each e-pointer value with
the corresponding e-block.

4.3. Third Phase (Single Module Phase II)

During the third phase, shown in Figure 4.4, the compiler makes changes to the object code and
the emulation package assembly files generated during the first phase. The changes to the
object code files are related either to the construction of e-blocks or to generating log entries
for shared variables. First, the compiler deletes logging code that is no longer needed, such as

. log information .

for eache-block andSU ; | |
! (PPDInudfile) T — x.$ §
o xs T post [ys
processor o e -
; y.§ ! > — PPD/x_ppd.s !
'L PPD/x - ppd.s :,__._, “—“’ PPD/y ppd.s
; PPDly ppd.s '—““"

Figure 4.4. Single Module Phase (II)

11

code to generate prelogs and postlogs for non-eblock subroutines. Second, the compiler
identifies and modifies the logging code of the parent e-blocks that will do logging for those
non-eblock subroutines. Finally, the compiler identifies the places where additional logging for
shared variables is needed and inserts the proper logging code at these places.

The compiler also modifies the emulation package for the non-eblock subroutines. Figure
4.5 shows two example subroutines and their corresponding emulation package e-block code.
Entry point *‘_sub1’’ is used when subroutine ‘‘subl’’ is called from other e-blocks. Upon
entering ‘‘_subl’’, the emulation package updates the program state with the corresponding
postlog generated by ‘‘sub1’’ during run time. The program control then returns to the calling
e-block and continues generating detailed traces of the calling e-block. Entry point
“‘_subl_second_entry’’ is used by the Controller to generate detailed traces for ‘‘sub1’’. If the
compiler decides that ‘‘subl’’ will not be an e-block, the post processor (see Figure 4.4)
deletes the code between labels ‘‘_subl”’ and ‘‘_unique_label_for_subl’’. The effect is that
the normal code of ‘‘subl’ will execute and generate detailed traces when entry point
“‘_subl”’ is entered from other e-blocks during debug time.

The post processor scans each assembly code file looking for the unique labels; such
labels are planted into the assembly code files during the first phase. Whenever one of these

_sub2_second_entry:
initialize program state with a prelog
_unique_label_for_sub2:

subl(k, 1);:
}; /* sub2 */

call _subl

PPD/x_ppd.s
subl;
update program state with a postlog
; return !
XC _Subl_second_entry:
subl (i, 3J) : initialize program state with a prelog
:}'nt e Ji ! _unique_label_for_subl:
. . : normal codes of subl with detailed tracing
i }; /% subl */ return
j _sub2:
igi"?]g{’ l}) update program state with a postlog
5 { i ; retumn |

Figure 4.5. Example Emulation Package E-blocks

12

labels is read, the post processor consults with the table built from PPD/nudfile to see if any
modifications to the assembly file are necessary. The time complexity of this process is
roughly proportional to the size of the assembly files.

4.4. Fourth Phase (Inter-Module Merge Phase)

The fourth phase, shown in Figure 4.6, is the inter-module merge phase. During this phase, the
assembly files, generated during the first phase and modified during the third phase, are com-
piled into two executables: one to be executed at run-time (the object code) and the other to be
executed at debug-time (the emulation package). Also, various information generated during
the previous phases is merged into a global program data base to be used by the Controller at
debug-time. File ‘‘controller.o’’ contains the Controller routines that control the debug time
execution of the emulation package.

e . Object Code

E X.8 i bl / E ------------------------ “:
ity L o
. PPD|fiush_ptr.s | L :

PPDix.pdb 5
PPDIy.pdb !

mmm e mmme e oeeaooy PDB
\ GUSED, GDEFINED |
3 for each e-block

! (PPD/gudfile)

: PDB
g merger >

; log information ;
i for each e-block and SU !
: (PPD/nudfile) ;

shared variables
accessed in each SU

PPD/x_ppd.s remmmmmm s e "
i PPDIy ppd.s = assembler/ g oA cpAGE X
i controller.o i linker S 5

_______________________ . Emulation Package
SU: synchronization unit

Figure 4.6. Inter-Module Merge Phase

13
5. Performance Measurements

This section presents measurements of the overhead caused by PPD on compile time, and on
the size and execution time of application programs. We compare the performance of the PPD
compiler with that of the Sequent Symmetry C compiler in the following categories: compila-
tion time, size of the object code, and execution time of the object code. We also present the
measurement of execution-time trace size. Figures 5.1-5.6 summarize the results of the com-
parison. We also discuss the trade-off between execution-time efficiency and debug-time
efficiency.

In this paper, we present measurement results of four of our test programs: MATRIX,
SH_PATH_1, SH_PATH_2, and CLASS. MATRIX multiplies two square matrices of integers
into a third matrix. The size of each matrix, for our tests, is 100 by 100. MATRIX uses a sub-
routine to multiply pairs of scalar elements of the two matrices. The subroutine does not con-
tain a loop or any accesses to static variables, making it a target of log optimization.

SH_PATH__1 computes the shortest paths from a city to 99 other cities using an algorithm
described by Horowitz and Sahni [6]. SH_PATH_2 is the same as SH_PATH_1 except that it
computes the shortest paths from all of the 100 cities to all of the other cities. CLASS is a pro-
gram that emulates course registration for students, such as registering for courses and drop-
ping courses. We obtained the test results of CLASS by running it with an input file containing
130 such registration activities. CLASS also can be run as an interactive program.

The CLASS test program consists of 5 separately compiled modules (source files). Each
of the other programs consists of a single module. SH_PATH_1 and SH_PATH_2 each

Sequent PPD compiler PPD compiler
Compiler | w/o log optimization | w/ log optimization
(overhead in %) (overhead in %)
CPU 14 54 (286%) 59 (321%)
MATRIX
Elapsed 1.8 6.8 (278%) 8.4 (367%)
CPU 2.0 70 (250%) 7.0 (250%)
SH_PATH_1
Elapscd 3.0 8.1 (170%) 8.1 (170%)
CPU 1.7 6.8 (300%) 6.8 (300%)
SH_PATH_2
Elapsed 2.3 79 (243%) 79 (243%)
CPU 5.1 159 (212%) 18.1 (255%)
CLASS
Elapsed 5.8 18.7 (222%) 21.7 (274%)

Figure 5.1. Compilation Time Measurements
(time in seconds)

14

contain a subroutine that actually computes the shortest path. This subroutine is called 10
times by the main procedures. Thus the actual execution times of these two programs are
approximately 1/10 of the times in Figure 5.4. Some test programs show no performance
difference with log optimization; all subroutines in them have loops or accesses to static vari-
ables.

5.1. Compilation Time

Figure 5.1 summarizes the measurements of complete (compiling to linking) compilation
times. CPU time is the sum of user time and system time. In general, the PPD compiler takes
less than four times as long as the Sequent compiler. To compare the compilation time of the
two compilers in more detail, we measured the times spent in each step of compiling program
MATRIX, as shown in Figure 5.2. For the Sequent compiler, we divided the compilation into
two steps: The first step (row 1) is to generate an assembly file from the source file and is done
by the C compiler; this step corresponds to the first phase of the PPD compiler (row 4). The
second step (row 2) is to generate an executable file from the assembly file and is done by the
assembler and the linker; this step corresponds to the fourth phase of the PPD compiler (row 7).

The first phase of the PPD compiler takes about twice as long as that of the Sequent com-
piler, which is caused by the time spent on dependence analysis and in generating three addi-
tional files: one assembly file for the emulation package, a static dependence graph file, and a
local program database file. The fourth phase of the PPD compiler takes longer than that of the

compile phase CPU ELAPSED
(1) ccom 0.6 0.8
Sequent
c 1 (2) assembler and linker 0.7 0.9
OMPEET T3) total 1.3 1.7
(4) first phase ' 1.3 2.0
PPD
Compiler (5) second phasc 0.3 0.5
with (6) third phase 0.5 0.8
108 | (7.1) object code assemble & link 13 14
optimization (7.2) emulation package assemble & link | 1.3 1.5
(7.3) global database 1.2 1.2
(7) fourth phase 3.8 4.1
®) total 5.9 7.4

Figure 5.2. Details of Compiling Time for Program MATRIX
(time in seconds)

15

Sequent compiler, which can be accounted for by the time spent in generating two executables
(object code and emulation package) and in merging piecewise data structures into large global
data structures.

The fourth phase of the PPD compiler consists of three sub-phases: the first phase gen-
erates the object code (row 7.1), the second phase generates the emulation package (row 7.2),
and the third phase merges all of the piecewise data structures into a global program database
(row 7.3). Figure 5.2 shows that the times spent in each of the three sub-phases are roughly
proportional to the sizes of the executable files that they produce; the sizes of the files are given
in Figure 5.3.

A limitation of the current version of the PPD compiler is that it repeats in phases 2—4
whenever one of the source modules is modified. Thus, the PPD compiler shows relatively
large overhead when a source module of multiple-module programs needs to be re-compiled.
A detailed measurement results of compiler overhead for this case is given in [4]. We are
currently working on incremental semantic analysis methods, which can identify and isolate
the portion of semantic information to be updated due to changes in some part of the program.

MATRIX | SH_PATH_1 | SH_PATH_2 |CLASS

Source Code 967 1691 1683 5488

Sequent Compiler 18355 20668 20667 29574
Object Code

PPD without 30556 31574 31323 47809

Object log-optimization || (66%) (52%) (51%) 61%)

Code with 30520 31574 31323 43621

(overhead) log-optimization || (66%) (52%) (51%) 47%)

PPD without 39875 44994 44484 58688

Emulation log-optimization || (117%) (118%) (115%) (98%)

Package with 39933 44994 44484 58532

(overhead) log-optimization || (118%) (118%) (115%) (98%)

Program Database 2287 3421 3241 7432

Static Graph 1408 3265 3221 7410

Figure 5.3. File Sizes

(sizes in bytes)

16
5.2. File Sizes

Figure 5.3 shows the source and object code sizes of the programs tested. It also shows the size
of the program database and static graph files. The size of the executables generated by the
PPD compiler are 47 —66% larger than the executable files generated by the Sequent compiler.
In general, small programs have large proportional size increases, because the PPD compiler
generates additional code (of fixed length) for procedure main to initialize the logging rou-
tines. MATRIX has the smallest original code size, yet it has the largest proportional increase
in size (66%).

Programs with small subroutines have potentially large increases in object-code size due
to the additional code to generate a prelog entry and a postlog entry for each subroutine call.
However, log optimization will often reduce the logging overhead for these programs. CLASS
has several small subroutines, and has a relatively large proportional size increase (61%) before
log optimization. However, it has a smaller size increase (47%) after log optimization.

Emulation packages also have large increases in size. Such increases in size are expected,
because emulation-package routines generate a trace record for each assignment statement.

5.3. Execution Time

The goal of the PPD design is to minimize execution time overhead without unduly burdening
the other phases of program execution. Figure 5.4 shows the execution-time overhead of the
tested programs. It shows that the execution time overheads range 0—330% for none log-
optimized object code, and range 0—75% for log-optimized ones. We obtained the test results
of CLASS by running it with an input file containing 130 registration activities such as register-
ing for a course or dropping from a course.

MATRIX is the biggest winner of log optimization. The execution-time overhead of
MATRIX is reduced by over 300% (from 330.7% to 7.9%) with log optimization. MATRIX
has a subroutine that is called one million (100 by 100 by 100) times by another subroutine.
Without log optimization, each call to this subroutine generates a prelog-postlog pair, resulting
in large execution-time overhead (due to the one million prelog-postlog pairs). However, this
subroutine does not have a loop or accesses to static variables; with log optimization, this sub-
routine becomes a non-eblock subroutine and the caller becomes the parent e-block. The non-
eblock subroutine does not generate log entries, yielding a much smaller execution time.
Accordingly, log optimization also causes MATRIX to have a large reduction in the size of
execution-time traces.

Log optimization might actually produce a higher execution-time overhead if the non-
eblock subroutine is never invoked due to conditional statements in the program; parent e-
blocks of these non-eblock subroutines may generate additional log information for the non-
eblock subroutines that are never invoked. However, we expect that such cases of losing by
log optimization should be rare.

We also see that dumping out an entire array (for a log entry) at the beginning or at the
end of a loop is inexpensive in terms of execution time overhead if most of the array elements
are actually accessed in the loop. Such is the case with program SH_PATH_2. However, if
only a fraction of the array elements are accessed in a loop, dumping out an entire array can be

17

Sequent PPD compiler PPD compiler
Compiler | w/o log optimization | w/ log optimization
(overhead in %) (overhead in %)
CPU 12.7 52.5 (3134%) | 134 (5.5%)
MATRIX
Elapsed 12.7 547 (330.7%) | 13.7 (7.9%)
CpPU L1 1.8 (63.6%) 1.8 (63.6%)
SH_PATH_1
Elapsed 1.3 22 (692%) 2.2 (69.2%)
SH PATH 2 CPU 107.0 1055 (-24%) | 105.5 (-2.4%)
- ~ |Elapsed 107.0 107.3 (2.8%) | 107.3 (2.8%)
CPU 0.3 04 (33.3%) 0.4 (33.3%)
CLASS
Elapsed 04 07 (75.0%) 0.7 (75.0%)

Figure 5.4. Execution Time Measurements
(time in seconds)

expensive, as seen in test program SH_PATH_1. However, by using a more sophisticated
analysis of dependences for complex data objects [4], we should be able to make the compiler
smart enough to generate a log entry containing the particular row of the matrix that is actually
accessed instead of the entire matrix.

Array logging can also cause some interesting performance anomalies. Notice that test
program SH_PATH_2 shows a slight improvement in CPU time (the sum of user and system
time) with the code generated by the PPD compiler. The PPD compiler generates logging code
immediately before the loop that accesses a large array; the logging code accesses the entire
array. This extra access seems to affect the paging behavior (possibly at the architecture level)
of the program, resulting in less execution time. We are currently investigating this anomaly.

As mentioned before, CLASS can also run as an interactive program. While there is a
33% increase in CPU time and a 75% increase in elapsed time when CLASS ran using an input
file, there was no noticeable difference in the response times when CLASS ran interactively.
The relatively high execution-time overhead of program CLASS can be also explained by the
fact that CLASS contains several loops in which only a fraction of an array is actually
accessed.

5.4. Execution-Time Trace Size

Figure 5.5 shows the sizes of execution-time traces generated by the test programs. As
described before, program MATRIX has a substantial reduction in trace size caused by the log
optimization. Program CLASS has a slightly larger trace size with log optimization because of
the reason that were previously described.

18

without with

log optimization log optimization
MATRIX 40120221 120217
SH_PATH_1 825517 825517
SH_PATH_2 417129 417129
CLASS 104508 104892

Figure 5.5. Execution-Time Trace Size Measurements
(sizes in bytes)

5.5. Trade-Off between Run Time and Debug Time

As described in Section 3, there is a trade-off between efficiency during execution and
response time during debugging: If we construct an e-block in favor of the execution phase,
debugging phase performance will suffer. On the other hand, if we construct an e-block in
favor of the debugging phase, execution phase performance will suffer. In this section, we
present initial results for the cost of debug time re-execution. The results are still quite limited,
and we are currently performing a more set of extensive experiments.

Figure 5.6 shows the re-execution times and debug-time trace sizes of various e-blocks
from our test programs. The e-block from MATRIX is made of a triply nested loop. By con-
structing a single e-block out of the triply nested loop of MATRIX, we were able to reduce the
execution phase overhead, but with a large debug-time overhead: 166 seconds in re-execution
time and 57.76 Mbytes of debug-time trace, generating more than one million detailed trace
records. For a comparison, the execution time of MATRIX itself is 13 seconds, and its

Re-execution Debug-Time Elapsed-Time
Time Overhead
Trace Size -
CPU | ELAPSED ()
e-block 1 (MATRIX) 160.5 165.5 57.76 Mbytes 7.9%
e-block 2 (SH_PATH_1) 3.8 4.8 1.24 Mbytes 69.2%
e-block 3 (SH_PATH_2) >364.8 | >422.8 > 117.79 Mbytes 2.8%

T (from Figure 5.4)

Figure 5.6. Re-execution Times and Trace Sizes
(sizes in bytes)

19

execution-time trace size is 0.12 Mbytes (with log optimization). Note that we would only re-
execute the log (and incur this cost) if we were interested in the details of a dependence within
the loop.

The e-block from SH_PATH_1 is constructed out of a singly-nested loop that computes
the shortest paths from one city to the 99 other cities, while the e-block of SH_PATH_ 2 is con-
structed out of a doubly nested loop that computes the shortest paths from 100 cities to all the
other cities. Re-execution for the e-block from SH_PATH_ 1 took about 5 seconds with 1.24
Mbytes of trace. Re-execution of the e-block from SH_PATH_2 terminated because of
insufficient file space for the detailed traces. At that time the e-block from SH_PATH_2 had
re-executed for more than 7 minutes with more than 117.79 Mbytes of trace. These two results
suggest that it might sometimes be better to construct more than one e-block out of a nested
loop.

The additional e-blocks could nest, potentially forming an e-block around each of the
nested loops. Alternatively, it is possible to divide a section of code into contiguous e-blocks.
In this case, we would only need to re-execute the e-blocks that potentially contain the depen-
dences in which we are interested. It may also be possible to decide dynamically, at execution
time, whether or not to generate logs for an e-block. This dynamic decision could be based on
the amount of time already spent in a loop. The decision of how to form e-blocks affects only
program performance, so we are free to change these decisions without affecting the logic of
the program. Of course, there is additional overhead involved in making these dynamic deci-
sions, so we need to experiment to see if this mechanism would indeed be beneficial.

5.6. Discussion of Measurements

In this section, we have provided performance measurements of the various parts of PPD. The
measurements show the expected increases in compilation time for the PPD compiler. Also,
the measurements show that we need to take further advantage of separate compilation. The
second phase (intermodule and shared variable analysis) of the PPD compiler does not need to
be completely repeated. We are currently researching techniques to incrementally apply
changes from static graphs of individual files to the global static graph. Similar techniques
must be developed for the other global data structures.

The increase in execution time from generating the logs varies quite a bit for the various
test programs (0—75%). However, the larger increases in execution time come from test pro-
grams that access only parts of arrays in loops. With a more sophisticated dependence analysis
for complex data objects [4], we expect substantial improvements to be possible for such pro-
grams.

Execution-time trace sizes are generally small (less than 1 Mbytes in all cases). However,
the measurements show that we need more experiments to better understand the balance
between the trace size during execution and the response time during debugging.

6. Conclusion

In this paper, we have described the code-generation techniques for separate compilation used
in the implementation of the PPD debugger. We measured the overhead caused by PPD on

20

compile time, and on the size and execution time of application programs. Not surprisingly,
PPD compile time, with the addition of the emulation package, static graph, and program data-
base, is several times slower than the standard system compiler. But these times still seem to
be reasonable (i.e., they will not substantially impede the progress of the programmer). We
believe that the programmer’s added efficiency in finding bugs will more than compensate for
the increment in compiling costs. The modified object files and auxiliary files together seem to
be only 2-2.5 times the size of the object files from the standard system compiler.

We also presented the measurement of execution-time trace size, and discussed the trade-
off between execution-time efficiency and debug-time efficiency. Naive tracing can generate
large log files, but with the addition of some basic optimizations, the size of the log files can be
quite reasonable. These optimizations must be traded-off with the cost of generating the
detailed tracing during the interactive part of debugging.

In general, the performance measurements of PPD described in this section have demon-
strated the feasibility of our ideas and directions for debugging parallel programs. However,
PPD is a complex system and the studies in the paper are only preliminary. We need more
experiments and research to better balance the trace size during execution and the response
time during debugging.

The test programs used in the performance measurements of PPD are, in general, small in
size. However, we think the results obtained with these program will scale proportionally to
larger programs. As features are added to our debugging system, we are extending the types
and sizes of test programs that we are studying. As we gain experience, we should be able to
better evaluate our optimizations and to desi gn new ones.

Acknowledgements

This research was supported in part by National Science Foundation grants CCR-8703373 and
CCR-8815928, Office of Naval Research grant NO0014-89-J-1222, and a Digital Equipment
Corporation External Research Grant.

References

1. Allen, R. and Kennedy, K., ¢“‘Automatic Translation of FORTRAN Programs to Vector

Form,”” ACM Transactions on Programming Languages and Systems 9(4) pp. 491-542
(October 1987).

2. Balzer, R. M., “EXDAMS-EXtendable Debugging and Monitoring System,”’ Proc. of
AFIPS Spring Joint Computer Conf. 34 pp. 567-580 (1969).

3. Choi, J. D., Miller, B. P., and Netzer, R., ““Techniques for Debugging Parallel Programs
with Flowback Analysis,’” Computer Sciences Technical Report #786, Univ. of
Wisconsin—Madison, (August 1988).

4. Choi, J. D., ““Parallel Program Debugging with Flowback Analysis,”’ Ph.D. Thesis,
Univ. of Wisconsin—-Madison, (August 1989).

21

Cooper, K., Kennedy, K., and Torczon, L., ‘“The Impact of Interprocedural Analysis
and Optimization in the R™ Programming Environment,”” ACM Trans. on Program-
ming Languages and Systems 8(4) pp. 491-523 (October 1986).

Horowitz, E. and Sahni, S., Fundamentals of Data Structures, Computer Science Press
(1983).

Kennedy, K., ‘A Survey of Data-flow Analysis Techniques,’’ Program Flow Analysis:
Theory and Applications, S. S. Muchnick and N. D. Jones, Eds., Pp. 5-54 Prentice-Hall,
Englewood Cliffs, N.J., (1981).

Kernighan, B. and Ritchie, D., The C Programming Language, Prentice Hall, Inc.,
Englewood Cliffs, N.J. (1978).

Miller, B. P. and Choi, J. D., ““A Mechanism for Efficient Debugging of Parallel Pro-
grams,”’ Procs. of the SIGPLAN Conf on Prog. Language Design and Implementation,
pp. 135-144 Atlanta, GA, (June 1988). Also appeared in the Proc. of the
SIGPLAN/ISIGOPS Workshop on Parallel and Distributed Debugging, Madison, June
1988.

