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Abstract.

We discuss parallel algorithms for integer factoring and discrete logarithms. In particular,
we give polylog depth probabilistic circuits of subexponential size for both of these problems,
which solves an open problem of Adleman and Kompella.

A positive integer is B-smooth if all of its prime divisors are at most B. We modify
existing sequential algorithms for factoring and discrete logarithms which use such numbers.
Analyzing the tradeoffs involved in choosing B, we show that for inputs of length n, setting
B = n1°gd", with d positive a constant, gives:

1. Probabilistic boolean circuits of depth O(log®**?n) and size ¢?("/ log?n) for finding a
proper divisor of a positive composite integer with probability at least 1/2 — o(1), and

2. Probabilistic boolean circuits of depth O(log?***n) and size e®*/ log”n) for computing
discrete logarithms in the finite field Z/pZ for p a prime with probability 1 — o(1).

These are the first results of this type for both problems.
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1 Introduction

We present polylog depth, subexponential size probabilistic boolean circuits to factor integers
and compute discrete logarithms over prime finite fields. These are the first results of this
type, and they answer a previously open question posed by Adleman and Kompella [AK88],
which asked whether such circuits exist for these two problems.

Our results are motivated by much of the recent work done on parallel number theoretic
algorithms [AKS88, BS89, BCH86, BvzGH82, BK83, CG85, FT88, KMRS87, PR35, Mul87,
vzG87] and by the work done on the rigorous analysis of integer factorization [Dix81, Pom82,
Pom87, Val89] and discrete logarithm algorithms [Ad179, Od184, Pom87].

We base our integer factoring circuit on Dixon’s algorithm [Dix81], which uses the dif-
ference of squares method. Qur discrete logarithm circuit is based on the index-calculus
method as described by Adleman [Ad179]. Faster methods exist, but they rely on unproven
conjectures either for correctness or in their running time analyses. Such gaps in the theory
behind these algorithms are acceptable if one is primarily interested in practical algorithms.
However, our results are largely of theoretical interest, so using fully rigorous algorithms
as the basis of our circuits is especially important. By choosing Dixon’s and Adleman’s
algorithms, which are both fully rigorous, we satisfy this criterion.

Adleman’s and Dixon’s algorithms make use of smooth numbers, numbers which have
only small prime factors, in a similar fashion. They start by choosing a bound B and finding
all primes below that bound. Then they generate random elements with special properties
until they get at least B of them which factor completely over the primes below B. For
integer factoring, these special elements are random squares modulo N, where N is the
number to be factored, and for discrete logarithms, these elements are random powers of the
generator. Using these elements, they construct a system of linear equations whose solution
leads to either a proper divisor of the input or the discrete logarithm of the input.

In optimizing the running times of these algorithms, one analyzes the tradeoff involved
in choosing a value for B. If B is small, both finding all the primes and solving the system of
equations are fast, but many random elements must be generated, since the probability an
element factors over the primes below B is low. If B is large, then generating the elements
is faster, but solving the system of equations takes a very long time.

Let L(n) = eV"!°8™. For sequential algorithms, the values of B that work best are L(n)®
for small constants ¢ > 0, where n is the length of the input. The resulting running times
are proportional to a small power of B (2 or 3). Pomerance [Pom87] showed that Dixon’s
algorithm, improved using the techniques in [Pom82], runs in time L(n)ﬁ“(l). He also
achieved the same running time for an improvement to Adleman’s algorithm for discrete
logarithms. Vallée [Val89] currently has the fastest rigorous integer factoring algorithm,
based on the difference of squares method, which runs in time L(n)\/‘_{/—e’“(l).

Our idea is to set B = n™, where d(n) = log®n for d > 0 a fixed constant. We then
prove the existence of:

1. Probabilistic boolean circuits of depth O(log®**?n) and size O(n/log’n) for finding a
proper divisor of a positive composite integer with probability at least 1/2 — o(1), and

9. Probabilistic boolean circuits of depth O(log?***n) and size 2/ log?n) for computing



discrete logarithms in the finite field Z/pZ for p a prime, with probability 1 — o(1).

Considering the size of these circuits, it should be clear that unbounded fan-in is necessary to
achieve such a small depth. However, we also give sublinear depth circuits with bounded fan-
in of subexponential size for these problems. For these results, we use much larger functions

for d(n):

1. For factoring, we set d(n) = n/3+°(1) to get bounded fan-in depth O(n*/*+°(®)) and size
2/3+0(1)
e” , and

9. For discrete logarithms, we set d(n) = n!/6*°(1) to get bounded fan-in depth O(n8/6+0())
n5/6+0(1)

and size e
For an introduction to factoring and discrete logarithm algorithms, see Koblitz [Kob87],
which is also a good source for further references. For surveys of some of the currently best al-
gorithms, along with detailed analyses, see Pomerance [Pom82, Pom87] and Odlyzko [Od184].
The rest of this paper is organized as follows. In section 2, we discuss some notation
and definitions. We present our circuits for factoring integers in section 3. In section 4 we
give our circuits for computing discrete logarithms. We conclude with section 5, where we
discuss open problems and directions for future research.

2 Preliminaries

In this section we discuss some notation and definitions.

All of our algorithms are given in the form of probabilistic boolean circuits. We define
probabilistic boolean circuits similarly to standard boolean circuits, but we also allow gates
which can toss a fair coin and use the result for their output. Our circuits compute functions
as opposed to only recognizing languages. In addition, we also have two special bits of
output; one called the correctness bit, and one called the output bit. The output bit is on if
the rest of the circuit’s output “means” something, or in other words, if the circuit computes
something for the function value. The correctness bit signals whether or not this output is
certain to be correct. The output may be correct without the correctness bit being set. If
the output bit is off, then the value of the correctness bit is irrelevant.

We will say that a probabilistic circuit has zero-sided error if, whenever the output bit
is on, then the correctness bit is also on. An example of such a circuit might be one which
generates a quadratic non-residue modulo a prime. If one is found, then it is always “correct.”
If one is not found, then the output bit is off.

We say a circuit has one-sided errorif the correctness bit is on at least some of the time
when the output bit is on. An example in this case might be a circuit to test primality by
attempting to factor the input, because if a divisor is found, then the circuit is certain that
the input is not prime, but if no divisor is found, then the input is only probably prime.

Finally, a circuit has two-sided error if the correctness bit is never on. An example here
might be a circuit which completely factors its input, but is not sure that the divisors it
outputs are prime.

A circuit family is S(n)-space uniform if there exists a deterministic, O(S(n)) space
bounded, off-line Turing machine which, when given 1™ on its input tape, can compute the
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description of the circuit for inputs of length n. For more information on parallel computation
and circuits, see Cook [Cook85] and Karp and Ramachandran [KR88].

We assume that the basic arithmetic operations of addition, multiplication, and subtrac-
tion can all be done using logspace uniform circuits of depth O(logn) for inputs of length
n. Division can also be done in depth O(logn), however the circuits are not known to be
logspace uniform. They are, however, log? n-space uniform, which suffices for our purposes.
See Beame, Cook, and Hoover [BCHS6].

A positive integer w is y-smooth if all of its prime divisors are no larger than y. We define
¥(z,y) to be the number of all y-smooth integers w with 1 < w < =. We will refer to the
set of primes below y as the prime base and the y-smooth integers as simply smooth when
and y are understood.

We write 7(z) to denote the number of all primes less than or equal to z.

G'F(q) is the finite field of ¢ elements, where ¢ = p® for a prime p and e > 1 an integer.
The prime p is called the characteristic of the field. A finite field is prime or has prime order
if e = 1. In this case, GF(q) = GF(p) & Z/pZ. GF(q)* is the multiplicative group of the
field. An element g € GF(q)* is a generator if every nonzero field element can be written as
a power of g. Let a € GF(g)* and assume that g is a generator for GF(q)*. Then we can
write ¢° = a for z an integer; z is called the indez or discrete logarithm of a, z is unique
modulo the order of the group GF(q)* which is ¢ — 1, and we write indg(a) = =.

We will use logn for the logarithm of n to the base 2, and Inn for the natural logarithm.

3 Factoring

In this section we present our polylog depth probabilistic circuit for integer factoring. Since
our circuit is based on Dixon’s random squares method, we will first review his algorithm.

It is based on the following idea. Given a composite integer N which is not a prime
power, if we can find integers a and b, a # £b(mod N), such that a® = b? (mod N), then
ged(a + b, N) is a proper divisor of N. To find a and b, we first find some smooth squares
modulo N. Then we find a linear dependency among them in factored form, which leads
to a perfect square. Dixon [Dix81] proved that this method works with probability at least
1/2. To make this more precise, here is an outline of Dixon’s factoring algorithm.

Dixon’s Factoring Algorithm

Input: positive integer IV, not a prime power.

1. Choose a positive bound B, find all the primes below B, and call this the prime base.
Let k = n(B), the size of the prime base.

2. Repeat until at least k -+ 1 B-smooth squares are found:
a) Choose a random integer r uniformly from [2, N — 1.
b) Let s = r? mod N. Factor s over the prime base to see if it is smooth.

3. For each smooth square s;, 1 < j < k+ 1, compute the indices e;; such that s; =
15, pi¥. Let vj = [e1j, - - -, ex;]” mod 2, a column vector over GF(2).



4. Form A = [vy,...,Vk41] and solve the system Ax = 0 for a nonzero vector X over
GF(2). Since A has more columns than rows, such a solution must exist. This can be
found using Gaussian elimination.

=17
a®> = b (mod N) because s; = r2, so ged(a + b, N) is a proper divisor of N with
probability at least 1/2.

5. Writing x = [z1,...,Zk41]T, form a = [[52] v’ and b = /I1541 557 modulo N. Then

For a proof of correctness, see Dixon [Dix81] or Pomerance [Pom87]. One important question
to ask at this point is: What is the probability that an integer is smooth? The following
lemma from [CEP83] answers this question.

Lemma 1 (Canfield, Erdés, Pomerance [CEP83]) Let u = ]—“hfyﬁ Then there exists a
constant ¢ > 0 such that if u > ¢, ¢ > 1, then ¥(z,y) > zu™",

Essentially, this lemma says that if w is chosen uniformly between 1 and z, then w is
y-smooth with probability at least u=>*, where u = Inz /1Iny. Better estimates are available
for this probability, but this will suffice for our purposes.

We can now give an estimated running time for Dixon’s algorithm. Roughly speaking, if
we set u = n/log B, then the expected running time of the algorithm is about Bu®* + B3,
ignoring polynomial factors. The first term reflects the time needed to find about B distinct
B-smooth squares, since the probability a number is B-smooth is at least u~3* by Lemma 1.
The second term reflects the time for Gaussian elimination to find our solution x. Optimizing

gives B = ¢2(V/n1087)  For a more exact run time analysis see Pomerance [Pom82, Pom87].

We, however, are interested in a shallow circuit. Since the random squares can be gen-
erated simultaneously, the dominant cost is the depth needed to solve the system of linear
equations. Using known methods [BvzGH82, Mul87, PR85] a system of m linear equations
in m unknowns over GF(2) can be solved in depth O(log?m) using m©) gates. For our
application, m < B, so this can be done in depth O(log? B) using at most BOW) gates. If we

set B = e2(V/1987) 45 above, we get depth O(nlogn), which is clearly not good enough. If
we set B = n°M) a polynomial in n, the depth is fine, but then we must generate u3rn 0
squares, which is no longer subexponential in n. We compromise by setting B = n*" where
d(n) is a non-decreasing function of n. In our analysis later, we will leave d(n) as a pa-
rameter, allowing us to prove unbounded fan-in circuit results along with bounded fan-in
results. As we mentioned earlier, to get the polylog depth circuit for factoring, we end up
using d(n) = log®n for d a positive constant.

The Replication Technique

Before we prove our main result, we must first develop a simple replication technique. The
idea is to increase the probability with which a probabilistic circuit computes its output
correctly by duplicating that circuit several times in parallel.

Let C,, be the circuit for inputs of length n in the probabilistic circuit family C. Ch
computes a function probabilistically, so let p(n) be the probability that C,’s output is a
correct function value.



Let g(n) be our target error probability. In other words, we want to duplicate C,, enough
times so that with probability at least 1 — g(n), at least one of the C, subcircuits computes
its output correctly.

So, we construct a new probabilistic circuit family R, where each circuit R, is constructed
as follows. First, R, runs m(n) copies of C, in parallel, where m(n) = ;1—717111(-5%1—)). Then
we use a simple fan-in structure to select a C, subcircuit whose output and correctness bits
are both set, if there is one. Numbering these subcircuits from 1 to m(n), we choose the
lowest numbered such subcircuit for the output of R,. If no subcircuit generated a correct
function value as output with certainty, then R, either uses the output of the first circuit
which generated an output, if there is one, or chooses some “best” circuit to copy. How
this choice is made we leave to the specific application of the technique. If no C, subcircuit
generated an output, then R,’s output bit is turned off.

The probability that all of the C,, subcircuits failed is at most

—p(n)~ Ing(n)
) S elnq(n) — q(n)7

(1= p())" < (1 e

as desired.

The size of the circuit R, is O(m(n) - size(C,)), and the depth of R, is O(log m(n) +
depth(C,,)) for the bounded fan-in case or the depth(Cy) + O(1) for the unbounded fan-in
case.

Notice that if C,, has zero-sided error, so does R,, and if C, had one-sided error, so does
R,,. This technique can also be applied to circuits with two-sided error, but not in all cases;
R,, must be modified to somehow choose which Cy, subcircuit has the “best” output, if that
is possible. If it is, then the resulting circuit R, has two-sided error.

For example, if a circuit C,, produces correct output with probability 1/n, we can copy
C, 2nlnn times using this technique to get a new circuit which produces correct output
with probability 1 — 1/n?.

We will apply this replication technique repeatedly throughout the rest of this paper.

Theorem 2 Let d(n) be a non-decreasing function of n, d(n) < O(y/n/log n). There exist
both

1. an n/d(n)-space uniform probabilistic circuit family with bounded fan-in of depth
O(v/rlog?® n + d(n)?log®n 4+ n/d(n)) and size Q) and

2. an n/d(n)-space uniform probabilistic circuit family with unbounded fan-in of depth
O(d(n)?log? n) and size eO/4)

which on input N, a positive composite integer of n bits, produce as output a proper factor
of N with probability at least 1/2 — o(1).

Proof: We will describe how to parallelize each step of Dixon’s factoring algorithm.

We can safely assume that N is not a prime power, since we can compute integer roots
in NC? (see Bach and Sorenson [BS89]).

Let B = nd™,



Step 1.

To find all the primes in the prime base, we perform trial division in parallel. This can be

done in depth O(log B) = O(d(n)logn) and size B,

Steps 2 and 3.

Next, we choose r € [2, N — 1] uniformly and set s = r> mod N. For each ¢, compute e;
such that pf* fully divides s. Then, if M5, p§ = s, s is B-smooth so we output s, r, and
v =es,...,ex]T.

The total depth of this subcircuit is at most O(d(n)log®n), and the probability that it
generates an output is at least u=3* where u = n/(d(n)logn), by Lemma 1, for n sufficiently
large.

We then duplicate this subcircuit creating k + 1 groups of (21n B)u®* subcircuits. Using
the replication technique, the probability this results in at least k 4+ 1 smooth squares is at
least 1 — (k+1)/B*> =1 —o(1).

The size is now e2(/4n) gince

w3 < n3n/(d(n) logn) < e (n/d(n))

and the k and B factors are absorbed in the constant of proportionality by the bound on
d(n). The unbounded fan-in depth is still O(d(n)log®n), but the bounded fan-in depth has
grown to O(n/d(n) + d(n)log®n).

Step 4.

Now we construct the matrix A = [vy,...,Vis1]. We then search for a non-zero solution
to the equation Ax = 0 over GF(2), where we have reduced the entries in A modulo 2.
This can be done by solving the k + 1 linear equations A;y = v; in parallel, where A; is
simply A with the jth column removed. One of these equations must give a solution. If we
find one for some index j, then x = [y1,...,%;-1,1,¥j,---, Y] is a solution to the original
system, where y = [y1,...,y|T. This can be done in depth O(d(n)?log’n) and size BOW
(see [BvzGH82, Mul87, PR85]).

Step 5.

Now, using our solution x, we form

k+1 k+1 2 kg Zk'H Tiei;
_ z; . Tj . 2 jexl I TED
a=[]r; and b= |[[s7| =1I» modulo N.
j==1 j=1 i=1

Since a and b are random with a? = 5% (mod N), by Dixon [Dix81], we have gcd(a + b, N) as
a proper factor of N with probability at least 1/2. To compute the greatest common divisor,
we use the probabilistic circuit of Adleman and Kompella [AK88] which has unbounded fan-
in depth of O(log®n), bounded fan-in depth of O(y/n log?® n) and size e2(V™1°6™), Tt only
succeeds with probability 1/2, but it has zero-sided error, so we can copy it 2Inn times and
apply the replication technique to decrease its error probability to 1/n.
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The total size of this integer factoring circuit is e®/ d(n), The unbounded fan-in depth is
dominated by solving the linear equations (Step 4) at O(d(n)?log?n). The bounded fan-in
depth is O(y/nlog*® n + d(n)?log® n + n/d(n)).

Since our circuit is composed of large numbers of relatively small circuits together with
simple fan-in structures, our circuit is clearly n/d(n)-space uniform. m

If we set d(n) = log®n for d > 0 a constant, we get an O(log?**?n) depth circuit
of size eP(¥/1og"n) which is a solution to Adleman and Kompella’s open problem [AKSS].
The bounded fan-in version has optimal depth for d(n) = n!/3/ log?®n giving a depth of
O((nlogn)?/?) and size g0 ((nlogn)?/?)

Also notice that this factoring circuit has zero-sided error. If a proper divisor is found,
then that is the output, and there is no doubt about its correctness. If only a trivial divisor
is found, then the circuit simply turns off its output bit.

Complete Factorizations

Now we are interested in constructing a probabilistic circuit which takes as input an n-
bit integer N and computes as output a complete factorization of N. Qur motive is an
application in the next section: we need this to compute discrete logarithms.

Once we have an algorithm to find a nontrivial divisor of a composite number, creating
a sequential algorithm to completely factor that number is relatively easy. Our task is a bit
more complex; we want to find a complete factorization in parallel. One approach might be
to attempt to show that the factoring algorithm splits N into two divisors of roughly the
same size; then we can factor these two divisors in parallel and repeat. The goal would be
to show that this process would halt in O(logn) levels, where each level is the depth of one
factoring circuit. This approach might work, however we opt for something a little simpler;
by replicating the factoring circuit many times in parallel, there is a good chance that each
prime power divisor appears as the output of one of these circuits.

Let N = II™, ¢ be the prime factorization of N. Let B = n¥" as before. Assume that
we removed all prime factors below B from N. Then, the number of distinct primes left is
m < logg N = n/(d(n)logn).

Let s be a quadratic residue modulo N. Then modulo each prime power divisor ¢{*, s
has exactly 2 square roots (we can safely assume B > 2 so that N is now odd). Thus,
modulo N, s has exactly 2™ square roots. Let a and b be arbitrary square roots of s.
Then ged(a — b, N) will be the product of those prime powers ¢;* for which a = b(mod ¢*).
Similarly, ged(a + b, N) gives those prime powers where a = —b.

Let d be the output of a factoring circuit. Then the probability d or NV /d is a prime power
is at least 2~™, which is no less than 9-n/(d(n)logm)  This observation is merely an extension
of Dixon’s theorem from [Dix81].

Corollary 3 There exist n/d(n)-space uniform probabilistic boolean circuits of size e(r/dn)
with unbounded fan-in depth O(d(n)?log’n) or bounded fan-in depth O(\/nlog*’n +
d(n)?log? n + n/d(n)), which, when given as input a positive integer N of n bits in length,
output a complete factorization of N as the product of prime powers, with probability 1—o(1).



Proof: We will now describe how to construct the circuit. Correctness will follow from the
discussion above.

First we will construct a subcircuit which produces a prime factor of N with nonzero
probability. This subcircuit is composed of four steps.

1. We remove all prime factors smaller than B from N.

2. We factor N using the factoring circuit from Theorem 2. By the discussion above, the
probability that the result is a prime power is at least 9—n/(d(n)logn)

3. We next take a smallest integer root of the two divisors generated in the previous step
using the N'C root computation algorithm from [BS89]. (If one of those divisors was a
prime power, we now have a prime divisor.)

4. We now take the integer roots, which we hope are primes, from the previous step and
perform a prime test on them. To do this, we attempt to factor each 4n? times in
parallel. By the replication technique and Theorem 2, if we do not have a prime, then
with probability at least 1 — e~ for sufficiently large n, we will discover this fact by
finding a proper divisor.

So this subcircuit will give a prime divisor of N as its output with probability 9=/ (d(n)logn)
Notice that this subcircuit has two-sided error. The probability that it says it has found a
prime divisor and is wrong is at most e . This is small enough that we can essentially
ignore 1t.

Second, we copy this subcircuit (3logn)2 (418" times using the replication technique
to get a circuit which finds some prime divisor of N with probability at least 1 —1/ n3. Our
“best” subcircuit whose output gets copied is the first one which generates an output.

Third, we copy this circuit n? times to get n? prime divisors of N, obviously with some
of them duplicated. By the above discussion and Dixon’s theorem [Dix81], each prime is
equally likely to occur, so clearly the probability that one of them is omitted from this list
of n? primes is 0o(1). We then sort this list and remove duplicates. We finish by raising the
remaining primes to appropriate powers and computing their product. This should equal N.
The probability that this results in a complete factorization is 1 — o(1).

The size and depth of the resulting circuit are dominated by the size and depth of the
integer factoring circuits, with slightly larger constants of proportionality.

Note that there is a chance this circuit will generate output it believes to be correct, and
yet this output may not be correct. Specifically, it may give N as the product of several
factors, some of which may not be prime. The chance this occurs is o(1). m

Notice that this circuit has two-sided error in the sense that it never knows if its output
is indeed a complete factorization or not, so its correctness bit is always off.

4 Discrete Logarithms

In this section we give probabilistic circuits of polylog depth and subexponential size to com-
pute discrete logarithms over certain finite fields. First, we outline the index-calculus method



for computing discrete logarithms, which was rigorously analyzed by Adleman [AdIT79]. Sec-
ond, we present our circuit for prime finite fields. Last, we sketch the construction of a
circuit for finite fields of small characteristic.

The index-calculus method for computing discrete logarithms has many algorithmic sim-
ilarities to the random squares method for factoring integers. Thus, we will simply modify
our integer factoring circuit, in a sense, to compute discrete logarithms. Now we will outline

Adleman’s index-calculus algorithm for the field GF(p).

Adleman’s Discrete Logarithm Algorithm
Input: p a prime, ¢ a generator for (Z/pZ)*, and a € [2,p — 1].
Phase I:

1. Find all the primes below B. Call this set of primes the prime base. Let k = 7(B).
Let p1,...,px be the primes of the prime base, and write po = 1. Let [ =2logk+3.

9. For each i, 1 <1 < k, repeat (a) and (b) until at least ! distinct B-smooth numbers
are found, and for ¢ = 0 until at least k! such numbers are found:
a) Choose an integer r uniformly from [1,p — 1].
b) Let s = g"p; mod p. Factor s over the prime base to see if it is smooth.

3. For each smooth number s;, 1 < j < 2kl, compute the indices e;; such that s; =
M, pi. Let vi = [e1j,...,ex;]. If sj = g7ipi, ¢ > 0, then subtract 1 from the ith
entry in v;.

4. Form A = [vy,...,vou]? and r = [ry,.. .,rou)T. With probability at least 1 — 1/2k,
A is a rectangular matrix of full rank (see [Pom87]). Find a solution to the equation
Ax = r(modp — 1). This can be done by factoring p — 1 and using the Chinese
remainder theorem. Solutions are found modulo each prime power factor and combined.
Writing x = [21,...,2x]T, we have ind,(p;) = ;.

Phase II:
1. Choose p € [1,p — 1] until @ = ag” mod p is B-smooth.

2. Factor o over the prime base to get the equation a = 15, p¢*. Taking logs of both
sides then gives p + ind,(a) = Y5 e;indy(p;), which determines indgy(a).

For a rigorous analysis of the running time and correctness see Adleman [AdI79],
Odlyzko [0dl84], or Pomerance [Pom87]. If B = L(n)° for some small constant c, then

the sequential running time of this algorithm is eC(Vn1987) ust like integer factoring.



Theorem 4 Let d(n) be a non-decreasing function of n, d(n) < O(y/n/logn). There exist
both

1. an n/d(n)-space uniform probabilistic bounded fan-in circuit family with depth
O(d(n)?/mlog*®n + n/d(n)) and size e2™/™), and

2. an n/d(n)-space uniform probabilistic unbounded fan-in circuit family with depth
O(d(n)? log* n) and size e2/4)

which, on inputs p a prime, g a generator of GF(p)*, and a € GF(p)* of total length n in
binary, solves the discrete logarithm problem in GF(p) with probability 1 — o(1).

Proof: (sketch) The structure of the proof of this theorem strongly resembles that of The-
orem 2, so we merely sketch the differences. Again, let B = ndr),

Steps 2 and 3 compute random powers of the generator and also multiply by primes
from the prime base. This uses Adleman and Kompella’s modular exponentiation circuit for
prime modulus [AK88], which has unbounded fan-in depth O(log® n), bounded fan-in depth

O(/nlog®® n), size e?(Vn1987) and has zero-sided error. We apply the replication technique
to reduce its error probability from 1/2 to o(1).

Once the system of linear equations is assembled, in Step 4 a solution is found modulo
p—1. To do this, we first must factor p—1 using the circuit of Corollary 3, and solve the system
by finding solutions modulo each prime power factor of p — 1 and constructing the overall
solution using the Chinese remainder theorem. These prime power factors may be quite
large, so inverses must be computed using Adleman and Kompella’s integer greatest common
divisor circuit [AK88]. Hensel lifting may also be required; this can be done in O(log® n)
depth using a polynomial number of processors (see Hardy and Wright [HW79, chapter
VIII}). For more details in the sequential case, see Pomerance [Pom87] or Odlyzko [Od184].

Finally, we add Phase II, which is simply choosing p € [1,p — 1] until g”a is B-smooth.
We can do this in parallel using techniques similar to what we use to generate random powers
of the generator. Finally, we factor over the prime base to get a solution.

The overall size of the circuit is (/™). For the unbounded fan-in case, the depth is
dominated by the depth of the subcircuit for solving the system of linear equations modulo
p — 1, which is O(d(n)?log*n). For the bounded fan-in case, the total depth is at most
O(n/d(n) + d(n)*y/nlog*°n). m

As in the case of the factoring circuit, setting d(n) = log® n for some constant d > 0 gives
a polylog depth, subexponential size circuit for computing discrete logarithms. The bounded
fan-in version has optimal depth for d(n) = n!/8/log®?n for a total depth of O(n*/® log®?n)
and size 0(n*/*1og’" n),
Notice that this circuit has zero-sided error, even though it uses a subcircuit for complete

factorization, which has two-sided error.
We can also apply these methods to finite fields of small characteristic; we will now
outline the changes necessary.

Our finite field is GF(q) = GF(p"). We will assume that we are given a representation
for the field of the form GF(p)[z]/(f), where p is the characteristic of the field, and f(z)
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is a monic irreducible polynomial of degree n over GF(p). Elements of the field, then, are
represented as polynomials of degree less than n over GF(p).

There are two main differences in the algorithm. The first is that an element is smooth
if it factors as a polynomial into irreducibles of small degree. Thus, the prime base 1s
the set of all monic irreducible polynomials with degree less than some bound m < n.
We need something analogous to Lemma 1 to bound from below the probability that a
randomly chosen polynomial is smooth. Odlyzko [Od184] does give such a result. See also
Pomerance [Pom87]. The second difference is that we need modular exponentiation in the
field. This problem was shown to be in NC by Fich and Tompa [FT88), so that is not a
difficulty.

Solving the system of linear equations is largely the same. Thus, we have a result similar
to Theorem 4 for finite fields of small characteristic.

The computation of discrete logarithms for finite fields of moderate size characteristic
is still largely an open problem in the sequential case. It seems that any new results there
would imply parallel algorithms of the type given here, as long as the underlying methods
use the index-calculus technique.

5 Conclusion

We have presented polylog depth probabilistic circuits to factor integers and compute discrete
logarithms over finite fields of prime size or small characteristic, but there are still many
unresolved questions.

Is it possible to extend our discrete logarithm results to fields of intermediate size
characteristic? FEl Gamal gave sequential algorithms for the case GF(p™) for m fixed
[EG85b, EG85a). It might be possible to parallelize these algorithms using our methods.

Other methods are known for integer factoring and discrete logarithms aside from the
difference of squares and the index-calculus methods. Might these techniques give polylog
depth, subexponential size circuits?

Our circuits, though subexponential in size, are still quite large. Might it be possible to
reduce these very large circuits to something around eO(V1%87) 314 still maintain a polylog
depth?

Finally, Adleman and Kompella [AK88] suggested that their results might lead to sub-
linear space bounds for computing integer gcd’s and modular exponentiation. Similarly, our
results might also lead to sublinear space bounds for factoring and discrete logarithms. In-
tuitively, the parallel computation thesis, which asserts that sequential space and parallel
depth (or time) are equivalent in some sense, implies that all of these problems might have
some kind of sublinear space bounds. And in fact, if these circuits were deterministic instead
of probabilistic, this would be the case. Unfortunately, the fact that these circuits are prob-
abilistic seems to be more than simply an inconvenience in proving sublinear space bounds.
We will now outline how a sublinear space bound proof would proceed if these circuits were
in fact deterministic, followed by an explanation of the difficulty involved in applying this
approach to probabilistic circuits.

Borodin [Bor77] proved that, given an O(S(n))-space uniform circuit of depth O(S(n)) to
compute a function f for inputs of length n, then in fact f is computable in space 0(S(n)).
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The basic construction is to evaluate the circuit using a Turing machine, and the uniformity
condition is used to give a subroutine for constructing the needed pieces of the circuit. The
total space used is proportional to the stack space needed for evaluating the circuit, which
is proportional to its depth, plus the space needed to construct the circuit pieces, which is
bounded by the uniformity condition.

Adleman and Kompella’s circuits for integer gcd and modular exponentiation are
nt/2te(1)_gpace uniform of depth n'/2+°(), our factoring circuit is n?/>+°()-space uniform of
depth n2?/3+°(M) and our discrete logarithm circuit for prime fields is n5/6+°(M)-space uniform
of depth n®/6t°(1) If these were deterministic circuits, we could apply Borodin’s methods to
get corresponding sequential space bounds of n!/2+o(1) p2/3+o(1)  and n5/6+e(1),

Converting these results to the standard probabilistic Turing machine model as given
by Gill [Gill77] apparently does not work. The reason is that, during the evaluation of the
circuit by the Turing machine, the output of any one gate may be needed more than once.
Each time the gate’s output is evaluated, we must get the same answer. Thus, if that gate
performs a coin toss, the same result must be used each time, which seems to imply that the
result of the toss must be saved, which in turn means storing the result on tape. This is fine,
but the number of coin tosses used by these circuits is much too large for this approach to
give sublinear space bounds. One way around this problem is to redefine the probabilistic
Turing machine which evaluates the circuit to use a read-only, two-way tape for its source of
random coin tosses. But then we have transformed the original problem to that of analyzing
the differences between two models of probabilistic Turing machines.

Attempts to prove a sublinear nondeterministic space bound will run into a similar sit-
uation. So using this approach to prove sublinear space bounds for these problems seems
difficult at best, whether it be on a probabilistic or nondeterministic Turing machine.

Currently, no bound better than linear, deterministic space is known for any of these
problems, except for Chor and Goldreich’s CREW PRAM algorithm [CG85], which gives
an O(nloglogn/logn) deterministic space bound for integer GCD after applying Borodin’s
methods.
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