E:
A Persistent Systems .
Implementation Language ™

by
Joel Edward Richardson

Computer Sciences Technical Report #8368
August 1989

E:
A PERSISTENT SYSTEMS
IMPLEMENTATION LANGUAGE

by

JOEL EDWARD RICHARDSON

A Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON

1989

ABSTRACT

This thesis presents the design and implementation of the E.programming language. E is an extension of C++
designed for building systems that manage persistent objects, e.g. a database management system. Several aspects
of this programming domain cause difficulty in conventional languages. For example, one must usually write the
system code without knowing the types of entities to be manipulated. In addition, the entities themselves are
persistent, outlasting the program that creates them. E addresses these and other problems through a judicious
choice of language constructs that significantly ease the programmer’s task. Being based on C++, E provides
classes and inheritance. It then adds generator classes for defining generic container types, iterators for processing
streams of values, and a persistent storage class for declaring a database as a collection of language objects.

Through a series of refinements to an example program, we illustrate each of these language features.

One important benefit of having persistence in a language is that I/O is transparent to the programmer; a
central problem in the implementation of such a language, therefore, is in designing techniques to manage /O
automatically and efficiently. This thesis presents a new technique called Compiled Item Faulting (CIF) that
addresses the 1/0 problem. CIF combines static analysis and a minimum of run-time support to produce E programs

that can access physical storage efficiently.

Finally, we present the results of an initial performance study. These results demonstrate that CIF can be very
effective in producing high quality code. The study also points out certain areas where CIF’s effectiveness is more

limited. In the conclusions, we suggest several avenues for further performance improvements.

iii

ACKNOWLEDGEMENTS

It has been my great honor and good fortune to have had Mike Carey as an advisor these past five years. I
believe that he is a model of what a Ph.D. advisor should be: imaginative, compassionate, exacting. He has my
deepest appreciation and respect.

David DeWitt has also been central in helping me to complete this degree. He opened many doors that mere

mortals could not, and he always had time to listen.

Thanks also go to the other members of my committee: Raghu Ramakrishnan, John Beetem, and especially,
Marvin Solomon. Several discussions with Prof. Solomon contributed greatly to improving the design of E. T am

grateful for his insightful comments, both as a member of the committee, and as one of the first E users.

Special thanks go to Larry Rowe for his early critiques (and encouragement) and for suggesting a unified
design for the syntax of iterate loops.

Thanks also to the whole EXODUS group (past and present): Beau Shekita, Goetz Graefe, Dan Schuh, Todd
Proebsting, Mike Zwilling, Scott Vandenberg, Srinivas, David Haight, Dave Martin, Dan Lieuwen, and Paul Bober.
They have provided a fun, stimulating environment in which to discuss and develop ideas. I would like especially
to thank Dan Schuh. He implemented iterators and generators in the E compiler, fixed innumerable bugs, and

generally kept things running that otherwise wouldn’t.

Sheryl Pomraning has, for many years, not only helped to make the CS Department run, she has made it a
brighter place to work. Thanks, Sheryl.

Many friends have also helped to make Madison home over the years. Thank you Toby and Jane, Sandy and
Gene, Lee and Bob, Tom and Denise, and of course, Mike and Carol.

I would like to thank my parents for years of guidance, encouragement and love. They never forced me to

choose one path or another, but they always insisted that I give my best effort.
My appreciation and love go also to Betty and Lyman Farrar. Thank you both for the lesson of "moments.”

Finally, I would like to thank my wife, Helen. While she was given the life of a "dissertator’s widow," she
gave in return her loving support, ready encouragement, deep understanding, and a beautiful daughter. Without
Helen, this work would not have been completed; without Emily, this work might have been completed sooner, but
life would have been far less delightful. Thanks also to P., L., I, E, M,, and L. for being ever-ready with
suggestions and offers to help.

TABLE OF CONTENTS

ABSTRACT .eooeeeeeeveeeetersscsssesessssesesassesessnsensessansstsssssssssstossstessssssntss st sassessans saesset ssss matsnsesesssasstarstssasentasssessasesses
ACKNOWLEDGEMENTSorceemetiamsretssesersssssessssesssessssssscssesssos st e sessssososss st seass sestons sot e sesssssssssasssastassesesasessos
TABLE OF CONTENTS ...oovivetetseereseeisasssssesssssssssssssssssssssesossssassssssesssss sissssssarss sessess shosmssstsssasssssssssnssessssssnses
Chapter 1: INTRODUCTION ...c.ccoviiinemmreiraenrarssssisnissssssstssssetnssssssissasssnss s sssse s ssss s tsssississ st sosssnssesssenss
1.1 EXTENSIBLE DATABASE SYSTEMSovrvcnrrrsissiinrinsiissssssiessstsnsssostssssassssssssssesssnnsessesss

1.2 EXODUSovivriecrenne FeeerereseereeuseressesenEetsars ar b RS SR e R SRRSO R A SROER A SE SRR SR RS SA ST AR S SRR AR ST SR TS SH KRR SRS S8

13 THE ELANGUAGE ..c.oootiririreeerereeererrensssssnsesssssssssesestsnsssssess sessasssstssarsns sesssisess st shsssnssssassssanns sossssns

1.4 OUTLINE OF THESIS oot cooorecitcerteeresssessrsesassssssassssssestssssss sossssensssassansasasnasassssnsssssnsansssssssssenesses
Chapter 2: A SURVEY OF RELATED WORK ..ot issenss s consisisssesssnens
2.1 DATABASE PROGRAMMING LANGUAGESccoecmmrniminrienssinmensnissssis st ssmsssssesssses
2.1.1 PASCANR .oovrvevirecereeresismssessenssessssssesssssassssssssesessns sesssasassssassatess oot ssastsnonsesssssstsansssassssassanasanas

212 RIZEL 1urvcverunrermeeretsessemnmsanssasessss et se e s naseaes srse e sa e b s s R E S0 RS RETEE Se e b

2.13 PLAIN trivereeeireeressesescessesesssressossss sossenssesensensesssentasesesssnss sestonssssoses seabeseseassess srossessenssnsssssssnsosnases

2.14 TRESEUS +vevveeversrsseseeseresnsossessasesesssssssorsessosersassstessesssstsssatsensasssssassssasssonssssnesassiessasssstosmessasesssns

2.1.5 OLHEE DBPLS .vieeeeerieseeeseessesessaeesssssessesssnsssesensessestsasases ssseotssessrssatasasnsss sasasssssasscossasassessnes

2.2 CONCEPTUAL MODELLING LANGUAGES ..o sanesases
221 TTAXIS +.vnveeveeseseneeesesssssenesessnsnnesssessesessnsssessersssssassastststest st stosssesssseresss st suasansa sestonpsanencrsessssesenseres

2.2.2 DIAL oooooooeeoeeeeeteeessossesesseeesestessessesessssessasasssssesossssssensssenssesersssitese s ssatansastasssensassesessessarsresne

223 GALIEO woroeeereeeeeeeeeseresesnssesessessosssssneoresessonssrsnsrsatersassrssstasss assesssssss semsessssatessresssarssassstsussssesaes

2.3 PERSISTENT LANGUAGESceeervesrrererssesriesssssesssisisssmssssss sasssissssstss seesssssssmsmamssssss s sssssantossosss
231 PS-ALZOL ...oreevcvraisceusassmssessnssassasssssssssessssesssseses e asiss s R RS SR S S e b e

232 INADIEIBS ..vvvvvreersessrsseesscrsstsnssesessese s sssan st s s sbsse s s mm s RS RS R R SRR RS R s

233 AVBION/CHH curvreeceerneririeevereossssssssssressesenessesessstssssnsartsisn et sasssnsasssssscasssissosststseriassssessesssssenssnes

234 OHF oevveereeresssesessessasessessssosssseessasasasessssestessaesstesssssasatssssssas e tensesiarese et Iesag s AT O SOt SR s s R R0

24 OBJECT-ORIENTED DATABASE SYSTEMSoonimecnrnnnisnensessssssissssssssssmnsessessstsnssessnes
24.1 GIMNSIONE .ovevveeeeseceeasaseeseaseresssssseessissssasssssssssssssssuessserssssstsossrsesess ey smsrasssatssssasssasesbaratessiase

242 WBASE «veveeererreeesssesssressesessssssstsssesonentssensansseesssnsrass sostasassssrsasesssos saesesassnssentotsssssiestsessssssnssaren

243 OTIOM wvvveveeeeeeeeesssesessssssessasessssenersessasessasesaes st sessess sestresbassstemiesssnstasasstonsssssssostossssstsenssnsssnsenes

244 O oot R R R RS R e SEER S SRS RS R S R e

25 RELATIONSHIP TOE ..ooiviecenrerreereereorestssssssasenssssmsessssssessistessssssssssssasssossmssssssnssassasassestassssncosns
Chapter 3: THE DESIGN OF E ...t s ssssssisssss s sssssasc s sne s snssss s s
31 CHr REVIEW .ooviiiceiinsiecissesseserssssstsnsstescsssasssssisssnssmsass sasmassssasssasss st sbssssossamnnss osbsssassases searssssasesss
3.1.1 CIASSES +onvvevrseeererssssssseassessssseenssessessssosssessssnnasssstasesssssstssssstarsssssssssss sestssrsassssscassntsisssestuesesesases

3.1.2 AN EXAMPIE ..oocvetreniirenaseesssenscsimisnsessasssnssesasssssssssessssst st ssasssssnsss s asmasessssemssasostsssssinsnss s ores

iv

i
iii
iv

PSRV S oand

=,

—
— O O O WO 000NN

[e o o B e
N bbb R W W ON

17

17
17
18

3.1.3 INRETHLANICE oovoeeeeevievesieseetsssonsaseseesessesasans ssessrsassesosssossossassseesernnsnsstsrersssssssassinsbenssssesseastesnones

3.2 ITERATORS

..

3.2.1 TEETALOTS I E ooeeeeieevverreresessessssssassessesssssasesssesssessasssesssssstossasssssnsssssssssssssatsssssssnssssessassssssasesnans
3.2.2 FIOW OF CONOL 1veieveerreeesesesnresssessessssssssssesssssasaessssssesassssssstetossssrsesisssssssorssssssnsssssssossassasssrsssn
F2.2 T AQVANCE oeeeeeeevereeeareseeessssssssssssessntssesessatessesess srasssssssssss sesasssssassasasssasmnssssassessiossssnssensosansasasens

3.2.2.2 Break

..

...

323 A Recursive Iterator Example
3.3 GENERATOR CLASSES
33.1 Parameters to a Generator Class

..

..

..

3.3.1. 1 ClASS PALAIMICIETS vvevveeverersserssesssnesesssssssressesssosssasesssssessssssssssotssssssssssssarassasssassssssrnissessuessasansssss
3.3.1.2 Constraints on Class Parametersccuvenvriseessnne

3.3.1.3Function Parameters
3.3.1.4 Constant Parameters
33.2 Class Name Scoping
333 Nested Instantiations

34 DB TYPES AND PERSISTENCE
34.1 DaALADASE TYPES .vvvrercrcvissseissmisnissiossssessstosssasssssssassssssssissmosmoststansassssmsanasssssssssasassssssassassss

34.2 Persistent Objects
343 Collections

351 Orthogonality
352 Persistent Handles

Chapter 4: COMPILER ORGANIZATION

41 ARCHITECTURE OF THE COMPILER

..

...

.........................

...

...........................

...

...

..

..

...

......................................

......................................

..

...

..

3.4.3.1Creating Objects in a Collection
3.4.3.2 Scanning Collections
3.4.3.3 Destroying Objects and Collections

344 The Binary Tree Example Revisited
345 Implementing a Database Index

3.5 TWO LANGUAGE DESIGN ISSUES

..

..

...

...

...

...

..

...

42 PROCESSING DECLARATIONS

422 Type Declarations
423 Data Declarations

43.1 Two Machine Models
4.3.1.1 A Persistent Virtual Memory
4.3.1.2 A Load/Store Machine

432 The Storage Manager Interface

433 Overview of Code Generation

44 OTHER IMPLEMENTATION ISSUES

44.1 Constructors and Destructors

44.2 Virtual Functions

Chapter 5: CODE GENERATION

...

421 Representation of Objects and Pointers

...

.................................

..

...

...

...

...

..

4.3 GENERATING CODEooiciieecsininesmsmssosssssessinssrssanssssssssssess sesssessnomsmsnsossststsassssassssss shsesesisassssasesss

...

..

...

...

...

...

...

..

..

...

...

...

...

........................

.........................

22
23
23
25
25

27
29
29
29
30
31
32
33
33

35
35
36
37
37
38
38
42
43
43

46

46
48
48
50

b A &

B88xan

5.1

5.2

Chapter 6: COMPILED ITEM FAULTING

6.1

6.2

6.3

Chapter 7: AN INITIAL PERFORMANCE STUDY

7.1
7.2

13

Chapter 8: CONCLUSIONS

8.1
8.2

PHASE I: INITIAL PIN SCHEDULING

5.1.1 Identifying Common Subexpressions

5.1.2 4711 11RO
513 Initial Pin Schedulingcc..cccvvuencunenne
5.1.3.1 Detecting Items to Pinooverierenieinenne
5.1.3.2 Deciding Where to Pin Items

...

...

...

...

...

...

PHASE 1V: TRANSFORMING THE SYNTAX TREEcocccmmmremmmiarenmnnnnnieresismenosssscsnsnsnens
521 The Functions genSprigs() and mungeTree() .eceuvrsrmmnsscrssmsismmsimissnsitenssssnnnassnisssenseses

522 Generating Code Sprigscouveerevens
5.2.2.1 The Pinning SPrig ..c.cccovvvniviniinnncens
5.2.2.2 The Unpinning Sprigcceevvereesnnens
5.2.2.3 The Reading Sprigccoceemvevenvvevnrenns
5.2.2.4 The Writing SPrig ...ccccecvvevervirmnerininns

523 Grafting the Sprgscervverirerensecrenns

OVERVIEW ...coorvrimmirnininiieiersrasasensernsnnes
6.1.1 Considerationscecevecivensresesnns
6.1.2 Compiled Item Faultingccconvvrene.

IMPLEMENTATIONcccoovnnvrmrurmsnresnrannaanns
6.2.1 Phase I Revisitedccccevvenvrvernevencnnne
6.2.2 Phase II: Ensuring Path Safety

6.2.2.1 The Role of Alias Analysisccccouuu..

6.2.2.2 The Current Implementation
6.2.2.3 Handling Array Elementsccccee..

................

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

6.2.3 Phase III: Propagation and COaleSCINgcveverserrsesersececssiisisimsimessssss s isnecsses

6.2.3.1 CoalesCiNg ccorvvreeiverrerurerersesncveressanesens
6.2.3.2 Propagationeeensmersensesiinsens

6.24 Phase IV Revisitedcoveveecrnniseesacens

ORGANIZATIONcocvcirecmciecirecennensnennnns
THE EXPERIMENTScccoonvvunenncnmrurnisnsnnse
72.1 Test I: Graph Traversalcooersnes
72.2 Test II: Tree Traversalccooveenee
723 Test III: Relation Scanccoiveeneee

THESIS SUMMARYcovnvmnnnrrmrnninsesnases

RETROSPECTIVE AND FUTURE WORK

...

...

...

6.2.4.1 Entering a Pinning Regionce......
6.2.4.2 Grafting Pin and Unpin Operations ...
COPING WITH FINITE BUFFER SPACE ..

...

...

...

...

..

...

...

..

..

...

...

..

...

vi

2L

69
70
72
74
76
77
78
79
79
80
80

87

87
87
89
91
91
92
93
93
97
97
98
100
105
106
106
107

110

110
111
111
115
116
119

120

120
121

8.2.1 Language
8.2.1.1Db Types

DESIZN v.vucrvrrreriarenreessressssssasssssestssesssssssecssssossssesebessesnsssasastsessssasssnsssseasississssessanes
VErsus NON-AD TYPES cuevecererrereessisrsensemmisssmissssessssmesssssmsussssssssasssssmnsusssssssasssses

8.2.1.2 Strings and Other Variable Size TYPES .v.uuriiniininimnnsssomessescemsissenssnsieesssmees
8.2.1.3 Generalors and INKEMIANCEcoiiecrmiviniceiniinirieesniss e s sesesssessinesssessasassnsssssesssns
8.2.2 Compiler ImMpIEMENtAtiONciveessiiriiisisiissiisimsesetsssssnsanssssssssesssesssmststasssssssmsssasmanes
8.2.2.1 Alias Analysis and Other OpmIZAtONScoimrsmieiismisesesearsssssisssrssnssssssssssssossssnisismescanses
8.2.2.2 Other Performance Enhancementsc...eervenceenes reerrarsarssesastsanesassrnasessanseane

8.2.23 A Hybrid

APPIOACH et sesstes st ass shssesssrssssasssss s sstssessas e sen s srsne e e ass

B.2. 2.4 GENETALOTS ...v.evvverereresensrsesessesessnerssssssssearssssnsorsmsessssssnsssnsstststssssasensaenssasasssssassnseensssiat sescsasssasas
823 Programming Environment SUPPOTLceccccorensemimsisscimesssssnsssstssssisssssesisssssassssssasisssnsaasanas
8.2.3.1 ClASSES S OBJECLS ..vivveereereerrerereersssssssnssesecssseescsessesiasessssisesssrssssssonanasassasssssssessssasassestsaransesns
8.2.3.2 SChema EVOIULONcccveverrerneeninessicstisssscatsissssssassnissssssssssasatsnssssssssranst saosasssnssssssestosssesssses
8.2.3.3DChUgEZING SUPPOTL «covevvrverterinriensersmntsmiesienerssssesssisssessssnsentonsesssssat sossesssssssosstsssssassnsassussesse

83 CONCLUSION

Chapter 9: REFERENCES

..

...

vii

121
121
122
122
123
123
123
124
124
125
125
126
126
127

128

CHAPTER 1

INTRODUCTION

In the 1970’s, the relational data model was a major focus of research in the database community. Today,
relational database technology is well understood, a large number of relational systems are available in the market
place, and they support the majority of traditional business applications relatively well. One of the foremost
database problems of the 1980’s and beyond is how to support classes of applications that are not well served by
relational systems. For example, computer-aided design systems, scientific and statistical packages, image and
voice data, and large, data-intensive Al applications all place demands on database systems that exceed the
capabilities of relational technology. Such application classes differ from business-oriented systems in a variety of
ways, including their data modeling needs, the types of operations of interest, and the storage structures and access

methods required for their operations to be efficient.

This thesis presents the design and implementation of the E programming language. E was developed in the
context of work on extensible database systems, an area of research that addresses the problems stated above. The
original design goal of E was to provide a language targeted specifically for implementing database management
systems (DBMSs) [Rich87]. That is, we wanted to provide programming constructs that would give the database
implementor (DBI) high leverage in solving the particular problems of building a DBMS. The resulting language

design [Rich89a is suitable for building not only DBMSs, but persistent systems! in general.

One of the main features of the E language is the provision of typed, persistent objects, and one of the main
implementation challenges has been the generation of code for expressions that manipulate these objects. There
have been several versions of the E compiler and several different implementations of persistence. Version 1.0 of
the compiler [Rich89b] was a demonstration of feasibility as well as a leamning vehicle. Two alternate lines of
development have evolved from that version. This thesis describes the implementation of version 2.2 which not
only improves greatly over version 1.0 on the quality of generated code, but also provides a framework that allows
further improvements to be made easily. This framework, called compiled item-faulting, along with the language
design itself, are the two main contributions of this thesis. Before discussing the specific problems that E addresses,

let us first develop the context out of which it grew.

1By “persistent system”, we mean a software system that maintains and manipulates objects whose lifetimes may extend beyond any given
program run.

1.1. EXTENSIBLE DATABASE SYSTEMS

In the mid-1980’s, several research groups in the database community began to explore ideas for building
"extensible database systems” [Bato88, Care89, Daya85, Rowe87, Schw86]. Although different groups have
different notions of what "extensible” means, a common theme (broadly stated) is the desire to support more
flexibility than is provided by traditional DBMSs for customizing the database system to the user’s application. For
example, one usually cannot add new attribute types to a commercial database system; in an extensible DBMS, it
should be easy to augment the collection of "base” types in the system with new, user-defined types. Another
direction for extensibility is the support of new data models and the new operations and index structures that they
require. At the same time, we wish to avoid the severe performance penalty associated with providing such

flexibility as a layer on top of a (nonextensible) relational system [Care85].

A range of different approaches has appeared in the literatre. For example, POSTGRES [Rowe87], the
successor to INGRES [Ston76], is an attempt to provide for the needs of next generation applications through
extensions to the relational model; the POSTGRES data model includes procedures as a data type, abstract data
types for attributes, triggers, and rule processing. The STARBURST system [Schw86] also retains the relational
model, but provides a system architecture that may be extended by adding "attachments" [Lind87] in places with
well-defined interfaces. The PROBE project [Daya85, Daya87], while departing from the relational model, is
similar to POSTGRES in attempting to provide for all users’ needs within a single system. PROBE offers an
object-oriented data model and includes support for temporal and spatial data and for recursive query processing.
Finally, GENESIS [Bato88] is an attempt to formalize database structures and processing in a variant of the
functional data model [Ship81]. GENESIS provides extensibility in that modules defined under its data model may
be easily plugged together.

1.2. EXODUS

The EXODUS Project at the University of Wisconsin has been exploring a toolkit approach to building and
extending database systems. The driving philosophy for our research has been a belief that no one system is likely
to meet the needs of all potential applications [Care86b]. Unlike the projects described above, EXODUS is not
itself a database system but a set of powerful software tools to be used in building such systems. The bulk of the
work to date has been to examine the factors that make DBMSs particularly difficult systems to build and to provide
tools targeted to address those factors. The first operational DBMS built with the EXODUS tools was a small
relational system that we demonstrated at SIGMOD ’88 in Chicago. The latest effort to validate the EXODUS
approach has become a research project in its own right. EXTRA, an advanced, object-oriented data model, and
EXCESS, its associated query language, have recently been defined [Care88]. Current work includes defining a
formal algebra for EXCESS queries and mapping EXTRA data structures into E constructs.

The first component of EXODUS to be designed and built was the EXODUS Storage Manager [Care86a].
The Storage Manager provides four main abstractions: objects, files, transactions, and buffer groups. We shall
describe the first two very briefly here; more details will be given in Chapter 5. An object is an uninterpreted string
of bytes of arbitrary size. A client of the Storage Manager manipulates data stored in an object by reading and
writing subranges of bytes. A client may also grow or shrink an object. A Storage Manager file is a collection of
objects. Unlike conventional operating system files, these files do not themselves store byte-addressible data;
rather, they are provided as a mechanism both for object grouping and for efficient storage allocation. By providing
a simple and uniform (yet powerful) abstraction, the Storage Manager is able to support a wide range of physical

storage needs.

While some new systems built with EXODUS may be hard-wired for a particular application, others will be
general purpose DBMSs, the latter being based on advanced data models having formal algebras. (EXTRA is one
example.) Another EXODUS component, the Optimizer Generator [Grae87a, Grae87b], allows the DBI to produce
a query optimizer tailored for a new algebra from a high-level description. This component generated the optimizer
used in the SIGMOD ’88 demonstration, and it will soon be used to generate an optimizer for the EXCESS query

language.

13. THE E LANGUAGE

The third major component of EXODUS is the E language and its compiler. As we said earlier, the original
motivation for E was to provide programming constructs tailored for implementing a DBMS. The traditional
difficulty in building such a system derives from several factors. First, the DBI must write code whose primary task
is to manipulate data on secondary storage. A significant portion of the total system code is therefore devoted to
interacting with the storage layer, e.g. calling the buffer manager to read a record, and with transaction
management, e.g. calling the lock manager to set a lock. Another difficulty for the DBI is that the code to
implement operators (e.g. hash join) and access methods (e.g. B+trees) must be written independently of any data
types on which they might operate. The DBI cannot know, for example, that a user will eventually want to build an
index over a set of polygons, keyed on area. The need for generic access methods is particularly critical in an
extensible system, since one of the stated goals is to be able to add new types easily. Finally, a DBMS must convert
queries posed by end users into a form that the system can execute. This translation is greatly simplified if the basic

operators can be written in a uniformly composable manner.

These and other considerations have led to the current language design. E is an extension of C++ [Stro86]
providing generator classes, iterators, and persistent objects. C++ provided a good starting point with its class
structuring features and its expanding popularity as a systems programming language. Generator (or generic)
classes were added for their utility both in defining database container types, such as sets and indices, as well as in

expressing generic operators, such as select and join, Iterators were added as a useful programming construct in
general, and as a mechanism for structuring database queries in particular. Both generators and iterators in E were
inspired by those in CLU [Lisk77]). Persistence — the ability of a language object to survive from one program run
to the next — was added because it is an essential attribute of database objects. The provision of persistent objects
has several major benefits for the programmer [AtkM83). First, mapping the application to the language becomes
conceptually easier since there is no longer a semantic gap between the objects in the language and the objects in the
database. Second, this mapping is also easier to implement, since we can manipulate the database objects naturally,

via expressions in the language.

E thus represents a synthesis of ideas and advances from both the programming language and database
communities. While E is certainly not the first language to provide some form of persistence, it is distinguished
from its predecessors in being a systems-level implementation language rather than a modelling or prototyping
language. Also, as we have mentioned, the implementation of E provides a new mechanism for managing 1/O at

run-time.

1.4. OUTLINE OF THESIS

Over the past decade, there has been considerable interest in the synthesis of database systems and
programming languages. From the very early work on Pascal/R [Schm77] to the most recent of the persistent
language designs, the area has remained very active. Chapter 2 reviews of some of the more important language

designs to emerge from this research.

Chapter 3 presents the E language design in detail. Beginning with a review of C++, this chapter then
describes the main language additions: iterators, generators, and persistence. Iterative refinement of a binary tree

example serves to motivate as well as to illustrate each new feature.

We devote the next three chapters to describing the compiler implementation. Chapter 4 discusses the overall
organization of the compiler and the handling of various kinds of declarations (e.g. of persistent objects). In
Chapters 5 and 6, we describe code generation. Since a language that features persistent objects also hides /O from
the programmer, the system is responsible for making 1/O efficient. Chapter 5 presents the basic concepts and
organization of the code generator, while Chapter 6 introduces compiled item faulting (CIF), our mechanism for
improving the performance of E programs.

In Chapter 7, we present the results of a small performance study. We ran these experiments as a preliminary
evaluation of the quality of code generated by the E compiler. The results show that CIF is a viable approach to
managing I/O in a persistent system, and they suggest ways that conventional compiler-optimization techniques can

be applied to further improve performance.

Chapter 8 presents our conclusions. We evaluate E’s successes and failures, both as a language design and as

an implementation, and we give our recommendations for future work.

CHAPTER 2

A SURVEY OF RELATED WORK

In this chapter, we review some of the more significant work to emerge from efforts to integrate programming
languages and database systems. We discuss representatives from several different categories: database languages,
in which constructs from a particular data model (usually relational) have been merged with a programming
language language (e.g. Pascal); conceptual modelling languages, in which very high level data descriptions
subsume much of the semantic integrity checking usually performed by procedures; persistent languages, in which
the complete type system of a base language is made available for defining and manipulating persistent objects;
and object-oriented database systems (OODBs), in which modern, object-oriented type systems have replaced the
relational model. The order of languages in the survey also corresponds roughly to the chronological order in which
they appeared. While the survey is by no means exhaustive, it should give the reader a feeling for the range of
designs that have appeared over the last decade. (An excellent comparison of database programming languages
may be found in [AkM87].) ‘

2.1. DATABASE PROGRAMMING LANGUAGES

The majority of work in this area occurred in the late 1970’s and early 1980’s in response to the problems
encountered in database application programm'mg.2 Prior to that time, application programs were traditionally
written in an embedded language, i.e. one in which the data definition and query language of a DBMS is available
inside a traditional programming language (e.g. embedded SQL [Date82, pp.145+]). There are several problems
with the embedded language approach which may be summed up with the term "impedance mismatch” {Cope84].
For example, the programmer is burdened with notational awkwardness, since special symbols are required to flag
the DBMS statements to a preprocessor. A more severe problem is that the type system available to the application
programmer is effectively the lowest common denominator between the DBMS and the host language: integers,
reals, and characters. And finally, the correspondence of types in an application program to the schema in the
database is not well defined. Thus, one is forced to maintain this integrity manually.

*The term "application program” is quite generic and refers 10 any program written as an extra layer between the DBMS and the user. Ap-
plication programs can be simple (e.g. a menu of "canned queries™) or can be quite complicated (e.g. a forms-based interface).

2.1.1. Pascal/R

As we shall see, the typical database programming language (DBPL) combines the concepts of an existing
data model with those of an existing programming language. For virtually all DBPLs, the chosen data model is the
relational model, and Pascal is the most common starting language. This approach was pioneered by Pascal/R
[Schm77), the first of the "integrated DBPLs" [AtkM87].

Pascal/R extends the type system of Pascal with two type constructors: relation and database, where a
relation is of some record (tuple) type, and a database is a collection of named relations. In addition, a relation type
declaration also specifies the primary key by naming the appropriate field(s) in the constituent record-type. Basic
operators on relations include union, difference, and replacement, all based on primary keys; e.g. Rl :- R2; deletes

each tuple in R1 whose primary key appears in R2.

Pascal/R provides both low- and high-level access to relations. The foreach loop, with an optional selection
predicate, allows tuple-at-a-time processing. The general relation constructor, an expression whose value is a

relation, provides the full power of the relational calculus, e.g. one Pascal/R statement can express any QUEL
query.?

From today’s standpoint, Pascal/R suffers several drawbacks. The first — actually an artifact of Pascal — is
the limited ability to define abstract types. A more serious problem is that databases are mutually exclusive, and a

program may access only one database at a time. Finally, iterators are restricted 1o operating on relations only,

although the concept is useful in many other contexts. The next language addresses these and other issues.

2.1.2. Rigel

The Rigel language [Rowe79] was developed shortly after Pascal/R, and it benefited from newer
developments in programming languages. Like Pascal/R, Rigel provides relation as a type constructor, where a
relation consists of records with named fields, a subset of which forms a primary key. And likewise, Rigel also
provides an expression syntax that includes the relational calculus, such that a single expression can implement a

complex query.

Rigel improves on PascalR in several key areas, however. First, it incorporates the module concept as
developed in [Wirt77]. In addition to providing a form of abstraction, modules provide a database structuring

mechanism: each module may declare its own relation(s), and each program must import the modules (i.e. the part

3One additional feature listed in [AtkM8T] is the ability to access a relation as an associative array, indexed on primary key. However,
[Schm77] made no mention of this, The Plain language {Wass79] does have this capability.

of the database) that it needs.* Rigel provides another kind of abstraction with the view type constructor. In
combination with the visibility rules of modules, this mechanism allows the definition of secure, alternative
interfaces to the database. Finally, iterators® were generalized to a CLU-like [Lisk77] form in which the
programmer may define arbitrary iterator procedures.

One restriction that Rigel shares with virtually all other database programming languages is in the type of
entity that may be stored in a relation:
In [no] case may any field of a relation tuple type be a pointer, union type, relation type, file fype, view type, nor a
structure of a dynamic size. [Rowe81, p.8]
Such restrictions are motivated, in part, by the implementation difficulties in trying to provide them, but more
fundamentally by the semantics of the relational model. As E does not involve the relational model, it is not
semantically bound by these restrictions; moreover, part of the interesting research has been in solving the

associated implementation problems.

2.1.3. Plain

The language Plain [Wass79] is another Pascal extension based on the relational model. It was designed "to
support the construction of interactive information systems”, and it includes not only database oriented features, but
also those tailored for user /O, including extensive string handling and pattern manipulation. Like both Pascal/R
and Rigel, Plain includes the type constructor relation. The language allows tuple-at-a-time processing through a
form of iterator loop. Unlike Pascal/R or Rigel, however, Plain’s extended syntax includes algebraic operators
rather than calculus expressions. Thus, a Plain query is decomposed into a series of selects, projects, and joins.® The
stated motivations for including an algebra instead of a calculus include consistency with the procedural nature of
Pascal and ease of compilation. Finally, Plain is similar to Rigel in allowing the programmer to define abstract data
types and in the structuring of the database such that each program imports the relations it needs.

Plain has several interesting features that distinguish it from other languages in its class. One is the provision
for associative access to a relation. For example, assuming that DEPT is a relation of department tuples and that the
department name is the primary key, then the statement

print(DEPT{ "toy"] floor);
prints the floor number of the toy department. Another feature, a marking, provides a convenient and efficient

mechanism for taking snapshots of relations and for holding temporary results of queries.

“As later examples will show, E takes a similar approach.
*Rigel uses the term "generator”.
*Only join is actually an operator in the language. Plain's where clause and atribute lists implement, respectively, select and project.

2.1.4. Theseus

One more effort secking to integrate database concepts with an existing programming language (Euclid
[Lamp77}) is Theseus [Shop79]. Like all the above languages, Theseus provides a relation type constructor with
associated primitive operations. Although these operations are not strictly those of the relational algebra, the paper

demonstrates that Theseus is relationally complete.

One feature which does distinguish this language is that the elements stored in relations are a-sets rather than
simple records. An a-set is a set of (name, value) pairs, and behaves very much like a property list in LISP.
However, since names are declared and are not first-class objects, name expressions can be statically type-checked.
A-sets are intended to subsume records, parameter lists, and messages with a single mechanism and to "move the
relational database in the direction of ... "knowledge bases.'™ [Shop79, p.495). Whether these goals were actually

achieved is unclear; the language design was incomplete and the paper discussed a number of possible extensions.

2.1,5. Other DBPLs

The above set of DBPLs is by no means exhaustive. Ada has been used as a starting point for database
extensions in at least two ways: AdaRel [Horo83] was proposed as a relational extension, with a flavor similar to
the Pascal-based extensions. Adaplex [Smit83] is a synthesis of Ada with the DAPLEX functional data model
[Ship81]. An approach quite different from any of the DBPLs mentioned so far was taken in Aldat [Merr85], which
extended the relational algebra with limited procedural constructs.

2.2. CONCEPTUAL MODELLING LANGUAGES

The DBPLs of the previous section have one important feature in common: each is a synthesis of an existing
programming language with relational database concepts. The languages described in this section are all original
designs (as opposed to extensions of existing languages), and they provide, at once, more flexible data models and

more structured programming environments.

2.2.1. Taxis

One of the more distinctive languages to emerge from database programming efforts is TAXIS [Mylog0,
Nix087], for it was the first DBPL to provide inheritance as a modelling tool [AtkM87]. The use of inheritance is,
in fact, quite pervasive in TAXIS; not only are the users’ data arranged in a class hierarchy, but all other
components of the database system (e.g. transactions) are part of the same hierarchy. The objects in a user’s
database are instances of user-defined classes; every instance of a class has all of the properties named in the class
definition. Classes are themselves instances of metaclasses, allowing one to define class properties (e.g. current

number of instances).

10

The TAXIS kemnel comprises a set of predefined metaclasses arranged in a hierarchy. To create a database
application, one defines new classes and class instances. To define the schema, one creates instances (e.g. DEPT) of
the predefined metaclass VARIABLE-CLASS”: the definition of DEPT specifies the properties (attributes) that all
department instances will have. To write an application program, one defines an instance (e.g. HIRE-EMP) of the
metaclass TRANSACTION-CLASS. This means that each program is actually a class definition; the "attributes”
of a transaction instance include the actions to be performed, a parameter list, local variables, and the return value.

An instance of this class is an executing program, called an execution instance. Finally, an attribute of a variable

class object may be a transaction class, effectively providing support for virtual fields.®

TAXIS provides class hierarchies via the IS-A construct, a specialization hierarchy with multiple, structural
inheritance. Thus one may define the classes STUDENT and EMPLOYEE and then define STU-EMP such that
every STU-EMP object has all the properties of both students and employees. One important point to note about
classes and the IS-A hierarchy is the semantics of extents, i.e. the sets of existing objects of a given type. In TAXIS,
each class has one implicitly associated extent, and the IS-A relationship implies extensional containment as well as
structural inheritance. That is, each STU-EMP instance is included in both the STUDENT and the EMPLOYEE
extents.

2.2.2. DIAL

The language DIAL [Hamm80] is, like TAXIS, an attempt to facilitate the construction of database
applications through the use of very high level constructs within a tightly structured environment. One major
emphasis in DIAL is data description. In particular, many of the integrity constraints associated with an application
are expressed declaratively; the use of procedures is definitely secondary. The second emphasis is on user
interaction. DIAL provides a very high level, forms-oriented interface for use by all applications. Forms look very
similar to normal entities — they are objects with atiributes — and the programmer may "code” rather complex
interactions with a user by declaring properties for the form, including, for example, user prompts and integrity
constraints on input values. Again, the goal is to subsume with declarations a large part of the procedural

programming involved in developing an application.

The data model provided by DIAL comprises entities and entity classes, where all entities in a given class
share the same structure (attributes). New classes may be derived from existing ones via specialization. As in

TAXIS, the notion of a class encompasses both type information and physical extent. Furthermore, membership in

70f the several predefined metaclasses in TAXIS, VARIABLE-CLASS is closest to the usual concept of a relation. A presentation of the
full range of features in TAXIS is beyond the scope of this survey.

8A virtual field (or attribute) is one whose value is computed at the time of access.

11

a derived class may be defined to be automatic, based on satisfying a user-defined predicate; e.g. a PERSON entity
automatically becomes an ADULT (a derived class of PERSON) when the age becomes 18. The DIAL run-time
system is responsible for ensuring that this PERSON now also appears in the set of ADULTSs. Another interesting
result of this design is that an entity may acquire (or lose) attributes as it dynamically satisfies (or fails) the
predicates defining various derived classes; in the above example, a PERSON becoming an ADULT might acquire
the new attribute job fitle. Another implication is that type checking often cannot be done at compile time, since

class membership can change dynamically.

DIAL provides highly tailored constructs for manipulating classes and entities. For example, entities may be
created and updated only within specially declared procedures whose actions are limited to a small set of predefined
operations. The designers argue that most database application programming follows "common and frequently
recurring patterns,” and that the language should therefore address these needs with "problem-specific rather than
general structures” [Hamm80, p.76]. The authors claim that in one application, the DIAL program was no more

than 25% of the size of an equivalent program written in a conventional language.

2.2.3. Galileo

Classifying Galileo [Alba85] is slightly problematic. It is one of the more recent and certainly one of the most
ambitious of the very high level DBPLs; however, due to its treatment of environments (to be discussed), Galileo
can also be considered a persistent language. Intended as an interactive, conceptual modelling language, Galileo
combines a number of advanced features. Like DIAL, Galileo is based on a semantic data model, and one goal is to
provide a very powerful data description facility such that many semantic constraints of the application may be
expressed declaratively. Galileo also provides abstract data types, subtypes with multiple (structural) inheritance,
strong typing, and type inferencing.

As in Theseus, entities are viewed as sets of (name, value) pairs, although the semantics of names and values
differ. Data in a Galileo database are grouped into classes®, where a class is a "modifiable sequence” of entities, all
of the same type. One interesting note is that, unlike TAXIS and DIAL, Galileo, in theory at least, separates the

concept of type from that of class (physical extent); however, the syntax for defining classes forces one also to
define a new type for each class.

One novel aspect of Galileo is its treatment of environments, which are mappings between names and
definitions. Environments are used as a modularization mechanism, and the language provides numerous

environment operators affording very fine control over the visibility of names. Using this mechanism, one can

%The term "class” has become one of the most overloaded words in the PL area (second only 10 "object™). A Galileo class is a set of in-
stances; a C++ class ig a type.

12

construct a database, provide alternate views, and grow the database incrementally. Environments can be nested,
and the user gains access by "entering" the desired environment. Finally, there is a unique global environment in
which all declared values automatically persist. Since there is no restriction on what an environment may contain,
any value — e.g. simple values, relations, and other environments — may persist. As of this writing, the
implementation of environments is still at the prototype stage and is based on a workspace load/save model
[Orsi891.

2.3. PERSISTENT LANGUAGES

The languages in this section, inspired partially by the DBPLS, specifically explore and develop the concept of
persistence. Of particular interest is the principle that persistence of a data object should be independent of the
object’s type and of how the object is used [AtkM83]. Such a feature is called orthogonal persistence.

2.3.1. PS-Algol

The first language to explore fully orthogonal persistence was PS-Algol [AtkM83]. Having observed that
30% of the code in a typical program simply moves data between disk and memory,'? the authors extended an
existing language, S-Algol [Morr82], with certain predefined procedures and a new run-time system allowing
arbitrary structures to be preserved indefinitely. To preserve an object, one opens a database (named with a string
value). The structure returned is called a "persistent name environment." The user then calls a procedure which
inserts into this environment a pair comprising a pointer to the object and a user-defined name. The run-time
garbage collector is then responsible for ensuring that the object and everything reachable from it are written to
disk. Later, a program can open the database and request the object by name. A pointer is returned, which may
then be dereferenced normally. A run-time address translation mechanism moves objects into memory as they are

referenced.!!

All objects in PS-Algol carry self-identifying type information. While this ensures that objects created by one
program are properly type checked in another, there is a price: the added type information requires space, and type
checking must be dynamic. Another cost factor concerns buffer space. Since the run-time system reads entire
objects, applications requiring very large or very many objects may suffer poor performance. Thus, PS-Algol may
be suitable only for small systems. However, the language is clearly distinguished for placing persistence in a
general and uniform framework.

1°This statistic includes I/O calls and code 1o pack and unpack data structures.
'We will describe this mechanism in more detail later in this chapter.

13

2.3.2, Napier88

The designers of PS-Algol have recently introduced a new language, Napier88 [AtkMSS, Dear89], which
builds upon their experience with the earlier language. Unlike its predecessor, Napier88 was designed from scratch
and makes several significant advances in the concepts of persistence. In PS-Algol, the mechanism providing
persistence is the "persistent name space,” which is not strictly part of the language, but rather, is a user-defined data

structure. In Napier88, the idea of a name space is central to the structure of the language itself.

A name space in Napier88 is like an environment in Galileo; it defines the names, types, and objects
available during the compilation of a statement or declaration. While lacking the extensive set of operators that
Galileo provides for environments, Napier88 does allow for dynamically adding and deleting names in an name
space. There is one important difference from environments, however. Name spaces are first class objects in
Napier88; the actual referencing environment for a particular section of code may be the result of a function call.
Since the name space for a piece of code can also be statically bound, Napier88 has the very nice quality that static

type checking and binding occurs when possible, while dynamic type checking and binding occurs when necessary.

The design of name spaces provides great flexibility in designing software systems. Essentially, the language
allows a system designer to decide the tradeoff between flexibility and performance. A system primarily using
dynamic binding is easy to evolve, while paying a higher overhead at run-time, than one in which static binding is
predominant. Clearly, the design of extensible database systems could benefit from such a mechanism, although
there are several problems to be addressed. One problem is that even a statically bound name space can itself
change dynamically, perhaps losing names and objects. While such errors are detected, it is not clear if they can be
handled in any structured manner. (This is an example of the schema evolution problem, later to be discussed at
greater length.) Another issue is the implementation of persistence. Since Napier88 sits atop the same abstract
machine layer as does PS-Algol, its performance may be insufficient for the needs of a high-performance database
system. Static type checking, however, should give Napier88 a significant performance boost over PS-Algol.

2.3.3. Avalon/C++

Like E, the next two languages are both extensions to C++ that include long-lived data. Avalon/C++'?
[Herl87, Detl88], a language designed to support reliable distributed computing. This language utilizes the
inheritance mechanism of C++ to allow programmers to design data types having customized synchronization and
recovery properties. Persistence is then modeled as a set of objects encapsulated by a server; a server may recover

the state of its objects after a crash. E differs from this approach in that persistent objects exist independently of any

2Avalon/C++ is not really a persistent language, but it does not belong in any of the other sections of this survey, either.

14

active process. E's goal is to provide transparent persistence for structuring databases and transparent /O for

manipulating them.

234. O++

In an interesting recent development, researchers at Bell Labs have proposed the language O++ [Agra89a,
Agra89b] that secks to blend both high-level and systems-level programming features. Like E, O++ is also an
extension of C++ including persistence. However, O++ maintains type extents (one for each class), and it provides
support for integrity constraints and triggers. Like most DBPLS, O++ also provides a form of iterator for expressing
calculus-like queries over type extents; two variations of this looping construct allow for querying either the extent
of a single type or the extents of a type and all of its subtypes. Finally, O++ provides a fix-point operator for
expressing recursive queries. As of this writing, O++ is still a paper design, although work on a compiler is under
way [Geha89].

2.4. OBJECT-ORIENTED DATABASE SYSTEMS
Object-oriented database systems (OODBS) are closely related to persistent languages in that they provide
rich type systems, typed persistent objects, and general computation. The difference seems to be mostly in name

and, perhaps, orientation of the inventors.”> OODBSs have appeared recently, both in the literature and in the

marketplace.

2.4.1. GemStone

GemStone [Cope84, Bretl89] is an OODBS based on the language Smallialk [Gold83]. Like PS-Algol,
GemStone bases its persistence on reachability, but in GemStone, there may be multiple roots of persistence. A
persistent name space consists of a dictionary of <name,value> associations, where the name is a string, and the
value is either an atomic value, e.g. the integer "10", or a reference to another object. Among its contributions,
GemStone was the first OODBS to be implemented and the first to tackle the problem of indexing in the context of
objects.

2.4.2. Vbase

Vbase [Andr87, Vbas87] is'* a commercial product calling itself an “integrated object system.” It seeks to

“There have been lively discussions at workshops in recent years over the question of what, if any, is the difference between a persistent
programming language and an QODBS.

“The original Vbase is no longer being distributed. Ontologic recently reorganized and is now developing VBase+; it is to be based on
C++ and reportedly will be very different from Vbase.

15

blend an QODBS with the C programming language. The system presents to the programmer two languages and
their respective compilers: the type definition language, TDL, in which the one specifies classes and operations,
and the C superset, COP, in which one writes methods to implement the operations. Application programs are. also
written in COP. In order to bind persistent names within a program, both the TDL and COP compilers require a
database file name as a command line argument. A Vbase database implements a global persistent name space in
which type names and instance names are resolved. It also supports a module construct, however, so that names
within a module do not conflict with names at the global level. In the beta release (version 0.8), databases are self-
contained and disjoint; a given database contains all of the types, methods, and instances needed for its

applications, and there is no sharing between databases.

2.4.3. Orion

The Orion system [Bane87, Kim89] is another OODBS developed in recent years. Its basic data model
provides classes with multiple inheritance, object identity, and message passing. Orion maintains implicit extents
for each class: unlike GemStone and PS-Algol, only class (extent) names are persistent handles into the database.
Orion provides two alternatives that name either the extent associated with a single class or the extents associated

with a class and all its subclasses. Orion has been a rather broad-based research effort. One of its original

contributions was addressing the problem of schema evolution.’* Other contributions have included research into

transaction management, locking protocols, and composite object support all in the context of an OODBS.

244. 0,

The O, system [Banc88, Lecl89] is another recently-developed OODB. It is similar to Vbase in that it
attempts to integrate an object-oriented database system, O, with a superset of the C language, CO,. (Actually,
both Vbase and O, intend to support a set of languages. While only the C extension was ever implemented in
Vbase, O, has so far been integrated with C (CO) and with Basic (BasicQ,).) Like Vbase, type definitions are
written in one language, while methods are written in the C extension. In O, persistence is based on reachability,
as it is in PS-Algol. However, like GemStone, every named object is a root of persistence; in addition, O, also
provides class extents, but unlike Orion, an extent for a class exists only if the class’s definition explicitly specifies

one.

YWe note that GemStone also supports schema evolution [Penn87].

16

2.5. RELATIONSHIP TOE

The common denominator between E and the languages surveyed in this chapter is the provision for typed,
persistent objects. Such a language concept benefits the programmer by making applications involving persistent
objects easier to think about and easier to implement. The differences of these languages from each other and from
E derive from their intended use. The DBPLs and conceptual languages, targeted at developing end-user
applications, integrate such database concepts as entity sets, views, and transactions with such programming
concepts as strong typing and procedural abstraction. The conceptual languages provide even higher-level data
models than the DBPLs and emphasize declarative specification of integrity constraints over procedural
implementations. The persistent languages extend the type system of a base programming language to the realm of
long-lived objects. The OODBSs, closely related to persistent languages, provide database systems having object-
oriented data models and general computational power.

One feature distinguishing E from these other languages is that E is intended as a systems implementation
language. While one can certainly write end-user applications in E, the choice of language constructs makes it more
suited for implementing higher-level data models. For example, the efficient implementations of different data
models are likely to require different storage structures, and the operators in the various models are likely to require
quite general processing. E thus gives the programmer explicit control in defining the layout of persistent objects
and in defining the procedures to manipulate them. E belongs firmly in the category of persistent languages, but
differs from other members of that family in its model of persistence and in its implementation thereof. E'’s
persistence, in combination with its other features, provides a blend of language constructs well suited to the task of

building persistent systems.

17

CHAPTER 3

THE DESIGN OF E

This chapter, describes the E language design in detail. Through a series of refinements on a binary tree index
example, we present each of the major language features. We use a binary tree, instead of a "real™ database
structure such as a Be+tree, since it still illustrates the essential features of E while keeping the examples short
enough for presentation; at the end of the chapter, we will outlines how a B+tree can be implemented. Since E is an
extension of C++ [Stro86), we begin the chapter with a brief C++ review. The initial example is presented as a
complete program. Next we describe iterators and discuss their use as a query structuring mechanism. We then
show how iterators may be used to add scanning capabilities to the index example. The following section describes
generic types in E, extending the index example into one that abstracts the type of keys stored in the index and the
type of entities referenced. Then we discuss the features that make E a persistent language: database types,
persistent variables, and collections. One last refinement of the index example shows how a binary tree can be
made a persistent object in a database. The chapter closes with a discussion of several important issues germane to

programming in E.
3.1. C++ REVIEW

3.1.1. Classes

E is an extension of C++, which is itself an extension of C [Kern78). The essential concept in C++ is the
class. A class defines a type, and its definition includes both the physical representation of any instance of the class
as well as the operations that may be performed on an instance. Unlike the abstraction mechanisms provided in
CLU [Lisk77] or Smalltalk {Gold83], a C++ class does not necessarily hide the physical representation of instances.
It is up to the designer of a class to declare explicitly which members (data and function) are private and which are

public.

In C++ parlance, objects comprising the representation of a class are called data members, and class
operations are called member functions (ak.a. methods). Member functions are always applied to a specific
instance; within the function, any unqualified reference to a data member of the class is bound to that instance.
The binding is realized through an implicit parameter, this, which is a pointer to the object on which the method

was invoked. An unqualified reference to a member x of the class is equivalent to this->x.

18

3.1.2. An Example

The example in Figures 3.1 and 3.2 is a complete C++ definition for a very simple binary tree index. The
basic operation of the tree is to map a key value to the address of an entity having that key. In this simple example,
each tree node stores a floating point key and a pointer to the indexed entity along with pointers to its left and right
subtrees. The implementation uses a pair of classes: one which defines the nodes in the tree and one which defines
the tree itself. The node class is recursive, both in its representation (i.e., nodes point to nodes) and in its operations
(i.e., search and insert are recursive methods). The tree class is a simple "wrapper” class encapsulating the nodes.
Further refinements to this example will concentrate largely on the node class. In order to keep the example simple
while still showing the major features, the tree is unbalanced, and we limit the operations on the tree to inserting and

searching,

Figure 3.1 gives the definition of the class binaryTreeNode. The physical representation of each node in
the tree follows the class heading. As noted, each node contains a floating point key value (nodeKey), a pointer'®
to the indexed entity (entPtr), and pointers to the left and right subtrees (LeftChild and rightChild). By

default, the members of a class (both data and function) are private, i.e. they are not visible to users of the class.

The keyword public introduces a set of member declarations that form the public interface to the class. The
interface to binaryTreeNode comprises the methods search and insert, as well as one named
binaryTreeNode. These member functions are elaborated following the class declaration. Let us first consider

the function binaryTreeNode. In general, a member function whose name is the same as its class is called a

constructor for that class.!” Constructors initialize class instances; the binaryTreeNode constructor initializes
all the fields of a newly created node. C++ guarantees that if a class has a constructor, then that constructor will be
invoked automatically whenever an instance of the class is created (e.g. by coming into scope). If the constructor
takes arguments, they must be supplied with the object’s declaration as in the example

binaryTreeNode aNode(0.0, NULL);

which declares aNode asa binaryTreeNode instance with a key of zero and a null pointer.

Now let us consider search. This function is always invoked on a particular binaryTreeNode
instance, e.g. myNode.search(1.414) or myNodePtr->search(3.14 y,and this, a pointer to

the instance, is always passed to the function implicitly. References within search to binaryT reeNode data

17 C++ (and in newer versions of C),a void* may legally point to any type of object.

VA class may have many constructors, and in general, C++ supports operator and function overloading. Although it is also supported in E,
we not will discuss overloading here.

19

class binaryTreeNode

{

float nodeKey;
void *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:

binaryTreeNode(float, void *)i

void * search(float);

void insert(binaryTreeNode*);
bi

binaryTreeNode: :binaryTreeNode
(float insertKey, void * insertPtr)
{

nodeKey = insertKey;

entPtr = insertPtr;

leftChild = rightChild = NULL;
}

void * binaryTreeNode::search(float searchKey)
{

if{ this == NULL)
return NULL;
else if{ searchKey == nodeKey)

return entPtr;
else if (searchKey < nodeKey)
return leftChild->search(searchKey)i
else
return rightChild->search(searchKey)
}

void binaryTreeNode::insert (binaryTreeNode* newNode)
{
if (newNode->nodeKey == this->nodeKey)
return; /* no duplicates allowed */
else if (newNode->nodeKey < this->nodeKey)
if{ leftChild == NULL)
leftChild = newNode;
else
leftChild->insert (newNode);
else
if(rightChild == NULL)
rightChild = newNode;
else
rightChild->insert (newNode);

Class Definition for Binary Tree Nodes

Figure 3.1

20

members are implicitly bound to that node. For example, in the third line of the function body, the reference to
nodeKey is equivalent to this->nodeKey. The search function, then, compares the node’s key with the
argument, searchKey, and either returns the node’s entity pointer or recursively searches the appropriate subtree.
Note that is it possible for this to be null inside a member function, and in fact, the search routine checks for this
condition in order to terminate the recursion. In the sixth line, for example, if the node has no left child, then the
recursive call will pass a null this pointer. Thus, if the search routine receives a null pointer, it immediately

returns a null pointer, meaning the key was not found. a null pointer.

The insert member function takes a pointer to a new node which is to be inserted into the tree. It is
assumed that this node has been initialized with its key and pointer values. The routine compares the key in the new
node with the one in the current (this) node. If the new entry has a key value less then the current key, then the
new node either becomes the left child (if there is none), or it is inserted recursively into the left child. If the new
key is greater than the current key, then processing proceeds to the right. For this implementation, attempts to insert

duplicate keys are simply ignored; the next section will remedy this shortcoming.

Figure 3.2 gives the definition of the binaryTree class. As we said above, this class is really a thin
wrapper around the node class, and it is mainly used to start the recursion, e.g. in a search. The physical
representation of a binaryTree is a pointer to the root node. Initially, this pointer is NULL (see the
binaryTree constructor). To search the tree, we simply search the root node recursively. The insert member
function contains an example of creating a node dynamically. The new operator returns a pointer to a node which
has been allocated on the heap; since we are creating an instance of a class having a constructor, we have provided
arguments. If the tree is empty, the new node immediately becomes the root. Otherwise, we pass the new node to

the root, and the insert proceeds recursively.

Finally, Figure 3.3 shows a main program that uses a binaryTree. The program allows the user to keep a
student database in which students are indexed by gpa. As mentioned earlier, our binary tree does not allow
duplicates. Such a limitation is clearly unacceptable in a secondary index such as this, but we will soon address this
problem. In any case, new students may be added, and existing students may be processed (in some unspecified
way). To add a new student, we call the function getNewStudent which presumably interacts with the user in
order to create a new student instance. The function returns a pointer to the instance along with the student’s gpa.
We then add the student to the binary tree index, gpaIndex, by invoking the insert method and supplying it with
the gpa and the pointer to the student. Similarly, to "process” a student, we obtain a selected gpa from the user and
then search for that gpa in the tree. If an entry is found with a matching key value, the search routine returns the

corresponding student pointer; we then pass the pointer to the student processing routine.

class binaryTree
{

binaryTreeNode *root;
public:

binaryTree();

void * search(float);

void insert(float, void *);
};

binaryTree: :binaryTree ()

{
root = NULL;
}

void * binaryTree::search(float searchKey)
{
return root->search(searchKey);

}

void binaryTree::insert
{ float insertKey, void * insertPtr)
{

binaryTreeNode * newNode;

newNode = new binaryTreeNode(insertKey, insertPtr):;
if(root == NULL)

root = newNode;
else

root->insert (newNode);

Class Definition for Binary Trees

Figure 3.2

21

22

class student
{

/* ... */
}:

binaryTree gpalndex; // declare an instance
main ()

{

student * CH

float gpa;
int cmd;
while ((cmd = getCommand()) !'= QUIT)

switch(cmd)

{
case NEWSTUDENT:

getNewStudent (&gpa, &s);
gpalndex.insert{ gpa, 8)i
break;

case PROCESS:
getGpa(&gpa):
s = (student*) gpalndex.search(gpa);
if(s == NULL)
printf (*No students with this gpa.");
else
processStudent (s);
break;

Using a Binary Tree

3.1.3. Inheritance

Another reason that we chose C++ as a starting point for E is that it supports subtyping, or, in C++

terminology, class derivation. Givenaclass A, we may define a class B thatisa subtype of A as follows:

class A { ... };
class B : public A { ... };

A is called the base class, and B, the derived class. B inherits both the representation of A as well as A’s
member functions. The public keyword in this context specifies that public members of A are also public members
of B; without this keyword, public members of A would become private members of B. B may declare

additional data members and member functions, and it may override the member functions inherited from A.

Normally, the invocation of a class method on an object is statically bound. That is, if a member function £
is invoked on a variable of class A, then the call is statically bound to A’s version of £. Function invocation can

also be dynamically bound, however. If a member function g of aclass A is declared virtual, then invocation of

23

g on an object depends on the actual (run-time) type of that object, which may be a subtype of A. If that subtype
has redefined g, then the subtype’s version of g will be called; thus, each object responds to the invocation
according to its type. Virtual functions provide the C++ programmer with late-binding of method calls, a central

concept in object-oriented programming.

Although there are a great many details that we will not discuss here (see [Strou86]), we note that E supports
all of the derivation constructs of C++ (including virtual functions), and it extends those constructs 10 the realm of
dbelasses (to be discussed in Section 3.4). We further note that the E compiler is based on a version of the AT&T
C++ compiler supporting only single inheritance. Version 2 of C++ now supports multiple inheritance [Stro87], and

we plan to adopt that version soon.

3.2. ITERATORS

Iterators were inspired by CLU [Lisk77]. An iterator is a control abstraction comprising two cooperating
agents, an iterator function (i-function) and an iterate loop (i-loop), that work together to process a sequence of
values. The i-loop is a client of the i-function. It requests a value from the i-function, processes the value, and then
requests the next value. From the client’s point of view, the i-function is simply a "stream” from which to receive a
sequence of values. The i-function produces the values in the stream one at a time by yielding a value to the client
loop. Unlike a return from a normal function, when an i-function yields a value, it saves its local state so that it may
resume execution when the next value is needed. Thus, an i-function can be viewed as a limited form of coroutine,

one which may be invoked only within the context of an i-loop.

We chose to include iterators in E for several reasons. First, the ability to separate the production of a
sequence of values from the processing of those values is a convenience generally, since a very common
programming task involves processing such sequences. We have found iterators to be extremely useful in many
diverse programming contexts. Second, E was originally conceived as a DBMS implementation language.
Database systems are dataflow-intensive systems in which a large portion of the processing involves scanning and
filtering streams of data; an iterator can implement such processing in a direct, natural way. E is not unique in
recognizing the utility of iterators for database query processing [Schm77, Rowe79, OBri86], although E iterators
are somewhat more general. Finally, iterators are easy to implement and are relatively inexpensive to use [AkR78];

each invocation costs little more than a normal procedure call.

3.2.1. Iteratorsin E

Let us now consider the details of iterators in E. Syntactically, an iterator function looks like a normal
function, except that the keyword iterator precedes the return type, and the function body may contain yield

statements. An i-function may take parameters of any type and may yield values of any type, that is, they may take

24

or yield any type that would be legal for a normal function. The code comprising the i-function body is arbitrary;

an i-function may invoke other iterators, including itself (i.e. iterators may be recursive).

Consider the example in Figure 3.4, The purpose of the i-function bigElements is to yield the elements
of an (unsorted) integer array that are greater than the average of all the elements. When bigElements is
invoked, it first makes one pass through the array in order to compute the average. Then it makes a second pass,
yielding each element that is larger than the average. At each yield point, bigElements suspends its execution
while the client processes the element; when the client requests the next element, the i-function will resume after
the yield point, i.e. it will continue onto the next iteration of the for loop. When the for loop terminates, and control
“falls out" the bottom, the i-function also terminates. (An iterator may also terminate by executing a normal

return.) Although this example shows only one yield statement, in general, an i-function may have many.

iterator int bigElements(int * array, int size)
{

float sum = 0.0;

float ave 0.0;

/* first compute the average */
for(int i = 0; i < size; i++)
sum += array[i }1:

ave = sum / size;

/* now vield the big elements */
for(i = 0; i < size; i++)
if(array[1] > ave)
yield array(1 1;
main ()
int A[10 1;
/* Initialize A */
/* Now find big elements. */
iterate (int nextEl = bigElements{ A, 10))
printf£("%d ", nextEl);

A Simple Iterator Example

Figure 3.4

25

An iterate loop comprises the keyword iterate, followed by one or more i-function invocations in parentheses,
followed by a statement which forms the loop body. Each invocation supplies actual arguments to an i-function,
and it declares a variable to receive the yielded values. For example, the following i-loop activates the i-functions

fand g, where the yielded types are int and char, respectively.

iterate(int x = £(); chary = g(); int z = £())
{

}
Note that there are two simultaneous activations of £, one associated with x and one with z.

An i-function may be invoked only within the context of an i-loop. Figure 3.4 also shows a main program
containing an i-loop that uses the bigElements iterator. After initializing the array A, control enters the loop,
and the i-function is activated. When control returns to the loop, nextE1 holds the first value of the sequence.
After the loop body prints that value, control returns to bigElements if itis still active; if bigElements has

terminated, then the loop also terminates, and control flows to the next statement in the program.

3.2.2. Flow of Control

In the example in Figure 3.4, the flow of control through an iterate loop is implicitly defined, and it follows
the rules introduced in CLU [Lisk77]. That is, at loop entry, and at the top of the loop in each iteration, the i-
function is resumed in order to obtain the next value. The number of iterations is determined by the i-function, i.e.
the loop iterates until the i-function decides to terminate. In addition, a single i-function controls the loop. E

provides for several variations on this theme, providing the programmer with more general control flow capabilities.

First, E allows multiple i-functions to be activated in parallel.'® In this case, the default flow of control
resumes all i-functions at the top of the loop; the order of resumption is undefined. The loop terminates when all i-
functions have terminated. If some i-functions have terminated while others are still active, then the loop variable
associated with the terminated i-function continues to retain its last yielded value. In order to allow the program to
determine which i-functions have terminated, E provides a built-in function, empty, which may be applied to any
i-loop variable; empty (v) returns 1 if the i-function activation associated with variable v has terminated, and

0 otherwise. We will see an example shortly.

3.2.2.1. Advance

The default flow of control described above is too restrictive in certain cases. Consider an iterator that is

supposed to merge two sorted streams of values, yielding a single sorted stream. Naturally, we wish to produce the

®This capability is distinct from having several active i-functions due to nesting of i-loops, which is also allowed.

26

sorted streams using iterators, and so the merge i-function is also a client of other i-functions. The default flow of

control is inappropriate for this task. If we simply try

iterate (int vall = streaml(); int val2 = stream2())
{ «.. 1}

then we will march down the streams in lock-step, and the loop body will have to buffer an arbitrary number of
values (up to the entire sequence produced by one of the streams). If we try nesting, then we will repeat the entire

inner i-loop for each element considered by the outer:

iterate (int vall = streaml())
iterate (int val2 = stream2())
{ ...}

Clearly, more flexible control is needed.

The advance statement was introduced in part to meet this need. As an example, consider
advance val2;
where this statement appears within the context of either of the two iterate loops above. The effect of the statement
is to resume the i-function activation associated with val2, in this case, stream2(). After the advance
statement, val2 has its new value. In its general form, advance may have a comma-separated list of variables;
the i-function activation associated with each of the variables is resumed (in an unspecified order). If an advance
statement is executed on any given pass through the body of an i-loop, then no default resumptions are carried out,

i.e. if any i-functions are advanced, then those are the only i-functions advanced for that iteration.

Figure 3.5 shows how the advance statement and the empty function may be used to implement the merge
example. When control enters the i-loop, two i-functions, streaml and stream2, are activated, and the loop
variables, vall and val2, receive their initial values. We first test to see if either i-function has terminated, and
if so, we simply yield the element from the other stream. The default flow of control will then advance the one
active i-function until it is exhausted. If both i-functions are active, then we yield the smaller value and explicitly
advance the i-function from which it came; the other i-function will not advance on that iteration. The loop

terminates when both i-functions have terminated.

3.2.2.2. Break

The merge example shows how the client loop can decide which i-function activation to resume on any given
iteration. So far, though, loop termination has still been determined by the i-functions, i.e. the client iterates until all
i-functions have terminated. Alternatively, a client may decide to break out of an i-loop; normally, this causes

immediate termination of all active i-functions associated with that loop.

A given i-function may sometimes require explicit control over the termination sequence, however. It may,

for example, need to release heap space or to perform other bookkeeping tasks. To handle such cases, we have

27

iterator int merge ()
{
iterate (int vall = streaml():;
int val2 = stream2())
{
if (empty(vall))
yield val2;
else if (empty(val2))
yield vall;
else if (vall < val2)

yield vall;
advance vall;

yield val2;
advance val2;

Using the advance Statement

Figure 3.5

extended the yield statement syntax with an optional termination clause. This clause is a statement which is
executed if, and only if, the client terminates the i-loop while the i-function is suspended at that yield point.? For
example, suppose that an i-function has built some structure which it must deallocate before terminating, and
suppose that the variable p points to the root of the structure. Then in the following example, if the client breaks

after the i-function has yielded x, the (user-defined) cleanUp routine will be called before the i-function

terminates:

yield x : cleanUp(p);

In the absence of this clause, the i-function is terminated automatically.

3.2.3. A Recursive Iferator Example

As a final example, Figure 3.6 modifies the binary tree implementation from the previous section so that it
handles duplicate keys. We have amended the insert routine so that it no longer ignores a duplicate entry; instead,
if it finds a match, it recursively inserts the new entry into the left subtree. Now, since we must be prepared to find

many entries with the same key value, we have rewritten the tree search in Figure 3.6 as an iterator which yields a

YA more general exception handling facility would have been useful here.

28

iterator void * binaryTreeNode::search(float searchKey)
{
ifl this == NULL)
return;

if { searchKey <= nodeKey)
{
if (searchKey == nodeKey)
yield entPtr;

iterate (void * p = leftChild->search(searchKey))
yield p:
}
else

iterate (void * p
yield p;

rightChild->search(searchKey)})

}

void binaryTreeNode::insert(binaryTreeNode* newNode)
{
if (newNode->nodeKey <= this->nodeKey)
if({ leftChild == NULL)
leftChild = newNode:;
else
leftChild->insert (newNode);
else
if (rightChild == NULL)
rightChild = newNode;
else
rightChild->insert (newNode);

Allowing Duplicate Keys

Figure 3.6

sequence of pointers to each of the entities with matching keys. Furthermore, just as the original search routine was
a recursive function, the new search routine is a recursive iterator.” We again ground the recursion by first
checking if this is a null pointer. If so, then the iterator returns without having yielded any values; from the
client’s perspective, the iterate loop terminates immediately, and the loop body is never entered. Assuming that
this is not null, we compare key values. If the search key is less than or equal to the current node’s key, then we
first check to see if the keys are, in fact, equal. If so, then the entry in the current node is yield to the level above.

We then recursively search the left subtree; each entry so obtained is also yielded. If the search key is greater than

2The search routine is, of course, more efficient if coded without recursion. We show it this way to illustrate how recursive iterators may
be used. It also makes for a shorter and more elegant solution.

29

the key in the current node, we simply search the right subtree.

At the top level, the client picks up the return values one-by-one. At any given point in the client loop, there
is a chain of active i-functions corresponding to levels of the tree. We note that the client may break out of the loop
before all duplicate entries have been yielded; this event triggers a cascading termination of all active i-functions.
Although the yield statements in the search iterator do not contain termination clauses (since none are needed), any

such clauses would be executed as described above, beginning with the deepest activation.

3.3. GENERATOR CLASSES

As mentioned in the introduction, one of the problems facing the DBI is that much of the system code for a
DBMS must be written without knowledge of the types of objects that the code will manipulate. Traditionally, a
DBMS had knowledge of a few basic attribute types "wired in." The basic operators and access methods could
operate on any of these types, essentially by switching on the type of the attribute at hand. One obvious problem
with this approach is that the set of basic types is fixed, and therefore the system is difficult to extend. Another
problem is that in order to handle different record types, offset and length information must be passed explicitly to
each routine. In addition, the programmer is responsible for interpreting untyped buffer pages. One of the original
goals of E was to make such mechanical tasks implicit. We were inspired by generators {Lisk77] as providing an

elegant solution to the problem.
3.3.1. Parameters to a Generator Class

3.3.1.1. Class Parameters

A generator is a parameterized type, i.e. one that is defined in terms of one or more unknown (formal) types.
A generator defines an infinite family of related types and provides a natural way of defining container classes. The
classic example is the generic type stack[T 1, which, given any element type T, defines the type of a stack of
T elements. In the case of our binary tree, we can (and will) make it a generic class by introducing two type

parameters: the type of the key and the type of the entity being indexed.

E introduces generators in the form of generator classes.? A generator class may have any number of class
parameters; the formal class names may be used freely within the generator as data member types and as argument

or return types for member functions and iterators. Figure 3.7, for example, shows the E definition of a (bounded)

ACLU also has generator procedures and iterators. Although E does not provide these, we note that the same effect can be achieved, albeit
indirectly. Consider a generator class having no data members and having a public member function, £, such that the retumn andfor argument
types of £ involve class parameters. Then f is effectively a generic function. The reason this approach is indirect is that we must declare "dum-
my" instances of the instantiated class in order to invoke f.

30

generic stack class. Syntactically, a generator class has the form of a regular class, except that the formal

parameters are specified in square brackets following the class name. The parameters themselves have the form of

empty class declarations.”> We shall omit showing the stack member functions, since the only notable feature is

that T is used wherever the name of the element type is needed.

In order to use a generic class, we must first instantiate a specific class by supplying actual arguments to the
generator. For example, assuming we have a (nongeneric) class frame, we can then define a type describing
stacks of frames by:

class frameStack : stack{ frame];

Given this definition, we can now declare and use frameStack instances. For example, the declarations

frameStack S1;
frame £;

specify that S1 isan instance of frameStack and f is an instance of frame. We can then push f onto Si:
Sl.push{ £):

Attempting to push anything buta frame onto S1 will be flagged as a type error at compile time.

3.3.1.2. Constraints on Class Parameters

If a class parameter is specified with an empty body, as in the stack example, then there are no constraints
on the actual type that may be used in an instantiation. We could, for example, define intStacktobe stack|
int 1,eventhough int isnotreally aclass. Asin CLU, E allows the specification of constraints on instantiating
types; constraints are specified by "fleshing out” the parameter class body with member function declarations. Only

classes having member functions with the same names and type signatures can be used to instantiate the generic

class stack [class T { } }
{

int top;
T stk[100 1;
public:
stack();
T pop():

void push(T);
}:

A Generic Stack Class Definition

Figure 3.7

2We will shortly fill out these declarations in order to specify certain constraints on the formal parameters.

31

class.Z? Furthermore, within the generator, these member functions may be invoked on objects of the parameter
type. For example, we mentioned earlier that the binary tree class can be made generic by introducing two type
parameters, one of which is the key type. In order for a key type to be useful, however, we must be able to compare
two key values to determine their ordering. One means of accomplishing this is to constrain the key type:

class binaryTreeNode

[
class keyType
{ public: int compare(keyType*); },

class entityType { }
}i
With this declaration, an actual class may be bound to keyType only if it has a public member function named

compare that takes a keyType pointer (as well as the implicit keyType* parameter this) and returns an

integer. Within the search routine, we can now compare keys as follows:

int cmpVal = searchKey.compare (&nodeKey):
if{ cmpval < 0)
{ ...}
else if { cmpval == 0)
{ ...}
else

{ ...}

Of course, there is an implicit additional requirement that the integer returned by the compare function be less than,
equal to, or greater than zero corresponding to the ordering of the two keys. Such semantic constraints cannot be

expressed within the E type system, however.

3.3.1.3. Function Parameters

One shortcoming of the approach taken in the above example is that it is no longer possible to instantiate
(directly) a tree with floating point keys since float isnota class with a compare routine. While it is a relatively
simple matter to define wrapper classes around the fundamental types, there is also a potentially more serious
disadvantage here. In the definition of a generator class, the names of class parameters are formal names. However,
if a class is constrained to have a certain member function, the function’s name is actual. In the example above, any
class may instantiate keyType provided that it has a member function whose name is literally "compare” and that
is has the appropriate type signature. While this may be useful in some contexts, in others it may be too restrictive.

For example, we may have a preexisting class that does have a comparison routine, but the routine’s name may not

BEor completeness, E also supports constraints specifying data members, although it is not clear how useful such constraints will be.

32

be "compare.” Or, we may have a class that defines several different comparison routines corresponding to different
criteria for ordering instances. Although the name "compare” may be overloaded within the class, the various
overloaded routines must have different type signatures, so only one routine could be used in the instantiation of
keyType in our example. An alternative, more flexible approach is to make the key comparison routine a function

parameter to our binaryTreeNode class.

A function parameter specifies the argument and return types required of any actual function parameter; these
types may be other formal class parameters. Function parameters are especially useful when we would otherwise be
required to pass a function argument with each method invocation. Using a function parameter, we can specify the

comparison routine as a separate parameter 10 the class:

class binaryTreeNode
(
class keyType{ },
class entityTypel 1},
int compare(keyType*, keyType*)

}:

With this class definition, we may now use any type at all to instantiate keyType. If the instantiating type is a

fundamental type, e.g. £loat, we must still write a comparison routine, of course.

If the instantiating type is a class having its own comparison routine(s), the desired routine may be supplied as
the function parameter. In order to match the type signature, note that the implicit first argument to any method of a
class C is the pointer this whose type is C*. Assume that we have a class dataPoint for recording data
associated with some experiment and that we wish to build an index over such points. The key is to be a complex

number taken from the experimental data, where complex is defined as follows:

class complex

{
/* representation... */

public:
int cmpImag(complex*); // compare imaginary parts
int cmpReal(complex*); // compare real parts

i

We may then instantiate a node type in which the keys are ordered by their imaginary parts as follows:

class complexNode
: binaryTreeNode[complex, dataPoint, complex::cmplmag]/

3.3.1.4. Constant Parameters

The last kind of class parameter that E supports is a constant. A constant parametcr may be of any
fundamental type, and within the generator class, it may be used freely as a const. This kind of parameter is
particularly useful in defining array data members whose size depends on the particular instantiation. For example,

33

we may define a generic stack class where the maximum number of elements is a class parameter:

class stack [class T { }, int STKMAX]
{

int top;

T stk[STKMAX 1;

}:

We may then define a stack of one hundred integers as follows:
class intStack : stack([int, 100];

3.3.2. Class Name Scoping

In most respects, E is upward compatible with C++. The one exception is in class name scoping. In C++, itis
legal to define nested classes, but this is "at most a notational convenience since a nested class is not hidden in the
scope of its lexically enclosing class” [Stro86, p.152]. In order to support class parameters, which have no meaning
outside the scope of a generator, we have changed this rule in general. In E, any nested class is hidden within the
scope of its lexically enclosing class. Specifically, if class B is nested within class A, then B is visible only 0 A
and A’s member functions, i.e. A may declare private members of type B,and A’s member functions may declare
local variables of type B. A may not declare public data members of type B, nor may A’s public member
functions have argument or return types involving B. We felt justified in making this exception to upward
compatibility since generators require different scoping rules and since class nesting in C++ has no apparent
benefit.

There is a subtle point involving scoping and generator classes. Consider the following definition:

class gen([class T{ } 1
{
public:
T genFunc () ;
bs

While the formal class T is essentially nested within gen (i.e. T is hidden within the scope of gen), T is also
the return type of the public member function genFunc. This definition is perfectly valid, however, because gen
must be instantiated before it may be used. The instantiated class has a public member function whose return type
is well defined. For example, in

class intGen : gen[int };

the new class intGen has a member function, genFunc, whose return type is int.

3.3.3. Nested Instantiations

In defining a class C, it is normal to use other classes as part of C’s representation. Similarly, in defining a

generator class GC, we often would like to make use of previously defined generators in GC’s representation. We

34

have said that a generator must first be instantiated before it may be used. In the case of generators using other
generators, however, those specific types are rarely known. Our binary tree example is a case in point. We have
shown how to define binaryTreeNode as a generator class, but what about the wrapper class, binaryTree?
Certainly we would like to define a generic binary tree type, but how do we define the type of tree node that it
encapsulates?

E's modified scoping rule for nested classes allows the definition of new types within the context of a class
including definition through instantiation. Furthermore, within the context of a generator class GA, we may
instantiate another generator GB by supplying any or all of GA’s parameters to GB. Then any instantiation of GA
with actual parameters causes a nested instantiation of GB. We can make the binaryTree class a generator as
shown in Figure 3.8. Within the context of binaryTree, a new class btn is instantiated from
binaryTreeNode by passing along the parameters supplied to binaryTree. We will complete this class

definition in the next section.

3.4. DB TYPES AND PERSISTENCE

In the discussion so far, we have described language extensions in E that allow the programmer o process
sequences of values and to define parameterized types. Both features are important for database programming.
However, the data objects available to the program thus far are still volatile objects whose lifetimes are bounded by
a program run. We now introduce the features of E that allow a program to create and use persistent objects and

thus to describe a database and its operations strictly within the language.

class binaryTree
(
class keyTypel{ 1},
class entityType{ },
int compare (keyType*, keyType*)
11
class btn : binaryTreeNode[keyType, entityType, compare];
btn *root;
public:
binaryTree();
entityType * search(keyType):
void insert (keyType, entityType*):

A Generic Binary Tree Class

Figure 3.8

35

3.4.1. Database Types

E mirrors the existing C++ types and type constructors with corresponding database types (db types) and type
constructors. Any type definable in C++ can be analogously defined as a db type. Db types are used to describe the
types of objects in a database, i.e. the database schema. However, not every db type object is necessarily part of a
database; db type objects may also be allocated on the stack or in the heap. (Another way of saying this is that
persistence is orthogonal to db types.) We will shortly convert the binary tree class into a db type.

Let us informally define a db type to be any of the following:

(1) One of the fundamental db types: dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, or dbvoid.
Fundamental db types are fully interchangeable with their non-db counterparts For example, it is legal 10
multiply an int and a dbshort or to assign a dbint to a float.

(2) A dbclass (or dbstruct, or dbunion). Every data member of a dbclass must be of a db type. The argument
and return types of member functions may be either db or nondb types.

(3) A pointer to a db type object. The usual kinds of pointer arithmetic are legal on db pointers, and casting is
allowed between one db pointer type and another. It is not possible to convert a db pointer into a normal
(non-db) pointer, nor into any non-pointer type (e.g. int). It is legal to convert normal pointers into db

pointers, however.

(4) An array of db type objects. As in C or C++, an array name is equivalent to a pointer (o its first element.

3.4.2. Persistent Objects

An fundamental property of a language with persistence is that dbjects in the database may be manipulated
using the same expression syntax as for volatile objects. In order to evaluate such an expression, however, there
must first exist a binding between symbols in the program and objects in the persistent store; such a binding is
informally called a "handle” on the database. Part of what distinguishes one persistent language from another is the

nature of these handles: When are they established, and to what can they attach?

In E, if the declaration of a db type variable specifies that its storage class is persistent, then that variable
survives across all runs of the program (and across crashes). A simple example is a program that counts the number

of times that it has been run:

persistent dbint count = 0;
main() { printf("This program has been run $d times.", count++); }

Here, the integer count is a persistent variable whose initial value is set to 0. Each time the program runs, it

36

prints the current value of count and then increments it Note that there are no explicit calls to read or write
count, and there are no references to any external files; /O is implicit in the program. The great convenience of
language support for persistence is that it allows the programmer (o concentrate on the algorithm at hand rather, than
on the details of moving data between disk and main memory [AtkM83].

3.4.3. Collections

While the above example illustrates the essential concepts of persistence, it is hardly convincing; a single
integer does not a database make! In fact, while the persistent storage class is the root of all persistence in E, by
itself it is insufficient for the needs of database programming. First, it implies that every object in the database must
be named, and second, it implies that creating a new object requires calling the compiler. What is needed in

addition is a facility for managing unbounded collections of dynamically allocated, persistent objects.

Different researchers have taken different approaches to this problem. As we saw in Chapter 2, Pascal/R
introduced relation as a type constructor; tuples could be added or deleted under program control, although the
relations themselves could only be named variables. One implication of this restriction is that nested relations were
not allowed. The other DBPLSs, e.g. Rigel and Plain, took a similar approach with similar restrictions. PS-Algol
made the run-time heap the basis for persistence. Any type of object could be made persistent by simply making it
reachable from the database root pointer. However, the persistent heap has no notion of a collection of objects;
such a collection would have to be coded explicitly as a persistent data structure. E takes an intermediate approach.
Like the DBPLs, a given collection stores a specific type of object, and there are facilities for processing all of the
objects in a collection. Like PS-Algol, there are no restrictions on the type of object that may be persistent (except
that it must be a db type); for example, one may define collections of collections. E does not provide an implicit
persistent heap; the dynamic creation of a persistent object requires the specification of a collection in which to

create the new object.

E introduces collections via the built-in generator class collection[T] where T may be any db type. A
collection([T] is an unordered collection of objects of type S, where Sis T or any public subtype of X
Like any generic class, the programmer must first instantiate a specific type of collection before declaring a
collection object. As with any db type, a given collection object may be volatile or persistent, depending on the
declaration, and it may be declared as a data member of another class. The lifetime of an object within a collection

is bounded by the lifetime of the collection; in particular, if a program creates an object in a persistent collection,

#The initialization to zero occurs only once, i.e. when the object is created.

That is, any type S for which T is a public base type, directly or indirectly. The reason for this restriction is that during a scan overa
collection of T, the client obtains a pointer of type T* to each object in the collection. If an object in the collection were of type S where Sin-
herited T privately, then giving the clienta T* to that object would violate C++'s type rules. For an explanation of public versus private base
classes, see [Stro86].

37

then that object will also be persistent.

3.4.3.1. Creating Objects in a Collection

An extension 10 the syntax of the new operator accommodates the creation of objects in a collection. As an
example, suppose that person is defined as a dbclass and that it has a constructor taking a character string, €.g.
the person’s name. Then the following E code defines a type describing collections of persons, declares an instance

of that type, and creates two people within the collection:

dbclass person { ... };

dbclass City : collection(person 1:

persistent City Madison;

person * pl;

person * p2;

pl in(Madison) new person("Jane Doe");

p2 in{ Madison) near(pl) new person("John Doe");

o

Here, the syntactic extensions are the in and near clauses. In general, the in clause may be followed by any
expression which evaluates to a collection as long as the type following new is the same as or a subtype of the type
of entity in the collection. In this example, we are creating instances of personina collection of persons, but if,

for example, student were a subtype of person, we could also create student instances within this collection.

The near clause on the last line specifies a clustering hint to the underlying storage layer; in this case, the hint
requests that the new person object be created physically near the object referenced by pl. In general, near
may be followed by any pointer-valued expression, and the referenced object need not be of the same type nor in the
same collection as the newly created object. It is up to the implementation of the underlying storage layer to
determine what "near" means, and at worst, the hint will be ignored. In the implementation of the EXODUS
Storage Manager, the search for a nearby location begins on the same disk page if the objects are part of the same

collection, and on the same disk cylinder otherwise.

3.4.3.2. Scanning Collections

The collection generator class has an iterator member function for scanning all of the elements in a collection.
This iterator, scan (), returns a sequence of pointers to the objects in the collection. The following example

processes all of the people in Madison:
iterate (person * p = Madison.scan()){ ... }

Note that even though a collection of T may contain objects of a subtype of T, scans over such collections
always return pointers to type T*. For example, the preceding scan always yields a person*, although the
referenced object might be of a subtype of person. However, if a T member function, f, is invoked through the
returned pointer, the binding of the call will be late or early as £ is virtual or not, respectively. If f is virtual, then
the version of £ associated with the actual type of the object will be called; if £ is not virtual, then T’s version of

38

£ will always be called? Although early binding may be acceptable in some cases, in general, if a
collection[T] is to contain instances of a subtype of T, then T’s member functions (and those of T's
subtypes) should be declared virtual. Of course, if the collection is to contain only T objects, then this discussion

does not apply.

3.4.3.3. Destroying Objects and Collections

The usual delete operator may be used to remove an object from a collection. For example, we can delete
"John Doe" (from our earlier example) with:
delete p2;.
If the object’s type has a destructor, then the destructor will be called first, and then the object will be destroyed.

If a collection is destroyed, the objects that it contains are destroyed also. If the collection contains objects of
type T where T has a destructor, then the destructor will be invoked on each object before the collection is
destroyed. Assume we wish to delete Madison, which is a collection[person]. Conceptually, this

process involves the following steps:

iterate (person * p = Madison.scan{()) { delete p; }
/* now destroy the empty collection...*/

For performance reasons, however, our implementation does not actually destroy the objects individually. Rather,

the entire collection is then destroyed en masse.

The previous remarks concerning collections and virtual functions also apply to destructors. If a
collection[T] is destroyed, then the actual destructor function invoked on each object depends on whether T
has declared its destructor to be virtual or not.

3.4.4. The Binary Tree Example Revisited

Let us now (finally) reimplement our binary tree example as a db type. Figures 3.9, 3.10, and 3.11 replace
Figures 3.1, 3.2, and 3.3, respectively. '

The node class shown in Figure 3.9 has changed from the C++ version of Section 3.1 in the following ways:
The insert routine accepts duplicates, and the search routine is an iterator (as developed in Section 3.2); the key
and entity types are type parameters, and the key comparison routine is a function parameter (as developed in
Section 3.3); and the class itself is a dbclass (as developed in Section 3.4).

*This description simply restates the semantics of C++ virtual functions, as described in Section 3.1.3.

39

dbclass binaryTreeNode
[

dbclass keyType{ },

dbclass entityTypel{ },

int compare (keyType*, keyType*)
]

keyType nodeKey;
entityType *entPtr;
binaryTreeNode *leftChild;
binaryTreeNode *rightChild;

public:
binaryTreeNode(keyType, entityType *):
iterator entityType * search(keyType);
void insert(binaryTreeNode *);

bi

binaryTreeNode: :binaryTreeNode
(keyType insertKey, entityType * insertPtr)
{
nodeKey = insertKey;
entPtr = insertPtr;
leftChild = rightChild = NULL;
}

iterator entityType * binaryTreeNode::search(keyType searchKey) {
int cmp = compare(&searchKey, &nodeKey);
if(cmp <=0) {
if(leftChild != NULL)
iterate (entityType * p = leftChild->search(searchKey))
yield p;
if(cmp == 0)
yield entPtr;
}
else if(rightChild != NULL)
iterate (entityType * p = rightChild->search(searchKey))
yield p;
}

void binaryTreeNode::insert (binaryTreeNode * newNode) {
int cmp = compare(& (newNode->nodeKey), &nodeKey)
if(cmp <= 0)
if(leftChild == NULL)
leftChild = newNode;
else
leftChild->insert (newNode);
else if(rightChild == NULL)
rightChild = newNode;
else
rightChild~>insert (newNode);

The Binary Tree Node Class

Figure 3.9

dbclass binaryTree
{
dbclass keyTypel{ 1},
dbclass entityTypel{ 1},
int compare(keyType*, keyType*)

dbelass btn : binaryTreeNode[keyType, entityType, compare };
dbclass btnSet : collection{ btn];

btnSet allNodes;
btn *root;

public:

binaryTree();

iterator entityType * search(keyType);

void insert(keyType, entityType *);
b

binaryTree: :binaryTree ()
{

root = NULL;
}

iterator entityType * binaryTree::search(keyType searchKey)
{

if(root == NULL)
return;
else
iterate (entityType * p = root->search(searchKey))
yield p;

}

void binaryTree::insert(keyType insertKey, entityType * insertPtr)
(.

btn * newNode;

newNode = in{ allNodes) new btn(insertKey, insertPtr);

if(root == NULL)
root = newNode;
else
root->insert (newNode);

The Binary Tree Class
Figure 3.10

Figure 3.10 shows the binary tree class. In order to define this class, we must first instantiate two new classes
which we then use. The class btn is binaryTreeNode instantiated with the same parameters as
binaryTree, i.c. this is a nested instantiation as described in Section 3.3.3. Next, btnSet is instantiated as a
type of collection containing btn nodes. The binary tree itself is now represented as allNodes, a

collection containing the nodes, and root, a pointer to the root node. On an insert, the new node is allocated in

41

the tree’s collection. Other changes to the binary tree class parallel those made for the node class: the use of type

parameters and the definition of search as an iterator.

Figure 3.11 shows an example using a persistent binary tree index. Like the original main program in Figure
3.3, this one builds an index over students keyed on gpa. Since the students must persist, we first define school
as a collection of students, and we declare a persistent instance, UWmadison, of this type. We then define a

comparison routine for floating point numbers, and we use this routine, along with the types student and dbfloat, to

dbclass student{ ... }7
dbeclass school : collection{ student };
persistent school UWmadison;

- int compare(dbfloat * x, dbfloat * y) {
float cmp = (*x - *y);
if(cmp < 0)

return -1;
else if{ cmp == 0)

return 0;
else

return 1;

}

dbclass gpaIndexType : binaryTree[dbfloat, student, compare }:
persistent gpaIndexType gpalndex;

main () {
student * 387
float gpa;
int cnd;
while ((cmd = getCommand()) != QUIT)

switch (cmd)

{

case NEWSTUDENT:
getNewStudent (&gpa, &s y:
gpalndex.insert(gpa, 8);
break;

case PROCESS:
getGpa (&gpa)’
iterate (student * s = gpalndex.search(gpa))
processStudent (s);
break;

Example Using a Persistent Binary Tree

Figure 3.11

42

instantiate a specific index type. Next we declare a persistent index, gpaIndex. Finally, the main program
parallels the operation of that in Figure 3.3, except that the getNewStudent function is assumed to create the
student in the UwWmadison collection, rather than on the heap. Any students entered during one run of the

program will therefore still be present in later runs.

3.4.5. Implementing a Database Index

The binary tree example that we have developed in this chapter is obviously hinting at the implementation of
“real” database index structures, e.g. B+trees, in which each node contains many keys. In‘ defining such structures,
an essential constraint is that each index node must fit on one disk page and must make maximal use of the space on
that page. If we define the node type as a generic class, then clearly, the number of keys that will fit on a page
varies with the specific key type. One approach is to define the generator with a constant parameter, as we did in the
stack example of Section 3.3.1.4. However, this approach forces the user of the class to compute the maximal

number of keys for each instantiation.

An easier approach is to make use of the fact that within a generator, the expression sizeof (T), where T
is a type parameter, is treated as a constant and may be used in calculating array bounds. For example, assume that

PAGESIZE is a constant giving the size of a disk page in bytes. (This could be a class parameter, but it is more

dbclass BTreelLeaf
{
dbclass keyTypel 1},
dbclass entityTypel 1},
int compare{ keyType*, keyType*)

/* auxiliary definitions */

dbstruct kpp {
keyType keyVal;
entityType * entPtr;
bi
#define MAXSPACE (PAGESIZE - sizeof (dbint))
#define MAXENTRIES (MAXSPACE / sizeof (kpp))

/* data members */

dbint nKeys:

kpp kpPairs[MAXENTRIES];
public:

}:
A Generic DbClass for B+Tree Leaf Nodes

Figure 3.12

43

likely to be a system-wide constant.) In Figure 3.12, we have outlined the definition of a (simplified) generic class
describing leaf nodes in a B+tree; each node is to contain an array of key-pointer pairs where the number of array
elements is the maximum that will fit on one page. Like the binary tree example, this class is parameterized by the
key and entity types and by the key comparison routine. For convenience, we have defined an auxiliary type, kpp,
for key-pointer pairs; the tree node is an array of these structures. Note that since kpp is defined in terms of class
parameters, it is also a generic type, and it is implicitly instantiated with each instantiation of BTreeLeaf. We
then define two macros for convenience. The amount of usable space on a page is the size of the page minus any
overhead for control information; in this simple example, the only control data is an integer giving the current
number of entries in the array. Finally, the maximum number of array entries is the amount of available space
divided by the size of an entry, i.e. by sizeof(kpp). The data member, kpPairs, is then defined to be an

array whose dimension is this maximum.

3.5. TWO LANGUAGE DESIGN ISSUES

This chapter has presented the major features of E within the framework of developing a specific example.
Let us now explain the rationale behind two major language design issues. In Chapter 8, we shall consider these

and other design decisions in retrospect and give some suggestions for possible improvements.

3.5.1. Orthogonality

One legitimate question is why we chose to give E a "two-headed” type system, rather than simply to
introduce persistence as an orthogonal property of all types. Orthogonality is, after all, often cited as a desirable
feature of a persistent language [AtkM83, AtkM87]. The reasons for E's use of db types stem both from philosophy
as well as from implementation concerns. First, E was originally conceived as a language in which to write
database management systems. In such systems, there is a clear distinction between those objects that persist and
those that are volatile. For example, lock tables and transaction descriptors are definitely not persistent?, while
objects in the database definitely are. The "db" attribute of a type distinguishes between objects that may be
persistent and those that are definitely volatile.

The importance of separating normal types from db types also has a strong grounding in performance
con