A THEOREM ON FACTORING POLYNOMIALS
OVER FINITE FIELDS

by
Victor Shoup
Computer Sciences Technical Report #866

August 1989

A Theorem on Factoring Polynomials over
Finite Fields

Victor Shoup
Computer Sciences Department

University of Wisconsin
Madison, WI 53706

August 4, 1989

Let p be a prime number, and let S(p— 1) denote the largest prime divisor
of p— 1. In this note, we prove the following theorem.

Theorem 1 Assuming the Estended Riemann Hypothesis (ERH), we can

deterministically factor a polynomial of degree n over F, in time S(p —
1)!/2(nlog p)°®).

The algorithm we describe is a refinement of algorithms given by von
zur Gathen [9] and Rényai [7]. Assuming the ERH, these algorithms run in
time S(p—1)(nlog p)°™"), thus our algorithm represents an improvement of a
factor of S(p—1)*/2. If the ERH is true, then in terms of the dependence on p,
the bound on the running time of our algorithm is better than the worst-case
bounds on the running times of current algorithms in the literature.

The algorithms of von zur Gathen and Ronyai essentially reduce the prob-

lem of factoring a polynomial of degree n over F, to the following three
problems in time (n log p)°):

(1) computing the prime factorization of p — 1;
(2) computing g-th roots in F, for primes ¢ | p — 1;

(3) computing the roots of polynomials g € F,[X], where

1

(a) degg <m,
(b) g is a divisor of X? — a (a € F,, q a prime divisor of p — 1), and

(c) we are given a ¢-th root of a.

Both of these algorithms solve problem (2) using a variant of the root
finding algorithm of Adleman, Manders and Miller [1]. Using well-known
discrete logarithm techniques, this algorithm can be implemented so as to run
in time ¢'/%(log p)°(). These algorithms solve problem (3) by simple brute-
force search through all of the ¢ roots of X? — a, requiring time g(n log p)°™)
in the worst case.

In the algorithm that we describe here, we eliminate the need to solve
problems of type (2) (at least for primes ¢ > n), and we employ a variant of
the technique used in the Pollard-Strassen integer factoring algorithm [6, 8]
to solve problem (3) in time ¢'/2(n log p)°().

We now describe our algorithm.

Let

p—l=gq - q

be the prime factorization of p — 1. This factorization can certainly be ob-
tained deterministically in within the stated time bound by means of the
Pollard-Strassen factoring algorithm.

Let f € F,[X] be the polynomial we wish to factor. It will suffice to
demonstrate how to find a nontrivial divisor of f. By making use of well-
known deterministic polynomial time reductions, we can assume that

f = (X — a])(.X - az)(X _an)a

where the a;’s are disinct elements of F,, [4, 5].
Let R = F,[X]/(f). Let £ = X mod f be the image of z in R. By the
Chinese Remainder Theorem, the map that takes y € R to

(y mod (X — a1),...,y mod (X —a,)) € PF,
=1

is an F,-algebra isomorphism. In the discussion that follows, we shall simply
identify R and @; F, without explicitly mentioning this isomorphism. Under
this correspondence, we have z = (ai,...,a,). Elements in F, C R are of
the form (a, ..., a) (all components equal). To find a nontrivial factor of f, it

2

will suffice to find an element u € R of the form (uy, ..., u,) where some, but
not all, of the u;’s are zero; viewing u now as a polynomial over F,, gcd(f, u)
is a nontrivial divisor of f. Let’s call such an element u a “splitter.”

Let a be an element in F}. Then by group theory, a can be expressed

uniquely as
a=aMa®...q0)

where a9 is an element in F; of order dividing q;". In fact, given the fac-
torization of p — 1, this representation of a is efficiently computable by the
formula a) = o P-0/157 .

Now, for 7 = 1,...,r, w(p"l)/q;’ = (agj),...,a%j)). Since, the a;’s are all
different, there must be some j = 1,...,r such that y = ML ¢ F, We
can easily compute such a j along with the corresponding y.

Let’s fix ¢ = ¢j,e¢ = e;. We have y = (y1,...,¥n), where the y;’s are
elements in F of order dividing ¢°, not all of which are the same. Since
y?° = 1, we can easily compute the least ¢ (1 <t < e) such that a = y? € F,.
Let z = y?", which we surely computed as a biproduct in computing a. Note
that z = (21,...,2,), where the z;’s are ¢-th roots of a, not all the same. It
will suffice to discover just one of the z;’s, since z — z; is a splitter.

To find a component of z, we reduce the problem of factoring f to yet
another factoring problem. Using linear algebra, in time (nlog p)°(!) we can
compute the least degree monic polynomial ¢ € F,[X] such that g(z) = 0.
One can easily prove that g is of the form

g= (X =) (X~ 2L),

m

where {#{,...,2],} is the set of distinct elements among 21,...,2,. So we
have now reduced our problem to finding a root of g.

To solve this problem, we first find a ¢-th root of a in F,. If ¢ | m, then
we can use the algorithm of Adleman, Manders and Miller to find a g¢-th
root of a in time (nlogp)®™). Otherwise, we can find a g¢-th root of a in
time (nlog p)®®) as follows. Suppose that the constant term of ¢ is b, and
the multiplicative inverse of m mod ¢° is m (which we can compute in time
(log p)°M)). Then we claim that ((—1)™b)™ is a g-th root of a. To see this,
note that we can write g = (X — §1a) - -+ (X — &na), where « is a ¢-th root
of a and the ¢;’s are g-th roots of unity. Therefore, the constant term of g is
(=1)™¢'a™, where €' is a ¢-th root of unity. Since « has order dividing ¢°,
we have ((—1)"b)™ = (¢')™«, which is another ¢-th root of a.

3

So we have reduced our problem to finding a root of g, where g divides
X9 —a, and where we already know one ¢-th root of a, call it . We can solve
this problem in time ¢*/*(n log p)o(l) using the following procedure, which is
a variation of the Pollard-Strassen integer factoring technique.

We shall require a primitive g-th root of unity. The work performed so
far may have already yielded such an element, but if not, under the assump-
tion of the ERH, with Ankeny’s theorem we can obtain in time (log p)°®") a
single primitive g-th root of unity, call it ¢ [3]. Let S = F,[X]/(g), and let

= X modg € S be the image of X in S. Let s = [¢'/2|. Consider the
polynomials

hi(X) = (X = €a)(X ~ £Ha). . (X —¢H6Da) (1=0,...5 - 1).

If we could compute all of the k;’s, then we could examine them one at
a time until we found one for which gcd(g,h;) # 1. If we succeeded
in finding such an h;, then we could search for a root of ¢ in the set
{€%a, & q, ..., 54~} (which has s elements); otherwise, we could
search in the set {£” o, €7 q,...,£97 a} (which has < 2¢'/% — 1 elements).

It will suffice to compute the h;’s mod g. To do this, we first compute
the polynomial A(X) = (X — 1)(X —§€)--- (X — €1) € F,[X]. Using the
FFT, this takes time s(log s)?(") [2]. But note that

BY) = (= £%0) - (A - £+

= (€90 (Mea—1)--- (Vea —)

= (£"a)*h(A/E").
So to compute the k;’s mod g, it suffices to evaluate the polynomial h(X) at
s points in S, which can be done using the FFT with s(logs)°(") additions,

subtractions, and multiplications in S [2], each of which can be performed in
time (n log p)°M).

References
[1] L. Adleman, K. Manders, and G. Miller. On taking roots in finite fields.

In 18th Annual Symposium on Foundations of Computer Science, pages
175-178, 1977.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, 1974.

[3] N. C. Ankeny. The least quadratic nonresidue. Ann. of Math., 55:65-72,
1952.

[4] E. R. Berlekamp. Factoring polynomials over large finite fields. Math.
Comp., 24(111):713-735, 1970.

[5] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading,
1983.

[6] J. Pollard. Theorems on factorization and primality testing. Proc. Cam-
bridge Phil. Soc., 76:521-528, 1974.

[7] L. Rényai. Factoring polynomials modulo special primes. To appear,
Combinatorica, 1988.

[8] V. Strassen. Einige Resultate {iber Berechnungskomplexitat. Jahresber.
Deutsch. Math.-Verein, 78:1-8, 1976.

[9] J. von zur Gathen. Factoring polynomials and primitive elements for
special primes. Theoret. Comput. Sci., 52:77-89, 1987.

