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Abstract

In recent years, many probabilistic algorithms (i.e., algorithms that can toss
coins) that run in polynomial time have been discovered for problems with no
known deterministic polynomial time algorithms. Perhaps the most famous
example is the problem of testing large (say, 100 digit) numbers for primal-
ity. Even for problems which are known to have deterministic polynomial
time algorithms, these algorithms are often not as fast as some probabilistic
algorithms for the same problem.

Even though probabilistic algorithms are useful in practice, we would like
to know, for both theoretical and practical reasons, if randomization is really
necessary to obtain the most efficient algorithms for certain problems. That
is, we would like to know for which problems there is an inherent gap between
the deterministic and probabilistic complexities of these problems.

In this research, we consider two problems of a number theoretic nature:
factoring polynomials over finite fields and constructing irreducible polyno-
mials of specified degree over finite fields. We present new results that narrow
the gap between the known deterministic and probabilistic complexities of
these problems. One of our results is a deterministic polynomial time reduc-
tion from the latter problem to the former, giving rise to a deterministic algo-
rithm for constructing irreducible polynomials that runs in polynomial time
for fields of small characteristic. Another of our results is a new deterministic
factoring algorithm whose worst-case running time is asymptotically faster
than that of previously known deterministic algorithms for this problem. We
also analyze the average-case running time of our algorithm (averaging over
inputs), proving that it is just about as fast as the expected running time
(averaging over coin tosses) of some of the fastest probabilistic algorithms.
In particular, the average-case running time of our algorithm is polynomial.
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Chapter 1

Introduction

The results in this thesis address the issue of the role of randomness in com-
putation. There are many problems for which the best known deterministic
algorithms are significantly slower than probabilistic algorithms for these
problems; in some cases, this can mean the difference between an exponen-
tial time algorithm and a polynomial time algorithm. The question then
arises: is randomness necessary in efficient algorithms for these problems?
Instead of approaching this question from an abstract, complexity theoretic
point of view, we approach it from a fairly concrete point of view: we study
specific problems, examining the extent to which randomness can be avoided
in efficient algorithms for their solution.

We study two computational problems of an algebraic nature and present
results that narrow the gap between the known probabilistic and determin-
istic complexities of these problems. The problems studied are two funda-
mental problems in the theory of finite fields:

(1) factoring polynomials over a finite field, and

(2) constructing an irreducible polynomial of given degree over a finite field.

For the first problem, which is considered in Chapter 2, we present a new
deterministic algorithm that is asymptotically faster than previously known
deterministic algorithms for this problem. We also analyze the average-case
complexity of our algorithm (assuming the polynomial to be factored is cho-
sen at random from a uniform distribution) and prove that the average-case
running time is polynomial. The average-case behavior of deterministic al-
gorithms for this problem has not previously been studied.
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For the second problem, considered in Chapter 3, we give the first deter-
ministic algorithm for this problem that runs in polynomial time for finite
fields of small characteristic. In fact, we prove the stronger result that the
second problem can be reduced to the first problem deterministically in poly-
nomial time, exhibiting a new connection between these two problems. We
also show that for fields of small characteristic, this problem has a fast par-
allel algorithm (i.e., it is in the complexity class NC).

1.1 Probabilistic vs. Deterministic Algo-
rithms

A probabilistic algorithm is simply an algorithm that is allowed to use random
numbers. For such an algorithm, on a given input both the output and
running time of the algorithm are random variables. For all probabilistic
algorithms considered in this thesis, the output is guaranteed to be correct
on all inputs. Furthermore, when we state the running time of a probabilistic
algorithm, we are really stating the expected value of its running time.

Before proceeding any further, it is appropriate to address the question
of why the deterministic complexity of factoring polynomials and finding ir-
reducible polynomials should be studied at all, given that there are perfectly
good probabilistic algorithms for their solution. Even though these proba-
bilistic algorithms are quite adequate in practice, there are still compelling
theoretical reasons to try to narrow the gap between the deterministic and
probabilistic complexities of these problems.

First, it is an unresolved question as to whether the probabilistic model
of computation is in fact more powerful than the traditional, deterministic
model of computation. A line of research that examines this question as
applied to specific problems seems bound to be more fruitful than a more
general, abstract complexity-theoretic approach.

Second, the theory underlying probabilistic algorithms is adequate only to
explain the behavior of a very idealized type of algorithm, and is not adequate
to explain the behavior of probabilistic algorithms as they are implemented in
practice. In theory, a probabilistic algorithm requires a source of independent
random numbers; that is, the analysis of the algorithm assumes such a source.
In practice, such a source is not available, and a deterministically computed



sequence of “pseudorandom” numbers is used in actual implementations of
the algorithm. In spite of this, these deterministic implementations exhibit
behavior similar to that which would be expected had a source of independent
random numbers been used.

Third, even assuming a source of independent random numbers is avail-
able, a probabilistic algorithm suffers from a lack of a guaranteed running
time bound (we may be only able to bound its expected running time).

1.2 Background and Notation

A certain amount of knowledge of algebra and computation theory is pre-
sumed on the part of the reader. From algebra, the reader should be familiar
with the definitions and basic properties of groups, rings, and fields (see,
e.g., [41]). A knowledge of basic field theory—field extensions, norms and
traces, Galois theory, finite fields—will be most helpful. For a comprehensive
treatment of the theory of finite fields, see the book by Lidl and Niederreiter
[30]. From the theory of computation, the reader should be familiar with the
notions of computational complexity and polynomial time algorithms (see,
e.g., [2]).

Although this thesis does not attempt to be self-contained, in the remain-
der of this section we collect in one place some basic facts from algebra and
computation theory that are extensively used throughout this thesis, but that
may not be familiar to the reader. But first, some notation. The expression
log z denotes the logarithm to the base 2 of z, and In z denotes the natural
logarithm of z. Throughout this thesis, an expression of the form z¢ denotes
a fixed but unspecified polynomial in logz. This is somewhat nonstandard
terminology, and if the reader prefers, he/she can interpret z¢ in the more
traditional way as z°(!) without harm.

Algebraic Background

We shall now give a brief synopsis of some of the basic algebraic facts we will
need. For proofs of the facts stated below, see [30].

Let R be a commutative ring with unity. Then R* denotes the multi-
plicative group of units in R, and R[X] denotes the ring of polynomials in
one variable with coefficients in R.



Field Extensions

Let F' be a field (finite or infinite). Then a polynomial in F[X] is called
irreducible if it cannot be written as the product of two polynomials of lower
degree.

Suppose that F' is a subfield of a larger field K. Then K is called a field
extension of F. The degree of K over F, written [K : F, is the dimension of
K as a vector space over F. If E is a subfield of K that itself contains I as
a subfield, then FE is called an intermediate field between F' and K, and we
will sometimes call K D E D F a tower of fields.

Lemma 1.1. Let K D E D F be a tower of fields. Then we have
[K:F)=|K:E|E:F].

Now let K be a field extension of F, and let @ € K. Then F(a) denotes
the smallest subfield of K that contains all of the elements in F' along with
the element a. More generally, for ay,...,a, € K, F(a,...,a,) denotes
the smallest subfield of K that contains F' and a,...,a,. The degree of «
over F' is defined to be [F(a) : F]. In particular, @ € F if and only if the
degree of a over F is 1. The element « is called algebraic over F if it is a
zero of some polynomial over F'.

Lemma 1.2. Let K be a field extension of F with a € K algebraic over F.

(1) F(a) = F[X]/(f), where f is a uniquely determined monic irreducible
polynomial in F[X] with a zero at c.

(2) f is the monic polynomial of least degree with a zero at a; moreover, a
is a zero of a polynomial g € F[X] if and only if g is divisible by f.

(3) If f has degree n, then 1,a,...,a™ ! is a basis of F(a) over F. We
have [F(a) : F| = n and each element of F(a) can be uniquely expressed
as ap+ aya+ -+ + an_10™, where a; € F.

The polynomial f specified in this lemma is called the minimum polyno-
mial of & over F'. It plays a crucial role in our work.

In the situation above, we were given an element in an extension field
of F', and then constructed an irreducible polynomial over F' with a zero
at a. We can turn this situation around. Suppose that we have a field F



and a monic irreducible polynomial f over F. Then we can construct the
field K = F[X]/(f). We can view K as an extension of F in a natural way,
embedding F' in K via the map a — a mod f, and in so doing we see that
K = F(a) where a is the image of X mod f in K. Also note that « is a
root of f.

We will make some use of the language of Galois theory. Again, let K
be a field extension over F. An automorphism ¢ on K (i.e., an isomorphism
from K onto itself) is said to fiz F' if a” = a for all @ € F' (we use superscript
notation for application of automorphisms). It is easy to verify that the
collection of automorphisms on K that fix F' is a group with the group

operation being function composition. This group is called the Galois group
of K over F.

Finite Fields

A finite field F' is simply a field with a finite number of elements. One can
show that F' contains Z,, the ring of integers modulo a prime p, as a subfield.
In this situation, the prime p is uniquely determined by F' and is called the
characteristic of F.

Lemma 1.3. Let F be a finite field of characteristic p.
(1) F contains p* elements, where n = [F : Z,).

(2) The multiplicative group of units F* is cyclic and contains p™ — 1 ele-
ments.

(3) Any other finite field with p™ elements is isomorphic to F'.

One can also show that for every prime p and every positive integer n
there is a finite field with p” elements. By the previous lemma, this field is
unique up to isomorphism, and we denote it by F,n. The finite field Fp» can
be represented concretely as F,[X]/(f) where f is any irreducible polynomial
of degree n over F,. For fixed p, it is convenient to think of all of the fields
F,» as lying in a single large field.

Now consider an arbitrary finite field F,;, and let m be a positive inte-
ger. One can show that Fym contains F, as a subfield. Let ¢ be the map
on Fym given by a + af. o is called the Frobenius map. The elements
o,0%,...,a°"" are called the conjugates of o (they may not be distinct).



Let T be the map on Fym given by a — a+a” +--- + o' T is called
the trace from Fym down to F,.

Lemma 1.4. Assume the notation of the previous paragraph. Let o, €
Fom.
(1) [Fgm : Fy] = m. The intermediate fields between Fy and Fym are
precisely Foa for d dividing m.

(2) o is an automorphism on Fym that fives Fy; moreover, the Galois group
of Fgm over Fy is cyclic of order m with generator o.

3) o € F, if and only if a° = a; moreover, the degree d of o over F, is
g g

the least d such that o°" = a, and the minimum polynomial of a over
F, is (X —a)(X —a°)--- (X =" 7).

(4) T is an Fy-linear map from Fym onto F.
(5) [Fo(e, B) : Fy] = lem([Fy(a) : Fy]; [Fo(B) : F]).
(6) The polynomial X" — X € Fy[X] is equal to the product of all of the

monic irreductble polynomials over F, whose degree divides m.

We will make use of the Chinese Remainder Theorem for polynomials,
which we can formulate as follows.

Lemma 1.5. (Chinese Remainder Theorem) Let f1,..., f, be distinct
monic irreducible polynomials over Fy, and let g1, ..., g, be arbitrary polyno-
mials over F,. Then the system of congruences h = g; (mod f;), ¢ =1,...,r

has a unique solution h modulo fy--- f.. Moreover,

Fo[X)/(fr-- fr) 2 F[X]/ () @ --- @ F[X]/(f:),

where gmod fy--- f, — (gmod fi,...,g mod f,) establishes the isomor-
phism.

Residues and Characters

Let F, be a finite field. Let d divide ¢ — 1, the order of the group F;. Then
a € F; is called a d-th residue if there exists B € F; such that B = a,



and is called a d-th nonresidue otherwise. Of particular interest is the case
where ¢ is odd and d = 2, in which case we speak of quadratic residues and
nonresidues.

A multiplicative character on F, is a map x from F} into the unit circle
in the complex plane that satisfies x(af) = x(a)x(f) for all o, B € F;. It it
easy to verify that x(a) is a (¢ — 1)-th root of unity. The trivial character
¢ is defined by the relation () = 1 for all & € F;. We will usually extend
the domain of a character to all of F,. If x # ¢, we do this by defining
x(0) = 0. For ¢, we define (0) = 1. The characters on F, form a group with
identity e and multiplication of characters defined by (x - ¥)(c) = x(a)¥(a)
for a € F. In fact, the group of characters is cychc of order ¢ —1. The order
d of a character x is the least d such that x? = . For odd ¢, we call the
character of order 2 the quadratic character. The quadratic character takes
on one of the values 0, 41.

Lemma 1.6. Let d|q— 1 and let x be a character of order d.

(1) o € F; is a d-th nonresidue if and only if 0= V/4 L 1 4f and only if
x(a) #1.

(2) For o € F,, the equation X* = a has N solutions, where N =
ZZ_O X ( )

Computation Theory Background

The running time of algorithms discussed in this thesis are often expressed in
terms of F,-operations, by which we mean one of the arithmetic operations
(+,—,*,+) in the finite field F, where p is a prime number. We gather
together in one place the relevant facts about the asymptotic complexity of
performing polynomial arithmetic.

Lemma 1.7. Let R be a commutative ring with unity, and let F be a field.
Let L(n) = lognloglogn.

(1) Multiplication of two polynomials in R[X] of degree < n can be per-
formed using O(nL(n)) operations (+,—, x only) in R.

(2) Let oq,...,0a, € R. Then the coefficients of (X — ay)--- (X —an) €
R[X] can be computed using O(nL(n)(logn)) operations (+,—, x only)
in R.



(3)

(4)

(5)

(6)

(7)

Let f and g be polynomials in R[X| of degree < n and assume that the
leading coefficient of g is a unit in R. Then f mod g can be computed
using O(nL(n)) operations in R.

Let f,q1,...,g:c be polynomials in R[X] such that deg f < n, deg g, +
.o+ +deggr < n, and the leading coefficients of the g;’s are units in R.
Then f mod g¢1,...,f mod gx can be computed using O(nL(n)(logn))
operations in R.

Let f be a polynomial in R[X] of degree < n. Then f can be evaluated
at the n points ay,...,a, € R using O(nL(n)(logn)) operations in R.

Let f and g be polynomials in F[X] of degree < n. Then the greatest
common divisor d of f and g can be computed using O(nL(n)(logn))
operations in F. Moreover, polynomials a,b € F[X] of degree O(n)
satisfying af + bg = d can be computed in the same time bound.

Let o € R. Then for any integer m > 0, ™ can be computed using
O(log m) multiplications in R.

(1) is proved in Cantor and Kaltofen [14]. We note that the results of
Schénhage [37] would actually be sufficient for our purposes. (2) follows from
(1) by a divide and conquer method (see [9, p. 100]). (3) follows from (1) by
a Newton iteration scheme (see [9, p. 95]). (4) follows from (3) by a divide
and conquer method (see [9, p. 100]). (5) follows from (4) by computing
fmod (X — ay),...,f mod (X — a,). (6) follows from (1) by an algorithm
described in [2, pp. 303-308]. (7) is proved using a simple repeated squaring
algorithm.



Chapter 2

Factoring Polynomials over
Finite Fields

2.1 Introduction

In this chapter, we consider the problem of factoring univariate polynomials
over finite fields. This problem arises in many applications, including the
construction of error correcting codes [7], the computation of discrete loga-
rithms in finite fields [32], the factorization of multivariate polynomials over
finite fields [46], and the factorization of polynomials over the integers [24,
pp- 431-434].

Consider the problem of factoring a polynomial of degree n in F,[X]
where p is prime. There are several deterministic algorithms for this problem
whose running time is polynomial for small p, more specifically, polynomial
in n and p. One of the asymptotically fastest deterministic algorithms is
based on a method of Berlekamp [8] as refined by von zur Gathen [45].
The Berlekamp-von zur Gathen algorithm requires O(M(n) + pn®*t¢) F,-
operations, where M(n) is the number of F,-operations required to multiply
two n by n matrices. Currently, the best known upper-bound on M(n) is
approximately O(n24) [17].

There are also many probabilistic algorithms for this problem whose ez-
pected running time is polynomial, i.e. polynomial in n and log p. One of the
asymptotically fastest probabilistic algorithms is due to Ben-Or [6], which
uses O((log p)n**<) F,-operations. The running time of a different proba-



bilistic algorithm due to Cantor and Zassenhaus [15] is also O((log p)n?**)
F,-operations. We should also mention that if logp is large with respect
to n, another probabilistic algorithm of Cantor and Zassenhaus, which uses
O(M(n) + (log p)n'te) F,-operations, might be preferable to Ben-Or’s.

This state of affairs suggests that there may be a significant gap between
the deterministic and probabilistic complexity of this problem. Indeed, the
running time of Ben-Or’s probabilistic algorithm improves upon the running
time of the Berlekamp~von zur Gathen deterministic algorithm with respect
to both p and n. With respect to p, this improvement is exponential (logp
vs. p), and it gives us an algorithm that runs in polynomial time for large p.
With respect to n, this improvement is only polynomial (n?*¢ vs. n?4), but
it could be substantial in cases where p is very small (e.g., p = 2) and n is
very large.

We will give evidence that this gap is not quite so large. We present a
new deterministic algorithm for factoring polynomials of degree n in F,[X],
and prove the following results about its running time (expressed in terms of
F,-operations):

(1) The worst-case running time is O((log p)n?* + p'/?(log p)?n®/2+<).

(2) The fraction of polynomials of degree n over F, for which our algorithm
fails to halt in time O((log p)n?*c + (log p)®n'*¢) is O((logn-log p)*/p).

(3) The average-case running time (assuming the input is drawn from a
uniform distribution on all monic polynomials of degree n over F,) is

O((log p)n**).

Result (1) is significant for two reasons. First, if p is very small (which
is in fact the case in applications such as constructing error correcting codes
and factoring polynomials over the integers), the dependence on n in the
running time becomes the dominant factor. The Berlekamp-von zur Gathen
algorithm requires the triangularization of an n by n matrix, leading to the
M(n) term in the running time. Ben-Or’s algorithm avoids the need to do
this linear algebra by using randomization. Qur algorithm also avoids the
need to do any linear algebra, but without resorting to randomization.

Second, if p is very large, the dependence on p in the running time becomes
the dominant factor. The Berlekamp-von zur Gathen algorithm requires
a deterministic search through potentially all of F,. Ben-Or’s algorithm
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replaces this brute-force search with a fast random search. Our algorithm
performs a deterministic search, but we prove that the length of this search
is bounded by p'/?(logp). The dependence on p in our algorithm, though
exponentially worse than that of Ben-Or’s, is still significantly better than
that of the Berlekamp-von zur Gathen algorithm.

Result (2) shows that our algorithm runs in polynomial time for all but
at most an exponentially small fraction of polynomials of degree n over F,.
One could conjecture that our algorithm in fact runs in polynomial time for
all inputs, but proving this appears to be very hard; our result at least gives
some quantitative evidence in support of such a conjecture.

Result (3) appears to be the first analysis of the average-case complexity of
an algorithm for factoring polynomials over finite fields. Not only does it show
that the problem of factoring polynomials has a polynomial time average-case
complexity, but it also shows that the expected running time of Ben-Or’s
probabilistic algorithm (averaging over coin tosses) and the expected running
time of our deterministic algorithm (averaging over inputs) are roughly the
same (to within a factor of (logn)°M).

Our algorithm is fairly simple, and the space requirement of our algorithm
is approximately that needed for O(n®*¢) field elements. The analysis of
the dependence on n in the running time of our algorithm relies on a new
application of fast algorithms for multiplying polynomials over a ring. The
worst-case and average-case analysis of the dependence on p in the running
time of our algorithm makes use of estimates of the number of solutions to
equations over finite fields; similar techniques have been previously used in
the analysis of various probabilistic algorithms [4, 5, 6].

We also mention another deterministic factoring algorithm (conveyed to
the author by Lenstra [29]) that uses a “baby-step giant-step” method to ob-
tain a p'/2. (nlog p)°®*) running time bound; however, the algorithm requires
time and space p!/2-(n log p)°() even in the best case. Since this algorithm is
apparently not accessible in the literature, we briefly describe it in the next
section.

The rest of this chapter is organized as follows. In Section 2.2, we give
a brief overview of some well-known (and some not so well-known) factoring
methods. In Section 2.3, we describe our new factoring algorithm, and ana-
lyze its worst-case running time. In Section 2.4, we analyze the average-case
complexity of our new factoring algorithm. Finally, in Section 2.5, we close
with some open questions.
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2.2 A Brief Overview of Factoring Methods

In this section, we briefly review some of the key ideas found in algorithms
for factoring polynomials over F,. For more complete surveys of this area,
see [30, Chapter 4] and also [28]. The notation and terminology introduced
in this section will be used in the remaining sections of this chapter.

Let f € F,[X] be a monic polynomial of degree n that we wish to fac-
tor. As a first step in factoring f, many algorithms perform what is called
“distinct degree factorization” [13, 15]. That is, we construct polynomi-
als fM), ..., f( where f@ (1 < d < n) is the product of all the distinct
monic irreducible polynomials of degree d that divide f. Using algorithms
described in [13] and [15], distinct degree factorization can be performed us-
ing O((log p)n?*€) F,-operations. These algorithms make use of the fact that
X7 — X is the product of all monic irreducible polynomials whose degree di-
vides d. One computes h = X? — X mod f, and then f!) = gecd(f,h). After
removing all linear factors from f (by repeatedly dividing f by gcd(f, k) as
necessary), we compute h = X?° — X mod f, and then f® = ged(f,h). We
can proceed in this fashion to obtain f®, ..., f(®). For any d, 1 < d < n, this
procedure not only gives us f(?), but it also gives us the number of irreducible
factors of f(@ (which is just deg (% /d).

It is possible that each (%) is itself irreducible, in which case we are done;
however, in the general case, some (¥ will require further factorization.

Let 1 < d < n be fixed and let ¢ = f(¥. We want to factor g. Suppose ¢ =
g1+ gk, where the g;’s are distinct monic irreducible polynomials of degree
d. We can assume that k > 1. Let m = degg = kd. Also, let R = F,[X]/(9g)
and z = X mod g € R. Finally, let 6; be the natural homomorphism from
the F,-algebra R onto the extension field F,[X]/(g;) of F',. By the Chinese
Remainder Theorem, the map which takes & € R to (61(),...,0k(a)) is an
isomorphism of the F,-algebras R and F,[X]/(g1) ®--- ® F,p[X]/(gx)-

Following Camion [13], the Berlekamp subalgebra B of R is defined by
B ={a € R:0(a) € Fyforeachi = 1,...,k}. Note that the Chinese
Remainder Theorem gives an isomorphism between B and F, & --- @ F,.
Also following Camion, we call a subset S C B a separating set if for any
1 <1 < j <k there exists s € S such that 6;(s) # 0;(s).

All of the efficient deterministic algorithms for factoring over F,, involve
the computation of a small separating set. The reason we want a separating
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set is the following. To obtain a complete factorization of g, for each pair
1 <1< j <k, it is sufficient to find a factor of g that “separates” g; and g;—
i.e., is divisible by exactly one of g; or g;. To do this, it suffices to find « € R
such that exactly one of 6;(a) and 8;(a) is zero. For such an «, gcd(g, @)
will separate g; and g;, since @ = 0 (mod g¢;) or a = 0 (mod g;), but not
both. Given a separating set S, we know that for some s € S, 6;(s) = a and
0;(s) = b, where a and b are distinct elements of F',,. For some é € F;, which
we can find by trying 6 = 0,1,2, etc., we will have a + 6 =0 or b+ 6 = 0,
but not both. For this choice of é, gcd(g,s + é) separates g; and g;, since
0;(s +6) = 0 or 8;(s + &) = 0, but not both. If both p and the size of S
are small, then this approach will lead to an efficient deterministic factoring
algorithm.

Constructing a Separating Set

It should be emphasized that the Chinese Remainder isomorphism is used
only in the analysis of factoring algorithms—mnot in their implementation.
Indeed, computing this isomorphism is equivalent to the original factoring
problem (up to polynomial time reductions). In particular, the problem of
finding a separating set is not just a simple combinatorics problem. In fact,
when p is small, the computation of a separating set is the most expensive
operation in all known deterministic factoring algorithms.

Berlekamp’s method for computing a separating set is based on the obser-
vation that B is the kernel of the F,-linear map on R that takes a to of — .
Using techniques from linear algebra, we can compute a basis for B, which
forms a separating set of k£ elements. The complexity of computing this basis
is O((log p)m!*¢ +m?) F,-operations if classical algorithms of linear algebra
are used, and about O((logp)m'*c 4+ m2*) F,-operations if asymptotically
fast algorithms for matrix arithmetic are used.

Another approach for computing a separating set is described by Camion
[13]. Let T be the F,-linear map on R that takes oo to o+ of + .- + o'
Note that for any 7, 6;(T()) is just the trace from F,[X]/(g;) down to F,, of
6;(c). By viewing T as an F,-linear map on F,[X]/(g:g;), and noting that
the residues mod g;g; of 1,X,..., X%~ form a basis for this algebra over
F,, one can easily show that S = {T'(z), T(z?),...,T(2?%"1)} is a separating
set.

Making use of the algorithm described in [13], one can compute S with
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O((log p)dm!'*e + d*m!'*¢) F-operations. Therefore, the worst-case complex-
ity of Camion’s algorithm is O((log p)m**¢ + m®*+¢). Actually, Camion’s
algorithm successively computes T'(z), T(z?), etc., until a separating set is
obtained. So in some cases we might not have to compute the entire set S—
we might be able to get by with a smaller set S, = {T'(z),T(z?),...,T ()},
where e < 2d — 1, which can be computed at a cost of only O((log p)dm!*< +
edm!*¢) F,-operations.

Camion did not prove any lower bounds on how big e needs to be in
order for S, to be a separating set. The following argument shows that in
some cases e may have to be Q(d). Again, view T as an F,-linear map
on F,[X]/(gig;); further, suppose that g; = X% + a; X + .- 4 aq, g; =
X% 4 b, X4 4 ... 4 by, and p is the least integer such that a, # b,. Then it
follows from Lemma 2.1 below that e > p is a necessary condition for S, to
be a separating set for g; and furthermore, if g < p, then this is a sufficient
condition for S, to be a separating set for ¢;g;. So if ¢ is divisible by a pair
of irreducible polynomials g;, g;, whose high order coeflicients agree to (d)
places, then Camion’s algorithm will require Q((log p)dm!*c + d*m!'*¢) F,-
operations. Such pairs of irreducible polynomials certainly exist; for example,
results in the next chapter imply that such pairs of polynomials exist for all
odd primes p and all d which are powers of 2 (see Section 3.2, Step 1, Case 2).
Therefore, the worst-case complexity of Camion’s algorithm for constructing
a separating set is ((log p)m?*e + m3+¢), which is certainly worse than the
complexity of Berlekamp’s algorithm.

The argument in the previous paragraph made use of the following lemma:

Lemma 2.1. If« is an algebraic element over F, with minimum polynomial
X4 e Xt o 4 cq, and T is the trace from Fp(y) down to F,, then

T(y)+ea=0
T(")/z) + ClT(’Y) -+ 202 =0
T(v’) + aT(y*) + T (7) +3cs = 0

T(y) + aT(y"") + -+ caaT(7) + dea = 0

Proof. This follows immediately from Newton’s formulas for sums of
powers of the roots of a polynomial [40, p. 261]. O
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In the next section, we will present a deterministic algorithm that con-
structs a separating set of d elements that uses only O((logp)dm!'*c) F,-
operations. This is how we reduce the dependence on n in the deterministic
complexity of factoring polynomials over F, from n** to n?*e.

Using a Separating Set

Once we have a separating set for g, we could use it as described above to
factor g. That is, to separate g; and g;, we can choose s in S with 6;(s) = a
and 6;(s) = b, where a and b are distinct elements in F,,, and then search for
6 € F,, for which a + 6 = 0 or b+ 6 = 0. If we just search for an appropriate
value of § by examining é = 0,1, 2, etc., this can take time proportional to
p, which is quite impractical if p is very large.

One way to approach this problem, based on an idea originating in [8], is
to compute B = (s + §)P~1)/2 for various choices of §. 0;(8) is just x(a + 6),
where x is the quadratic character on F,; likewise, 8,(8) is x(b+ é). Thus, if
x(a+6) # x(b+6), then either ged(g, 5 — 1) or ged(g, B) separates g; and g;
(since the values of 8;(8) and 6;(8) are either 0 or 41). So we must search
for 6 € Fp, such that x(a + é) # x(b+ 6).

One search strategy is to randomize: simply choose successive values of
6 € F, at random. One can easily show that for fixed a # b and randomly
chosen 6, the probability that x(a + é) = x(b+ é) is no more than 1/2. So
with high probability, g; and g; can be quickly separated. This idea is more
fully developed in [6] and [27].

Another search strategy is a simple brute-force deterministic search: ex-
amine 6 = 0,1, 2, etc., until we find a value of é for which x(a+8) # x(b-+46).
In [8], Berlekamp suggested a strategy similar to this, but did not analyze
its complexity. We will prove that for some §, with 0 < § < p'/?logp, we
have x(a + 6) # x(b+ 6). This bound on § is very crude—there are intu-
itive reasons to believe that x(a + 6) # x(b + §) for much smaller values
of . But as a lower bound on §, Camion [12] shows (using an elementary
counting argument) that for all p there exist a,b € F,, where a # b, such
that x(a +6) = x(b+ ) for all 0 < § < logp — 2. However, we will show
that such “bad pairs” a,b are actually quite rare, proving that the number
of pairs a,b € F,, such that x(a+6) = x(b+ ) for all 0 < é§ < [logp] — 1
is O(plog p). This fact will then be used to show that the average-case com-
plexity of our algorithm is polynomial, assuming that the coefficients of the
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input polynomial are chosen at random.

We should also remark that in [8], Berlekamp mentions the result of
Burgess [10] that the maximum number of consecutive quadratic residues or
nonresidues mod p is O(p'/*+¢); unfortunately, this result by itself has no
bearing on the complexity of factoring polynomials. The relevant question
is: what is the maximum number of consecutive quadratic residues in the
sequence {(a+6)(b+6)}s50?7 For fized a # b, later results of Burgess [11] imply
that the maximum number of consecutive quadratic residues or nonresidues
in this sequence is O(p'/4*¢); however, the “constant” implied by the big-“0”
depends on a and b, and an examination of Burgess’ proof reveals that this
dependence is proportional to |a —b|. Thus, this result also has no immediate
bearing on the complexity of factoring polynomials.

1/2

Another p'/¢ Factoring Algorithm

Lenstra [29] describes a completely different method to factor polynomi-
als in time p'/? . (nlogp)®"). This algorithm requires time and space
p'/? - (nlogp)®™ even in the best case. We shall briefly describe this al-
gorithm here. By results in [8], the problem of factoring a polynomial deter-
ministically reduces in time (n log p)°®) to the problem of finding the zeros of
a polynomial. Suppose we want to find the zeros of a polynomial f € F,[X]
of degree n. Let t = |/p|. Then it will suffice to calculate the ged of f with
each of the following polynomials:

A(X) = (X —it)(X = (it +1))- (X = (it+(t—1))) (i=0,...,t—1).

If a nontrivial gcd is found, we can search in an interval of length ¢ for zeros
of f. The remaining elements t2,...,p — 1 can be checked separately.

To calculate the z;, note that we only need to calculate them mod f, i.e.
in the ring R = F,[X]/(f). To do this, we compute the coefficients of the
polynomial h(Y) € F,[Y], where A(Y) = Y (Y - 1)---(Y - (t = 1)). By
Lemma 1.7, this can be done in time p'/2 - (nlog p)°"). Let z = X mod f
be the image of X in R. Then z;(z) = h(z —¢t) for 2 = 0,...,t — 1. So to
compute all of the z;(z)’s, it suffices to evaluate the polynomial A(Y) at ¢
points. But this can be done in time p/2.(nlog p)°!) (again by Lemma 1.7).
So the entire algorithm takes time p'/2 - (nlog p)°).

16



2.3 A New Factoring Algorithm

In this section, we describe a new algorithm for factoring polynomials over
F,, and analyze its worst-case running time. As in the previous section, let
f € F,|X] be a polynomial of degree n that we wish to factor. We first
perform distinct degree factorization. Now let 1 < d < n be fixed, and let
g = f@. We want to factor ¢ = g; - - - g, where the g;’s are distinct monic
irreducible polynomials of degree d. As in the last section, m = degg = kd,
R = F,[X]/(g9), z = X mod g € R, and 0; is the natural homomorphism
from R onto F,[X]/(g:).

To factor g, our algorithm first computes a separating set in the following
way. We compute the coeflicients of A(Y) € R[Y] where A(Y) = (Y —z)(Y —
z?) .- (Y —z?""). Suppose h(Y) = Y45, Y41 4... 454, wheres; € R. We
claim that {s,...,s4} is a separating set. To see this, first observe that 0;
extends in a natural way to a homomorphism from R[Y'] onto (F,[X]/(¢:))[Y]
by coefficientwise application of §;. Next observe that for each : = 1,...,k,

0:(R(Y)) = Y%+ 0:(s1)Y ! + - + 0i(sq)
= (Y = 0:(a)(Y = 0:(a)?) - (¥ = 0s(2)")

= gi(Y)v

the last equality following from the fact that 6;(z),...,(6:(z))*"” are the
roots of ¢;(Y) in the field F,[X]/(g:). Our claim now follows immediately
from the fact that the g; are pairwise distinct.

Now that we have a separating set, we can proceed to factor g. We con-
struct finer and finer partial factorizations U C F,[X] consisting of monic
polynomials with [,cyu = g¢. Initially, we put U = {g}. We make use
of the operation Refine(U,v), which, when given a partial factorization
U and a polynomial v € F,[X], produces the refinement of U given by
Uwev{ged(u,v),u/ ged(u,v)}\{1}. We will also make use of the function
Test(U,v), which, when given a partial factorization U and a polynomial
v € F,[X], returns true if v mod u € F,, for some u € U, and false otherwise.
Intuitively, Test(U,v) determines if v is of any value in obtaining further
refinements of U. To obtain a complete factorization of g, we execute the
refinement procedure in Figure 2.1.

The correctness of this algorithm follows from the discussion in the pre-
vious section, along with the fact the {s;,...,s4} is a separating set. The
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1+ 1
while |U| < k do
60
while Test(U, s;) do
U « Refine(U,s; + §)
if p £ 2 then U «— Refine(U, (s; + 6)P~1/2 — 1)
6 —¥6+1
1141

O NS U

Figure 2.1: Refinement Procedure

order in which the s; are utilized in the refinement procedure is immaterial as
far as the worst-case analysis is concerned; however, the assumption that s;
is utilized first is crucial in the average-case analysis. To analyze the worst-
case running time of our algorithm, we shall make use of the following two
lemmas.

Lemma 2.2. Let F, be the finite field with q elements, let ¢ be a mul-
tiplicative character of order t on Fy, and let A be a monic polynomial in
F,[X] that is not a perfect t-th power. Suppose further that A has r distinct
roots in its splitting field. Then

2 (M=)

z€F,

< (r—1)¢'2

For a proof of this lemma, see [30, p. 225] or [36, p. 43].

Lemma 2.3. Let p be an odd prime, and let a,b € F,,, such that a # b and
let x be the quadratic character on ¥,. Then there exists 6, with 0 < 6 <
p/?log p, such that x(a + &) # x(b+ 6).

Proof. Let t = [(logp)/2]. Let N be the number of solutions
(£,Y0,- -+, ¥1-1) € F5 to the system of equations

(m+a+i)(x+b+i)=y? (:=0,...,t—1).
We will first show that
N <p+p P21t —1) +1). (*)
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Now, for fixed ¢ € F, the number of y € F,, satisfying the equation y* = ¢
is precisely 1 + x(c). Therefore,
-1

N = Y T+ x((@+a+6)(z+b+1)))

t—1
= > > X(H(x+a+i)e‘(m+b+i)e‘>.
OSGO,...,6¢_1§1 xer 1=0

In this last expression, the term corresponding to eg = -+ = ;.1 = 0 is
.

Now let eg,...,e;_; be fixed with [ > 0 of the e;’s are nonzero, and let
MX) =TI (X +a+19)%(X + b+ 1)%. We claim that A(X) is not a perfect
square in F,[X]. Suppose that it were. Then for distinct ¢, ..., between 0
and t — 1, we would have

a+i,=b+1iy, a-+iz=b+iz, ..., a+iy_1=b+1i, a+i=>b+1.

Summing, we have la+3Y",¢, = b+, ¢,. But this implies that la = b, and
since 0 < I < p, we can cancel, obtaining a = b, a contradiction. Therefore,
A(X) is not a perfect square, and so we can use the previous lemma to obtain

N < p+p1/2§:(§)(2l—1)

=1
= p+p 221t —-1)+1).
This proves ().
Now, the number of x € F,, such that
x((z+a+i)(z+b+1))=1 (t=0,...,t—1) (*x)
is at most N/2°.

Let 6 be the least nonnegative integer such that x(a + 6) # x(b+6). The
worst possible case is when all = satisfying (x*) are bunched together near
zero. It follows that § < N/2! +¢. By (%), we have 6 < p/2! 4+ p*/2(t — 1 +
27t)+t. Since t = [(log p)/2], we have § < p*/?+(p'/?log p)/2+ (log p) /2 +2.
The right hand side of this inequality is asymptotic to (p*/?logp)/2, and is

less than p'/?logp for p > 16. For p < 16, p*/?logp > p, in which case the
lemma is trivially true. O

The following theorem bounds the worst-case running time of our algo-
rithm.
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Theorem 2.4. Let f be a polynomial of degree n in F,[X]. Then our
algorithm will completely factor f using O((log p)n®te + p'/?(log p)>n3/2+¢)
F,-operations.

Proof. The distinct degree factorization of f can be performed using
O((log p)n**<) F,-operations.

Consider factoring g = f(@ for a fixed 1 < d < n. Our algorithm can con-
struct the separating set S = {s1,...,s4} using O((log p)d) multiplications
in R to compute the powers of z, and O(d'*¢) additions, multiplications
and subtractions in R to compute the coeflicients of 2(Y). Since each R-
operation takes O(m!*<) F,-operations, this gives a total of O((log p)dm'**)
F,-operations to compute S.

Now, for any partial factorization U and any polynomial v of degree less
than m, we can compute Refine(U,v) with O(m!*) F,-operations by first
computing v mod u for each u € U, and then computing ged(u,v mod u)
for each v € U. Similarly, we can compute Test(U,v) with O(m!*¢) F,-
operations. The computation of (s; + §)?~1/2 takes O((logp)m!*c) F,-
operations using a fast exponentiation algorithm. Therefore, each execution
of the body of the inner loop of the refinement procedure (lines 4-7 in Fig-
ure 2.1) takes O((log p)m!*¢) F,-operations, and each termination test of
this loop takes O(m!*t¢) F,-operations.

Now consider the i-th iteration of the outer loop. For this iteration of
the outer loop, the body of the inner loop is executed some number, say M;,
times. First observe that the number of ¢ (1 < ¢ < d) for which M; > 0 is
at most k, since whenever M; > 0, the ¢-th iteration of the outer loop will
produce a finer factorization, and this can happen at most £ times. By the
previous lemma, if M; is nonzero, it is at most p'/?(log p) + 1 when p is odd.
Obviously, this bound holds for p = 2 as well, so we can completely factor ¢
using O((log p)dm**¢ + p'/%(log p)? min(d, k)m!*<) F,-operations.

Since min(d, k) < m'/2) the number of F,-operations required to factor
g = f@ is O((log p)dmt + p'/*(log p)>m3/?t<). Since this holds for all
1 < d < n, the number of F,-operations required to factor f is O((log p)n®t<+
pl/z(log p)2n3/2+e)' 0

Example. We will illustrate the workings of our algorithm with an example.
Let p = 1061 and consider the polynomial

f=XC4+15X°% +48X* +295X2 + 300X2 + 267X + 19.
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We will use our new algorithm to factor f. As it happens, f factors as

I = fifafs, where
A=X"4+X+1, fo=X 4+X+19, fo=X>+13X+1.

The algorithm first performs the distinct degree factorization procedure.
This procedure first computes gcd(X? — X, f). Finding this to be 1 (since f
has no linear factors), this procedure then computes gcd(X P X, f). Finding
this to be f, the procedure terminates, concluding that f is the product of 3
distinct monic irreducible polynomials each of degree 2.

Let R = F,[X]/(f), and let z = X mod f € R. By the Chinese Remain-
der Theorem, we know that R is isomorphic to F2 ® Fj2 @ F,2. Under this
isomorphism, z corresponds to (a, §,7), where a, 3,7 € F,2 are the roots of
the irreducible polynomials fy, fa, f3, respectively.

The algorithm now computes a separating set. It does this by computing
the coefficients of A(Y) = (Y — z)(Y — z?) € R[Y]. Upon performing this
computation, we find that h(Y) = Y% 4 5,Y + s5, where

sy = 1732% + 644z + 10462> + 16922 + 7592 + 358,

and

so = 890z° + 892z* + 99923 + 21222 + 210z + 104.

Under the isomorphism given by the Chinese Remainder Theorem, h(Y)
corresponds to

(Y = (e, BNV = (o, 7,97) = Y* + (1,1,13) Y + (1,19,1) .

51 52

The algorithm now proceeds to factor f given the separating set {si,s2}.
It initializes U to {f}. The algorithm computes gcd(f,s;). Finding this
to be 1, the algorithm then computes f' = gcd(f,sgpul)/2 —1). It turns
out that f' = fif;, and so U becomes {f’, f3}. But now the algorithm
realizes that no further use can be made of s;, since sy mod f' =1 € F,,
and moves on to s;. To see why f' = fi f2, note that that 13 is a quadratic
nonresidue mod 1061, and so sﬁp“)/ ?_1 corresponds to (0,0, —2). Therefore,
ged(f,s0 V"~ 1) = fifo.

The algorithm now computes ged(f’, s2). Finding this to be 1, the algo-
rithm then computes ged(f, sgp"l)/ ? _1). It turns out that the value of this
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ged is just f. To see why this is the case, note that 19 = 329 (mod 1061),
and so s /%1 corresponds to (0,0,0). Therefore, ged(f’, sV 1) = .
Next, the algorithm considers s+1. After computing ged(f’, s;+1) and find-
ing this to be 1, the algorithm computes gcd(f’, (s2+ 1)(P-1/2__1). The value
of this ged is fz, and so U becomes { f1, f2, f3}—the complete factorization of
f. To see why this last ged is f3, observe that 2 is a quadratic nonresidue mod
1061, whereas 20 = 284? (mod 1061), and so (s + 1)P~1/2 — 1 corresponds
to (=2,0,—2). Therefore, ged(f', (s + 1)P~V/2 1) = f,. O

In the next chapter, we will use the following result, which we obtain with
a slight modification of our general factoring algorithm.

Theorem 2.5. Let g be the product of k distinct monic irreducible polyno-
mials of degree d. Then a single irreducible factor of g can be extracted de-
terministically using O((log p)dm**<+p'/%(log p)®m!*¢) F,-operations, where
m = kd.

Proof. The idea is to simply redefine the procedure Refine so that
Refine({u},v) returns {u'}, where v is defined as follows: if gcd(u,v) is
a nontrivial divisor of u, then u’ is the polynomial of smaller degree among
ged(u,v) and u/ ged(u,v); otherwise, ' = u. The termination condition of
the outer loop of the refinement procedure (line 2 in Figure 2.1) needs to be
modified so that it terminates when U = {u} and degu = d. In the notation
of the proof of the previous theorem, the number of ¢ (1 < ¢ < d) for which
M; > 0 is at most logk. O

2.4 Average Case Analysis

This section is devoted to a proof of the following theorem, which is concerned

with the average-case behavior of the algorithm presented in the previous
section.

Theorem 2.6. Assume the input to our algorithm is drawn from a uni-
form distribution on all monic polynomials of degree n over F,. The proba-
bility that our algorithm fails to halt after O((log p)n®tc + (log p)*n'*¢) F,-
operations is at most O((logn - logp)?/p). Furthermore, the average-case
running time of our algorithm is O((log p)n®*e).
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More precisely, the first statement of the theorem says that there is a
function 7(p,n) = O((logp)n?*c + (logp)’n'*c) such that the probability
that the number of F,-operations executed by our algorithm exceeds 7(n, p)
is O((logn - log p)?/p). Clearly, this theorem says something of interest only
when p is large, and so in particular, we will assume that p is odd throughout
this section.

Let f be a polynomial chosen at random from a uniform distribution on
all monic polynomials of degree n over F,,. We can partition the polynomials
of degree n in F,[X] according to their “factorization pattern.” The factor-
ization pattern 7 of f is an n-tuple (ki,...,k,) where k; is the number of
irreducible factors (counting multiplicities) of degree d that divide f. For
example, if f = X?(X +1)(X?+ X +1), then 7 = (3,1,0,0,0). We shall let
r denote the number of irreducible factors of f,i.e. 7 = k; + -+ 4+ k,.

Consider the action taken by our algorithm in factoring (¥ for some
1 < d < n. Let K4 be the total number of times the body of the inner loop
of( the refinement procedure (lines 5-7 of Figure 2.1) is executed in factoring
f@.

The theorem will be a consequence of the following four lemmas.

Lemma 2.7. Let p be an odd prime, let x be the quadratic character on
F,, and let t be an integer, with 0 <t < p. Then if a and b are chosen at
random from F,, the probability that x(a+6) = x(b+6) for 6 =0,...,t -1
is O(t%/p + 1/24).

Proof. Let J be the number of pairs (a,b) € F2 such that x(a+6) = x(b+6)
for 6 =0,...,t — 1. Then J is no more than ¢ plus the number J' of pairs
(a,b) such that x((a + 6)(b+6)) =1 for 6 =0,...,t — 1. Now, J' is the
number of pairs (a,b) for which there exist nonzero ¢y, ..., ¢ in F,, such that

_ 2
ab = ¢

(a+1)(d+1) =}
(%)
(a+t—-1)b+t—-1)=cl

Let N be the number of solutions (a,b,cy,...,c) € F5? to (x). We want
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to get a good upper bound on N. We have

N = 2% (L4 x(ab))--- (14 x((a+t=1)(b+1t—-1)))
abeF,

S % X (et =1 (b 4= 1))

0<ez,.met <1 a bEF

> Yo x(@ - (a+t—1)%) D x(6 - (b4t —1)%).

0<eg eyet <l aEF bEF

In this last expression, the term corresponding to e; = --- = ¢; = 0 is p°.
We can use Lemma 2.2 to bound the magnitude of each of the other terms,
obtaining

N < p+m§:<)l—1
= prrp(t—1)22 -2 4 2t - 1),

We divide this quantity by 2! to obtain a bound on the number of (a,b)
for which there exist nonzero ¢y,...,¢ satisfying (*). Using the fact that
J <t+J' we have

t op  tt—1) ¢ 1
<plo4+ft 42" 2 41—
J'p(p+2i+ 1 2+ 2t>

Dividing the quantity on the right-hand side of this inequality by p? gives us
the desired bound on the probability in question. 0O

Lemma 2.8. Let 7 = (ky,...,k,) be a factorization pattern. Let t be an
integer, with 0 < t < [logp|. Then Pr(Ky > t|m) = O((kqt)?/2!) for all
1<d<n.

Proof.  Let’s fix the factorization pattern of f to be m. Suppose that
g=f9 =g, ...g (notethat k < ky). Fix F,4 to be some finite field with p*
elements. Let T be the trace from F s down to F,. Let a and 3 be randomly
chosen elements from Fa.

Claim 1. Pr(Ky > t|r) is no more than kq(kq—1)/2 times the conditional
probability that x(T(a) + 6) = x(T(B) + 6) for 6 = 0,...,t — 1 given that
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[Fuo(a) : Fy] = d and [Fp(B) : F,] = d.  To see this, first observe that
K, > t implies that for some pair 1 <1 < j < k, we have x(0;(s1) +96) =
x(0j(s1)+86)for 6§ = 0,...,¢t—1. Next, observe that 6;(s,) = —T'(x;), where z;
is any root of g;. Finally, observe that the conditional probability distribution
of g given 7 is the same as that of a polynomial obtained by choosing kq
elements from a uniform distribution on all elements in F,a of degree d over
F,, computing their minimum polynomials, and multiplying together the
distinct polynomials among these. The claim follows immediately from these
observations.

Claim 2. The probability that a randomly chosen element in F,a has
degree d over ¥, is at least 1/2.  To see this, let Ny be the number of
elements of degree d over F,, in F 4. Then we know that

Ny > p*=>p°

eld
e#d

|l
> pt— > p

e=1

p
= ()

€

Dividing this quantity by p?, we see that the probability that a randomly
chosen element in F,4 has degree d over F,, is at least

, P\ -2 1
- >1——>1/2

the last inequality following from the assumption that p > 3. This proves
the claim.

By Claim 1, it will suffice to bound the conditional probability that
x(T(a)+68) = x(T(B)+6) for 6 =0,...,t — 1 given that [Fy(a) : F,] = d
and [F,(B) : F,] = d, which is at most

Pr(x(T(a) +6) = x(T(B)+6) for §=0,...,t — 1)
Pr([F,(a) : Fp] = d) Pr([Fp(B) : F,) = d)

Now, if « is a randomly chosen element of F,4, then T'(«) is just a randomly
chosen element of F,, since T" is a homomorphism from the additive group of
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F 2 onto the additive group of F,,. By the previous lemma, and the hypothesis
that ¢ < [log p], the numerator in the above fraction is O(¢?/2%). By Claim 2,
the denominator is at least 1/4. The lemma now follows immediately. O

Lemma 2.9. Let # = (ki,...,k,) be a factorization pattern. Then
E(K4|m) = O(k% min(d, kg)) for all1 < d < n.

Proof. By definition, E(Ky|r) = ¥;5, t Pr(Kq = t|w). We can break this
sum into two pieces: 1 <t < [log p] and t > [log p].
Consider the first piece. By the previous lemma, we have

>, tPr(Ky=tlr) < > Pr(Kq >tr)

1<t<[logp] 1<t<(logp]
0<Z(kdt)2/zt)
>1

= O(k?).

il

Now consider the second piece. From the proof of Theorem 2.4, we know
that Ky = O(min(d, k;)p'/?log p). And so, by the previous lemma, we have

S tPr(Ky=tlr) = O(min(d, ka)p*/*(log p) Pr(K, > [logp]|r))
t>[logp]
= O(min(d, ks)p"*(log p) - (kalogp)*/p)
= O(k}min(d, k4)).

And so the lemma is proved. O

Lemma 2.10. If f is chosen at random from a uniform distribution on
all monic polynomials of degree n in F,[X], and if r denotes the number of
irreducible factors of f (counting multiplicities), then E(r?) = O((logn)?).

We remark that the constant implicit “O” expression in this lemma is
absolute (in particular, it does not depend on p).

Proof.  This lemma is an extension of results given in problems 4 and
5 of section 4.6.2 of volume 2 of Knuth [24]. Our proof is based on the
proof found there, which uses generating functions. The generating functions
that we use should be viewed strictly as formal power series, and all of
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the operations we perform on them, e.g., differentiation and exponentiation,
as formal operations. The justification of the ordinary properties of these
operations can be found in [31].

Let Gp(2) = Yp>1 anp2z™, where a,, is the number of monic irreducible
polynomials of degree n over F,. An argument sketched by Knuth [24, p. 624]

shows that ~
> Gy(2')/i = In(1/(1 - pz)).
j21
Let anpr be the number of monic polynomials of degree n in F, with exactly

r irreducible factors. Let Uy(z,w) = ¥, 50 tnprz"w". Because E(r?) =
O(E(r(r — 1))), it will suffice to prove that the coefficient of 2™ in

92
Sw? Up(2/p,1)
is O((logn)?).
First, observe that Up(z,w) = exp (ZchI Gy(z")w"/ 7») To see this, note
that
Up(z,w) = (142w (zw)” +-- )7 (1+ 2w + (2"w)? + )™
(1/(1 - zw))aw(l/(l - zzw))a?-;r ..

Taking logarithms, we have

InU,(z,w) = apIn(1/(1 = 2w)) + ag, In(1/(1 = 2*w)) + - --
S SECHTSHD O e T

E>1 k>1

= > Gp(z")w'/k.

k>1

Using this expression for U,(z,w), differentiating twice with respect to w,
and evaluating at z = z/p and w = 1, we obtain

};)QW—-U (z/p,1) (ZG (2% /p%)( )> J(1—2)+ (ZG (zF/p* >2/(1“‘Z)-

k>2 k>1

We claim that for any fixed ¢ > 0, the coefficient of 2™ in }"15; Gp(2 k/pF)k
is O(1/n). To prove this Clalm notice that 3.5 Gyp(z k/p )k
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L1 Kap(z/ p)*. Using the fact the number of monic irreducible poly-
nomials over F,, of degree [ is no more than p'/l, we have that the coefficient
of z" is

;(n/l)talppnn (n*/p") EI: alp/lt
lin l|n

< () 2P

lln
= O((n'/p")(@"/n"™))
= O(1/n).

From the claim in the previous paragraph, it is apparent that the coefli-

cient of z" in
(Gl 1)k = 1)) 11 = 2)

k>2

i

is
0( ) 1/k> — O(logn),
1<k<n
and that the coeflicient of z" in
2
(Z6eih) 0 -2)
E>1

is

o ¥ % 1/ij) = 0((ogny).

1<k<n Q21
4=k
The lemma is proved. 0O

We are now in a position to prove the theorem. The total number of
F,-operations executed by our algorithm is

O ((log p)n*te +logp > Kd(dkd)He) .
d

First, consider the probability P that Ky > log p for some d. We have
P < Y Pr(Ky>logp)
d
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= > Pr(Ky > logp|r)Pr(r)
= O(((logp)*/p) 3_ Zd: k3 Pr(r)) (Lemma 2.8)
= O(((logp)*/p) > r* Pr(r))

= O(((logp)*/p) E(r*))
= O((logn -logp)?’/p) (Lemma 2.10).

The first statement of the theorem is now clear.
The expected number of F,-operations executed by our algorithm is

O((togp)n®** + (log ) E(T Ko))-
d
We have
E(}_Ki) = ) E(Kd)
d d
= };E(E(thr))
= zd:ZE(Kd[W) Pr(m)
= 0. ; k2 min(d, k¢) Pr(7)) (Lemma 2.9)
= O(nl/ZZr2 Pr(x))

= O(n'2E(r?)
= O(n'?*(logn)?) (Lemma 2.10).

The second statement of the theorem is now immediate.

2.5 Open Questions

The reader may be curious as to how the techniques in this chapter generalize
to the problem of factoring polynomials over finite extensions of ¥,. Suppose
p is fixed, and consider the problem of factoring a polynomial of degree n over
an extension F of degree v over F,. The probabilistic algorithm of Ben-Or
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[6] Tuns in time O((nv)?**¢). It is natural to ask if this same bound can be
achieved deterministically.

The bottleneck is again the construction of a separating set. Methods for
separating set construction based on linear algebra require O(M(nv)) F,-
operations, where M(nv) is the number of F,-operations required to multiply
two nv by nv matrices. Unfortunately, the method used in this section for
constructing a separating set does not easily generalize. The obvious thing
to try is the following. Suppose that we want to factor g = g1 ... gk, where
the g;’s are distinct irreducible polynomials over E of degree d. Next, let
m = kd, let R = E[X]/(g), and let z = X mod g. Analogous to what we did
in Section 2.3, we next compute the coeficients of (Y —z)(Y —z?) - - - (Y —2?"),
where p = lem(d, v), and hope that these coefficients form a separating set.
However, they do not if for any distinct pair g;, g;, the roots of ¢g; and g;
are conjugate over F,. The extreme example of this situation is where g is
an irreducible polynomial over F,, but splits over E. So we ask if there is
another way of constructing a small separating set for g in time O((mv)?**).

It is also natural to ask if the p'/2*¢ bound in the worst-case analysis of
our algorithm can be improved. Can Burgess’ techniques be adapted to our
situation? Can we obtain a better bound assuming the Extended Riemann
Hypothesis?
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Chapter 3

Constructing Irreducible
Polynomials over Finite Fields

3.1 Introduction

In this chapter, we consider the problem of constructing irreducible polyno-
mials over finite fields. Such polynomials are used to implement arithmetic
in extension fields found in many applications, including coding theory [7],
cryptography [16], multivariate polynomial factoring [46], and parallel poly-
nomial arithmetic [18].

Let n a positive integer. Consider the deterministic complexity of finding
an irreducible polynomial of degree n in F,[X] where p is prime. For this
problem, there is no known deterministic polynomial time algorithm, i.e., an
algorithm that runs in time polynomial in n and logp. However, in many
applications p is small, and so an algorithm that ran in time polynomial in
n and p would be of value. We present one here. Specifically, we present
a deterministic algorithm that on input n and p generates an irreducible
polynomial in F,[X] of degree n, and—ignoring powers of logn and log p—
runs in time O(p*/?n*). Thus, if p is fixed, e.g., p = 2, then our algorithm
runs in polynomial time.

Our approach to constructing irreducible polynomials is as follows. In
Section 3.2, we show that if we are given certain nonresidues in extension
fields of F,, then we can deterministically generate an irreducible polynomial
over F;, of degree n in polynomial time. More precisely, we prove the following
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result:

Assume that for each prime q such that q | n,q # p, we are given a splitting
field K of X? —1 over F, and a g-th nonresidue in K. Then we can find an
irreducible polynomial over F' of degree n deterministically in time polynomial
in n and logp.

In Section 3.3, we go on to show that given an oracle for factoring polyno-
mials over F,, these extension fields and nonresidues—and hence irreducible
polynomials over F, of degree n—can be constructed deterministically in
polynomial time:

The problem of constructing an irreducible polynomial over F, of degree n
can be deterministically reduced in time bounded by a polynomial in n and
log p to the problem of factoring polynomials over F,.

We obtain a deterministic algorithm for generating irreducible polynomials
by replacing the oracle by any variant of Berlekamp’s deterministic factoring
algorithm. It turns out that factoring is the bottleneck in the resulting
algorithm (in terms of both n and p), but with Theorem 2.5 we obtain the
following result:

We can deterministically construct an irreducible polynomial over ¥, of de-
gree n with O(p*/*(log p)*n3te + (log p)?ni*e) F,-operations.

In particular, if p is a fixed prime, then we can deterministically construct
an irreducible polynomial over F, of degree n in time O(n**).

In Sections 3.4 and 3.5, we prove some extensions and related results,
and in Section 3.6, we conclude with some open questions. In Section 3.4, we

show that our results on finding irreducible polynomials extend to nonprime
finite fields:

Given an estension E over ¥, of degree v, we can construct an irreducible
polynomial over E of degree n deterministically with O(p'/?(log p)®n®*e +
(log p)2n*tc 4 (log p)n**ev?*<) F,-operations.

This result allows us to deterministically construct in polynomial time an
irreducible polynomial of specified degree over a finite field of small charac-
teristic. If p is fixed, then our algorithm runs in time O(n**¢»2+¢). The proof
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of this result reduces the problem of finding an irreducible polynomial over £
of degree n to the problem of factoring polynomials over F, via the problem
of constructing, for each prime ¢ | n,q # p, the splitting field of X? — 1 over
F,, along with a ¢-th nonresidue in this field, or just a primitive ¢-th root of
unity if ¢ also happens to divide v.

In Section 3.5, we give another algorithm for constructing irreducible
polynomials over F,, that runs in time polynomial in n and p. This method
uses the results of Section 3.2, but constructs nonresidues using a technique
completely different from that in Section 3.3. It makes use of an analogue
of Ankeny’s theorem on the least quadratic nonresidue modulo a prime [3]
and of an analogue of Pratt’s primality certificate [33]. Unlike the algorithm
in Section 3.3, the algorithm in this section can be easily recast as a fast
parallel algorithm when p is small. We prove:

The problem of constructing an irreducible polynomial over F, of degree n,
given p and n with p bounded by a polynomial in n, can be solved by a family
of uniform Boolean circuits of size polynomial in n and depth polynomial in
logn.

Related Work

Even for small values of p, previous algorithms for generating irreducible
polynomials over F,, suffer from at least one of three drawbacks: they rely
on a source of randomness, they rely on unproven conjectures in the proofs
of their running times, or they generate polynomials of degree only approzi-
mately n. Rabin [35] gives a probabilistic polynomial time algorithm. Adle-
man and Lenstra [1] give a deterministic algorithm that runs in polynomial
time assuming the Extended Riemann Hypothesis (ERH). They also give a
deterministic polynomial time algorithm that generates an irreducible poly-
nomial of degree only approximately n. Von zur Gathen [44] gives several
deterministic algorithms that are efficient in practice, but his proofs of their
running times rely on unproven conjectures, and they generate irreducible
polynomials of degree only approximately n.

We also mention two other results on constructing irreducible polynomi-
als, of which our results were obtained independently. In a paper on factoring
polynomials over finite fields, Evdokimov [19] gives another proof that irre-
ducible polynomials of specified degree can be constructed deterministically
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in polynomial time assuming the ERH. Evdokimov’s method of constructing
irreducible polynomials is similar to ours in that Evdokimov essentially re-
duces this problem to the problem of finding various nonresidues in extension
fields of F,; however, Evdokimov constructs these nonresidues by appealing
to the ERH (making use of results in [21] and [25]), and does not address the
problem of constructing these nonresidues deterministically without relying
on the ERH.

In another paper, Varshamov [42] describes a method for constructing ir-
reducible polynomials of specified degree; however, in some cases the method
either breaks down or appears to require time greater than a polynomial in
n and p. One problem with Varshamov’s method is that it requires the cal-
culation of the multiplicative order of elements in extensions of F,, for which
no polynomial time algorithm is known (even for small p).

3.2 Reduction to Constructing Cyclotomic
Extensions and Finding Nonresidues

This section is devoted to a proof of the following result.

Theorem 3.1. Assume that for each prime q such that q | n,q # p, we are
given a splitting field K of X9—1 over F, and a q-th nonresidue in K. Then
we can find an irreducible polynomial over F, of degree n deterministically
in time polynomsial in n and logp.

The splitting field of X7 — 1 is the smallest extension of F, containing a
primitive g-th root of unity. It is also the smallest extension of F;, containing
g-th nonresidues. From group theory, we see that this is just F,m where m is
the smallest positive integer such that ¢ divides p™ — 1, the order of the group
F3m. That is, m is the order of p mod ¢. Note that m | g —1. The hypothesis
of Theorem 3.1 means that we are given an irreducible polynomial f over F,
of degree m and a ¢-th nonresidue a in F,(a) where « is a root of f.

We now describe our algorithm. Let n = ¢7* --- ¢¢” be the prime factor-
ization of n. We first construct irreducible polynomials over F,, of degree ¢;*
forz =1,...,r. We then “combine” these polynomials to form an irreducible
polynomial of degree n.
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Step 1: Constructing Irreducible Polynomials of Prime
Power Degree

Let 1 <2 < r be fixed, and let ¢ = ¢;,e = e;. We want to construct an
irreducible polynomial in F,[X] of degree ¢°. We break the problem down

into three cases: (1) ¢ # 2,# p, (2) ¢ = 2,# p, and (3) ¢ = p.

Case 1: ¢#2,#p

Let m be the order of p mod ¢. By hypothesis, we are given an irreducible
polynomial f of degree m over F,, and a ¢-th nonresidue a in K = F,(a)
where « is a root of f.

We will make use of the following result, which is proved in [26, p. 331].

Lemma 3.2. Let K be a field and d an integer > 2. Let a € K,a # 0.
Assume that for all prime numbers t dividing d, a is a t-th nonresidue in K,
and if 4 | d then a is not equal to —4 times a t-th residue. Then X® — a is
irreducible in K[X].

By Lemma 3.2, the polynomial X?° — a € K[X] is irreducible. We can
represent the field £ = F,me by K(f), where § is a root of X 9° — a. Now,
H = F o is a subfield of E. We have the following picture:

E = K(f)

€ m

F,(a) H
WA

It will suffice to find an element v in E of degree ¢¢ over F,. We can
then construct its minimum polynomial over F, by computing (X —v)(X —

q
K =

YY) (X — ’ypqe'l ). This will be an irreducible polynomial of degree ¢° over
F,. But finding an element in E of degree ¢° over F,, is easy. Let T be the
trace from E down to H; that is, for any z in E, T(z) = z+2° +---+2°"
where ¢ is the generator of the Galois group of E over H given by z +— ol

Then we claim that v = T'(5) has degree ¢° over F,.

35



To prove this claim, suppose to the contrary that « has degree ¢* over
F,, where t < e. Then it is easy to see that v has degree ¢' over K. Now,
[K(B) : K(B?)] = g, and so in particular, v liesin K(B9). For: =0,...,m—1,
let p'?° = z;9+y;, where 0 < y; < ¢. It is easily seen that the y;’s are distinct,
since p (which is = p?° (mod ¢)) has order m mod ¢. This gives us an equation

(ﬁ‘I)l‘O/ByO + -+ (ﬂq)-’b‘m—l ﬁym——l —_ = 0.

Thus, B is a root of a nonzero polynomial over K(8?) of degree less than
q. But this contradicts the fact that B has degree ¢ over K (%), and so the
claim is proved.

Case 2: ¢=2,#p

We want to find an irreducible polynomial of degree 2°. In this case, as
in case 1, we make use of Lemma 3.2. Since p is odd, p = 1 (mod 4).
Suppose p = 1 (mod 4). Then (—1)?-1/2 = 1, and so —1 has a square root
in Fp. Therefore, if we have an element a € F, that is not a square, then we
certainly cannot have ¢ = —4b%, since —4b* is a square. Thus, the hypotheses
of Lemma 3.2 are already satisfied, and so X?* — a is irreducible.

Now suppose p = —1 (mod 4). In this case, we can quickly find an irre-
ducible polynomial of degree 2¢ deterministically. We have (—-1)(”“1)/ 2= 1,
so —1 does not have a square root in F,, and therefore X% + 1 is irreducible.
If e =1, we are done. Otherwise, we can proceed as follows. We construct
the field F,(¢) where i = v/—1. Since —1 has a square root in F,(3), if we find
an a € F,(4) that is not a square, then X?*”" —a is an irreducible polynomial
in F,(?)[X] (by reasoning identical to that in the previous paragraph). Let
E = F,(i,a) where o is a root of X2*™" —a. It is easy to see that E = F,(a)
(since [F,(¢,a) : Fp] = lem([F,(¢) : Fy], [Fp(e) : F,]), and so it will suffice
to compute the minimum polynomial of « over F,,, which has degree 2°. Let
o be the automorphism on F,(z) defined by ¢ — —i. Then the minimum
polynomial for a over F, is just (X2 — a)(X*™ — a°).

So we have reduced the problem to finding a quadratic nonresidue in
F,(¢). This is easily done as follows. F,(2)* is a cyclic group of order p? — 1.
Write p? — 1 = 125, | odd. If we take k — 2 successive square roots of i, we
will obtain a primitive 2%-th root of unity in F,(z). This must be a quadratic
nonresidue; otherwise, its square root would be an element of order 2! in
F,(2)*, which is impossible by Lagrange’s theorem.
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So we have reduced the problem to taking square roots in F,(z). But this
can easily be done using the formula

Va = (1 + aE-0/2)e-0/2_ op+1)/1,

which holds for every quadratic residue a in F,(4), except if olP~1/2 = 1,
in which case /& = 1a(Pt1)/4,

Case 3: ¢=p

We want to construct an irreducible polynomial of degree p°. Our approach
in this case follows that of Adleman and Lenstra [1]. We will show how to
inductively construct a sequence of irreducible polynomials fi, fa,..., fe over
F, of degrees p,p?,...,p"

Lemma 3.3. The polynomial X? — X — 1 is irreducible in F,[X]. Further-
more, if K is an extension of F,,, and a € K, and the polynomial X? — X —a
is irreducible in K[X], and E = K(a) where a is a root of X? — X —a, then
the polynomial X? — X — aa?! is irreducible in E[X].

Proof. According to Artin-Schreier theory (see, e.g., [26, p. 325]), over
any field L of characteristic p, the polynomial X? — X — ¢ (where ¢ € L)
is either irreducible or splits completely. The first statement of the lemma
follows immediately from this. To prove the second statement, suppose that
X? — X — aaP~! is not irreducible in E[X]. Then it has a root 8 in E, which
we can write as f = Y07 b;a* where the b;’s are in K. Substituting this
expression for § into the equation #? — # — aa?™! = 0, and replacing o® by
a + a, we obtain an equation

p-1 bl )
dot(a+a) =) bo' —aa?! =0.
1=20 1=0

In the expansion of the left hand side of this equation, the coefficient of a?~!
is bb_; — bp_y — a, which is nonzero by virtue of the fact that X? — X —a is
irreducible over K. Thus, « is a root a polynomial of degree p — 1 over K,
which is impossible, and so the lemma is proved. 0O

Let fi = X?— X —1. By the previous lemma, this is irreducible. Suppose
that we have computed f;, t > 1. Let K = F,(a) where « is a root of f;.
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If t = 1, let a = oP~!; otherwise, let a = a?*~! — oP. By the previous
lemma, the polynomial X? — X — a is irreducible over K. Let E = K(f),
where 8 is a root of X? — X — a. It is easy to see that £ = F,(8) (since
[Fy(e, B) : Fy] = lem([Fp(a) : Fy],[Fp(B) : Fp]). Let fiyq be the minimum
polynomial of  over F,, which we compute as Hf;(-)l (XP—X— a”i). Observe
that the polynomial X? — X — afP~! = X? — X — (#*~! — BP) is irreducible
over F.

Step 2: “Combining” Irreducible Polynomials of
Prime Power Degree

Suppose we have constructed irreducible polynomials over F, of degrees
g1, ..., q7. We will show how to inductively construct a sequence of ir-
reducible polynomials over F, of degrees ¢1*,¢i'¢3%,...,¢1" -+ ¢ = n. It
will suffice to solve the following problem: given two irreducible polynomials
fyg9 € FplX] of degrees a and b, where ged(a,b) = 1, find an irreducible
polynomial of degree ab.

Lemma 3.4. Let o and § be elements in the the algebraic closure of F,,.
Suppose that [Fy(a) : F,] = a, [Fp(B) : F,] = b, and ged(a,b) = 1. Then
[Fp(a, B) : Fy] = [Fp(a+ B) : Fp] = ab.

Proof.  We have [Fy(a,) : F,] = lem([Fy(a) : F,),[Fp(B) : F]) =
ab. Any maximal proper subfield of Fy(a, 8) (i.e., F a/r where r is prime)
must contain either a or 3, but not both, and hence cannot contain a + 3.

Therefore, Fy(a + ) = Fp(a, 8). D

Suppose that f and g are given as described above. Then this lemma
allows us to construct a tower of fields F, C F,(a) C Fy(e, §) where o is a
root of f and 3 is a root of g. The degree of the first step in the tower is a and
the degree of the second is b. We can construct the minimal polynomial of
a+ B over F, by computing (X — (a+8))(X = (a+8)?)--- (X = (a+8)").

This is an irreducible polynomial over F, of degree ab.

Complexity Analysis

The following breakdown of the complexity of our algorithm, in terms of F-
operations, is easily obtained by a straightforward application of Lemma 1.7
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to the computations performed by our algorithm:

Step1 Case 1 O((logp)(mq®)**t)
Case 2 O(2° + (logp)?)
Case 3 O((p*1)'*9)

Step 2 O((log p)n®*€)

3.3 Reduction to Factoring

In this section, we give a deterministic reduction from finding irreducible
polynomials over F, to the problem of factoring polynomials over F,,. Then,
using this reduction in conjunction with the factoring algorithm in Chapter 2,
we obtain a deterministic algorithm for finding irreducible polynomials.

Theorem 3.5. The problem of constructing an irreducible polynomial over
F, of degree n can be deterministically reduced in time bounded by a polyno-
mial in n and logp to the problem of factoring polynomials over F,.

Proof. Let ¢ be a prime, ¢ | n,q # p. Let m be the order of p mod ¢. By
Theorem 3.1, it will suffice to find, for each such ¢, an irreducible polynomial
f of degree m, and a g¢-th nonresidue in F,(a) where « is a root of f.

The basic idea is to factor the cyclotomic polynomial &, = X9 1 +... 41,
obtaining an irreducible polynomial of degree m. This gives us F,» and a
primitive g-th root of unity ¢ in Fym. Now, F7n is a cyclic group of order
p™ — 1. Suppose that p™ — 1 = I¢*¥ where gcd(l, q) = 1. Then if we take k —1
successive ¢-th roots of £, we obtain a primitive ¢*-th root of unity in Fym.
This must be a ¢-th nonresidue; otherwise, its g-th root would be an element
of order ¢**! in Fm, which is impossible by Lagrange’s theorem. So we have
reduced the problem to finding roots of polynomials of the form X? — ¢ over
F,m. Berlekamp [8] gives a reduction from factoring in F,=[X] to factoring
in F,[X]. We give an explicit construction, tailoring Berlekamp’s reduction
to our particular application.

We inductively construct a sequence of irreducible polynomials
FO L %) in F,[X] of degree m where the roots of f() are primitive ¢*-th
roots of unity. We let f(*) be any irreducible factor of ®,. It is clear that the
roots of f(1) are primitive g-th roots of unity. For i = 2,...,k, we let f) be
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any irreducible factor of fi=1)(X?). Since the roots of f(~1) are primitive
¢~ 1-th roots of unity, the roots of f() must be primitive ¢’-th roots of unity.

Computing the sequence f), ..., f{¥) requires us to factor one polynomial
of degree ¢ — 1 and k — 1 < mlogp polynomials of degree mq. Each of these
polynomials is the product of distinct irreducible polynomials of degree m.
We then put f = f). Any root « of f is a g-th nonresidue in F,(a). The
theorem is proved. 0O

Using the algorithm of Theorem 3.5, in conjunction with Theorem 2.5 and
the complexity analysis of Section 3.2, we immediately obtain the following
theorem.

Theorem 3.6. We can deterministically construct an irreducible polyno-
mial over F,, of degree n with O(p*/*(log p)3n®*<+(log p)*ni*<) F,-operations.

Example. We willillustrate the workings of our algorithm with an example.
Let p = 7 and suppose we want to construct an irreducible polynomial of
degree ¢ = 5 over F,. Let m be the order of p mod ¢, i.e. m is the smallest
positive integer such that p™ =1 (mod ¢). In this case, m turns out to be
4. Therefore, the polynomial ®, = X* + X3 4+ X? + X + 1 is irreducible
over F,,, and we set f; equal to ®,. Now, p™ = 1 (mod ¢?), and so the
roots of f; are not g¢-th nonresidues in Fpm. Therefore, we need to factor
fi(X7) = X2 4+ X5 4 X104 X5 4 1. Factoring f1(X?), we find that one of
its irreducible factors is fo = X*4+6X3+5X?+6X+1. Since p™ # 1 (mod ¢°),
we can deduce that the roots of f; are ¢-th nonresidues in Fym.

As described, our algorithm would construct the field F,(«), where « is
a root of f, and then extend this field by adjoining to it a root B of X7 — a.
However, we can simplify matters by taking £ to be a root of the irreducible
polynomial f2(X?) = X?° +6X' +5X1°4+6X°+ 1. The algorithm computes

7 =T(B) =B+ "+ + 5"
Performing this calculation, we find that
7= 66"+ 66 + B + 26" + 46" + 28° + 46° + 287 + B + 36° + 57 + B.
The algorithm next computes the coefficients of
BY) = (Y = 7)Y =) Y =77 )Y =" )Y =),
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obtaining
R(Y)=Y°+4Y%+3Y? +2Y +6,

which is an irreducible polynomial over F,. O

3.4 Irreducible Polynomials over Extension
Fields

In this section, we describe an algorithm for constructing irreducible polyno-
mials over finite extensions of F,, proving the following theorem.

Theorem 3.7. Given an extension E over ¥, of degree v, we can con-
struct an irreducible polynomial over E of degree n deterministically with
O(p'/?(log p)®n®*e + (log p)?n*te + (log p)nttev?t<) F,-operations.

The hypothesis of this theorem means that £ = F,(0) where 6 is a root of
a given irreducible polynomial over F,, of degree v. The algorithm described
in Section 3.3 could be adapted to this situation with a few straightforward
modifications. However, we will describe a slightly more complicated, but
more efficient, algorithm.

Implicit in our algorithm is a reduction to the problem of factoring poly-
nomials over F, via the problem of constructing, for each prime ¢ | n,q # p,
the splitting field of X7 — 1 over F,, along with a ¢-th nonresidue in this
field, or just a primitive ¢-th root of unity if ¢ also happens to divide v.

A straightforward implementation of our algorithm, making use of the
running time bounds in Lemma 1.7 for performing polynomial arithmetic
and the factoring algorithm of Theorem 2.5, will achieve the stated running
time bound.

We now describe our algorithm. As in the proof of Theorem 3.1, it will
suffice to construct irreducible polynomials over F of prime power degree ¢°,
and then combine these to obtain an irreducible polynomial over E of degree
n. We consider two possibilities: either ¢ does not divide v, or it does.

In the first case, it will suffice to construct an irreducible polynomial over
F, of degree ¢°, for this polynomial will remain irreducible over the larger
field E. The algorithm in Section 3.3 can be used for this.

In the second case, let v = ¢*I where gcd(q,[) = 1. It will then suffice to
find a polynomial of degree ¢° over F,,(9), where 9 is an element in E of degree
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¢* over F,, for this polynomial will remain irreducible over E. To facilitate
efficient computation in F,(d), we construct the minimum polynomial of
Y over F, by computing (X — 9)(X — 97)-.- (X — ﬂquml). We can find
such an element ¥ quickly in the following way. Construct the minimum
polynomial of ¢ over F . by computing (X — 6)(X — 67)--- (X ~ 07,
where o generates the Galois group of E over | Suppose this polynomial
is Yo+ X+ -9, X1+ X', Then it is easy to see that [Fy(Po,...,P-1):
F,] = ¢*, and so one of the ¥;’s must have degree ¢* over F,. We can examine

ke oo
each ¥; in turn until we find one such that ¥?° l # ¥;. Now let 9 = ¥J;. This
has degree ¢* over F,.
To construct an irreducible polynomial of degree ¢° over F,(¥}), as in
Section 3.2, we break the problem into three cases: (1) ¢ # 2,# p, (2)

q=2,%p,and (3) ¢=p.

Case 1: ¢#2,#p

We assume that we have the field F,(£), where £ is a primitive g-th root of
unity, which we can obtain by factoring the g-th cyclotomic polynomial. Let
m = [F,(€) : Fp), i.e., m is the order of p mod q. Since m and ¢ are relatively
prime, we can construct the tower of fields F,, C F,(9) C F,(9,¢) where the
degree of the first step in the tower is ¢* and the degree of the second is m.

We proceed to find a ¢-th nonresidue a in Fp(9, £) as follows. Let L be the
subfield F_.;x-1 of Fy(¥,{), and let o generate the Galois group of F,(9,¢)
over L. We compute the Lagrange resolvents

("9i) + f(ﬂi)” + e+ fq—l (191‘)0‘1—1

for ¢ = 1,...,9 — 1. One can show that one of these resolvents, call it
a, must be nonzero, and that a? is a ¢g-th nonresidue in L (see page 179
of [41]). It follows easily from Lemma 3.2 that a is a ¢-th nonresidue in
F,(9,€), and that the polynomial X% — a is irreducible over F,(9,£). So
if we adjoin a root § of this polynomial to F,(J,¢), we obtain the tower of
fields F, C F,(9) C Fy(9,¢) C Fp(9,£,8). We can now compute v = T'(f3)
where T is the trace from F, (9, ¢, 8) down to quk+e. By reasoning identical
to that in Section 3.2, we can prove that v has degree ¢° over F,(J), and
hence we can compute the minimum polynomial of 4 over F,(J) to obtain
an irreducible polynomial of degree ¢° over F,(9).

42



Case 2: ¢=2,%#p

Let L be the subfield F ;x-1 of Fy(J), and let o generate the Galois group
of F,(J) over L. Compute the Lagrange resolvent a = 9 — 9¥°. Then a?
is a quadratic nonresidue in L. If £ > 1 or p = 1 (mod 4), then a is a
quadratic nonresidue in F,,(9) and the polynomial X?° — a is irreducible over
F,(?#). Otherwise, k =1 and p = —1 (mod 4). Let p? — 1 = 2°, and take
s — 2 successive square roots of a in F,(J) using the formula in Section 3.2,

obtaining a 2°~2-th root b of a. Then b is a quadratic nonresidue in F,(4),
and so X** — b is irreducible over F,(¥9).

Case 3: ¢=1p

As in Section 3.2, we inductively construct a sequence of irreducible polyno-
mials over F,,(3) of degrees p,p?,...,p°. Everything is essentially the same
as in Section 3.2, but to get this inductive process started, we need to find
an element a in F,(9) such that X? — X — a is irreducible. A nice way to do
this, given that we have the minimum polynomial of ¥ over F,, is as follows.
Suppose the minimum polynomial of ¥ over F, is X7 fa XP 4y Qpk.
Let ¢ be the least positive integer smaller than p* such that i # 0 (mod p) and
a; # 0. We claim that such an 7 exists, and that X? — X — 9* is irreducible
over F,(J).

To prove this claim, we first observe that such an ¢ must exist, since
otherwise the minimum polynomial of ¥ over F, would be a perfect p-th
power. Second, one can show that the polynomial X? — X — a is irreducible
over Fp(¥) if and only if T'(a) # 0 where T is the trace from F,(d9) down to
F, (this follows from Hilbert’s Theorem 90, and the Artin-Schreier Theorem
on p. 325 of [26]). But using Newton’s formulas (Lemma 2.1) we have the
following recurrence relation:

T(ﬂz) -+ CZ]T('l?i—l) + ..o ai_lT(ﬁ) + ’L.ai feed 0 (Z e 1’ . ,pk)_

The claim is now immediate.
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3.5 Another Algorithm for Finding Irre-
ducible Polynomials

In this section, we describe another deterministic algorithm for constructing
irreducible polynomials over F,, of degree n. This algorithm, like that of Sec-
tion 3.3, works by finding appropriate nonresidues in extension fields of F,,
and then uses the construction of Section 3.2 to obtain an irreducible poly-
nomial; however, the method used to construct these nonresidues is different,
and was suggested to the author by Lenstra [29].

The algorithm in this section has the advantage that it is somewhat sim-
pler than the algorithm in Section 3.3. It also has the advantage that it is
easily recast as a fast parallel algorithm when p is small, whereas the algo-
rithm in Section 3.3 is not. It has the disadvantage that the dependence on p
in the running time may be proportional to p'*¢, whereas the dependence on
p in the running time of the algorithm in Section 3.3 is at worst proportional
to p1/2+6_

We shall first describe the algorithm; then, we will analyze its running
time; finally, we will show how this algorithm can be recast as a fast parallel
algorithm.

The Algorithm

As in Section 3.2, it will suffice, for each prime ¢ such that ¢ | n, ¢ # p, to
find an irreducible polynomial f € F,[X] of degree m, where m is the order
of p mod ¢, and a g-th nonresidue a in the field F,(a), where « is a root of
I

To obtain f, we proceed as follows. If m > 1, we recursively invoke the
algorithm to construct an irreducible polynomial f of degree m; otherwise,
there is nothing to do (we can let f be any linear polynomial).

Let a be a root of f. To obtain a ¢-th nonresidue in F,(c), we proceed
as follows. Any element in the field Fj(a) can be expressed as g(a) where
g € F,[X] is a polynomial of degree < m. We want to find ¢ € F,[X] such
that g(a) is a ¢-th nonresidue. We do this by examining polynomials ¢ €
F,[X] in lexicographic order until g(a)P"~1/9 o 1, where 75" a; X" is said
to lexicographically precede y-7;! b; X" if for some j, where 0 < j < m — 1,
we have a; < bjand a; =b; fori =35 +1,...,m — 1.
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Complexity Analysis

The running time of this algorithm is determined by the number of recursive
calls and the number of polynomials in F,[X] that need to be examined in
the search for a ¢-th nonresidue. We will establish bounds for both of these
quantities with the following two claims.

Claim 1. No more than logn+1 recursive calls are made. The call tree is
reminiscent of the Pratt primality tree [33]. To prove the claim, note that it is
the job of each recursive call, other than that associated with n, to construct
the ¢-th cyclotomic extension field for an odd prime q. To do this, it will in
the worst case have to recursively construct r-th cyclotomic extensions for
each odd prime r | ¢ — 1. We show by induction on ¢ that the total number
of calls required to construct the ¢-th cyclotomic extension is no more than
log g. For ¢ = 3, exactly one call is made, as no further recursion is necessary.
For ¢ > 3, the total number is no more than 1 (for the call associated with ¢
itself) plus }°, log 7 where the sum is taken over all odd primes r | ¢ — 1 (this
follows from the induction hypothesis); it is easy to see that this quantity is
no more than log ¢. Thus, to construct an irreducible polynomial of degree n
for arbitrary n, the total number of calls made is no more than 1+ 3, loggq,
where the sum is taken over all odd primes g | n; obviously, this quantity is
no more than logn + 1. This proves the claim.

Claim 2. Let d = [2log,m]|. If0 < d < m, then there ezists a monic
polynomial g € F,[X] of degree d such that g(c) is a g-th nonresidue in
F,(«). This claim is roughly analogous to Ankeny’s theorem on the least
quadratic nonresidue modulo a prime [3], except that our claim is uncondi-
tional, whereas Ankeny’s theorem relies on the Extended Riemann Hypothe-
sis. Qur claim is a consequence of a theorem of Katz [23, Theorem 2]. Let Fq
be a finite field with p? elements, and consider the m-dimensional Fqe-algebra
F,¢[X]/(f). Note that F,a[X]/(f) is not a field, unless ged(d,m) = 1. Note
also that F,a[X]/(f) is also an algebra over F,[X]/(f), since the latter can
be embedded in a natural way into the former. The following picture should
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help to clarify the situation:
F [ X]/(f)

m d

Fpa FL[X]/(
e

We will make use of characters on the group of units of F,a[X]/(f). A
character on this group is a homomorphism from this group into the nonzero
complex numbers. We extend the domain of a character to the entire ring
by defining the value of the character to be zero for all non-units.

Suppose that ¢ is a nontrivial multiplicative character on F o[X]/(f).
Then Katz’ theorem implies that

f)

Z ’(/)(X — 1t mod f) < (m_ l)pd/z. (*)

tEde

To apply Katz’ theorem, we first construct a nontrivial character ) on
F,e[X]/(f) in the following way. Let x be a character of order ¢ on F,(a) =
Fp[X]/(f). Let o be a generator of the Galois group of F,« over F,. By
coeflicientwise application, ¢ naturally extends to F,«[X]. By Galois theory,
for any g € Fpa[X], gg°-+-¢°"" is in F,[X]. Let N : Foo[X] — F,[X]/(f)
be defined by N(g) = gg°---¢°"" mod f. We want to define the map N :
F,o[X]/(f) — F,[X]/(f) by N(g mod f) = N(g), but to do this, we must
show that this association is well defined. However, one can easily verify
that if g = g + hf for some h € F,[X], then N(g1) = (g + hf)(¢° +
hf)-- (¢ + h** ) mod f = N(g). Clearly, N is a multiplicative map
and so we can define the character 1 = y o N on F,«[X]/(f). Finally, we
want to show that ¢ is nontrivial. This is easy to do: choose any g € F,[X]
such that x(¢ mod f) # 1; then ¥ (g mod f) = x(g¢ mod f) = x(g mod f),
which is different from 1 since d # 0 (mod g).

Now consider the left hand side of the inequality (*). Each term of the
sum is nonzero since it can be written as x(¢g mod f) where g is a nonzero
polynomial in F,[X] of degree less than m, and hence relatively prime to f.
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But, since d = [2log, m], it follows that d > 2log,(m — 1) which implies
that p? > (m — 1)p¥2, and hence not all of the terms in the sum can be
equal to 1. Therefore, for some ¢t € F,q, we have (X — ¢ mod f) # 1. This
implies that x((X —t)(X —17) -+ (X —=t°*") mod f) is different from 1. But
(X —t)(X —1°)--- (X —°""") is a monic polynomial in F,[X] of degree d,
and so the claim is proved.

The second claim implies that if 0 < d < m, then the number of polynomi-
als we will examine is at most 2p/21°& ™1 < 2p?lo& ™+ — 9(m2p). Certainly,
this bound is valid when d = 0 or d > m as well. Testing if a candi-
date polynomial is a ¢-th power nonresidue can be done with O((log p)m?*¢)
F,-operations. Thus, the search for a ¢-th nonresidue can be done with
O(p(log p)m?**<) F,-operations. It then follows from the first claim and the
complexity analysis in Section 3.2 that the algorithm in this section for con-
structing an irreducible polynomial of degree n over F, can be performed
with O(p(log p)n**¢) F,-operations.

A Fast Parallel Algorithm

We use uniform Boolean circuits as our model of parallel computation. We
measure the complexity of these circuits (size and depth) as a function of
a single input size parameter [. A problem is in NC if there is a uniform
family of Boolean circuits of size [°(!) and depth (log 1)°®) that solves it. For
more information on parallel complexity, see the survey article of Karp and
Ramachandran [22].

If the characteristic p is small (i.e., p = [°()), NC algorithms are known
for all of the basic operations on polynomials over finite fields we require:
addition, subtraction, multiplication, quotient/remainder, and modular ex-
ponentiation (see [43] and [20]). In the algorithm in this section, the size
of the recursive call tree—and therefore its depth—is O(logn), and we can
search for g-th nonresidues among the O(m?p) candidates in parallel. Thus,
we immediately obtain the following theorem.

Theorem 3.8. The problem of constructing an irreducible polynomial over
F, of degree n, given p,n = I1°W is in NC.

Remark 1. Using the algorithm of Section 3.4, a similar theorem can be
proved for constructing irreducible polynomials over finite extensions of F,.

47



Remark 2. The algorithm of Section 3.3 is not easily recast as an NC
algorithm. The problem is this: we are required to take k — 1 successive g-th
roots, where k is the highest power to which ¢ divides p™ — 1. Typically, k
will be quite small, but the author knows of no general bound on k other
than the trivial one, O((log p)m). To obtain an NC algorithm, a bound of
(log p + log m)°M would be required.

Remark 3. The probabilistic algorithms of Rabin [34] and Ben-Or [6] give
rise to randomized NC algorithms for constructing irreducible polynomials
(provided p is small).

3.6 Open Questions

For fixed p, the probabilistic algorithm of Ben-Or for constructing an irre-
ducible polynomial of degree n over F, runs in time O(n?*¢), whereas our
algorithm requires time O(n**¢) in the worst case. It is natural to ask if this
time bound can be improved.

Now consider the construction of Section 3.5. In that section, we searched
for a ¢-th power nonresidue in F,(a) = F,m by examining polynomials in
a over F, in lexicographic order. If p is large, in particular p > m?, the
theory in that section guarantees that one of o, +1,...,a+(p—~1)isa
g-th nonresidue in F,(a). We ask if, in this situation, we can get a nontrivial
bound on the least integer § such that a6 is a g-th power nonresidue, either
unconditionally or under the assumption of the ERH.

Finally, the results in this section only address the problem of constructing
irreducible polynomials. A more challenging problem is that of finding a
primitive polynomial. An irreducible polynomial f is called primitive if «
generates the group Fp(a)*, where « is a root of f. For this problem there are
no known polynomial time algorithms, either deterministic or probabilistic,
even when p is small.
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