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Abstract

We consider the complexity of stochastic games — simple games of chance played by two players. We show that
the problem of deciding which player has the greatest chance of winning the game is in the class NP N co-NP.

1 Introduction

We consider the complexity of a natural combinatorial problem, that of deciding the outcome of a special
kind of stochastic game. A simple stochastic game (SSG) is a directed graph with three types of vertices,
called maz, min and average vertices. There is a special start vertex and two special sink vertices, called
the 0-sink and the I-sink. For simplicity, we assume that all vertices have exactly two (not necessarily
distinct) neighbors, except for the sink vertices, which have no neighbors.

The graph models a game between two players, 0 and 1. In the game, a token is initially placed on
the start vertex, and at each step of the game the token is moved from a vertex to one of its neighbors,
according to the following rules: At a min vertex, player 0 chooses the neighbor to which the token is
moved. At a max vertex, player 1 chooses the neighbor to which the token is moved. At an average
vertex, a coin is tossed to determine where the token is moved, so that it is moved to each neighbor of
the average vertex with probability 1/2.

The game ends when the token reaches a sink vertex; player 1 wins if it reaches the l-sink vertex
and player 0 wins otherwise, that is, if the token reaches the O-sink vertex or if the game never halts.
The reason for the names mazr and min vertices is that at the max vertices, player 1 chooses its move
so as to maximize the probability of eventually reaching the 1-sink vertex, whereas at the min vertices,
player 0 chooses its move so as to minimize the probability of reaching the 1-sink vertex.

Informally, a strategy for player 0 (1) is a rule that defines what move the player takes whenever the
token is at a min (max) vertex. There are two natural questions to ask about a simple stochastic game:

(i) what are the best strategies of the players; and
(i1) what is the probability that player 1 wins the game, if both players use their best strategies.

Although many algorithms that answer these questions have been studied, none run in polynomial
time. Thus the natural decision problem associated with these questions - that of deciding if the prob-
ability that player 1 wins is greater than 1/2 - is not known to be in P . The purpose of this paper is
not to describe new algorithms for this problem, but instead to formulate the important questions in a
complexity-theoretic framework. We show that this decision problem is in NP N co-NP. Although many
number theoretic problems not known to be in P lie in the class NP N co-NP, combinatorial problems
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that lie between P and NP N co- NP are rare. The stochastic game problem defined in this paper is an
interesting example of a simple combinatorial problem with this property.

The study of stochastic games was initiated by Shapley [10] in 1953 and many variations of the model
have been investigated since then (see Peters and Vrieze (8] for a survey). The class of stochastic games
studied in this paper is somewhat similar to the stochastic games with switching transitions, studied by
Filar [3]. We were motivated to study these simple stochastic games while considering the power of the
following complexity model: space bounded alternating Turing machines, generalized to allow random
as well as universal and existential moves. (Alternating Turing machines are described in [1]). These
machines model some interesting problems in optimization; a polynomial time algorithm for the simple
stochastic game problem would yield polynomial time algorithms for other optimization problems as
well. It would also imply that adding randomness to space bounded alternating Turing machines does
not increase the class of languages they accept.

In Section 2, we give a more precise definition of the stochastic game problem considered in the paper
and describe properties of stochastic games. In Section 3, we show that the decision problem associated
with these questions lies in the class NP N co-NP. In Section 4, we briefly describe variations of the SSG
model and examine their complexity, and list some open problems.

2 Definitions and Properties of Simple Stochastic Games

In this section, we define precisely the model of stochastic games considered in this paper. We describe
some basic properties of strategies of the players of such games. Many of the results presented here have
previously appeared in the literature of stochastic games; we include them for completeness and because
in some cases they can be simplified or strengthened for the special class of games studied in this paper.

2.1 Definitions

A simple stochastic game (SSG) is a directed graph G = (V, E) with the following properties. The
vertex set V' is the union of disjoint sets Vinaz, Vinin, Vaverage, called max, min and average vertices,
together with two special vertices, called the 0-sink and the I-sink. One vertex of V is called the start
vertex. Each vertex of V has two outgoing edges, except the sink vertices, which have no outgoing edges.
Without loss of generality, assume that the vertices of G are numbered 1,2, ...n, with n—1 and n being
the 0- and 1-sink vertices, respectively. An example of a SSG is given in Figure 1

Associated with the game are two players, 0 and 1. A strategy  of player 0 is a set of edges of E,
each with its left end at a min vertex such that for each min vertex i there is exactly one edge (i, j)in
7. Informally, if (¢,j) € 7 then in a game where player 0 uses strategy 7, the token is always moved
from vertex i to vertex j. Similarly, a strategy o of player 1 is a set of edges of E, each with its left
end at a max vertex such that for each max vertex i there is exactly one edge (4, 7) in o. In the game
theory literature, strategies satisfying this definition are called pure stationary strategies because (i) the
players do not use probabilistic choice in choosing a move, and (ii) each player chooses the same move
from a vertex every time that vertex is reached. We only consider pure stationary strategies in this
paper because, as we will see later, both players of a SSG have optimal strategies of this type. (For a
discussion of other types of strategies, see Peters and Vrieze [8]).

Corresponding to strategy o is a graph G,, which is the subgraph of G obtained by removing from



Figure 1: A Simple Stochastic Game with 10 vertices. Verter 1 is the start vertez, vertez 9 the 0-sink
and vertez 10 the 1-sink.

each max vertex the outgoing edge that is not in the strategy o. Similarly, corresponding to a pair of
strategies o and 1, is a graph G, obtained from G, by removing from each min vertex the outgoing
edge that is not in 7. In Gy, every max and min vertex has one outgoing edge. Thus G, . can be
considered as a Markov process where the states of the process are the vertices of G and the transition
probabilities p;;,1 < 7,7 < n are defined as follows. If i < n —1 then p;; = -;- if 7 is an average vertex
with outgoing edge (7,7); pij = 1 if i is a max or min vertex with outgoing edge (i,j) and p;; = 0
otherwise. Since n — 1 and n are sink states, we define pny = pp_in-1 = 1, Pnj = 01if j # n and po_y;
=0ifj#n~1.

We define the value v, (Z) of each vertex i of G with respect to strategies o and 7 to be the probability
that player 1 wins the game if the start vertex is i and the players use strategies o and r. That is, the
value v, r (i) is the probability of reaching the 1-sink vertex from the start vertex on a random walk of
the Markov process G, r, starting from vertex i. In Figure 2, the subgraph of the SSG of Figure 1 is
given, for strategies o = {(1,5),(3,4),(6,7)} and 7 = {(4,3)} of player 1 and 0, respectively.

Figure 2: Subgraph of the SSG of Figure 1, for strategies ¢ = {(1,5),(3,4),(6,7)} and = {(4,3)} of
player 1 and 0, respectively. The value vy r(i) of each verter i is given above the verter.

Let vertices 1,...,t be the vertices of G, with a path to the l-sink vertex, excluding the 1-sink



vertex itself. Then clearly the values v, (i),1 < 7 < n satisfy the following conditions: If f < i< n -1
then v, ,(7) = 0 and v, ,(n) = 1; otherwise

L (vo,r (§) + vo,r (K)), ifiis an average vertex of Gg r

with outgoing edges (%, j), (¢, k),
Vo,r (i) = (1)

Ve r(J), if 7 is a max or a min vertex of G, ,
with outgoing edge (3, j).

We next show that the equations (1) have a unique solution. Let 75 = (vo,r(1),...,v0+(2)).

Lemma 1 There is an t x t matriz Q and a t-vector b with entries in {0,1/2,1} such that To,r is the
unique solution to the equation 95, = QUs, + b. Also I — Q is invertible, all entries of (I-Q)! are
non-negative and the eniries along the diagonal are strictly positive.

Proof: Substituting 0 for v, (i), t+1 < i < n—1and 1 for v, ,(n) in equations (1) and rearranging
the terms in the equations, it follows that

"70,1 = Qﬁa,f + E,

where b is a constant vector and Q is the the 1-step transition matrix of the vertices {1,...,t}. For each
i, the ith component of b is from the set {0,1/2,1} and equals the probability of reaching the 1-sink
vertex from 1 in 1 step. Also all entries of @ are in {0,1/2,1}. The equation %y, = Q¥,  + b has a
unique solution if and only if (I — @) is invertible.

To prove that (I — Q) is invertible, we first argue that Ilim Q' = 0. We show that for any m > 1, the
—00

sum of the terms in any row of Q™" is at most (1 — 1/2")™. Since all terms of @' are non-negative for
any I, it follows from this that as I — oo, @' — 0. Note that the ijth entry of Q™" is the probability
of reaching vertex j from vertex 7 in exactly mn steps. When m is 1, the sum of the terms of the ith
row of ™" is at most 1 minus the probability of reaching the 1-sink vertex of G, r from 7 in n steps.
Since the value of i is > 0, there must be a path of length < n in G, ; from 7 to the 1-sink. Hence the
probability of reaching the 1-sink from 7 in n steps is at least 1/2". Therefore, the sum of the terms in
any row of Q" is at most 1 — 1/2". The proof for m > 1 is an easy induction argument.

From this, Kemeny and Snell [6] give a simple argument to show that I — @ is invertible. From
simple rules of algebra,

I-Q =(I-QU+Q+Q*+...+Q"Y);

taking the limit of both sides as | — co yields I = (I ~Q)(I+ Q-+ ...+ Q"' +...). Since the left side
has determinant 1, the determinant of the right side must also be 1, implying that I — @ has non-zero
determinant. Hence I — @ is invertible. Also, (I — Q)~! = I 4+ Q + Q2 + ...; hence every entry of
(I — Q)~! is non-negative and the entries along the diagonal are strictly positive. O

We define the value of the game G to be
maxmin v, (start).
o T

Informally, the value of the game is the maximum probability that player 1 wins if it reveals its best
strategy to player 0 at the start of the game; and player 0 plays its best strategy against the strategy
chosen by player 1.



Given a SSG, a natural question is: what is its value? A related problem is to find the best strategies
of the players, that is, the strategies o and 7 such that the value of the game equals v, . (start). To
investigate the complexity of these problems, we consider the following decision problem for 5SG’s.

The SSG value problem is: Given a SSG, is its value > 1/27

In Section 3, we show that this decision problem is in the class NP N co-NP. To build up to the
proof, we describe many interesting properties of simple stochastic games in Section 2.2.

2.2 Properties of Simple Stochastic Games

We next describe some properties of the value and of the strategies of simple stochastic games. We first
show that the value of a SSG is a rational number of the form p/q where 0 < p, ¢ < 4™. From this, it is
possible to bound the value of a SSG away from 1/2, if it is not equal to 1/2. In the succeeding lemmas,
we build up to the proof that both players possess “optimal” strategies — strategies that are guaranteed
to ensure that the outcome of the game is the best possible for that player, regardless of what the other
player does or what the start vertex is. Finally in Lemma 6 we describe a strong form of the minimax
theorem for simple stochastic games.

Lemma 2 The value of a simple stochastic game G with n vertices is of the form p/q where p and q
are integers, 0 < p,q < 4".

Proof: The proof of this lemma is very similar to a proof by Gill ([4], Lemma 6.6). Let o and 7 be
arbitrary strategies of players 0 and 1 respectively. Then the value of 0-valued vertices and the 1-sink
vertex with respect to strategies o and 7 can be written as 0/1 and 1/1 respectively and so are clearly
of the form given in the lemma. Without loss of generality, assume that all of the vertices with positive
value, excluding the 1-sink vertex, are numbered from 1 to ¢t and let ¥, = (vo,r(1),...,vs-(f)). In
Lemma 1 it was shown that @, , is the unique solution to the equation 2(I — Q),, = 2b, where b is a
constant vector and I — () is a matrix with non-zero determinant. Furthermore, the entries in 2(] - Q)
and 2b are from the set {0,+1,+2}.

By Cramer’s rule, the value of a vertex i € {1,2,...t} can be represented as the quotient of two
integers N;/D, where D is the determinant of 2(I — Q) and N; is the determinant of the matrix obtained
by replacing the ith column of 2(I — Q) by 2b. The determinant of 2( — Q) is at most 4”. This follows
from expansion by minors, the fact that the entries of 2(I — Q) are from the set {0,%1,%2} and that
each row has a constant number of non-zero entries, whose absolute values sum to at most 4. Hence
D is at most 4™. Also, since the value of each vertex is at most 1, the value of each N; is an integer
< D. Thus the value of each vertex of G, , is the quotient of two numbers, each of value at most 47.
In particular this is true for the start vertex of G, ,.

Since the strategies o and 7 were chosen arbitrarily, maxmin v, ,(start) must be the quotient of two
[+ 4 T

numbers, each of value at most 47, O
Lemma 3 If the value of a simple stochastic game with n vertices is > 1/2, then il is > 1/2+ 1/4".

Proof: Immediate from the last lemma. O

In the next lemma, it is shown that for each strategy o of player 1, there is a strategy (o) of player
0 that is “optimal” with respect to o in that for every min vertex i of G, the value of ¢ with respect to



strategies o, 7(¢) equals the minimum of the values of its children. We call 7(o’) the optimal strategy of
player 0 with respect to strategy o.

Lemma 4 (Howard [5]) Let G be a simple stochastic game with n vertices and let o be any strategy of
player 1. Then there is some strategy (o) such that for eack verter i € Vi with neighbors j and k,

vgyr(a)(i) = min[vo,r(a)(j)? va:”(”)(k)]'

Proof: Howard [5] described an algorithm to construct (o) satisfying the lemma. The algorithm
proceeds in iterations. There is a current strategy r(r) for each iteration r; the current strategy of
the initial iteration is chosen arbitrarily and is denoted by 7(0). Strategy 7(r + 1) is constructed from
strategy 7(r) by finding any one vertex i € Vinin with neighbors j, k such that (4, j) € 7(r) but v, () (k) <
Vo,r(r)(J) and replacing (7, j) by (¢, k). If no such vertex exists, the algorithm halts. The current strategy
of the final iteration is 7(¢). From the construction of r(¢), it must be the case that for each vertex
i € Vimin with neighbors j and k, v, (5 (?) = min{v, +(6y(5), Vo,7(s) (k)]

To prove that Howard’s algorithm is correct, it remains to show that it always halts. To simplify
the notation in the proof, let v,(é) = v, (;)(¢). The fact that Howard’s algorithm halts follows from the
following property, which we will prove: if the algorithm does not halt at round r then strategy r(r + 1)
improves strategy T(r) in that for each vertex ! of G, v,+1(I) < vr(I) and for at least one vertex the
inequality is strict. This ensures that no strategy can be repeated in the sequence 7(0),r(1),...,7(co)
and hence the sequence is finite.

Clearly, if vr41(1) = 0 then v,4; (I) < v,(I) and also for n, the 1-sink vertex, 1 = v,41(n) < v.(n) = 1.
Therefore we restrict our attention to the vertices other than the sink vertex for which v.4;(I) > 0.
Without loss of generality let these vertices be numbered 1 through t. Let @, = (v.(1),...,v.(¢))T. As
in Lemma 1 let matrices @, Q,4; and vectors b, and br41 be such that o, = Q, 7, + b and Tpyp =
Qry10rg1 +bryy. Let A =5, — Tr41. We show that A > 0 and that some entry is actually > 0. Adding
and subtracting Qr4+17, + b,+1 to A we see that

A = (Qri}r + Br) - (Qr+117r + Br«}-l) + (Qr+1"7r + 51‘-{»1) - (Qr-{-li}r«)-l + Br+1)-

If 6 = (Qr¥ +b;) — (Qr19r + br41), then A = Qr41A + 8. Since Q,4; is the 1-step transition matrix
of vertices 1,...,t of G5 r(r41), from Lemma 1 it follows that the matrix (I — Qr41) is invertible. Hence
A = (I - Qr41)~16. Also from Lemma 1, all the entries of (I — Q,4;)~! are > 0 and the entries along
the diagonal are > 0. Therefore, it remains to show that § > 0 and that one entry is actually > 0.
Suppose edge (i, k) replaces (4, j) in constructing 7(r + 1) from 7(r). Hence @, and Q,4; differ in at
most the ith row and similarly b, and b, differ in at most the ith row. Thus every entry of § must be
0, except possibly the ith entry.

Moreover, the ith entries of Q. 9, + b, and Q,417, + br41 are v,(j) and v, (k) respectively; hence the
ith entry of 8 is v (j) — vr (k). Since edge (i, k) replaces (4, j) in constructing 7(r + 1) from 7(r), it must
be the case that v.(j) > v,(k) and hence the ith entry of § must be > 0. This completes the proof that
Howard’s algorithm halts. O

The next lemmashows that in any SSG G, player 1 has a strategy o’ which is optimal in the following
sense. Suppose player 0 uses some optimal strategy 7(o’') with respect to strategy o’ of player 1. Then
for each vertex i € Vju4z, the value of i with respect to strategies o/ and 7(¢') is the maximum of
the values of its children. We call any strategy o’ satisfying Lemma 5 an optimal strategy of player 1.
The proof of this lemma is a straightforward extension of Lemma 4; similar proofs for other classes of
stochastic games are surveyed in [8].



Lemma 5 Let G be a simple stochastic game with n vertices. Then there is a strategy ¢’ of player 1
such that, if v/ = 7(0’) is the optimal strategy of player 0 with respect to sirategy o’ of player 1, then for
all vertices i € Vipar with neighbors j and k,

Vot 71 (2) = max(ves 71(5), vor (k)]

Proof: Again the strategy o’ can be found by an iterative method similar to Lemma 4. In the
iterative algorithm to construct o', there is a current strategy o(r) for each iteration r; the current
strategy for the initial iteration is chosen arbitrarily. Let r(r) denote the optimal strategy of player 0
with respect to strategy o(r) and let v.(I) denote vy(r,(r)({). Strategy o(r + 1) is constructed from’
strategy o(r) by finding any one vertex i € Vinq, such that (7, j) € o(r) but v.(k) > v.(j) and replacing
(4,5) by (i, k). If no such vertex exists the algorithm halts; the current strategy of the final iteration is
o'. Let 7' be the optimal strategy of player 0 with respect to o’. From this construction, it must be the
case that for each vertex i € Vinar with neighbors j and k, v, 7+(2) = max{vys r(5), vor »+ (k)]

Asin Lemma 4, to show that the iterative algorithm halts, it is sufficient to show that v, (1) > v.(1)
and that the inequality is strict for some /. The proof of this is complicated by the fact that at each
iteration, both o(r) and 7(r) are being changed, whereas in the construction of Lemma 4 only one
strategy is changed. However, the key elements in the proof are similar.

Assume that vp41(I) > 0for 1 <1< tand vy () =0fort <! < n. Also, suppose that (¢, k) replaces
(¢,7) in the construction of o(r + 1) from o(r) and that (i, k') replaces (7', ;') in the construction of
7(r + 1) from 7(r). We restrict the proof to the case where r(r + 1) and 7(r) differ in only 1 edge; the
proof can easily be generalized to the case when they differ in more than one edge.

First, consider the vertices 1,...,t. Let 9, = (vr(1),...v,())7, Gpgy = (vr41(1),. . .v,.+1(t))T, Tp =
Q.9 +b, and Vg1 = Qr410r41 + 5,-+1 for some Qr, Qr41, b, and 5r+1. As in Lemma 4, it follows that
ifA = Upp1 — Up, then A = (I-—Qr+1)-1(§, where § = (Qr+117,- +B,-+1) - (Q,-‘l_)r +B,-) Also (I—- Qrtl)wl
has positive entries along the diagonal and all entries are non-negative. So it remains to show that § > 0
and that some entry is > 0.

As in Lemma 4, it can be shown that the ith entry of § is > 0 and that if | # #/ and [ # i, the Ith
entry of § is 0. It remains to consider 5(i’) in the case that # < t. Since 7(r) is optimal with respect
to o(r) and (¢, j') € 7(r), it must be the case that v,(j') < v,(k'). But the i'th entry of Q417 + br41
and Q, 9, + b, are v, (k') and v,(j') respectively. Hence the i’th entry of § is ve(&') = v.(5) > 0. This
concludes the argument for the vertices 1,...,1.

Next we show that if vr41(I) = 0 then also v.(I) = 0. It is equivalent to show that all vertices with
a path to the 1-sink vertex in G, = Go(r),7(r) also have a path to the 1-sink in G4 = Go(r41),7(r+1)-
We first show that replacing (7, j) by (i, k) in G, does not disconnect any vertex from the 1-sink. This
is true because v.(j) < v.(k), since (i, k) replaces (i,j) in the construction of o,4;. Hence k must be
connected to the 1-sink and so i is. Therefore, v, (I) > 0 = vo(r41),7(r)(I) > 0.

It remains to argue that by further replacing (¢,j') by (¢, k') in Go(r41),7(r) to obtain Gr4y, any
vertex in GG, connected to the 1-sink is also connected to the 1-sink in Gr41. This is immediate when
vr(i') = 0, since in this case ¢’ is not connected to the 1-sink in G,. When v,(¢') > 0, it must be the case
that vr(j') > 0, since #' is connected to j' in G,. Also v,(j) < vr(k’) since 7(r) is the optimal strategy
with respect to o(r). Therefore, v.(k’) > 0. Since we have already shown that replacing (3, j) by (i, k)
to obtain Gg(y41),-(r) does not disconnect any vertex from the 1-sink, it must also be the case that
Vo(r+1),7(r)(k") > 0. Hence replacing (¢, j') by (i, ') in Go(r41),7(r) to obtain G4y cannot disconnect
any vertex of G, from the l-sink, as required. 0O



Recall that we defined the value of a SSG G to be the max, min, vy ,(start).

An interesting question is whether it is equivalent to switch the order of max and min quantifiers
in this definition. In the next lemma, we show that both the max-min and the min-max definitions
are equivalent. The proof is a straightforward application of the techniques of the preceding lemmas.
Similar results have been proved for many types of stochastic games (see Peters and Vrieze [8]), but this
result is stronger than others because of our restriction to pure strategies of the players.

Lemma 6 For any simple stochastic game, and any vertex [ of the game,

min max v,,, (I) = maxminv, - (I).
T 4 4 T

Proof: It is easy to show that maxminv, ,(!) < minmaxuv, ,(I). To prove the other direction, we
a T T g

show that
min mng,,,y(l) < max Vo,r(l) S vgr (1) < mTin v (1) < moaxrriin ve,r (1),
T

where o’ and 7’ are the optimal strategies of Lemmas 4 and 5. The first and last inequality are straight-
forward, so we only consider the other two. We first show that v, (1) < min, vy ,(I). That is, for any
fixed strategy 7, vor,r(I) < vor,r(I). Without loss of generality suppose that for I < n, v, (1) > 0 if
and only if I € {1,...,t}. Let %61 ; = (vor,r(1),..., 000 +(t))T and Tpr,rs = (Vo1 7+(1), . .., 001 +(¢))T. Let
Vgt r = QUst v + b, where Q and b satisfy the conditions of Lemma 1.

Then we claim that 9,/ < QU 50 +b. This is because if 7 is not a min vertex, the ith component of
both sides of the inequality are equal; if 7 is a min vertex, the value of the left hand side is the minimum
of the value of its neighbors whereas the value of the right hand side is one of these neighbors. Finally,
since I — @) is invertible and all entries of (I — Q)~! are > 0, 9/ < (I — Q)b = Tgs,7. Thus for
1<t vor (1) € Tor r (1)

Next consider  such that v, -(I) = 0. We must show that for all such I, vy ,+(I) = 0. It is sufficient
to show that all vertices with a path to the 1-sink in Goi v+ also have a path to the 1-sink in Gy ;.
We consider the special case where 7’ and 7 differ in only one edge, say (i,j) € 7 and (i,k) € 7. If
vot,r(i) = O then replacing (3, 7) by (,k) cannot disconnect any vertex in the graph from the I-sink.
It remains to consider the case where v,s ,/({) > 0. But then j is connected to the l-sink and since
Vot,r1(k) > vor,r+(j), k must also be connected to the 1-sink. Hence again replacing (%, 5) by (Z, k) does
not disconnect any vertices from the 1-sink.

Finally, the proof that max v,,7/(I) < v, »(l) is very similar to the proof just given. O
4

Let @,p; be the n-vector whose ith component is maxmin vg,7(1). We call 9oy, the value vector of
-4 T

G. Then 9oyt = g1, where o’ and 7/ are the optimal strategies defined in Lemmas 4 and 5 and so
Uopt(start) is the value of the game.

We complete this section with one observation about the vector Topt. For any SSG G, let Ig be the
function I : [0,1]* — [0, 1]", (written simply as I if there is no ambiguity about which graph is meant),
defined as follows. Ig(Z) = § where
( max{z(j),z(k)}, ifiisa max vertex of G with neighbors j, k,
min{z(j),z(k)}, if i is a min vertex of G with neighbors j, k,

y(i) = ¢ 3(e(5) + z(k)), if 7 is an average vertex of G with neighbors j, k,
0, ifiz=n-1,
1, ifi=n.




We call the set of vectors z for which z = I(2) the solutions of G. Then from Lemma 5, it is
straightforward to show that 7oy, is a solution of G.

3 Complexity Results

In this section we show that the SSG value problem is in NP N co-NP. A property of any SSG G that
we will use is that the value vector i,y of G is a solution of G; that is, I (Vopt) = Topt. Moreover, given
a vector Z is is easy to check whether it is a solution of G or not. These facts form the basis of the
proof that the SSG problem is in NP N co-NP. Roughly, if a game G has a unique solution, then a
nondeterministic algorithm can guess the solution and it can be deterministically checked whether the
value of the start vertex in that solution is greater than 1/2 or not. In general however, the solution of
a simple stochastic game may not be unique.

Therefore, we show that in time polynomial in the size of an SSG G, we can construct from G a
new game G’ such that G’ has a unique solution and the value of G' > 1/2 if and only if the value
of G > 1/2. The new game G’ is called a stopping SSG because for any pair of strategies o, 7 of the
players in the new game, there is a path from every vertex of G,,, to a sink vertex. This ensures that
the game ends with probability 1 and this fact will be used to prove that G’ has a unique solution. (The
term “stopping stochastic game” was introduced by Shapley [10]. Stopping games are also known as
discounted stochastic games).

For any integer m > 0, a stopping SSG G’ is obtained from an arbitrary SSG G as follows. G’
contains all the vertices {1,2,...,n} of G (where as usual, n — 1 and n are the 0- and 1-sink vertices)
and in addition, for every edge e of G, G’ contains a set of average vertices {e;, es, .. .yem }. None of the
original edges of G are in G'; instead, for each edge e = (7, j) of G, the following set of edges is included

in G" {(i,e1),(e1,e2),(e2,€3),...,(€m-1,€m), (em,n — 1), (e1, j), (e2,7), - - -, (em, 1) }.

AR
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From this construction, note that if a path is followed from vertex i, the first vertex from the set
{1,...,n} that is reached is either vertex j or vertex n — 1 (the O-sink); and this vertex is reached in at
most m + 1 steps. Therefore, with probability 1/2™ the 0-sink is the first vertex from the set {1,...,n}
that is reached on a random walk from 7. If the 0-sink vertex is reached, the game ends. The resulting
stopping game is called a 1/2™-stopping game because at any step of the game, from any vertex in the
set {1,...,n}, the probability of ending the game before reaching another vertex in the set {1,...,n—2}
is at least 1/2™.

Shapley {10] showed that any stopping game constructed in this manner has a unique solution; we
include the proof here for completeness.



Lemma 7 (Shapley, [10]) If G’ is a 1/2™-stopping game corresponding to G then G’ has a unique
solution.

Proof: Suppose that G has n vertices. By definition, for any solution z of G, z = I(z). Assume
that the vertices numbered 1,...,n in G’ are the vertices that are also in G. First, note that the values
of the new average vertices of G’, that is, the vertices not in {1,...,n}, are uniquely determined by the
values of the vertices in the set {1,...,n}. Hence if & and Z are distinct solutions of G’, they must differ
in at least one of their first n components, i.e. w(i) # z(i) for some i < n. Also if ' is a solution of G’
then form >0and 1 <i<n -2,

(i) = (1-1/2™)Ia(2))(0).

This can be proven easily by induction on m. Intuitively it is true for value vectors 2’ of G’ because if i
has children j and k in G, then in the game G’, with probability 1/2™ the game ends before the token
is moved from 1 to j or k.

Now suppose to the contrary that the vectors w and # are two distinct solutions of G'. We show that
this leads to a contradiction. In the rest of this proof, let ||w — Z|| = max |w(?) — z(i)] = ¢ > 0. Then
ll@ - z|| = (1 - 1/2™)||I(®) — I(£)|]. Moreover, it is straightforward to show that (@) - I(2)]] < e

since for each 7,1 < i < n — 2 with neighbors j and k, if I(w)(Z) denotes the ith component of I(i@) then

| max(w(j), w(k)) — max(z(j), z(k))|, if i € Vinas,
I(I(@))(?) = (1(Z))(&)] = §  |min(w(5), w(k)) — min(z(j), z(k))|,  if i € Vinin,

1/2(w(j) + w(k)) — 1/2(z(5) + =(k)), if i € Vaverage-

If |w(i) — z(?)] < ¢ for 1 <i < n—2 then each of these differences is also < c.

We have now shown that
¢ <o -zl < (1-1/2M)|[1(@) - I@E)] < (1 - 1/2™)e,
a contradiction. Hence the stopping game G’ has a unique solution. O

The last step to proving the main theorem is completed in the next lemma, where it is shown that
the value of a SSG is > 1/2 if and only if the value of the corresponding (1/2°")-stopping game is > 1/2,
for some constant ¢ > 0. This lemma is a discrete version of a result of Filar [3] who proved that the
value of G is the limit, as # — 0, of the value of the 3-stopping game corresponding to G.

Lemma 8 There is a constant ¢ > 0, such that if G is a SSG with n vertices, the value of G is > 1/2
if and only if the value of the corresponding (1/2°™)-stopping game is > 1/2.

Proof: One direction of this proof is straightforward; it is not hard to see that the stopping SSG
corresponding to any SSG must have lower value. Hence if the value of G < 1/2 it must be the case that
the value of any f-stopping game is < 1/2.

Let G’ be the B-stopping SSG corresponding to G for some 8 = 1/2°" and let ¥ be the value vector
of G'. Since G and G’ have the same number of max and min vertices, there is a 1-1 correspondence
between the strategies of both games. We show that for any pair of strategies ¢ and 7 of the players,
for any i € {1,...,n}, the values of ¢ with respect to ¢ and 7 in games G and G’ are close. Specifically,
for any vertex i € {1,...,n — 2}, v,,+(¢) — v} .(¢) < 1/4" for sufficiently large c. Then from Lemma 2,
if the value of G is greater than 1/2 then so is the value of G'.
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From the construction of G’ from G, it is easy to verify that the same vertices from the set {1,...,n—
2} have non-zero value in graphs Go,r, G/, .. Let these vertices be 1,...,1, let 55y = (v5,7(1),...,v0,r(t))
and o, , = (v} ,(1),...,v5 .(t)). Let %5, = Q¥,,r + b be the equation uniquely defining the values
Vo,r(8),1 < i < t. Again from the construction of G it follows that o, , = (1 - 8)Q#, , + (1 — f)b.

Since @ is invertible, 5, , = (I — Q)~!b = I—)Z;io Q' . Similarly, 7, , = BZ;‘;O(I - BY+1Q7. Hence

Tgr — Vot = BZ(I —(1-3)Y*H)@?, and so

j=0

o0
80,7 = Bo,me |l < Y (1= (1= B)YH)IQ7]].
j=0
Rewriting (1 — (1 — 3)’*1) as a telescoping sum, it follows that it can be bounded above by A(j + 1).
To get an upper bound on ||#,,r — ¥0,+||, We also need a bound on the rate of convergence of ||@Q7|| to
0 as j — o0o. In the proof of Lemma 1, we showed that for all integers m > 0, ||@Q"™|| < (1 — 1/2™)™.
From this it follows that

80, = To,e | € D _BG +1)(1 = 1/2M)U/) < goin,
J=0

for sufficiently large n. For an appropriate choice of the constant ¢ (say, ¢ = 5), if § = 1/2°™ then
[18,r — Uo,r+|| < 1/4™. By Lemma 3, it follows that if 9, ,(start) > 1/2 then 9, ,/(start) > 1/2.

In particular, if 0’ and 7’ are the optimal strategies of players 1 and 0 respectively given by Lemma
5, Vgr,r+(start) > 1/2 implies that oy, ,.(start) > 1/2. Therefore, the value of G is > 1/2 if and only if
the value of G' is > 1/2. O

Theorem 1 The SSG value problem is in NP N co-NP.

Proof: We first describe a nondeterministic Turing machine M that on input a SSG G with n ver-
tices, accepts if and only if G has value > 1/2. M constructs the 1/2°"-stopping game G’ corresponding
to G, where c is the constant of Lemma 8 and then guesses a vector z € [0, 1]*, where each component
of Z is rational. It then verifies that the vector is a solution of G’. If so and if the value of the start
vertex is > 1/2 then it accepts; else it rejects. From Lemma 8, M accepts G if and only if the value of
Gis > 1/2.

A similar construction shows that the complement of the SSG value problem is in NP. We construct
a machine M that accepts a SSG G if and only if its value is < 1/2. On input G, M guesses a vector Z
as before; verifies that the vector is a solution of G and that the value of the start vertex is < 1/2. If
so, M accepts; else it rejects. O

4 Extensions and Open Problems

There are many ways to generalize simple stochastic games. We describe some of these generalizations in
this section and consider whether the results of the previous sections extend to these generalized classes
of stochastic games.

A natural generalization is to allow more than two edges from a vertex and to allow edges from
average vertices to be labeled with arbitrary rational probabilities, such that the probabilities from each
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average vertex sum to 1. Suppose G is a stochastic game with n vertices generalized in this way such that
all edges from average vertices of G are labeled with probabilities of the form p/q where 0 < p < ¢ < 2™.
Then, as we outline next, in time polynomial in max{m,n}, G can be transformed to a SSG G’ such
that the value of G equals the value of G’. Hence the value problem for these stochastic games is also
in NP N co-NP.

Briefly, G’ can be constructed from G in two stages. In the first stage, the out degree of every vertex
is reduced to two by replacing each node with fanout ! where I > 2 by a binary tree with I leaves, and
relabeling the edges with the appropriate probabilities. In the second stage, if i is a vertex with two
children j and k and edges labeled with probabilities p1 /g, p2/q, where 2¢ < ¢ < 2'*1| then i is replaced
by a complete binary tree of average vertices of depth ¢ + 1, rooted at i. All outgoing edges of p; of
the leaves of this tree point to j; all outgoing edges of pa of the leaves of this tree point to ¢; and the
remaining leaves point to ¢, the root of the tree. This construction guarantees that the probability of
reaching j and k from ¢ is exactly p;/q and p2/q, respectively.

Another generalization, standard in the literature on stochastic games is to allow payoffs at the
vertices. Simple stochastic games with payoffs were studied by Filar [3]. Suppose that each vertex of
a stochastic game is labeled with a rational number, called its payoff. Let the payoff associated with
vertex ¢ be denoted by a; (the payoffs can be negative). Assume that the payoffs are of the form r/q
where 1 < p,q < 2". The interpretation of the payoff in the game is that whenever the token is placed
on vertex i, player 0 must pay amount a; to player 1. In such games, the value of a game may not be
well-defined in general. Hence we only consider stopping games, where the expected total winnings of
either player on any play of the game is finite. That is, we assume that there is one special sink vertex
with payoff 0 and that for all pairs of strategies of the players, this vertex is eventually reached with
probability 1 on any play of the game.

Let G be a simple stochastic game with payoffs, such that G is a stopping game. For a fixed pair of
strategies o and 7 of the players, the value of the vertices of G with respect to o and 7 is the unique
solution to the equation 9y, = QU,,r + & where @ is the vector of payoffs of the vertices and @ is the
1-step transition matrix of the graph G, ;, excluding the special sink vertex. Lemmas 4 - 6 of Section
2.1 generalize to show that there is a pair of optimal pure strategies o’, ' of players 1 and 0 respectively
such that for all vertices {,

mTin maxu,,,,(l) = v,,:,,./(l) = maxmrinva,,,(l)_
o o

Also the definitions of an iteration function and a solution, given in Section 3, generalize to SSG’s with
payoffs. Thus the results of that section can be extended to show that the value problem for stopping
SS5G’s with payoffs is in NP N co-NP.

'The last generalization we consider was introduced by Shapley [10] in his original paper on stochastic
games. In this model, the players move simultaneously at each step of the game. The vertices of the graph
are partitioned into two groups, which we call the average and the strategic vertices. We assume that
there are four edges from each strategic vertex, each labeled by a tuple (bg, b1), where bg,b; € {0,1}. In
playing the game, when the token is placed on a strategic vertex, players 0 and 1 simultaneously choose
a binary value for bits by and b;, respectively. The pair of bits chosen determines to which neighbor the
token is moved.

Because of the simultaneity in this model, in order for the minimax result (Lemma 6) to hold, it is
necessary to generalize the definition of a strategy of a player. A mized (or probabilistic) strategy of
player 0 is a set of pairs (poi, p1:), one per strategic vertex 7, such that poi + p1i = 1. The interpretation
of this strategy is that when the token is on vertex i, player 0 chooses value 0 for by with probability
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poi and value 1 for by with probability py;. A mixed strategy of player 1 is defined similarly. With this
definition of strategy, the results of Section 2 extend to simultaneous stochastic games (see Shapley [10]).
However, it is an open problem whether the value problem for simultaneous stochastic games is in NP
N co-NP. One obstacle to solving this is that the value of a simultaneous stochastic game need not be
rational - see [8] for an example of this.

Finally, a challenging open problem is whether the SSG value is in P. A related problem which might
be of significance in solving this is the following. Is there a polynomial time algorithm that separates
graphs with high value from those with low value? More precisely, let A be the set of SSG’s that have
value > 3/4 and let B be the set of S5G’s that have value < 1/4. Then it would be of interest to find a
polynomial time decision algorithm M that, on input G € AU B, accepts if and only if G € A.
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