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Abstract

Two parallel shared-memory algorithms are presented for the optimization of gener-
alized networks. These algorithms are based on the allocation of arc-related operations
in the (generalized) network simplex method. One method takes advantage of the multi-
tree structure of basic solutions and performs pivot operations in parallel, utilizing locking
to ensure correctness. The other algorithm utilizes only one processor for (sequential)
pivoting, but parallelizes the pricing operation and overlaps this task with pivoting in
a speculative manner The relative performance of these two methods (on the Sequent
Symmetry S81 multiprocessor) is compared and contrasted with that of a fast sequential
algorithm on a set of large-scale test problems of up to 1,000,000 arcs.
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We will consider parallel algorithms for the efficient solution of the generalized network
flow problem, expressed as follows:

min cf
st. Gf=0b (GP)
0<f<u

The matrix G € R™*" is such that each column has no more than two non-zero elements.
Columns with two non-zero elements are assumed to be scaled and reflected as needed, so
that one of them is 1. The other element is then a flow multiplier, which can be smaller or
larger than 1 in magnitude. (If a flow multiplier is larger than 1 in magnitude, it generally
corresponds to an arc that gains flow; such a multiplier might represent the conversion
rate from dollars to yen, or the rate of interest for a savings account. If a flow multiplier
is smaller than 1 in magnitude, it generally corresponds to an arc that loses flow; such
a multiplier could represent transmission loss in power lines, or evaporation in irrigation
canals.) A column that has just one nonzero element corresponds to a reoi-arc, an arc
that is incident to just one node. Applications of generalized network flow problems are
discussed in [Glover, et al, 73] and [Glover, et al, 84]. As with the pure network flow
problem, which we designate as NP, the simplex algorithm for GP can be executed on a
graph. One difference between NP and GP is that the graph of any basis for NP consists
of one rooted tree, while the graph of a basis for GP is a forest of quasi-trees. A quasi-tree
is a tree with one additional arc (making it either a rooted tree or a tree with exactly one
cycle). Figure 1.1 shows a forest of quasi-trees.

A specialization of the primal simplex algorithm for GP is described in [Jensen and
Barnes 80] and [Kennington and Helgason 80]. This algorithm utilizes the quasi-tree
structure to do the ratio test, the computation of duals, and the flow update by a modified
backsubstitution. A number of implementations now exist. GRNET, a sequential version
of the primal simplex algorithm for GP is discussed in [Engquist and Chang 85]. The
data structures of GRNET are based on those of [Adolphson 82] and [Barr, Glover and
Klingman 79]. [Engquist and Chang 85] establishes that on a CYBER 170/750, GRNET
is about 50 times faster than MINOS [Murtagh and Saunders 78], a standard LP code, on
problems of the form GP. Another efficient code for GP called GENNET is discussed in
[Brown and McBride 84]. GENNET, in addition to using state of the art data structures,
tries to use integer (rather than floating point) arithmetic wherever possible. Sequential
and parallel algorithms for convex network flow problems are discussed in [Zenios 86], and
in [Zenios and Mulvey 85].

Any parallel simplex-based algorithm for GP developed must ensure that only one
processor updates a quasi-tree at any given time. Otherwise, the tree functions may not be
updated correctly. To ensure this mutual exclusion, we consider several algorithmic devices,
including locking quasi-trees as needed. We have developed two distributed versions of the
GRNET algorithm. The first algorithm, PGRNET, does multiple pivots in parallel. Each
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Figure 1.1 A Forest of Quasi-Trees

processor receives a subset of the arcs and computes the reduced costs of arcs in its set
and executes pivots on the corresponding locked trees. All processors thus execute the
same algorithmic tasks in parallel. (An earlier version of this parallel pivoting algorithm
was described in [Clark and Meyer 87].) Qur second algorithm, TPGRNET (for Task
Parallel GRNET), overlaps the pricing and pivoting tasks. (In the implementation of
TPGRNET, almost all of the computing time is spent in “Stage 1” (to be described below),
in which most of the processors compute reduced costs, one processor selects pivot arcs,
and one processor executes pivots without locking quasi-trees.) The computational results
given below show that the TPGRNET algorithm outperforms PGRNET for large-grained
problems, i.e. problems that have only a few quasi-trees in the optimal basis.

Our test problems are randomly generated generalized transportation problems. Prob-
lem sizes range from 10,000 nodes to 30,000 nodes and 100,000 arcs to 1,000,000 arcs.
Speedups of up to 11 on 19 processors were obtained on the Sequent Symmetry S81 with
these test problems.



2 The parallel algorithms PGRNET and TPGRNET.

2.1 Introduction

In section 2.2 we describe GRNET?2, a modification to the sequential program GRNET
of Chang and Engquist. The principle algorithmic difference between these codes is that
GRNET?2 uses a gradual penalty method [Grigoriadis 84] rather than the big M method. In
section 2.4 we describe PGRNET, a “parallel pivot” version of the GRNET2 algorithm, and
in section 2.5 we will describe a “parallel pricing, overlapped pivot” algorithm TPGRNET
that was developed to solve large-grained problems not handled well by PGRNET.

2.2 GRNET2

We first give a summary of GRNET2, a sequential algorithm. Figure 2.1 gives a flow
chart. In the figure, “1.t.” designates list_threshold, a candidate list parameter.

INITIALIZATION
Set initial flows and penalty on the artificial arcs. Partition the set of arcs into roughly
equal sized segments for pricing during the next stage.

STAGE 1 (sequential pivoting with candidate lists)
Develop a separate candidate list for each segment of the arc list. If the number of
arcs stored in a candidate list is greater than some number list_threshold, select a
pivot eligible arc (if there are any) from this list, execute the pivot and go to the next
candidate list. If the number of arcs is less than or equal to list_threshold, scan the
corresponding segment of the arc list to make a new candidate list. If it is not possible
to make a candidate list from that segment with more than list_threshold entries and
the penalty on the artificial arcs has reached its maximum value go to STAGE 2.

Otherwise increase the penalty on the artificial arcs, recompute duals, and create new
candidate lists and continue STAGE 1.

STAGE 2 (verification of optimality)
Scan the arc list for pivot eligible arcs. If a pivot eligible arc is found, then the pivot is
immediately executed (no candidate list is constructed). If a complete sweep through
the entire arc list can be made without finding any pivot eligible arcs, then optimality
has been reached.

GRNET in its original form uses an artificial starting basis discussed in [Glover, et
al, 74]. An artificial (root) arc with big M penalty is attached to each node, providing an
initial basis of m quasi-trees with just one node and one arc per quasi-tree. Each artificial
arc is given a flow that satisfies the constraint corresponding to the node. In GRNET2
we use a starting procedure motivated by the gradual penalty method (GPM) discussed
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Figure 2.1  Flow Chart for Sequential Algorithm GRNET2

in [Grigoriadis 1984]. Again, a root arc with an appropriate flow is attached to each
node, but the gradual penalty method gives a moderate initial penalty to the artificial arcs
and then gradually increases the penalty. (As discussed below, this results in a dramatic
improvement in performance in certain problem classes.) GRNET2 uses a candidate list
strategy similar to that of GRNET, but computational experience motivated by parallel
algorithms has shown that large-scale problems are most efficiently solved if the set of arcs
is partitioned, and a separate candidate list is maintained for each subset of arcs. GRNET2
partitions the arc set into segments, and successive pivot arcs are selected from successive
segments. Roughly speaking, a pivot arc is selected from a candidate list if the number of
arcs remaining in the candidate list is greater than list_threshold. If the number of arcs
in the list is less than or equal to list_threshold, the list is purged and pricing is done in
the segment until a new candidate list is filled. If a sweep through the segment yields list
_threshold or fewer pivot eligible arcs, the penalty is increased by popping a new value off
of a stack, dual variables are recomputed, and pivots are executed until there are again
list_threshold or fewer pivot eligible arcs in some segment. This gradual penalty method
is continued until the penalty has reached its maximum (big M) value.

The usual motivation for using gradual penalty method is that the procedure can
utilize original costs more effectively than the big M method. In the case of generalized
network flow problems, the gradual penalty method has the added advantage that pivot
arcs are initially less likely to be chosen in such a way that the outgoing arc will be an
artificial arc. Under the big M method, the initial penalty on the artificial arcs is so
large that pivots tend to be chosen essentially to reduce the flow on the artificial arcs,
and therefore pivots tend to cause artificial arcs (which are root arcs) to leave the basis
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quickly. This tends to reduce rapidly the number of quasi-trees in the basis. Under the
gradual penalty method, the penalty on the artificial arcs is more moderate, and artificial
arcs are less likely to leave the basis immediately. This has the result that root-arcs
remain in the basis for a longer time, and quasi-trees are more numerous and smaller than
they would be under the big M method. Since quasi-trees are smaller, there is less work
involved in executing pivots. Moreover, since quasi-trees are more numerous, algorithms
like PGRNET that rely on the disjoint nature of the basis for parallelism can run more
efficiently. Finally, since pivots are not chosen merely to achieve feasibility, more pivots
result in advancement toward optimality, and the overall number of pivots is significantly
reduced. The computational experience described in [Grigoriadis 1984] shows that the
gradual penalty method can give a 15% improvement in CPU time for pure network flow
problems. Qur computational experience shows that our version of the gradual penalty
method reduces CPU time by a factor of 13 to 29 (not 13% to 29% ) for generalized network
flow problems with heavy capacitation. The reduction in computing time decreases as the
number of quasi-trees in the optimal basis is increased, but almost all problems can be
solved more quickly by the gradual penalty method. The multiple candidate list strategy
for GRNET2 was motivated by the excellent performance of PGRNET on large-scale
problems. This resulted in an additional reduction, relative to the single candidate list
strategy of GRNET, in sequential CPU time of up to 45% with the biggest improvement
occurring for problems with more than 300,000 arcs.

2.3 Parallel algorithms

In developing a distributed version of GRNET2, we tried a number of different strate-
gies. One strategy, a tree allocation strategy, involves partitioning the set of quasi-trees,
and executing pivots on local arcs in parallel. We say that a local arc is an arc that is
incident to two nodes belonging to the same subset of the partition. This scheme was used
on the University of Wisconsin crystal multicomputer, and is discussed in [Chang, et al,
1987]. It eliminates the need for locking quasi-trees but the set of local arcs may be a
very small fraction of the whole arc set. This means that the set of potential pivot arcs is
a small fraction of the whole arc set. The scheme does not scale well because the set of
local arcs diminishes as the number of subsets increases, but the greatest disadvantage to
the scheme is that the set of quasi-trees must be periodically repartitioned so that pivot
eligible cross arcs become local arcs. This is a time consuming task, and it is difficult to
quickly partition the quasi-trees in such a way that each subset contains roughly the same
number of nodes and each subset contains a substantial number of pivot eligible local arcs.
Another strategy, an arc allocation strategy, partitions the set of arcs, rather than the
quasi-trees. Pivot arcs are selected from different subsets (segments) of the partition in
parallel, and all arcs are potential pivot arcs. From a locking standpoint, the tree alloca-
tion strategy is analogous to assigning “long-term” locks (thereby reducing communication
costs in a loosely-coupled system) on node subsets to processors, whereas the arc allocation
strategy utilizes short-term locks (in effect only for the time required to perform a single
pivot) on the appropriate nodes corresponding to the selected pivot arc. Since the values
of all duals must be available to all processors in order to permit the parallel pricing of all
arcs (not just local arcs), the shared memory multiprocessor is an ideal if not a necessary
architecture for the implementation of arc allocation algorithms.
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Section 2.4 contains a brief summary of PGRNET, an implementation of a strategy
that works nicely when there are many quasi-trees in the optimal basis. PGRNET does
parallel pricing to find pivot arcs, locks the quasi-trees at the ends of the pivot arcs to ensure
exclusive access to quasi-trees, and executes pivots in parallel. The greatest disadvantage to
PGRNET is that processors must temporarily lock one or two quasi-trees before executing
a pivot involving those quasi-trees. If there are only a few quasi-trees in the basis, this
means that only a few pivots can be executed in parallel. PGRNET rejects pivot eligible
arcs that are found to connect quasi-trees that are locked (i.e. currently in the process of
being modified), so the work invested in finding these arcs is wasted. Quasi-trees are more
likely to be locked if there are just a few of them. Pricing can always be done in parallel,
regardless of the number of quasi-trees in a given basis, but pricing is more likely to be done
with old dual values if there are few quasi-trees and they are changing in parallel. The lack
of current dual information and the frequent loss of good pivot eligible arcs can greatly
reduce the efficiency of PGRNET if the optimal basis has only a few quasi-trees. Another
arc allocation strategy that attempts to solve these problems gives to one processor the
task of executing all pivots, and gives to the other processors the task of selecting the pivot
arcs. TPGRNET, an implementation of this strategy, will be described in more detail in
section 2.5, and results for implementations of PGRNET and TPGRNET on the Sequent
Symmetry S81 will be compared.



2.4 PGRNET (Parallel GRNET)
The (parallel) PGRNET algorithm can be summarized:

INITTALIZATION
In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs
into roughly equal-sized segments for pricing in the next stage.

STAGE 1 (parallel pivoting with candidate lists)

Asynchronously and in parallel scan the segments of the arc set to develop multiple
candidate lists. Pivot arcs are chosen from the candidate lists, and quasi-trees are
locked before pivots are made. When, for a particular segment of the arc set, it is
not possible to develop a candidate list with more than list_threshold entries, check
the penalty on the artificial arcs. If this penalty has reached its maximum value go
to STAGE 2. Otherwise assign a new value to the penalty of the artificial arcs, and
update the duals in parallel and continue asynchronous pivoting.

STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot eligible arcs. If a pivot
eligible arc is found, lock the associated quasi-trees, and execute the pivot (if the
quasi-trees were successfully locked). If an entire sweep through the segments can be
made without finding any pivot eligible arcs, optimality has been reached.

The name PGRNET designates parallel GRNET. Figure 2.2 gives a flow chart for this
algorithm. Asin figure 2.1, “1.t.” designates list_threshold, a candidate list parameter. Arcs
are divided evenly between segments. If there are n arcs and P segments, then segment 1
has arcs (1) through (n/P), processor 2 gets arcs (n/P + 1) through (2n/P) and so forth.
(A more sophisticated allocation of the non-artificial arcs might try to guess the topology of
the optimal solution, and thereby assign arcs to specific partitions. If the optimal topology
is known, lock contention can be reduced significantly by collecting in the same subset of
the partition, all of the arcs that connect nodes in a given quasi-tree or group of quasi-
trees. This idea could be used to solve perturbed problems efficiently. Given the optimal
quasi-tree structure of some solved problem, subsets of the arc set could contain arcs that
are local to certain collections of the optimal quasi-trees. A small perturbation of the data
would hopefully change the optimal topology by very little, and therefore the initial arc
allocation might improve the solution time significantly.) The dual variables of all the
nodes, the predecessor threads, the successor threads and all other tree functions required
by the generalized network simplex method are assumed to be stored in shared memory
and are available to all processors. It is important to emphasize that only the acquisition of
problem data (i.e. generating data or reading data) is done sequentially, and the solution
process is entirely parallel. The number of partitions is equal to the number of processors,
and all processors execute the same set of tasks. Each processor creates candidate lists,
selects pivot arcs, locks quasi-trees to prevent corruption of tree structures, and executes
pivots. We say that PGRNET is an example of “uniform parallelism” for this reason. The
results below show that uniform parallelism is the best solution strategy for generalized
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Figure 2.2  Flow Chart for Parallel Algorithm PGRNET

network flow problems, as long as the number of quasi-trees in the optimal solution is not
too small.

The program that each processor executes is almost identical to GRNET2. During
a parallel pivoting stage, Stage 1, each processor makes its own candidate list of pivot
eligible arcs. The candidate lists are made in the same way that candidate lists are made
in GRNET?2. Each processor p choses its next pivot arc from its candidate list by selecting
the pivot eligible arc with the greatest reduced cost in absolute value. If the quasi-trees
at the ends of the arc have not been locked by another processor, p locks the quasi-trees
to keep other processors from interfering with the tree update, performs the pivot and
removes the arc from the candidate list. If the quasi-trees are already locked, processor p
removes the arc from the candidate list and chooses another arc. The dual update part of
the pivot operation has also been parallelized and this parallelization is described below.
When the candidate list belonging to p has not more than list_threshold arcs, p develops a
new candidate list. If the new candidate list also has not more than list_threshold entries,
processor p sets a flag in shared memory to indicate that it is having difficulty finding pivot
eligible arcs. This flag is checked frequently by all processors, and when it is set, processor
1 checks to see if the penalty on the artificial arcs is big M. If the penalty is equal to big
M, all processors enter Stage 2. If the penalty is smaller, then the processors increment
the penalty on the artificial arcs and cooperate in recomputing the dual variables. Then
all processors develop new candidate lists.

Stage 2 of PGRNET corresponds to the verification of optimality stage in GRNET2.
The verification of optimality is done in parallel, and all processors execute the same tasks.
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Optimality is achieved by performing any remaining pivots. Processors sweep through their
segments looking for pivot eligible arcs, but no candidate lists are developed. If processor
p finds a pivot eligible arc, it locks the quasi-trees at either end of the arc, executes the
pivot, and indicates to the other processors that they must restart their sweep (by setting
flags in a shared array). This restart mechanism is needed because a pivot executed by
processor p might cause an arc owned by another processor to become pivot eligible. If
processor p finds that one of the trees at the ends of a pivot eligible arc is locked, it sets
the other processors restart flags and restarts its own sweep. Each processor checks its
restart flag frequently during Stage 2, and when a processor finds that its flag has been
set, it marks the arc in its segment that was last priced out, and continues pricing. If the
processor prices out all of its arcs up to the marked arc without finding any to be pivot
eligible and without finding its restart flag to be set, that processor informs the others
that none of its arcs are pivot eligible. Optimality is reached when all processors make a
sweep through their arcs without finding their restart flags set, and without finding any
arcs that are pivot eligible.

The dual update is performed recursively and in parallel. A processor p that is
updating the dual variables in a subtree S inspects a tree function t(-) that specifies
how many nodes are in the subtree. It then sets a shared variable size_lim so that
size_lim = t(root)/nproc where nproc is the number of processors and root is the root
node of S. (The root node of S is the usual root node if S is a rooted tree. If S is not
a rooted tree, then S has a unique cycle, and root will be one of the nodes in the cycle.)
Next, processor p traverses S and updates the dual variables in all subtrees of S that
have fewer than some small number tree_threshold of nodes. The root nodes of the larger
subtrees are put onto a shared queue. All processors that are computing reduced costs
check frequently to see if there are any nodes on this queue. When a node appears on the
queue, some processor q takes it off and checks to see if the associated subtree is smaller
than size_lim. If so, then ¢ updates all of the dual variables in that subtree. If not, then ¢
traverses the subtree (without recomputing size_lim) and puts the root nodes of subtrees
with tree_threshold or more nodes on the queue. The efficiency of this scheme relies on
the subtrees of S being broad rather than deep. Ideally, p will chop S into nproc pieces,
all having fewer than size_lim nodes. If this happens, then all processors will work in
parallel updating the duals, and little CPU time will be spent putting root nodes onto the
queue. If, however, the original subtree is badly skewed, then subtrees that are put on the
queue may have to be chopped up by other processors. Despite some potentially inefficient
aspects of the parallel dual update, computational experience has shown that it improves
the overall efficiency of PGRNET by about 15% for certain problem classes. The parallel
dual update is also used by TPGRNET, and the effects there are much more significant.



2.5 TPGRNET (Task-parallel GRNET)

We will now describe a class of problems that PGRNET handles poorly, and describe
an algorithm, TPGRNET that solves these problems more efficiently. The most significant
factor in the efficiency of PGRNET is the number of quasi-trees in the optimal basis. If
this number is small, we say the problem is large-grained (because quasi-trees tend to be
large), and if this number is large, we say the problem is small-grained (because quasi-
trees tend to be small). If a problem being solved by PGRNET has large granularity, it
is more likely that a processor p will find the quasi-trees at the ends of a pivot arc to be
locked. If they are locked, p must reject the arc and look for another in its candidate list.
By the time the quasi-trees are freed, often all of the best arcs from the candidate list
have been rejected and a pivot is executed on an arc with a relatively small reduced cost.
This tends to increase the total number of pivots required to reach optimality. Candidate
lists are exhausted quickly because many arcs that are chosen turn out to connect locked
quasi-trees. This increases the total amount of time that is spent developing candidate
lists. For these reasons, large-grained problems are solved inefficiently by PGRNET.

Some alternatives to rejecting arcs with an end in a locked quasi-tree are to store
them in a temporary stack, or simply to wait until the quasi-tree becomes available. Our
experience indicates that these alternatives are less efficient than the algorithm we are
using for PGRNET, which simply discards these arcs.

We have found that a better approach to solving large-grained problems is to elim-
inate the need for the locking operation by parallelizing candidate list development and
prioritization, but doing pivots sequentially (and concurrently with the development of
candidate lists). Since different processors perform different tasks and execute different
code, we say that TPGRNET is an example of “specialized parallelism.” The algorithm
is divided into two main stages. During Stage 1, the tasks are distributed as described
above, and Stage 2 is exactly the same as Stage 2 of PGRNET. Figure 2.3 illustrates the
flow of information during Stage 1, and figure 2.4 gives a flow chart for TPGRNET. (In
both of these figures, dotted arrows indicate the direction of the flow of information.)

The (parallel) TPGRNET algorithm is:

INITIALIZATION
In parallel, generate the initial flows on the artificial arcs. Divide the problem arcs

into roughly equal-sized segments for pricing during the next stage. (Same as the
INITIALIZATION stage of PGRNET)

STAGE 1 (parallel candidate list development overlapped with sequential pivoting)

A set of candidate lists is developed and prioritized in parallel. This process is con-
tinued during the pivot, which concurrently modifies some of the duals being used
in candidate list development. When the pivot is completed, the next arc to enter
the basis is selected by using the “best” arc from the candidate list (if this arc has a
sufficiently good reduced cost) or a different arc if this is not possible. The latter case
occurs very infrequently, and under conditions to be described below, may trigger an
increase in the penalty cost or an exit to stage 2.
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STAGE 2 (parallel verification of optimality)
Scan the segments of the arc list in parallel to locate pivot eligible arcs. If a pivot
eligible arc is found, lock the associated quasi-trees, and execute the pivot (if the
quasi-trees were successfully locked). If an entire sweep through the segments can be
made without finding any pivot eligible arcs, optimality has been reached. (Same as

STAGE 2 of PGRNET)

We will now describe in detail the tasks performed by the individual processors during
Stage 1 of TPGRNET. The pricing processors have the task of computing reduced costs
and storing pivot eligible arcs (in shared candidate lists of length 10). When processor p
finds a pivot eligible arc, it recomputes the reduced cost of the first element in its candidate
list to see if the new arc has a larger reduced cost in absolute value. If it does, the new arc
number gets stored in the first element of the array, and the previous entry is overwritten.
Experience has shown that saving the previous entry yields no improvement in efficiency.
If the new arc has a smaller reduced cost than the first arc in the candidate list, the new
arc gets stored at a random location in the list. The pricing processors stay in a loop
that includes three operations. First, there is the pricing operation. This uses most of the
processor’s CPU time. Second, there is a check to see if the pivoting processor has put a
subtree on the dual-update queue (because of space limits this is not shown in the figures).
Third, there is a check to see if Stage 1 of the algorithm has finished.

The pivot selecting processor has the task of scanning the collection of candidate lists
of the pricing processors to locate the pivot eligible arc with the largest reduced cost and
storing that arc in a single shared variable called best_cand. This processor stays in a loop
that has three operations. First, the processor checks to see if best_cand is empty. If so, the
processor looks in the first entry of some candidate list to find an arc to put in best_cand.
Second, the processor traverses the candidate lists to see if there is a pivot eligible arc that
has a reduced cost larger than the arc in best_cand. Third, there is a check to see if Stage
1 of the algorithm has finished.

The pivoting processor stays in a loop in which it selects pivot arcs for itself (as
described below), executes pivots, and directs the increases in the penalty on the artificial
arcs. Whenever possible, the pivoting processor selects its pivot arc from best.cand, but
before adopting an arc from best_cand, a check is made to see that the arc is pivot eligible
and to see if the reduced cost is sufficiently large in absolute value. If the arc in best_cand
has a small reduced cost, or if there is no arc in best_cand, the pivoting processor looks at
the first entry of each of the candidate lists to find a pivot eligible arc. If a pivot eligible
arc is found, the pivot is executed. If no pivot eligible arc is found, then either the penalty
on the artificial arcs is increased, or Stage 2 is begun (if the penalty has reached big M and
cannot be increased). The pivoting processor has the task of directing the parallel update
of dual variables during the execution of pivots and after the penalty on the artificial
variables has been increased. During both of these operations, the pivoting processor can
put the root node of subtrees onto the dual update queue, and the pricing processors will
then adopt the task of updating the duals on those subtrees.
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2.7 Comparison with other work.

NETPAR is a parallel network simplex code for the pure network flow problem dis-
cussed in [Peters 1988a]. The code uses a task partitioning algorithm in which one processor
executes all pivots, and all other processors compute reduced costs and store pivot eligible
arcs in shared a queue. This scheme is modified in [Peters 1988b] to give to one processor
the task of executing pivots, to another processor the task of selecting arcs, and to all other
processors the task of computing reduced costs. The modified code, PARNET, compares
favorably with NETFLO [Kennington and Helgason, 1980}, a standard sequential code for
the regular network flow problem. PARNET, when run on three processors, is 10 to 20
times faster than NETFLO for a collection of problems generated by NETGEN [Klingman,
et al, 74]. PARNET yields linear speedups for a variety of large scale problems generated
by NETGEN.

PARNET and TPGRNET have a similar distribution of tasks. Both programs have
one pivoting processor, one pivot selecting processor, and both programs give the task of
pricing (i.e. computing reduced costs) to the other processors. However, the two programs
have slightly different pivot selection strategies. Under the PARNET strategy, the pricing
processors develop queues of pivot eligible arcs. When a pricing processor finds a pivot
eligible arc, it puts it at the head of the queue. The pivot selecting processor looks at the
first three elements in a queue when selecting an arc for the pivoting processor. Under the
TPGRNET strategy, a pricing processor compares the reduced costs of the newly found
pivot eligible arc with the reduced cost of the first arc on its candidate list. If the new
arc has a larger reduced cost it is put at the beginning of the list, and the arc that was
previously at the beginning of the list is overwritten. Otherwise, the newly found arc is
stored at a random location elsewhere in the list. This strategy has been found to be
somewhat faster, for generalized network flow problems, than the PARNET strategy.

Since the distribution of tasks is very similar in PARNET and TPGRNET, and since
PARNET yields a linear speedup for almost all test problems, one would hope that the
speedups from TPGRNET would also be linear. The results given in section 3 show that
TPGRNET does not yield linear speedup for all test problems. The difference in the
performance of the two algorithms is possibly due to differences in the nature of the two
algorithms. PARNET does the ratio test and the flow update with integer operations,
while TPGRNET does these operations in double precision. This means that pivots are,
on the average, more expensive for TPGRNET than they are for PARNET. PARNET
computes reduced costs with integer arithmetic while TPGRNET computes reduced costs
in double precision. Experience has shown that the dual variables in large grained gen-
eralized network problems change rather frequently. A change in the dual variables after
the execution of a pivot can make the arcs stored in a candidate list no longer pivot el-
igible, and the CPU time that was spent finding the arcs is wasted. It’s possible that
TPGRNET spends more time doing pricing with incorrect duals than PARNET, although
further studies are needed to verify this possibility.

GENFLO [Kennington and Muthukrishnan 88] is a parallel generalized network pro-
gram written for the Sequent Balance 21000 and the Sequent Symmetry S81. GENFLO
does not scale to force one element 1 in each column. A sequential version of GENFLO
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is competitive with NETFLO [Kennington and Helgason 80] and GENNET [Brown and
McBride 84] for pure network problems, and it is competitive with GENNET for general-
ized network flow problems. The parallel version is similar to PGRNET in its distribution
of tasks. It was tested with a group of problems generated by GNETGEN, a modification
of NETGEN [Klingman, et al, 1974]. GENFLO speedups ranged from about 2 to 3 (on 8
processors) for these problems. In a forthcoming joint paper [Clark, et al, 89] we provide
a comparison of the performances of these approaches on the GNETGEN test problems
as well as the MAGEN test problems described below.
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3 Computational results

3.1 Code parameters.

We will now give some more details of GRNET?2, our modified version of GRNET,
and we will give the code parameters used in our runs. After the starting basis has been
generated, GRNET?2 solves the problem in two main stages. In STAGE 1, the processor
generates num_pricers candidate lists of pivot eligible arcs of length listsize. In our im-
plementation, num_pricers = 19 (this value appeared best for transportation problems; a
smaller value was better for transshipment problems) and listsize = 60. A candidate list
is created by sweeping through a segment of the arc list and adding pivot eligible arcs to
the candidate list as they are found. When the sweep is completed or the list has listsize
entries, the processor can begin pivoting. Successive pivot arcs are selected from different
candidate lists. GRNET2 cycles through its collection of num_pricers lists and chooses a
pivot arc from a different list each time. The arc that is chosen from a list is the pivot
eligible arc that has the largest reduced cost in absolute value. The processor executes the
pivot, removes the arc from the list and looks for another pivot eligible arc in the next
candidate list. If there are no pivot eligible arcs in a list, or if the list has list_threshold
or fewer entries (where list_threshold = 30), then a new list is made. If, in the process of
making a new candidate list, list_threshold or fewer pivot eligible arcs can be found, then
the penalty on the artificial arcs is checked. If the penalty on the artificial arcs is smaller
than big M, then the penalty is increased, and duals are recomputed. If the penalty on
the artificial arcs is equal to big M, then STAGE 2 is begun. In STAGE 2, optimality is
achieved by sweeping through the entire list of arcs and pivoting on any that are pivot
eligible. Optimality is verified when the processor can sweep through all arcs, finding none
that are pivot eligible. The code parameters listsize and list_threshold are the same for
PGRNET as for GRNET. Both PGRNET and TPGRNET use the same value for tree.
threshold (used in parallelizing the dual update), namely 5. Assuming that the arc costs
are in the range [1,100], the initial penalty on the artificial arcs is set at 20, and the initial
increment between penalties is 5. Later, the increment increases to 10 and then to 20.
The last increment between penalties changes the penalty from 200 to big M, and big M
in our implementation 1s 9,999,999.

3.2 The problem generator.

Our test problems are generated randomly with a generator similar to GTGEN [Chang
et. al. 1986]. The problems are bipartite transportation problems with multipliers ranging
from (0.90) to (0.98). The generator has the feature that the user may specify, roughly, the
number of quasi-trees in the optimal basis. This is accomplished with a technique discussed
in [Chang et. al. 1986]. A processor first selects a source node and, in two steps, generates
all of the arcs incident to that node. In the first step, the processor generates all of the arcs
that will begin at that node and end at one of the sink nodes. As these arcs are generated,
the divergences at the source and sink nodes of the arcs are adjusted so that a feasible flow
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exists. In the second step, the processor determines whether or not a generalized root arc
will be generated for the source node. To do this, it checks a randomly generated number,
and if this number is smaller than a user specified parameter @ < 1, two things are done.
First, a generalized root arc for the source node is generated. Second, the divergence at
the node is adjusted so that it equals the sum of the capacities of the outgoing arcs. This
tends to force the generalized root arc into the optimal basis, creating a quasi-tree. The
number of quasi-trees in the optimal basis will be roughly a - (num_sources). By adjusting
a, one can specify, approximately, the number of quasi-trees in the optimal basis.

We measure the parallelism of our algorithms by calculating the speedup for various
problems. For a given problem, we define the speedup for P processors in the following
way:

CPU time required by GRNET2
CPU time required by P processors

speedup =

In our work, we use the Sequent Symmetry S81, a tightly coupled system. The con-
figuration that we are using has 20 processors, each with a Weitek 1167 floating-point
accelerator. The time sharing system allows the user to request up to 19 processors for
the execution of a program. Sequent provides a parallel programming library that in-
cludes commands for forking processes, locking shared variables and killing processes. The
DYNIX operating system on the Sequent Symmetry S81 provides the user time and the
system time used in the execution of a program. Also, the system time reported can de-

pend on the number of users on the system. For these reasons, we report only the user
time as the CPU time.

3.3 Problem organization and problem sizes.

Our problems are divided into four groups. Groups 1 through 3 have 10,000 nodes,
and Group 4 contains problems with 30,000 nodes. The problems in Group 1 have about
100,000 arcs, the problems in Group 2 have about 200,000 arcs, and the problems in Group
3 have about 400,000 arcs. All problems in Group 4 have 30,000 nodes and more than
300,000 arcs. All problems were solved by both PGRNET and TPGRNET, and each
group contains problems with varying numbers (ranging from 1 to 7376) of quasi-trees in
the optimal basis.

3.4 Computational Results.

Figure 3.1 shows a collection of speedup graphs for the Group 1 problems listed in
Table 3.1. All problems have 10,000 nodes and more than 100,000 arcs. Each column in
the table corresponds to a different problem, and the problem number is given at the top
of the column. The last two digits of the problem number are a x 100, where « is the
quasi-tree parameter for the generator described above. Since «a is different for each of
these problems, each problem has a different number of quasi-trees in its optimal basis.
The graphs show speedup as a function of the number of processors for the algorithm
PGRNET. According to the table, problem 1.50 is the one with the greatest number of
quasi-trees in this group of problems, and both the table and the graph show that this is
the problem for which PGRNET yields the best speedup (even though the sequential time
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for this problem is the smallest of the group). The great amount of pivots and CPU time
required to solve problem 1.00 and the fact that PGRNET yields a maximum speedup
of only 3.2 for this problem indicate the need to develop an alternate algorithm (like
TPGRNET) for large grained problems. However, the speedups for all other problems are
greater than 5.3 (on 19 processors). This means that PGRNET yields a very substantial
reduction in wall clock time for a fairly wide range of problems. Also notice that, except
for problem 1.00, the graphs in figure 3.1 have a slope indicating that the speedup has
not reached its maximum at 19 processors. This means that the wall clock time might be
reduced further by increasing the number of processors beyond 19.

Using 19 processors, PGRNET solved each one of the problems in Group 1 with more
pivots than GRNET2. This may be due to the fact that some of the best pivot arcs from
candidate list are rejected, since an arc is removed from a candidate list in PGRNET
whenever it is found to have an end in a locked quasi-tree. The result is that PGRNET
makes poorer choices for pivot arcs.
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Figure 3.1 Speedups for PGRNET
Problem # 1.00 1.01 1.03 1.05 1.10 1.50
# qtrees at optimality 1 43 147 258 494 2,467
# nodes 10,000 { 10,000 | 10,000 | 10,000 | 10,000 | 10,000
# arcs 107,290 | 107,333 | 107,437 | 107,548 | 107,784 | 109,757
# pivots sequential 101,630 | 108,359 | 101,717 | 97,875 | 92,407 | 75,458
# pivots 19 procs 111,843 | 115,680 | 106,496 | 103,064 | 96,075 | 76,367
CPU secs. sequential 2,796 1,974 1,076 833 638 404
CPU secs. 19 procs 864 372 145 105 67 37
Speedup 19 procs 3.2 5.3 7.4 7.9 9.5 10.9
Table 3.1  Results for PGRNET for Group 1
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Figure 3.2 and table 3.2 give results for TPGRNET for the Group 1 problems.
Note that TPGRNET solves all problems with fewer pivots than both GRNET2 and
PGRNET, and uses substantially fewer pivots to solve the large grained problems. Pro-
files of TPGRNET and GRNET2 have indicated that TPGRNET uses 68% of its CPU
time doing pricing (i.e. computing reduced costs), while GRNET2 spends only 12% of
its CPU time on pricing. The heavy emphasis that TPGRNET puts on pricing appar-
ently results in better choices for pivot arcs and ultimately results in a smaller number
of pivots needed for solution. Note that GRNET2 solves problem 1.00 in 2796 seconds
and problem 1.50 in 404 seconds. This means that the solution time for problem 1.00 is
about 6 times greater than the solution time for problem 1.50. However, the number of
pivots needed for problem 1.00 is only about 4/3 times the number of pivots needed for
problem 1.50. The difference in CPU time relative to the number of pivots is explained by
the fact that the quasi-trees developed during the solution of problem 1.00 are larger than
the quasi-trees for 1.50. Therefore, the pivots used to solve problem 1.00 are, on average,
much more expensive than the pivots used to solve problem 1.50. Looking at the speedup
graphs for these problems, one sees that the behavior of TPGRNET is fairly uniform for
these problems. The speedup on 19 processors for TPGRNET ranges from a minimum of
3.5 to a maximum of 6.2, while the speedup for PGRNET ranges from a minimum of 3.2
to a maximum of 10.9. The shape of the speedup graphs for the problems in this group
indicates that the maximum speedup for TPGRNET was reached when TPGRNET was

run on about 15 processors.
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Figure 3.2  Speedups for TPGRNET
Problem # 1.00 1.01 1.03 1.05 1.10 1.50
# qtrees at optimality 1 43 147 258 494 2,467
# nodes 10,000 | 10,000 { 10,000 | 10,000 | 10,000 | 10,000
# arcs 107,290 | 107,333 | 107,437 | 107,548 | 107,784 | 109,757
# pivots sequential 101,630 | 108,359 | 101,717 | 97,875 | 92,407 | 75,458
# pivots 19 procs 88,144 | 95,798 | 92,026 | 90,292 | 86,534 | 73,775
CPU secs. sequential 2,796 1,974 1,076 833 638 404
CPU secs. 19 procs 595 951 284 208 143 65
Speedup 19 procs 4.6 3.5 3.7 4.0 4.4 6.2

Table 3.2  Results for TPGRNET for Group 1
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Figures 3.3 - 3.4 and tables 3.3 - 3.4 present results for PGRNET and TPGRNET
for Group 2, a set of problems having 10,000 nodes and more than 200,000 arcs and for
Group 3, where the number of arcs is increased to more than 400,000. The speedup for
PGRNET and TPGRNET improves slightly when the number of arcs is increased, but
otherwise the results are similar to those of Group 1, except that for TPGRNET for
Group 3 the maximum speedup doesn’t seem to have been reached when 19 processors
are used. This is due to the fact that the Group 3 problems have many more arcs than
the problems in Groups 1 and 2, relative to the number of nodes. So more processors
are “needed” to do pricing. (We note that each pricing processor in TPGRNET can each
compute reduced costs for only about 9 arcs between pivots at the beginning of the run.
This happens because the quasi-trees in the starting basis consist of just one node and
one generalized root-arc, and therefore pivots are executed by the pivoting processor very
quickly. Assuming that there are 17 pricing processors, the total number of arcs priced
out between pivots in TPGRNET is initially only about 153, regardless of the number of
arcs in the problem. This represents a very small fraction of all of the arcs, especially for
the problems in Group 3. For small grained problems the pricing processors can compute
only about 10 reduced costs between pivots at the end of the run. For the large grained
problems, the pricing processors can each compute more reduced costs between pivots,
but only rarely are 17 processors able to price out as many as 10% of all the arcs between
pivots.)
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Figure 3.3 Speedups for PGRNET and TPGRNET
Problem # 2.00 2.01 2.03 2.05 2.10 2.50
# qtrees at optimality 1 46 133 233 508 2,490
# nodes 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000
# arcs 212,627 | 212,673 | 212,760 | 212,860 | 213,135 | 215,117
# pivots sequential 185,105 | 195,430 | 184,746 | 180,115 | 166,392 | 138,635
# pivs 19 procs PGRNET | 205,149 | 212,594 | 199,859 | 190,724 | 174,818 | 140,260
# pivs 19 procs TPGRNET | 156,885 | 169,054 | 165,166 | 160,899 | 153,504 | 134,183
CPU secs. sequential 5,003 3,470 2,007 1,703 1,201 765
CPU: 19 procs PGRNET 1,700 652 336 230 127 69
CPU: 19 procs TPGRNET 1,118 909 512 371 227 115
Speedup PGRNET 2.9 5.3 5.9 7.4 9.4 11.0
Speedup TPGRNET 4.4 3.8 3.9 4.5 5.2 6.6

Table 3.3
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Figure 3.4 Speedups for PGRNET and TPGRNET
Problem # 3.00 3.01 3.03 3.05 3.10 3.50
# qtrees at optimality 1 41 142 235 487 2,560
# nodes 10,000 | 10,000 | 10,000 | 10,000 | 10,000 | 10,000
# arcs 417,397 | 417,438 | 417,539 | 417,632 | 417,884 | 419,957
# pivots sequential 340,153 | 373,375 | 347,419 | 333,389 | 312,852 | 260,266
# pivs 19 procs PGRNET | 378,806 | 415,128 | 379,045 | 362,048 | 330,367 | 264,381
# pivs 19 procs TPGRNET | 283,695 | 314,301 | 304,675 | 295,536 | 284,233 | 250,043
CPU secs. sequential 9,124 7,814 4,337 3,444 2,578 1,531
CPU: 19 procs PGRNET 2,877 1,649 682 488 270 138
CPU: 19 procs TPGRNET 1,867 1,966 989 700 450 225
Speedup PGRNET 3.1 7.7 6.3 7.0 9.5 11.0
Speedup TPGRNET 4.8 3.9 4.3 4.9 5.7 6.8

Table 3.4  Results for PGRNET and TPGRNET for Group 3

23




Figure 3.5 and table 3.5 present results for the two parallel algorithms for Group
4, a set of problems with 30,000 nodes and about 320,000 arcs. Most problems give a
speedup of more than 6 for PGRNET. Only problem 4.00 has a speedup as low as 3.8.
The ratio of the number of arcs to the number of nodes is roughly the same as for Group
2, but the speedups for Group 4 seem to be higher. This is probably due to the greater
number of quasi-trees in the optimal bases of the Group 4 problems. Since the Group 4
problems have more quasi-trees, contention between processors is reduced during runtime.
This suggests that the results might improve even further if the problems were made even
larger. For problem 4.00, TPGRNET yields a speedup of 6.6 on 19 processors. This
suggests that TPGRNET solves extremely large-grained problems much more efficiently
than PGRNET.
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Figure 3.5 Speedups for PGRNET and TPGRNET
Problem # 4.00 4.01 4.03 4.05 4.10 4.50
# qtrees at optimality 1 139 459 776 1,490 7,376
# nodes 30,000 [ 30,000 | 30,000 { 30,000 | 30,000 | 30,000
# arcs 322,289 | 322,428 | 322,748 | 323,065 | 323,779 | 329,665
# pivots sequential 328,711 | 347,420 | 320,937 | 308,284 | 288,856 | 228,819
# pivs 19 procs PGRNET | 365,633 | 383,483 | 345,325 | 326,323 | 300,496 | 231,507
# pivs 19 procs TPGRNET | 265,774 | 305,979 | 288,279 | 272,322 | 263,411 | 221,544
CPU secs. sequential 22,434 9,679 4,525 3,096 2,340 1,388
CPU: 19 procs PGRNET 5,829 1,527 589 | 364 223 124
CPU: 19 procs TPGRNET 3,390 2,571 1,177 721 470 211
Speedup PGRNET 3.8 6.3 7.6 5.2 10.4 11.1
Speedup TPGRNET 6.6 3.7 3.8 4.2 4.9 6.5

Table 3.5
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3.4 Other measures of performance

Figure 3.6 and table 3.6 further help to explain the behavior of PGRNET. We say
that a “collision” occurs when a processor tries to lock a quasi-tree that has already been
locked by another processor. Table 3.6 gives the number of pivots that PGRNET uses to
solve the problems in Group 1, along with the number of collisions that occur during the
solution of each problem. The 19 processor version of PGRNET had 1,044,340 collisions for
problem 1.00 and it solved this problem with 111,843 pivots. This means that there were
more than 9 collisions per pivot for this problem, and this can explain the poor speedup
results from PGRNET for this problem. The 3 processor version had only about 1/10th
as many collisions, because there were fewer processors to compete with each other. For
problems 1.03, 1.05 and 1.50, PGRNET had fewer collisions than pivots, and the number
of collisions decreased as the granularity of the problem and the number of processors were
decreased. The ratios of collisions to pivots for these problems are listed in table 3.9 and
graphed in graph 3.9.

One way to measure the effectiveness of the TPGRNET algorithm is to count the
number of times that pivot arcs are chosen from best_cand and the number of times that
pivot arcs are chosen from the candidate lists. This gives a measure of the effectiveness
of the TPGRNET pricing scheme, which overlaps pricing and pivoting, and dedicates all
but two processors to pricing. Table 3.7 gives this data for the 3 and 19 processor versions
of TPGRNET solving the problems in Group 1. Figure 3.7 gives the percent of pivot
arcs that are taken from best_cand (the variable in shared memory in which the pivoting
processor attempts to find its pivot arcs). The 3 processor version takes a slight majority
of its pivot arcs from best.cand. The 19 processor version takes a vast majority of pivots
from best.cand. This is because more pricing can be done by the 17 pricing processors,
and there is thus a high probability that the pivoting processor will find a pivot eligible
arc in best_cand almost every time that it looks there.
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Figure 3.6 Ratio of collisions to # pivots for PGRNET

Problem # 1.00 1.01 1.03 1.05 1.50

collisions 19 procs| 1,044,340 | 296,144 | 70,768 | 40,072 615
pivots 19 procs| 111,843 [ 115,680 | 106,496 | 103,064 | 76,367

ratio 19 procs 9.3 2.5 0.6 0.3 0.0
collisions 3 procs 94,875 | 56,714 | 15,084 5964 | 31
pivots 3 procs| 117,075 | 126,604 | 116,083 | 109,244 | 76,347
ratio 3 procs 0.8 0.4 0.1 0.0 0.0

Table 3.6  Collisions, pivots and collision/pivot ratio
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Problem # 1.00 1.01 1.03 1.05 1.10 1.50
best_cand 19 procs| 86,252 | 91,282 | 87,131 | 85,275 | 81,567 | 68,530

cand lists 19 procs| 1,877 | 4,512 | 4,879 | 4,989 | 4,944 | 5,194
STAGE 2 pivots 19 procs 15 4 16 28 23 51
best_cand 3 procs| 81,862 | 82,767 | 75,812 | 70,810 | 64,388 | 46,884

cand lists 3 procs| 38,837 | 55,267 | 57,028 | 56,174 | 53,876 | 38,131
STAGE 2 pivots 3 procs 9 7 9 2 0 2

Table 3.7 # pivot arcs taken from best_cand and cand lists
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Figure 3.8 and tables 3.8 and 3.9 show results for two problems with more than a
million variables. The problem reported in table 3.8 has the same sort of capacitation that
groups 1 through 4 have, and the problem in table 3.9 has lighter capacitation. Both of
these problems are small grained, so they can be solved quite efficiently by PGRNET. Due
to the large number of quasi-trees in the optimal bases of these problems, one would expect
the speedups on 19 processors to be somewhat higher than they are, 11.0 for the heavily
capacitated problem and 7.0 for the lightly capacitated problem. One possible factor is
that the system time for the major page faults might be included, to some extent, in the
user time for these problems.
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Figure 3.8  Speedups for PGRNET ( # arcs > 1,000,000)
program # arcs| # nodes| # qtrees| time| pivots| maj page swap
sequential| 1,267,185 30,000 14,859| 8,415 706,776 914,478
19 procs | 1,267,185 30,000{ 14,859 760| 716,218 100,614

Table 3.8 PGRNET results for problem with heavy capacitation

program

# arcs| # nodes| # qtrees| time| pivots| maj page swap

sequential

1,267,185 30,000 14,859 3,305| 184,379 363,755

19 procs

1,267,185 30,000] 14,859] 470| 185522 51,146

Table 3.9

PGRNET results for problem with light capacitation
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4 Future Research

We are currently investigating a hybrid algorithm that incorporates features from
both PGRNET and TPGRNET. This algorithm starts by executing pivots in a PGRNET
phase and switches into a TPGRNET phase if the number of quasi-trees in the basis drops
below some threshold. Another generalization of the parallel pricing approach that we
wish to study is the utilization of some of the processing power for the simplex “ratio
tests”. That is, given a sufficiently large number of processors (say, more than 15 in
the case of generalized networks), it may be more advantageous to utilize some of the
additional processors to do ratio tests for pivot eligible columns rather than to allocate
them to do additional pricing. We are also testing our algorithms with problems generated
by GNETGEN, a modification of the pure network generator, NETGEN [Klingman, et al,
1974]. Results will appear in a joint paper with J. Kennington and R. Muthukrishnan, who
have independently been developing distributed algorithms for GP. Further into the future,
we would like to develop a heuristic for PGRNET that would allocate arcs to processors
using information from a solved problem. The optimal basis of the solved problem (the
warm start) might resemble the optimal basis of a problem with similar data. If so, then
the warm start would indicate how to allocate groups of arcs to processors in such a way
that processors would rarely collide with each other when selecting pivot arcs. Finally, we
would like to test variants of the TPGRNET strategy on general linear programs. The
TPGRNET algorithm clearly extends in a straightforward way to general linear programs,
but implementation details will play an important role in determining efficiency.
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