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1. INTRODUCTION.

Although NP complete problems are typically stated as decision problems there are
frequently underlying optimization problems that are of more interest. For example,
in the traveling salesperson problem finding a minimum length tour is generally of
more interest than knowing whether there is a tour of length less than k. However,
early in the study of NP completeness it was recognized that computing the optimal
solution of an NP optimization problem can be done in polynomial time only if there
is a polynomial time solution for the corresponding decision problem. For this reason,
and because nondeterministic functional computations are more difficult to formalize,
the complexity theory for these problems has been built primarily on the study of the
associated decision problems. Nevertheless, as the theory of NP complete sets and
polynomial time reductions developed, it was also recognized that even the polynomial
computable isomorphisms between known NP complete sets are not strong enough to
preserve all of the underlying structure of the optimization versions of these problems.
Furthermore, it was recognized early on (e.g., [GaJo 79, [GoSa 76], [Jo 74], and [PaMo
81]) that despite the fact that all known naturally occurring NP complete decision
problems are polynomially isomorphic, ([BeHa 77], [JoYo 85]), some NP optimization
problems have very good polynomially computable approximations while it is impossible

for others to have good polynomially computable approximations unless P = NP.

! In this paper, we survey structural work on calculating optimal solutions for NP complete
problems. This overview is not intended to be an exhaustive description of the area, nor even of
all of the work in those papers which we discuss. Instead, it is an attempt to provide a general
introduction to the area. As a consequence we have freely unified notations and simplified
statements of results. We hope that this survey will provide a guide to some of the more
interesting ideas and problems in the area, but readers wishing definitive statements of the
results we discuss will need to consult journal versions of the papers we survey.

This work was presented as an invited paper at the Second International Symposium on
Optimal Algorithms, and will appear in Springer-Verlag Lecture Notes in Computer Science
as one of the selected papers from that symposium. The work was supported in part by
the Ministero della Pubblica Istruzione, through “Progetto 40%: Algoritmi e Strutture di
Calcolo,” the National Science Foundation under grant DCR-8402375, and by the Wisconsin
Alumni Research Foundation under a Brittingham Visiting Professorship.



Following the early work of Johnson, ([Jo 74}), on classifying approximation prop-
erties of NP complete optimization problems, in the late 1970’s, Ausiello, D’Atri, and
Protasi, and independently Paz and Moran moved beyond the study of approximation
algorithms for specific NP complete problems and began the systematic study of the
structure of NP optimization problems and their reductions. They addressed the ques-
tion of what types of classifications can be made among NP optimization problems and
the question of how the structural and combinatorial properties and reductions of NP

problems relate to their ability to be polynomially approximated.
Their work was followed by work of Leggett and Moore, which considered the

location of NP optimization problems within the polynomial time hierarchy. Among
other results Leggett and Moore showed that NP optimization problems that arise from
strongly complete NP decision problems are proper Af(= PNF) problems. That is,
these problems are not in NP U coNP unless NP = coNP.

More recently, Papadimitriou and Yannakakis showed that certain languages asso-
ciated with NP optimization problems are complete for complexity classes thought to
lie just above NP. For example, they showed that the language {(G, k) : the maximum
clique in G is of size k} is complete for DF (= all languages that can be expressed as the
intersection of a language in NP and a language in coNP ), while the language {G : G

has a unique optimal traveling salesperson tour} is complete for A

Following the work of Papadimitriou and Yannakakis, Krentel and Wagner began
the task of developing a complexity theory for NP optimization problems based on
traditional notions of complexity classes. Krentel, drawing from natural problems such
as clique and traveling salesperson, defined a complexity class of optimization functions
which he called OptP. To handle the problem that polynomial many-one reductions are
not strong enough to preserve structural properties of optimization problems, Krentel
defined the notion of a polynomial time metric reduction, which is a polynomial time
truth-table reduction between functions that is allowed only one oracle computation.
Using these reductions, Krentel showed that the optimization function for the traveling
salesperson problem is complete for Opt P, while the optimization function for the clique
problem is complete for a weaker complexity class. He also showed that the optimization
function for the bin packing problem is contained in a complexity class which is still
weaker than the class related to the cligue problem. Thus, by defining natural functional
complexity classes for NP optimization problems, Krentel was able to use completeness

for these classes as a way of distinguishing between optimization problems of varying
difficulties.




Wagner’s results have followed a similar vein using set classes rather than func-
tional classes, but, in addition, he has developed close connections between the Boolean
hierarchy over NP and sets related to NP optimization problems. Noting that all such
NP optimization problems lie in classes at or below the functional analog of PNP and
in fact lie in the eztended Boolean hierarchy over NP, Wagner has classified problems
by locating them in this Boolean hierarchy. His work carefully details both the types of
functions that one might try to optimize for NP decision problems, (that is, the various
ways that an optimization problem might be created from a decision problem), and the

classes of the Boolean hierarchy for which the resulting problems are complete.

At the same time that the work on classification of optimization problems was tak-
ing place, additional research was being done on polynomial approximations. Papadim-
itriou and Yannakakis defined, using Fagin’s logical characterization of NP, the classes
MAX NP and MAX SNP, which characterize many NP optimization problems that are
polynomially approximable. Similarly, Johnson, Papadimitriou, and Yannakakis defined
the class PLS of functions that map instances of optimization problems to feasible solu-
tions which witness local optima, and Krentel showed that the “local optima” function
for weighted satisfiability is complete for PLS. On a more applied side, recent work in
[HoKe 82], [JAMS 89], and [KGV 83] has provided unified techniques for polynomially

approximating a wide variety of NP complete problems.

In the sections which follow we attempt to give an overview of the diverse work
on NP optimization. In doing so, we trace the development of concepts and definitions
that originated with Ausiello, D’Atri and Protasi, Moran and Paz, Leggett and Moore
through the more recent work of Johnson, Papadimitriou, Yannakakis, Krentel and

Wagner. Where appropriate we raise open questions.

2. NP OPTIMIZATION PROBLEMS.

In general, to specify an NP problem B, one identifies a polynomial time testable pred-
icate P and a polynomial p such that P(z,y) = |y| < p(|z]), and defines B by

B(z) <= (Jy)P(z,y)-

Those elements y such that P(z,y) are called feasible solutions for z, and the relation
ly] < p(|z]) guarantees that the sizes of feasible solutions are bounded by a polynomial
in the size of z.

Without loss of generality, one can usually think of y as an accepting computation of
a nondeterministic Turing machine on input z, although for our purposes it is probably

better to think more directly of y as a potential solution to a question about z. For



example, y might be a clique in a graph z, or a complete tour of the graph. It is also
natural to have a polynomially computable measure or valuation function m(z,y) of the
goodness of y as a solution to the question about z, and to be interested only in feasible
solutions which are sufficiently good. For example, in the case of clique! if m(z,y) is
the number of vertices in the clique y, then the clique problem, CLIQUE is specified by
the special form,

CLIQUE(z, k) <= (y)[P(z,y) & m(z,y) 2 k],

where P(z,y) asserts that y is a clique of the graph «. Similarly, the traveling salesperson
problem, is specified by

TSP(z, k) <= (Jy)[P(z,y) & m(z,y) < k],

where P(z,y) asserts that y is a tour of the graph z and m(z,y) is a function giving
the total length of the tour y.

In the setting of this paper an NP complete problem C that is specified in either of
these forms is called an NP optimization problem, and we sometimes refer to the class
of all such problems as the class NPO. In practice, for NP optimization problems one

is often more interested in calculating some variation of the function

opt(z) =def Maz{m(z,y): Pc(z,y)}, or

optc(z) =aes Min{m(z,y) : Po(z,y)}.
Proving that the underlying problem is NP complete shows that the problem of com-
puting opt is probably hard, but it does not show how hard computing opt must be,
nor does it answer the question of whether we can efficiently find approximate solutions
for optc.

Of course, by simply taking m(z,y) to be the characteristic function, xp.(z,y),
of Pc we can make the problem of solving the underlying NP complete problem fairly
directly equivalent to calculating the function optp,_(z). However, for more interesting
cases, for example where m(z, y) measures the size of a clique, or perhaps where m(z,y)
measures the weight of a tour of a graph, the reader will see that solving the underlying
NP decision problem can be trivially reduced to calculating optp_ (), but it is not
evident that the problem of calculating optp(x) is so trivially reducible to solving the
underlying NP decision problem.

! An informal description of some of the decision problems and the functional variants of
the optimization problems considered in this paper is given in the Appendix. For a description
of the remaining decision problems, we refer the reader to [GaJo 79].




Much work on optimization problems has focused, not on directly calculating the
function opts, or even the more natural problem of finding a feasible solution y which
optimizes the value of m(z,y), but instead on using the already developed machinery
for classifying set recognition problems to classify set recognition problems related to

the optimization problem.

For example, in [LeMo 81], Leggett and Moore considered the difficulty, for an NP
complete optimization problem C, of the related set

OPT(C) =daef {{z,k) : k= opto(x)} (%)

which is the problem, given z and k, of deciding whether k is the optimum value of any
feasible solution of z. It is easily seen that for any NP complete optimization problem
C, OPT(C) is always in the class AL =45 PVP C TP NIIY of the polynomial time
hierarchy. Leggett and Moore called a set, S, a proper AL set if it is in Af and if

S € NPUcoNP =—> NP = coNP.

With this definition, they were able to show that for many natural NP optimization
problems C, the corresponding optimization problem OPT(C) is a proper Af set and
is therefore very unlikely to fall in either NP or in coNP.

The basic tool Leggett and Moore used is the notion of a I-preserving reduction,
<E which is a polynomial time reduction that preserves membership in the 2F levels of
the polynomial time hierarchy. Examples of L-preserving reductions include polynomial
time many-one reducibility, <P | and polynomial time conjunctive truth-table reducibil-
ity, <P. Their basic theorem is that if C' is any NP optimization problem for which
there exists some NP complete problem B satisfying B <§ OPT(C), then OPT(C)

must be a proper A set.

This result can easily be applied to all NP complete optimization problems which
are polynomially bounded; i.e., to problems for which there is some polynomial p such
that for each instance z of C, opts(z) < p(|z|). It is not hard to see that for any
polynomially bounded NP complete optimization problem C, C <P OPT(C), and thus
OPT(C) is a proper AP set. It then follows trivially from this that the optimization

problems for all strongly NP complete sets? are proper AP sets. Since many natural

2 The strongly NP complete problems as defined by Gary and Johnson ([GaJo 79]) are just
those problems of the form (3y)P(z,y), which remain NP complete when they are restricted
to (3y)[P(z,y)&m(z,y) < p(|z|)] for some polynomial p. Le., they are just those which remain
NP complete when their feasible solutions are restricted to include just those which keep the
problem polynomially bounded as defined by Leggett and Moore.



NP complete optimization problems are strongly NP complete, or even polynomially
bounded, it turns out that many natural NP complete sets automatically give rise to

optimization problems which are proper Al sets.?

Examples of NP complete sets for which the general Leggett and Moore technique
applies include the polynomially bounded problems CLIQUE, CHROMATIC NUM-
BER, and SAT, as well as KNAPSACK which is neither polynomially bounded nor
strongly NP-complete.

Although the problems Leggett and Moore investigated are proper A sets, Leggett
and Moore do not use the full power of AL. Specifically, to be sure that k is the size of
an optimal solution for an instance z one need only verify that there is some solution
of z of size at least k and that there are no solutions of z of size greater than k. From
this it is clear that all of the Leggett and Moore sets OPT(C) can be defined as the
intersection of a set in NP and a set in coNP.

In [PaYa 84] Papadimitriou and Yannakakis formally defined D to be the class
of sets which can be written as the intersection of a set in NP and a set in coNP, and
they showed that MAX CLIQUE =4.; OPT(CLIQUE) is <P complete for DF. Other
problems they showed to be complete for D include SAT-UNSAT and problems like
CLIQUE FACETS, which is the problem, given a graph G and an inequality, of deciding
whether the inequality is a facet of the clique polytope of G?

In [PaWo 85] and in [CaMe 87] the additional polynomially bounded NP complete
optimization problems MINIMAL UNSATISFIABILITY and (for all ¥) MINIMAL-k-
UNCOLORABILITY were shown to be <2 complete for D?.

Prompted by the Papadimitriou and Yannakakis definition of Df, a number of
people began investigating the Boolean hierarchy over NP, ((CGHHSWW 88], [CGHH-
SWW 89]), and over other complexity classes as well, ((BBJSY 89]). Boolean hierarchies
are typically formed by taking at the base level a class of sets which is closed under

union and intersection but not complement, and then forming the k& + 1°¢ level of the

% Leggett and Moore called polynomially bounded problems essentially unary, but the ter-
minology polynomially bounded has since become more standard. Traveling salesperson is a
natural example of a problem which is strongly NP complete but whose unrestricted version is
not polynomially bounded.

Leggett and Moore go on to show that if one starts, not with optimization problems for
NP, but rather with optimization problems in the Ef level of the polynomial hierarchy, then
corresponding results to those for A-f will show that various optimization sets are proper Akp 1

sets. These results are very similar to the results discussed here for Af , but are beyond the
scope of this brief survey.




Boolean hierarchy by iterated closure under k operations involving union, intersection,
and complement. If done properly, D is just NP[2], the second level of the Boolean
hierarchy over NP.

Following the development of the Boolean hierarchy over NP and the proof by
Papadimitriou and Yannakakis that MAX CLIQUE is complete for DFP, Wagner was
interested in investigating when different variations of optimization problems are com-
plete for the kt* level of the Boolean hierarchy over NP. To do this, he defined a
number of interesting variations of optimization problems. For our purposes, the most

interesting of these is the following generalization of (*):

OPT(C) =def {(z,a1,...,ak) : optic(z) € {ar,...,ar} }. (%)

Note that OPT,(C) = OPT(C). Wagner observed that if C is any NP optimization
problem, then the corresponding problem OPT(C) is in the 2k level, NP[2k], of the
Boolean hierarchy over NP.* He defined a valuation function, m to be polynomially

invertible if the set, Sol(z, k), of feasible solutions of size k,
Sol(z, k) =des {y: Polz,y) & m(z,y) = k},

is completely enumerable (from z and k) in polynomial time. He then observed that for
every NP optimization problem, C, with an invertible valuation function, the optimiza-
tion set OPT(C) is in coNP, and hence these sets are very unlikely to be complete for
NP[2k]. Wagner also showed that the one specific problem that he considered with an
invertible valuation function, MAX SAT ASSIGN, is complete for coNP.

Wagner next considered nine common NP optimization problems for which the
valuation function is not polynomially invertible, including seven which are polynomially
bounded in the sense of Leggett and Moore’s definition and two which are neither
polynomially bounded nor polynomially invertible. (Of these latter two, TRAVELING
SALESPERSON is strongly NP complete, but the other, SUM OF SUBSETS is not
strongly NP complete.) Wagner gave detailed reductions showing that for each of these
nine optimization problems, C, the corresponding optimization problem OPT(C) is
complete for NP[2k].

* At first glance, one might expect it to be easier to answer whether optp_(z) € {a1,a2}
than to answer whether optp_(z) = a1, but note that it seems harder to answer that optp, (z)
is neither a1 nor az than to answer that optp_(z) is not a1, and this is what makes deciding

OPT>(C) (presumably) harder than deciding OPT1(C).



Recall that Leggett and Moore’s basic theorem gives very general conditions on NP
complete optimization problems which force their associated optimization sets OPT(C')
to be proper AP sets. Given the many examples of optimization problems that are
complete for D, and given Wagner’s nine examples of optimization problems that
are complete for NP[2k], it is natural to ask whether there are similar general condi-
tions which force the NP complete optimization problems OPT(C) to be complete for
NP|2k]. For example, it is tempting to conjecture that for every NP complete optimiza-
tion problem which is polynomially bounded, the set OPT(C) is complete for NP[2k].
This seems an interesting problem even for the special case k = 1, where NP[2] = D”.

Question 1. Is every NP complete optimization problem which also is polynomially
bounded, or even strongly NP complete, <P complete for DP?

-

In addition to the variations of optimization problems considered by Wagner, Pa-
padimitriou investigated another type of optimization problem, optimization problems
which have a unique solution. In [Pa 84] he proved that the problem of determining
whether the optimum solution for a traveling salesperson problem is unique, the prob-
lem of determining whether the optimum solution for an integer program is unique, and
the problem of determining whether the optimum solution for the knapsack problem is

unique are each <P complete for AL, This leads us to ask:

Question 2. What type of conditions, such as those of Leggett and Moore, must

one place on an NP complete optimization problem C in order to guarantee that

UNIQUEOPT(C) =45 {z: y[m(z,y) = optc(z)] } is complete for AL?

So far we have indirectly discussed how difficult it is to compute the optimization
function

0pto(z) =def Maz{m(z,y) : Pc(z,y)}

by instead examining the difficulty of the associated set
OPT(C) =ges {(z,k) : k = opto(z)}.

Motivated partly by a desire to better understand which NP complete optimization
problems can be approximated in polynomial time, Krentel, ([Kr 88}), initiated a direct
study of the function class:®

5 At this point notation becomes overbearing and one quickly realizes that the characters
“P» and “Opt” are being greatly over used. In the literature the situation is commonly worse.
Wagner and Wechsung, ((WaWe 86]) carefully provide unique names for all sets and functions
of interest to the study of NP optimization. But our belief is that their naming does not solve




OptP =4, {opt; : C is an NP optimization problem}.

To study differences within this class, he also introduced, for any “smooth” function, z,

the subclasses:

OptP[z(n)] =ges {f : f € OPtP & |f(z)| < 2(|z])}.

To study these functional classes, Krentel needed some suitable notion of a poly-
nomial time reduction from one function, f, to another function, g. In the context of

his work, the notion of a one-truth-table reduction turned out to be appropriate.®

Definition. Let f and g be functions. We define f <¥,, g if there exist polynomially
computable functions t; and t such that f(z) = ta(z, g(t:1(x))).

These definitions enabled Krentel to separate various optimization problems by di-
rectly separating the functional versions of the problems. For example, he showed that
for the NP complete optimization problems MAX WEIGHTED CLAUSES, MIN TRAV-
ELING SALESPERSON, MAX SAT ASSIGN, 0-1 INTEGER PROGRAMMING, and
MAX KNAPSACK the corresponding functions opt s are all <f,, complete for OptP. He
also showed that for the following NP complete optimization problems MAX SAT, MAX
CLIQUE, MIN CHROMATIC-NUMBER, and LENGTH OF LONGEST CYCLE the
corresponding functions opts are <f,, complete for OptP[log(n)]. Most, but not all,
of the proofs of these results come by straightforward variations of standard reductions
used to prove that the underlying NP complete sets are complete problems for NP.

Krentel also observed that most (but not all) of the <f}, reductions used in the
preceding proofs can be taken to be linear reductions, i.e., reductions in which the
outermost component t; of the reduction separates nicely into linear components, 3

and t4. Le.,
f(z) =des ta(z,9(ti(z))) = t3(z) * g(t:(2)) + ta(2)-

This enabled Krentel to directly relate completeness for the functional classes to com-

pleteness for the more standard set classes. For example:

the problem of providing intuitive names for the common functions and classes. (Surely this is
an open problem which should be solved before someone introduces yet another class!)

6 Krentel actually called these metric reductions, but since the reductions are basically
polynomial time with one free oracle computation of the function g, they correspond directly
to the classical notion of a polynomial time one-truth-table reduction.



Theorem.
e If f is complete for OptP under linear reductions,
then La f =des {(z,k1,ks) : f(z) = k1 (mod ks)} is <E complete for Af.
e If f is complete for OptP[2] under linear reductions,
then L3 5 =q4ef {(z,k) : f(z) = k} is <F complete for DF .
e If f is complete for OptP|[1] under linear reductions,
then Ly § =aes {(z,k) : f(z) > k} is < complete for NP.

For the same functions z used to define OptP[z(n)], Krentel also establishes a close

relationship between
FP54T[2(n)] =aer {f : f(z) is computable in polynomial time
given z(|z|) queries to an oracle for SAT'}

and OptP[z(n)]. In particular, he proved, for suitable “smooth” f and g¢:

Theorem. Suppose that for all n, f(n) < ¢g(n) and that f(n) < (1 - €) * log(n) for

some constant € > 0. Then

FP34T[f(n)] = FP4T[4y(n)) = P = NP.

This result implies that it is unlikely that certain OptP complete functions can
be approximated well by a polynomially computable function. For example, notice
that if opto(z) is an OptP function and if in polynomial time we can approximate it
within an additive quantity a(|z|), then we can use binary search to compute opts(z)
with log(a(|z|)) queries to a SAT oracle. This gives particularly intriguing information
about MIN BIN PACKING. On the face of it, based on the size of its output, the
optimization function opt g,y for MIN BIN PACKING belongs to OptP[log(n)], and
hence to FP54T[log(n)]. But Karmakar and Karp, ([KaKa 82]) have given a polynomial
time algorithm which approximates the optimal solution to MIN BIN PACKING to
within an additive constant of at most O(log?(n)). As pointed out in [Kr 88], this
implies that optg;y € FP54T[O(loglog(n))] and that problems such as optcrrque
cannot be reduced to opt gy under linear polynomial time reductions unless P = NP.

Krentel goes on to prove the following more general result about lower bounds for

polynomial approximations of OptP complete functions:




Theorem. Suppose P # NP. Suppose also that opto is OptP[f(n)] complete, where
f € O(log(n)) is smooth. Then there exists an € > 0 such that any polynomial time ap-

94 (l=¢

proximation algorithm A for opts must have |A(z) — opto(z)] > (1/2) ) infinitely

often.

As we proceed, we shall see that to obtain such a nice result on the difficulty of
approzimating optimization problems, it is not surprising that Krentel was forced to use

some form of linear, as opposed to just <I,, reductions.

Given that Karmakar and Karp’s result places opt gy in FP54T[O(loglog(n))],
it is natural to conjecture that optg;y is complete for FP>4T[0(loglog(n))]; but the
best that is known is that opt gyn is hard for FP54T[1]. In light of these considerations
Krentel raised the following question:

Question 3.
e Which function classes FP54T[z(n)] contains optgrn?

e Are there natural complete problems for subclasses of FP5AT other than
FP3AT[O(log(n))] and FPSAT[n0M)]7

3. APPROXIMATING SOLUTIONS TO OPTIMIZATION PROBLEMS.

In spite of the fact that finding optimal solutions of NP complete optimization problems
is at least NP hard, it was recognized early on that some, but not all, such functions have
“approximate” solutions which can be calculated in polynomial time. This phenomenon
stimulated two lines of research on optimization problems. In one direction it stimulated
research to find faster and better approximation algorithms, and in another direction it
led to attempts to give structural properties common to all polynomially approximable

optimization problems.

Among the techniques that have wide applicability, neighborhood or local search is
perhaps the most used. An interesting problem is thus the extent to which this technique
can be applied. For example: Is it possible to apply a local search algorithm to obtain
approximate values for each function contained in OptP ? This question was first
investigated by Johnson, Papadimitriou, and Yannakakis ([JPY 85]), and subsequently
by Krentel ([Kr 89]). Their main results are briefly discussed in Section 3.1.

General questions related to the study of combinatorial or structural properties
common to polynomially approximable optimization problems have been investigated
by many people and we discuss a variety of these results in Section 3.2. Section 3.3
contains a brief discussion of various restricted reducibilities which have been used in

structural studies of NP optimization problems.



3.1. The Difficulty of Local Search.

Johnson, Papadimitriou and Yannakakis have noted that in practice local search is one
of the most successful techniques used to compute polynomial time approximations for
optimization functions. The applicability of this technique is related to the existence of
a neighborhood structure which specifies for each feasible solution y a neighboring set of
feasible solutions whose measure is “close” to the measure of y.

Given an optimization problem with a neighborhood structure, a local search al-
gorithm operates as follows: Starting from a randomly chosen feasible solution, until
no better neighboring solution exists it repeatedly replaces the current solution by a
neighboring solution with the best measure. Once this has been done the algorithm has
identified a “local optimum.” Typically, th algorithm is repeated a certain number of
times with different initial solutions and the locally optimal solution that is found is

chosen.”

In [JPY 85], Johnson, Papadimitriou, and Yannakakis began an investigation of the
class of problems which can be approximated through local search techniques. First they
introduced a complexity class of functions called PLS. Specifically PLS, for Polynomial
Local Search, is the class of functions that map instances of optimization problems with
a given neighborhood structure to local optima. The PLS function is computed from
an optimization problem and a neighborhood structure which must satisfy the following

requirements:

e Given an instance of the problem, we must be able to produce in polynomial time
some solution.

e Given an instance and a solution, we must be able in polynomial time to compute
the measure of the solution.

e Given an instance and a solution, we must be able in polynomial time to determine
whether that solution is locally optimal and if not to generate a neighboring solution

of improved measure.

7 Obviously, there are different variations of this technique. The algorithm that we have
described is probably the most simple. “Simulated annealing” is another popular method,
([KGV 83]). But see [JAMS 89] for a critical evaluation. In the remainder of this paper, when
we refer to a local search technique we implicitly intend any reasonable (polynomial time) local
search technique.




The class PLS turns out to lie somewhere between FP and FNP (i.e. the functional
analogues of P and NP). Johnson, Papadimitriou, and Yannakakis note that if PLS
contains some NP-hard function, then NP = coNP; thus it seems unlikely that PLS =
FNP. On the other hand PLS = P implies the existence of a general method for finding
local optima, and to date no such method is known. So the questions FP =? PLS =7
FNP have no obvious answers.

To gain insight into this new complexity class Johnson, Papadimitriou, and Yan-
nakakis defined a reduction between the optimization problems which underlie PLS
functions. Intuitively, these reductions not only must map instances of a problem A to
instances of a problem B, but must also map local optima of A to local optima of B.
More precisely, we say that a problem A in PLS is reducible to another problem B if
there are polynomially computable functions f and g such that:

e f maps instances of A to instances of B,
o g maps (solutions, instances) pairs for instances in the range of f back to solutions

of A,

o for all instances z of A, if s is a local optimum for the instance f(z) of B, then

g(s, f(z)) is a local optimum for z.

With this notion of reducibility, Johnson, Papadimitriou, and Yannakakis introduce
the corresponding notion of PLS completeness and gave several examples of functional
problems which are PLS complete. (The most natural of these is the problem, FLIP,
which given a circuit produces a binary input whose output cannot be increased by
flipping a single bit of the input. Feasible solutions which differ in only bit are then
in the same neighborhood, so that in polynomial time one can generate and evalu-
ate all feasible solutions which lie in the neighborhood of a given candidate solution.)
These authors conjectured that for each PLS complete problem the problem of veri-
fying local-optimality is itself LOGSPACE-complete for P. However, this conjecture is
very unlikely to be true since Krentel, ([Kr 89]), has proven that the problem MAX
WEIGHTED CLAUSES is PLS complete, but that the corresponding verification prob-
lem is in LOGSPACE.

3.2. Polynomially Approximable NP Complete Optimization Problems.

One of the first people to study the problem of finding approximate solutions to NP
optimization problems was Johnson, who in his seminal paper, ([Jo 74]), provided a
series of results on the approximability of problems such as MAX CLIQUE, MAX SAT,
and MIN CHROMATIC NUMBER, and gave what are now the standard definitions of

polynomial time approximability.



Definition. Let C be an NP mazimization problem. Let f be any polynomially com-
putable function mapping instances z of C' to feasible solutions of z. Let approz(z) =g.r
m(z, f(x)). We say that approz is a polynomial time approzimation algorsthm for opto(2)
8

if the ratio ;%% is bounded by some constant € greater than one.

Note that the ratio E%%?E%)B always lies between one and (+)infinity. Thus to
say that a mazimization problem C has a polynomial time approximation algorithm
merely says that the solution approz(z) always comes within a multiplicative factor
of opts(z). Notice also that this notion of approximability differs from that used by
Krentel to state his results about approximability. In fact, € is a multiplicative factor
here while Krentel’s results require an additive factor.®

In order to preserve the fact that the ratio Z%%tr%(z%'j is in the range [1,4o00), for

approz(z)

minimization problems Johnson reverses the ratio and requires that the ratio 55—

is bounded by some constant ¢ greater than one.

Of course, it is even better if we can approximate the optimal solution to within any
desired accuracy. In this case, the function f which produces the approximating feasible

solution will also have to be a function of some € which gives the desired accuracy:

8 Where necessary, we shall assume without further discussion that opts(z) is bounded
away from zero.

9 Another difference is that Krentel’s approximation algorithm A need not be computed
through an intermediate function f which actually finds feasible solutions f(z) such that
A(z) = m(z, f(z)). In practice of course, if one is building approximation algorithms, one
wants to find, not just an approximation to the value of the optimal solution, but also a fea-
sible solution whose value gives a good approximation to the value of the optimal solution.
Paz and Moran, ([PaMo 81]), call approximation algorithms which work by actually finding
feasible solutions constructive approximation algorithms, using the unmodified term epproz-
imation algorithms for those which may merely find vaules which approximate the value of
the optimal solution. They also prove a number of results relating the two concepts. However
their terminology is not currently standard, and most authors require in their definitions, as we
do, that all approximation algorithms be constructive in the sense that they work by actually
finding feasible solutions. Thus in the remainder of this survey, we assume that approximation
algorithms work by finding feasible solutions. Nevertheless many results, particularly those
involving lower bounds, will hold for approximation algorithms which are not constructive in
the sense of Paz and Moran, and the reader interested in such results will have to carefully
consult the relevant literature.




Definition. Let C be an NP optimization problem.

e We say that opt, has a polynomial time approzimation scheme if there exists
some function approz(z,e) such that for every e greater than zero approz(z,e)

is polynomially computable as a function of |z| and for every instance z of C,

optc(z) approz(z,c)
approz(z,c optc(z) s 1+

e if C is a minimization problem).

< 1+4¢ if C is a maximization problem, (or such that

o We say that opto has a full polynomial time approzimation scheme if the time
complexity of approz(z,e) can be bounded by a polynomial in both |z| and 1/e.

It is well-known that there are approximation algorithms for the optimization ver-
sions of NP complete problems such as TRAVELING SALESPERSON (with triangle
inequality), VERTEX COVER, and SAT. It is also known that unless P = NP these
problems do not have full polynomial time approximation schemes.!® This leaves as an
important open question whether such problems have polynomial time approximation

schemes.

An early study characterizing which NP complete optimization problems are ap-
proximable and which are fully approximable was given by Paz and Moran, ([PaMo
81]). They began by observing that in many optimization problems, once one fizes k,
the set

{z : optc(z) < K} (% % %)

is recognizable in polynomial time. For example, for any fixed k it is possible to decide
in polynomial time whether a given graph has a clique of size at least k. Paz and Moran
called problems for which (***) is always solvable in polynomial time simple, and they
called them p-simple if there is a uniform polynomial q such that (***) is always recog-
nizable in time ¢(|z|, k). Using the notions of simplicity together with multiplicative and
polynomial bounds on the optimal solutions, they then went on to completely charac-
terize those NP complete optimization problems which are polynomially approximable

and those which have fully polynomial time approximation schemes:

10 The formulation of these quite general results comes from the work of many researchers.
Some of the key early contributions were made in [Jo 74], [GoSa 76], [IbKi 75], [Sa 76], [Ni 75],
[GaJo 79]. However the reader should refer to [GaJo 79] or to [WaWe 86] for an exhaustive
list.



Theorem. An NP complete maximization problem, C, is polynomially approximable
if and only if
(1) C is simple, and

(2) there is a constant Qg such that for each instance z and each integer h > 0,
0 < opte(z)/h —b(z,h) £ Qo,

where b is a function mapping (instance, nonzero integer) pairs to integers whose time

complexity is bounded by a polynomial in |z| and opts(z)/h.

Theorem. An NP complete maximization problem, C, has a fully polynomial time
approximation scheme if and only if

(1) C is p-simple, and

(2) there is a polynomial q(n), such that for each instance z and for each integer h > 0:

0 < opte(z)/h—b(z,h) < q(|z|),

where b is a function mapping (instance, nonzero integer) pairs to integers whose time

complexity is bounded by a polynomial in |z| and opt(z)/h.

Exactly analogous theorems hold for NP complete minimization problems, but with

the inequalities appropriately reversed.

While Paz and Moran’s results give necessary and sufficient conditions for optimiza-
tion problems to possess approximate solutions, the characterizations are not completely
satisfying since the characterizations themselves are stated in terms of approximating
solutions. Clearly what one would like are intrinsic characterizations of optimization
problems which are themselves sufficient to guarantee the existence of approximating

solutions.

One such intrinsic characterization was recently given by Papadimitriou and Yan-
nakakis, ([PaYa 88]), who introduced yet another pair of complexity classes for optimiza-
tion problems: MAX NP and MAX SNP. These classes give characterizations which

are sufficient to guarantee the existence of polynomial time approximation algorithms.

To formalize the definitions of MAX SNP and MAX NP, Papadimitriou and Yan-
nakakis used Fagin’s logical characterization of NP, ([Fa 74]). Recall that Fagin showed




that every predicate in NP can be expressed in the form 35¢(G, S) where G and S are

structures and ¢ is a first order formula. For instance we can express SAT as:
ITVeIy[P(c,y) &y €T V N(c,y) &y ¢ T,

where P(c,y) is true if the variable y occurs positively in the clause ¢ and N(c, y) is true
if the variable y occurs negatively in the clause ¢. In general the first order predicate
é can always be expressed in the form VZ37¢(Z,7, G, S), where 1 is quantifier free.

Furthermore, in many cases with a little work ¢ can be expressed in the restricted form

VEU(Z, G, S).

The class MAX NP is then defined to be the following class of maximization prob-

lems:
If 3SVz3Iyy(7,7,G,S) € NP, then Mazs|{T:3gy(T,7,G,S)} € MAX NP.

Similarly, the class MAX SNP 1! is defined to be the following class of maximization
problems:

If 3SVZ¥(Z,G,S) € NP, then Mazs|{Z : ¥(T,G,S)}| € MAX SNP.

Obviously, MAX SAT is in MAX NP, and Papadimitriou and Yannakakis showed
that MAX 3SAT is in MAX SNP. To investigate these classes, they defined the notion
of an L-reduction from an optimization problem A to an optimization problem B (which
are both assumed to be maximization problems) to be a polynomial transformation f
such that there are two constants a, 8 > 0, and for each instance = of A:

e the optima of z and f(z), opt 4(z) and opt g(f(z)) respectively, satisfy
optg(f(z)) < axopty(z) and
e for any feasible solution y of f(z), we can find in polynomial time a feasible solution

J of 7 satisfying o0pt(z) — m(z,y") < B * [opt5((2)) — m(F(a), )]

Using this notion they prove that every problem in MAX SNP has a polynomial
approximation algorithm, and they state that the same is true for MAX NP . They
also give a dozen examples of problems which are complete for MAX SNP with respect
to L-reductions, of which the most natural are perhaps MAX 3SAT, MAX 2SAT, and
MAX CUT.

Their work naturally suggests the following general problems:

' The name SNP comes from the fact that the formulas 35 VZ ¢(Z, G, S), without the first
order existential quantifier, are called “strict” ©i formulas.



Question 4. MAX NP and MAX SNP contain problems which are clearly NP opti-
mization problems, but it is surely not true that every problem which we think of as
an NP optimization problem is in MAX NP. Can one characterize in some more com-
plexity theoretic fashion (other than the definition) those NP optimization problems
that are in MAX NP? Can one give intrinsic complezity theoretic characterizations of
other classes of NP complete optimization problems which always have some form of

polynomial approximations?

Question 5. As an alternative to the second order characterization of Fagin, Hodgson
and Kent, ([HoKe 82]), have given a first order characterization of NP by bounding the
domain of existential and universal quantifiers. Can this characterization be used either
to give an alternative definition of MAX NP and MAX SNP, or to define other classes
of NP complete optimization problems which always have some form of polynomial
approximations? If so, is this first-order approach more natural, and how do its “max

classes” compare with those of Papadimitriou and Yannakakis?

3.3. Reductions for NP Optimization Problems.

The fact that all naturally occurring examples of NP complete problems are polynomial
time isomorphic but not all are approximable tells us that the standard reductions of
complexity theory are inadequate for studying relations among optimization problems.
For example, we earlier saw that Krentel needed to introduce the notion of a “linear”
reduction to study such relations, and we have just seen that Papadimitriou and Yan-
nakakis needed to introduce “L-reductions” to study the relations between classes of

optimization problems with similar approximation properties.

Earlier studies of relations among optimization problems also introduced similar
restrictions on the reductions. For example, Paz and Moran, ([PM 81}]), called the
reductions used in their studies of approximations of NP optimization problems poly-
nomial time measure preserving reductions and polynomial time ratio preserving reduc-
tions. (The measure preserving reductions are merely reductions among NP optimiza-
tion problems which always carry instances of the reduced problem which have maximal
solutions of size k to instances of another problem which have maximal solutions of size
exactly Qg * k where Qo is some multiplicative constant. The ratio preserving reduc-
tions are similar, but the size of the optimal solution is only preserved to within a

multiplicative interval.)




Paz and Moran used these reductions to show that a variety of NP complete prob-
lems can be interreduced via reductions that preserve approximability properties. Thus
they were able to transfer known approximability results (or nonapproximability results)
from one NP complete optimization problem to another. Among other examples, they
used this technique in reducing MAX SAT to MAX CLIQUE, MIN CLIQUE COVER to
MIN CHROMATIC NUMBER, and MIN CHROMATIC NUMBER to MIN CLIQUE
COVER.

In this context, it is interesting to note that Paz and Moran were the first to
use such restricted reductions to obtain complete versions of optimization problems.
For example they showed that, with respect to polynomial time measure preserving
reductions, MAX WEIGHTED VARIABLE is complete for the class of NP optimization
problems. Thus, if MAX WEIGHTED VARIABLE is approximable, so is every NP

optimization problem.

More recently, Crescenzi and Panconesi ([CrPa 88]), building on earlier work by
Orponen and Mannila ([OrMa 87]), have developed a theory of complete problems not
only for NPO, the class of NP optimization problems, but more importantly, for APX,
the class of problems which admit polynomial approximations, for PTAS, the class of
problems which admit polynomial time approximation schemes, and for FPAS, the class

of problems which are fully polynomially approximable. Obviously,
FPAS C PTAS C APX C NPO.

For each of these classes except FPAS, extending a definition due to Orponen and
Mannila, Crescenzi and Panconesi defined an appropriate natural form of reduction’?
and then use these reductions to define complete sets for PTAS, APX, and NPO. The
reductions are not only reasonably natural, but most important, just as any complete
problem for NP falling into P implies that NP = P, if any of the complete problems
for any of these three largest classes falls into the immediately smaller class, then the
whole class collapses to the immediately smaller class. Thus proving that a problem 1s
complete for a class is strong evidence that it cannot be approzimated by a stronger form

of polynomial approzimation.

12 The first two of the Crescenzi and Panconesi reductions are credited to Orponen and
Mannila, ([OrMa 87]), and are very similar to the L-reductions of [PaYa 88].



Orponen and Mannila show that TRAVELING SALESPERSON and 0 — 1 INTE-
GER PROGRAMMING are NPO complete. Following this, using techniques similar to
those used by Paz and Moran for showing that MAX WEIGHTED VARIABLE is com-
plete for NPO under measure preserving reductions, Crescenzi and Panconesi showed
that BOUNDED MAX WEIGHTED VARIABLE is complete for APX, and that LIN-
EAR BOUNDED MAX WEIGHTED VARIABLE (which they call LINEAR BSAT)
is PTAS complete under the reductions they use. They also show that NPO contains

various problems which are not complete for NPO and which are not in APX unless
P = NP.

Question 6, ([CrPa 88]). Are there natural incomplete problems for NPO or natural
sets which are complete for PTAS ?

Question 7. The reductions used by Orponen and Mannila and those used by Paz and
Moran are different. What is the relationship between the reductions and between the
complete sets for NPO under these reductions? Almost every paper we have discussed
introduces one or more new restricted reductions to study approximation problems. Al-
though many ideas for the restrictions appear similar, it is not clear what the actual
relations are among the different restricted reductions used by different authors. It
would be interesting to know what the relationship between these various restrictions
really is and whether all are necessary to obtain the results which we have surveyed.
Is there some clear notion of what a “correct” reduction should be? Of the results
surveyed here, the work of Crescenzi and Panconesi provides the strongest justification
for the “correctness” of the Orponen-Mannila type reducibilities, (and, because of the
similarities of the reductions, thus also for the L-reductions of Papadimitriou and Yan-
nakakis). These reducibilities seem to give appropriately fine distinctions without begin
overly cumbersome.

While discussing restricted forms of reducibilities which preserve approximability
properties, we should mention the early work of Ausiello, D’Atri and Protasi. In ([ADP
80]) they obtained information about the approximability of NP optimization problems
by giving a very detailed examination of the combinatorial and internal structures both
of the problems being reduced and of the reductions. In this paper they introduced the
notion of the structure of an optimization problem, the notion of a convez optimization
problem, and the notion of a structure preserving reduction. Informally, the structure of
an instance = of an optimization problem is a list which contains the number of feasible
solutions for = associated with each admissible value of the measure m. An optimization
problem is said to be convez if for each instance z there is at least one feasible solution
y such that m(z,y) = h for every h such that worst(z) < h < opto(z).




Using much more restricted reductions than the restricted reductions we have al-
ready discussed, Ausiello, D’Atri and Protasi specify reductions by pairs of polynomially
computable functions (fi, f2) such that an optimization problem A is reducible to an
optimization problem B if each instance z, of A, is mapped by f1 to an instance of B,
fa carries the measures of feasible solutions of = to the measures of feasible solutions of
f(z). A polynomially structure preserving reduction is such a reduction which maps an
optimization problem A to an optimization problem B in such a way that each instance
of A is mapped to an instance of B with ezactly the same structure. They showed
that parsimonious reductions which satisfy very strong linearity conditions are always
structural preserving.!?

Ausiello, et. al., useed these reducibilities to examine relationships among a va-
riety of NP complete optimization problems. While from our current perspective the
conditions on their structure preserving reductions may seem too restrictive to still be
of general interest, Ausiello et. al. were among the first to give conditions under which

combinatorial problems have similar approximability properties:1*

Theorem. Let A and B be two convex NP optimization problems which are both
maximization or minimization problems. If there are reductions (f1, f2) from A to B,
and (g1, g2) from B to A such that:

o both are structure preserving,

e both are strictly monotone,

e both are essentially linear:

fo(z k) = a(z) +k, g2(y,h) =b(y) +h, and a(z) 2 -b(fi(2)),

13 P, Orponen has pointed out to us that, rather interestingly, motivated partially by Simon’s
results on “parsimonious” reductions, Lynch and Lipton, ([LyLi 78]), also investigated “struc-
ture preserving reductions” which are very similar in spirit to those introduced by Ausiello,
et.al. However, unlike Ausiello, et.al., Lynch and Lipton do not discuss the application of
structure preserving reductions to approximating solutions for optimization problems.

1* [ADP 80] gives a more general theorem than state here, but we have adopted the following
version because it gives a good intuition while avoiding heavier notation.

The measure used here to evaluate the quality of an approximation algorithm is different

from the standard one (namely the ratio a;ptrﬁ;(:x), or its reciprocal) introduced by Johnson.

In particular, the measure used by Ausiello, D’Atri and Protasi is Og;ftcc((z z))':_ atfj’g:::i(;;) , where
worst(z) is the value of the worst feasible solution for . This measure is not only intuitively
very appealing, but it has the nice property that it is symmetric with respect to maximization
and minimization; a property that does not hold for the standard measure. Since the function
worst can usually be taken to be zero for maximization problems, these measures are usually
equivalent for maximization problems. But they are not equivalent for minimalization prob-
lems. Although this measure seems never to have been subsequently used, [ADP 80; p 145]
contains a useful discussion of why the authors believe this measure should be preferred for
minimization problems.




then B has a polynomial approximation algorithm if and only if A has a polynomial
approximation algorithm.

Ausiello, D’Atri and Protasi then went on to group a variety of well-known NP
complete optimization problems into distinct equivalence classes using this theorem,

and they prove that some of the classes are distinct under these reductions.
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APPENDIX
Decision Problems

MINIMAL-k-UNCOLORABILITY
Instance: a graph G.
Question: Is G uncolorable with k colors, but by removing any node from G the

resulting graph is k colorable?

MINIMAL UNSATISFIABILITY

Instance: a Boolean formula ¢ in conjunctive normal form with at most three literals

per clause and at most two occurrences of each literal.

Question: Is ¢ unsatisfiable, but removing any clause renders it satisfiable?

SAT-UNSAT
Instance: two Boolean formulas ¢ and .
Question: Is ¢ satisfiable and % is unsatisfiable?

SUM OF SUBSETS
Instance: a finite set S of positive integers and a positive integer b.
Question: Is there a set A C S such that the sum of the elements is equal to b7

Functional Version of Optimization Problems

BOUNDED MAX WEIGHTED VARIABLES
(Same as MAX WEIGHTED VARIABLES except the input includes a constant W
satisfying > w; < 2« W, the weight W is attached to any unsatisfying assignment,
and the output is the maximum weight over all assignments, whether satisfying or

unsatisfying.)

INTEGER PROGRAMMING
Instance: integer matrix A and integer vectors B and C.
Output: the maximum value of CTz over all vectors z of integers subject to the

linear constraint Az < B.

FLIP
Instance: a circuit with n inputs and n outputs.

Output: an input whose output (when viewed as a binary integer) cannot be reduced

by flipping any single bit of the input.

LINEAR BOUNDED MAX WEIGHTED VARIABLES
(Same as BOUNDED MAX WEIGHTED VARIABLES except that the constant W
satisfies Y. w; < (1 + =X5) * W)

n-1



LONGEST CYCLE
Instance: graph G.
Output: the length of the longest cycle in G.

MAX CLIQUE
Instance: graph G.
Output: the size of the largest clique in G.

MAX CUT
Instance: graph G with integer weights on the edges.
Output: the maximum k obtainable by partitioning the graph G into two subgraphs
G, and G, and then summing the weights of the edges that have one endpoint in Gy
and the other endpoint in G;.

MAX KNAPSACK
Instance: integers z1,...,2,, N.

Output: the largest value of ), gz for § C1,...,n, which is less than N.
MAX SAT

Instance: Boolean formula in conjunctive normal form.

Output: the maximum number of simultaneously satisfiable clauses.

MAX SAT ASSIGN
Instance: Boolean formula ¢(z;,...,25).

Output: the lexicographic maximum assignment which satisfies ¢, or 0 if ¢ is not
satisfiable.

MAX WEIGHTED CLAUSES
Instance: Boolean formula in conjunctive normal form with weights on the clauses.
Output: the maximum weight of any satisfying assignment, where the weight of an

assignment is the sum of weights on the true clauses.

MAX WEIGHTED VARIABLES
Instance: Boolean formula in conjunctive normal form with nonnegative weights,
w;, on the variables, z;.
Output: the maximum weight of any satisfying assignment, where the weight of an
assignment is the sum of weights on the true variables; output negative if there is no

satisfying assignment.




MIN BIN PACKING
Instance: finite set of items U, an integer “size” for each u € U and a positive integer
bin capacity B.
Output: the minimum k such that there exists a partition of U into disjoint sets

Ui, ...,Ur and the sum of the size of the items in each U; is less than or equal to B.
MIN CLIQUE COVER

Instance: a graph G.

Output: the minimum number of disjoint cliques in G whose union is G.
MIN TRAVELING SALESPERSON

Instance: graph G with integers weights on the edges.
Output: the length of the shortest traveling salesperson tour in G.

MIN VERTEX COVER
Instance: a graph G.

Output: the size of the minimum cover of G.






