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Abstract

A number of problems confront standard automatic programming methods. One problem is
that the combinatorics of search make automatic programming intractable for most real-world
applications. Another problem is that most automatic programming systems require the user to
express information in a form that is too complex. Also, most automatic programming systems
do not include mechanisms for incorporating and using domain-specific knowledge. One
approach that offers the possibility of dealing with these problems is the application of
explanation-based learning (EBL). In the form of EBL used for this project, explanation-based
learning by observation, the user enters a description of a specific problem and solution to that
problem in a form comfortable to him or her. Using domain-specific knowledge, the system
constructs an explanation of the solution to the problem using the actions of the user as
guidance. Next, the goal stated by the user is generalized with respect to any domain
information about possible goals of actions performed by the user in the solution. Then the
explanation is reconstructed with respect to the generalized goal. Finally, the explanation is
transformed into a general solution which can be used to solve problems that are conceptually
similar to the specific problem presented. This approach promises to overcome the problems
with standard automatic programming methods discussed above.

* This research was partially supported by-a grant from the University-of Wisconsin-Madison Graduate School.






Introduction

Automatic programming has long been a goal of artificial intelligence (AI) researchers
[Rich86]. After peaking in the mid-70’s this research has been slowed by three critical problems.
One, the combinatorics of search have prevented the developed techniques from being applied to
realistic programming problems. Even in a system with complete knowledge of a programming
language and a perfect specification of its construct’s preconditions and effects, the process of
designing a program can be computationally intractable. Two, specifying the desired behavior of
the resulting program completely and unambiguously is a complicated task. Three, the need to
incorporate and utilize large amounts of domain-specific knowledge has been recognized, but no
satisfactory method to do so has been developed.

Machine learning researchers, especially those in Explanation-Based Learning (EBL),
address issues that directly relate to the problems that have hindered automatic programming
research. In EBL [DelJong86, Mitchell86], a specific problem’s solution is generalized into a
form that can be later used to solve conceptually similar problems. The generalization process is
driven by the explanation of why the solution worked. Knowledge about the domain allows the
explanation to be developed, and then generalized, thereby producing a general algorithm from
the solution to a specific problem.

The PLEESE (Program Learning by Explaining External Solutions of Examples) project
applies EBL techniques to the problem of automatic programming. Specifically, PLEESE uses a
form of EBL called explanation-based learning by observation. In this form of EBL, an external
agent provides the learning system with a description of a specific problem and a solution to the
specific problem. The system then examines the solution and uses knowledge about the domain
to construct and explanation of the solution. From this the system produces a general solution
which can be applied to conceptually similar problems and which can be used in constructing
more complex problems and solutions.

PLEESE is designed to be simple to use. A user presents an initial state con51st1ng of
programming constructs (arrays, stacks, variables, registers, etc.) and values stored in those
constructs. An example of the program desired is demonstrated by performing actions known to
the system (adding two values together, zeroing some value, etc.) on the initial and subsequent
states until some final state is reached. The user either explicitly presents a goal or the system
assumes that the changes resulting in the final state are the goal. The system then explains the
solution using domain knowledge about the actions selected by the user. This is done by
constructing a proof of the goal. The system may also try to generalize the goal if none was
presented by the user and reconstructs the explanation with the new goal in mind. Finally, the
system generalizes the goal to produce a solution that can be used to solve conceptually similar
problems. This approach allows PLEESE to do automatic programming and deal with the
problems discussed above.

The EBL approach allows PLEESE to restrict the amount of search performed. The
solution sketch provided by the user is used as an outline to construct the explanation of the
specific problem. Automatic theorem-proving systems have to construct proofs blindly, thereby
preventing their use on all but the simplest of problems. PLEESE uses the solution sketch
presented by the user as the outline for the explanation it constructs. The system focuses on
verifying the effects of the actions taken by the user and filling in any details not included by the
user. The solution sketch acts as a strong bias to greatly reduce the search space that must be
explored by PLEESE.



PLEESE also limits the search by focusing on learning as much from the specific case as
possible rather than trying to understand the whole of the general case. This is because the
solution to the specific case may be much simpler than for the general case. The system
attempts to learn as much as possible by generalizing the specific problem. This involves
examining the explanation of the solution and relaxing the constraints on the explanation to form
a solution to a more general class of problems. If the user chooses a good specific problem then
the system will produce a solution covering a large number of similar problems.

The PLEESE approach also allows the user to present the information required by the
system in a way that is more natural for the user. The user expresses the solution in terms
designed for the user’s ease, and then the system reformulates this description to produce a more
general form that is convenient for the system. For example, since the language is targeted for
human users it may not state details that can be deduced or may be ambiguous. In these cases
the system will use its domain knowledge to augment the user’s description with the missing
details. For example, a user might demonstrate a block problem by manipulating a graphic
representation of the blocks with a mouse. The pre- and post-conditions of each action (picking
up a block, putting down a block) would be filled in by the system from its knowledge about the
domain of blocks to create a complete explanation of the actions.

The user may have also left out details of or omitted entirely the goal of the problem. In
these cases the system examines the actions in the solution to determine the effect(s) of these
actions. The system then uses domain knowledge about actions and their effects to complete the
goal of the system. For instance, if the user performed a set of sequential actions, such as
examining each of the elements of an array in turn, the system would recognize this as a case of
iteration, and would reform the goal with respect to the iteration. The system would then use the
extended goal to reform the explanation with respect to the goal. Once the explanation of the
solution has been completed the system then generalizes the explanation.

Finally, the PLEESE approach represents a method to use domain knowledge. At each step
of the process, PLEESE is augmenting or generalizing the situation presented by the user with
respect to the domain knowledge about programming in the system. Domain knowledge is used
to construct and augment the explanation of the solution, in generalizing the goal presented by
the user, and in generalizing the explanation of the solution. = '

The major focus of the PLEESE project is the process of going from explanations of
specific solutions to useful general-purpose algorithms. This project builds on previous work on
generalizing the structure of explanations [Shavlik88]. Most research in EBL involves relaxing
constraints on the items in a specific problem’s explanation. The internal structure of the
explanation itself is not generalized. However, this precludes the acquisition of concepts where a
general iterative or recursive process is implicitly represented by a fixed number of applications
in the specific problem’s explanation. Since programming so heavily involves iteration and
recursion, extensions of the algorithms developed for the BAGGER system [Shavlik89] are
particularly appropriate for efficiently learning computer programs. PLEESE generates
explanations which are used as input to the BAGGER system. The general rules produced by
BAGGER can then be converted into general programs.

Following is a short description of standard EBL techniques along with techniques for
generalizing explanation -structures and. a discussion of a method for determining the goal of a
user in a problem situation. Next there is a description of an initial implementation of the
PLEESE approach and an example of how it works. This is a followed by a description of other

2



work in automatic programming similar to the PLEESE approach. The paper concludes with a
short discussion of further research topics.

An Overview of Explanation-Based Learning by Observation

In an explanation-based learning by observation (EBLO) system, a sketch of a solution to a
specific problem is presented by a user. This sketch is used to guide the construction of an
explanation of the solution. This section provides a description of how an explanation is
generated, and how the explanation is then generalized in an explanation-based learning system.
In EBLO, knowledge about a domain is used to construct an explanation of how a specific
problem was solved by the user. Once the system has an understanding of how the solution steps
interact to solve a problem, as well as knowing what upon what facts and assumptions they
depend, the EBLO system can generalize the solution technique. The resulting generalization
can then be used to solve conceptually similar problems.

One common method of representing domain knowledge is in the form of predicates. In
this representation an explanation takes the form of a proof of the goal of the specific example.
EBLO systems avoid the combinatorial explosiveness of theorem-proving by using the sketch of
the solution provided by the user. The sketch is used as an outline by the theorem-prover to
greatly limit the amount of information the system has to consider in constructing the proof. The
actions of the user are annotated with domain knowledge to construct the explanation.

An interesting question in an EBLO system is whether the user must enter a complete goal
as part of the description of the problem. Since construction of a predicate goal can be extremely
costly it would be useful if the system was not only able to complete the solution of the user, but
also if the user was able to finish an incomplete goal presented by the user. A first approximation
of this process is to determine the effects of the actions of the user. The effects are determined
by examining the domain knowledge about the actions of the user. The system then determines if
the goal presented accounts for all of the effects. If not, the goal can be annotated with the
unaccounted for effects. This process is extremely limited though if there is more than one
action, since no relationship between the actions is determined. A further process would be to
examine the effects and actions of the user to determine some structure for the actions. An
example is the recognition that the actions of adding each member of an array to a register might
be the result of an iterative process. This structure is compared against a domain of possible
structures, and the goal augmented for that structure (e.g. adding an iterative structure for the
adding-array-elements goal). The explanation is then reconstructed with respect to the more
specific goal. This explanation would then be used as an input to an EBL algorithm.

EBL algorithms take an explanation of a specific problem and produce a general method
for solving similar problems. This process is done by converting constants in the original
explanations into constrained variables and then unifying the variables to retain the interactions
of the specific problem (see [DeJong86, Mitchell86] for details). These algorithms produce a
rule that can be used to efficiently solve similar problems. Some EBL algorithms also generalize
the structure of their explanations. The BAGGER algorithm [Shavlik87, Shavlik88] is an
example of a system that generalizes structure. BAGGER recognizes cases of implicit recursion
or iteration in its explanations and produces solutions containing that recursion or iteration. For
example, if the specific problem presented is a solution for stacking 3 blocks, a standard EBL
algorithm would produce a solution for stacking any 3 blocks. BAGGER instead would produce
a solution for stacking any N blocks, thus providing a more general solution. The general



solution from the BAGGER algorithm can then be used by the PLEESE system to solve similar
problems and as a subpart of more complex problems.

The PLEESE Approach

The goal of the PLEESE approach is to observe users solve specific problems and to
produce general programs that solve similar problems. This approach uses the EBL techniques
discussed in the last section to generalize the specific problem presented by the user. The process
of generalization of the explanation (including structural generalization) is performed by the
BAGGER system [Shavlik89]. An overview of the PLEESE approach is presented in figure 1,
and the following is a description of the steps of the process.

Obtain a Description Obtain a Solution of
of the Initial State the Specific Problem
from the User from the User

Construct an Explanation
of the Specific Problem

!

Generalize the Final State
of the Specific Problem

|

Reconstruct the Explanation
with the New Final State

|

Generalize the Explanation
of the Specific Problem

Figure 1. Overview of PLEESE

Step 1. Obtain a Description of the Initial State from the User. The user defines the set of
constructs, initial values and possibly the goal for a specific problem. Objects and values are
defined as predicates. These initial objects and values together represent the initial state of the
problem.

Step 2. Obtain a Solution of the Specific Problem from the User. The user demonstrates the
solution to the problem by performing actions on the initial state. The solution to the problem is
a record of the set of actions performed along with the states of the problem. Each action has a
corresponding rule(s) determining its effect in terms of predicates. These rules are used to
produce each of the successive states of the problem. The goal state of the problem is simply the
final state produced.



Step 3. Construct an Explanation of the Specific Problem. Knowledge about the domain of
programs is used to construct an explanation of the specific solution. The solution sketch (the set
of actions performed) provided by the user is used as an outline for the explanation. This outline
is then filled in by PLEESE using the domain knowledge (the rules describing the results of user
actions). Initially, if no goal of the problem is provided, then the goal is construed to be the
changes resulting from the initial state to the goal state. Then an explanation in the form of a
proof of the goal is constructed (whether the goal is explicitly or implicitly defined).

Step 4. Generalize the Final State of the Specific Problem. Once the initial explanation of
the specific problem is finished, PLEESE attempts to generalize the goal of the problem. This is
done by searching the explanation tree and reformulating the set of actions using knowledge
about a small set of basic programming constructs and methods. For example, if the user entered
a set of actions adding each value in an array of four elements to a register the set of actions
could be reformulated using construct which stated that every element of the array should be
added to the register. This generalization process focuses on a small number of "primitive"
reformulations, since even a very small "primitive" set can formulate a large number of possible
programs.

Step 5. Reconstruct the Explanation with the New Final State. After the goal is generalized
an expanded explanation must be constructed reflecting the new goal. The rules used in the
original explanation are augmented to reflect the generalized goal. For example, if the
generalized goal were to add all four values of some array to a register then a new adding rule
that counted how many values of the array had been added so far would be constructed. (For
more on this see the specific example). After the rules have been augmented, the expanded
explanation of the problem is constructed using the new rules and the old explanation as a guide.

Step 6. Generalize the Explanation of the Specific Problem. The explanation produced from
the generalized goal is used as input to the BAGGER system. The focus of the BAGGER system
is the generalization of the structure of explanations. The BAGGER system is thus able to
recognize recursive or iterative structures in explanations and to produce generalizations using
the recursive/iterative structure. The rules produced by BAGGER can be used to produce code
directly. S

In each of the steps 3-6 the original solution presented by the user is transformed into a

more general form. This makes it possible to produce the most general possible algorithm from
the specific problem presented by the user.

An Example

This section contains a simple example to demonstrate the working of the PLEESE system.
The specific example presented is the summing of the values in an array of four elements, while
the general program desired is one to sum any number of array elements. All of the output
reproduced here is produced by PLEESE.

Problem states in PLEESE are represented using prolog-style clauses. For example, the
value of an array in a particular state is represented by the clause
(array—value <a> <p> <v> <s>) which says that position <p> of array <a> has value <v> in
state <s>. The example used will be one with an array A of four elements 1 to 4 with values 4,

11, 3 and 8 respectively. Predicates to represent this information can be found in table A.1 in the
appendix.



The operations performed by the user in demonstrating a specific example are mapped
directly to corresponding actions in the representation. The user clears a register so that it could
be used to sum a set of values. The process of clearing the register <r> is mapped to the action
(clear <r>). Similarly, to add an array value to a register, the action is (add <r> <a> <p>)
which says that the value of position <p> of array <a> should be added to the register <r>.
Each action is defined by a set of rules determining what changes result from a particular action.
A (clear R0O) in state SO creates a new state S1 in which the value of RO is now 0. Actions also
define what values are NOT affected by a particular action. The actions used in the simple
example are clear, which zeroes a register value and add which adds the value of some array
element to the value of a register. Rules defining these actions can be found in table A.2 in the
appendix.

Given the initial state SO, the set of actions presented to PLEESE are:

Action New State
(clear RO) S1 = (do (clear R0O) SO)
(addROA1) S2=(do(addROA1)S1)
(addROA 2) S3=(do(add RO A 2) S2)
(addROA 3) S4=(do(add RO A 3)S3)
(addROA4) S5=(do(add RO A 4) S4)

which says that register RO is cleared, then A[1] is added to the register, followed by A[2], A[3],
and A[4] in that order.

Assuming no goal was defined, the system would examine the effect(s) of the actions. From
this examination the system determines the only changes are made to the value of register R0, so
the change to R0 is made the initial goal of the problem. PLEESE then constructs an explanation
of the changes to register RO. The system uses the set of actions presented by the user as an
outline for the explanation. This outline is expanded with domain knowledge contained in the
rules defining the results of the actions. This explanation is shown in figure 2. The arrows in the
figure represent predicates pointing to their implications. Dotted arrows represent implications
involving frame axioms, i.e. proofs demonstrating that some value has not changed since the
original state.

The system then examines the explanation and the set of actions and attempts to generalize
the set of actions. The effect of the actions is to put (+ (+ (+ (+ 0 A[1]) A[2]) A[3]) A[4]) in
register RO which can be rewritten as (+ 0 A[1] A[2] A[3] A[4]). This form is then compared to
a set of computer primitives and replaced with the form (+ 0 (FOR EVERY I IN 1,2,3,4 A[I])).
From this generalized form along with the fact that array A only has 4 elements the system is
able to produce augmented rules which simulate the FOR EVERY by marking each array
element as it is added and counting the number of array elements added. These augmented rules
can be found in table A.3 of the appendix.



array-size(A,4)
counted-unique(3,54)
counted-unique(2,53)
counled-ur‘lrique(l,SZ)
counled-urtique(O,Sl)

counted-unique(0,5S0)

register«value(RO,Zﬁ,SS)

array-value(A,4,8,54) 18+8=26
A

array-valué(A,4,8,SO) register-value(R0,18,54)

array-value(A,3,3,53) 15+3=18
A

array-valué(A,S 3,50) register-value(R0,15,53)

array-value(A,2,11,S2) 4+11=15
A

array-value(A,2,11,50) register-value(R0,4,52)

array-value(A,1,4,S1) register-value(R0,0,S1) 0+4=4

. A

army~va1ué(A.l ,4,50) register-value(R0,0,50)

/7

Figure 2. Explanation of the Specific Problem

> total(A,26,55)
"'"““___"”;-—MM*"’
counted-unique(4,S5) register-value(R0,26,S5)
1+3=4 array-value(A,4,8,54) 18 + 8 =26
A
1+2=3
array-value(A 4,8,S0) register-value(R0,18,54)
1+1=2
array-value(A,3,3,53) 1543=18
1+0=1 4
array-value(A,3,3,50) register-value(RO,15,53)
array-value(A,2,11,52) 4+11=15
A
array~value.(A,2,l 1,50) register-value(R0,4,52)
t
array-value(A,1,4,S1) register-value(R0,0,S1) 0+4=4
A
array'valué(A,lA,SO) register-value(R0,0,S0)

Figure 3. Augmented Explanation of the Specific Problem

mark(A,4.free,S4)
A

mark(A 4,free,S0)

mark(A,3 free,S3)
A

H
H
H
H

mark(A 3 free,S0)

mark(A,2 free,S2)
A

mark(A 2 free,S0)

mark(A,1 free,S1)
A

mark(A,1 free,S0)



The augmented rules are then used to produce a new explanation of the specific problem
using the same states. This explanation is shown in figure 3. Note that the only differences
between the old and the new explanation are that the new explanation has been augmented with
predicates to perform the accounting for the FOR EVERY construct (e.g. predicates to count
how many add operations and predicates to mark each element of the array after it has been
added).

This general explanation is used as input to the BAGGER2 system which generalizes the

structure of the explanation to recognize recursive and iterative elements. The rule produced by
BAGGER2 is:

(TOTAL ?A ?E 2C) ¢«
(ARRAY-SIZE 2?A ?B)
(CALL COUNTED-UNIQUE~-REGISTER~VALUE7 (AND (COUNTED~UNIQUE ?B 2C) (REGISTER-VALUE 2D ?E 2C)))

which determines the total of array by determining the size of the array and the calling the
recurrence COUNTED-UNIQUE-REGISTER-VALUET. A recurrence is a recursive rule form
produced by the BAGGER?2 system. The CALL predicate forms is a special form that takes as
argument the name of some rule to call and a form to unify with the consequent of the
recurrence (the (AND ..) argument on line 3) in the example. Another predicate used is the
MATCH predicate which says that the two arguments should be unified. The recurrence
COUNTED-UNIQUE-REGISTER-VALUEY is defined by the rule:

1: (AND (COUNTED~UNIQUE ?V1 (DO (ADD 2V2 2?V3 ?V4) ?V5))
2 (REGISTER-VALUE ?V2 2?V6 (DO (ADD 2V2 2V3 2V4) 2V5))) ¢
3: (OR (AND (MATCH 2V5 (DO (CLEAR 2?V2) S0})
4 (= 2vli 1)
5: (ARRAY~VALUE ?V3 ?V4 2E2 S0)
6 (= ?V6 (+ 0 2E2)))
7 (AND (= 2Vl (+ 1 ?E3))
8 (OR {AND (MATCH 2V5 (DO (ADD ?E4 ?E5 ?E6) (DO (CLEAR ?E7) S0)))
9 (<> 2V4 ?E6)
10: (ARRAY-VALUE ?E5 2?V4 ?E8 S0)
11: (= ?2V6 (+ ?E9 ?ES8))
12: (CALL COUNTED-UNIQUE-~REGISTER~VALUET
13: (AND (COUNTED-UNIQUE ?E3 (DO (ADD ?E4 ?E5 ?E6) (DO (CLEAR ?E7) S0)))
14: (REGISTER-VALUE ?E4 ?E9 (DO (ADD ?E4 ?E5 ?E6) (DO (CLEAR 2E7) S0))))))
15: (AND (MATCH 2?V5 (DO (ADD ?E4 ?E5 ?E6) ?E10))
16: (= ?V6 (+ ?E8 2Ell))
17: (CALL MARK3 (MARK 2?V3 ?V4 FREE (DO (ADD ?E4 ?E5 2E6) 2E10)))
18: (CALL ARRAY-VALUE4 (ARRAY-VALUE ?V3 2V4 ?E1l (DO (ADD ?E4 ?E5 ?E6) ?E10)))
19: (CALL COUNTED-UNIQUE-REGISTER-VALUET
20: (AND (COUNTED-UNIQUE 2E3 (DO (ADD ?E4 ?E5 ?E6) °?E10))
21: (REGISTER-VALUE ?E4 ?E8 (DO (ADD 2E4 ?E5 ?E6) ?E10))))}))}))

This recurrence introduces an add action each time it is called recursively. If the count is 1
then a clear action is added and the recursive process terminates (the conjunct on lines 3-6). If
the count is not 1, then the count is decreased by 1 and the procedure is called recursively. The
rule defines two possible recursive conditions: 1) an unmarked array value is located and its



value determined, the rule is then called recursively (the conjunct on lines 15-21 containing the
second recursive call to the rule); and 2) if only one more add action is to be performed calculate
the result directly (the conjunct on lines 8-14 containing the first recursive call). Note that the
first recursive call could be encompassed in the second, but the present system does not look for

this type of reduction. Note also that the above recurrence requires two other recurrences
MARK3:

(MARK ?A ?B FREE (DO (ADD ?V1 ?A 2V2) ?V3)) ¢
(OR (AND (MATCH 2V3 (DO (CLEAR Z?El1) S0))
(<> ?B 2V2))
(AND (MATCH 2V3 (DO (ADD ?El 2?2 ?E2) ?E3))
(<> ?B 2?2V2)
(CALL MARK3 (MARK ?A ?B FREE (DO (ADD ?E1 ?A ?E2) ?E3)))))

and ARRAY-VALUE4:

(ARRAY-VALUE ?A 2B 2C (DO (ADD 2V1 2V2 2V3) 2V4)) ¢
(OR (AND (MATCH 2V4 (DO (CLEAR ?2El) ?E2))
(ARRAY-VALUE ?A 2B ?C ?E2))
(AND (MATCH ?V4 (DO (ADD ?El ?E2 ?E3) ?E4))
(CALL ARRAY-VALUE4 (ARRAY-VALUE ?A ?B ?C (DO (ADD ?El1 ?E2 2E3) ?E4)))))

generated by BAGGER2. These perform the processes of verifying (through frame axioms) that
an array value has not been marked and determining the value of some array position
respectively.

Each step involves generalizing the original problem presented by the user.

Related Work in Automatic Programming

The approach taken in PLEESE draws on existing automatic programming methods
including automatic theorem proving (e.g., [Good84, Manna86]) and program specification
using traces (e.g., [Bauer75, Phillips77]) or examples [Summers77]. PLEESE addresses a
number of the problems encountered by these methods.

The PLEESE approach is most like automatic theorem proving in that both involve
deriving a proof (explanation) for an algorithm and then using that proof to write a program for
the algorithm. One problem automatic theorem proving has is that the process of searching the
space of possible proof structures is combinatorially explosive. As the problems addressed
become "realistic”, the proofs involved become intractable. The PLLEESE approach avoids this
problem because the process of creating an explanation of a specific problem is significantly
constrained by the solution presented by the user.

A second problem with automatic theorem proving is the production of specifications
[Balzer77]. Since these specifications are logically oriented, even the simplest of procedures
may have a large and unwieldy specification, which the user has to construct and enter. PLEESE
addresses this problem by allowing the user to state a specification (goal) implicitly in terms of
the actions in the specific problem, and then the system produces a general specification during
its generalization of the specific problem’s explanation.

Specification using traces was originated from work done on automatic programming
methods using examples of i/o pairs as specifications. The problem with i/o pairs is that for



complex operations the amount of search needed to find the proper algorithm is prohibitive.
Traces were seen as a method of including information concerning the control structure of the
algorithm in the specification. Trace specifications are by nature more costly since the
programmer has to give more details about the algorithm, but the tradeoff helps make the search
process more tractable.

Automatic programming methods using examples or traces as specification have the
advantage that such specifications do not have to be complete (i.e. one example or trace might
not define all of the possible outcomes of the algorithm). One difference between most
automatic programming systems and PLEESE is that the former tend to focus on presenting
enough examples to derive a complete specification of the algorithm. This runs into the problem
that a complete specification may require a large number of examples. Such systems are not
able to take advantage of situations where a large part of an algorithm can be represented by a
small number of examples. PLEESE focuses on the idea of learning as much as possible from a
single example and not worrying whether the specification derived is complete. It can do this
because it has a domain theory with which is is able to explain how these examples can be
solved. Previous approaches were much like similarity-based learning algorithms [Michalski75,
Quinlan86], in that both require a large number of training examples due to their inability to
explain how single examples are solved. Also, the generalizations they make are unjustified,
while generalizations in an EBL system are justified by a domain theory.

Most approaches using traces focus on a subset of the aspects of the algorithm presented.
Systems, for example, might focus on flow of control or changes to data structures while
ignoring other aspects. Thus these systems would run into problems when attempting to learn
algorithms whose actions could not be well expressed in the trace methodology. The PLEESE
system allows users to focus on what they believe to be the important aspects of the algorithm
and counts on domain knowledge and other information to help it figure out how to fill in the
details. Systems using trace methodologies also generally did not focus on proving their

programs and therefore are unable to verify the correctness or coverage of the programs
produced.

Others ([Hill87, Steier87]) have applied EBL to automatic programming. The EBL
algorithms underlying their approaches are not capable of extracting recursive or iterative
concepts from examples where the recursion or iteration is implicitly represented.

Current Research Directions

The most obvious extension to the system is to test it on more complex domains. One
domain being looked at is sorting programs. Sorting programs have the nice property that while
they each share a similar goal, there are many different ways to satisfy that goal. The algorithm
learned by the system should be dependent on what type of sorting example is presented to the
system. If the user presents a sorting example that shows an insertion sort, the system should
learn an insertion sort method, but if the user sorts the example with a quicksort the system
should produce a quicksort method. Another domain being investigated is graph algorithms.
Graph algorithms are appealing because it is possible to specify a large number of very different
algorithms (connectivity, depth-first search, matching, etc.) using a small number of constructs
and operators (nodes, edges, visits to nodes). Graph algorithms also offer the possibility of
designing a graphical interface for the user to demonstrate the programs, which should greatly
reduce the task of the user.
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The ability to infer the goal of the user when information about the goal is incomplete or
missing is crucial. The goal of a problem expressed in terms such as predicate logic grows
exponentially with the complexity of the program. This would make entry of such a goal by the
user unacceptable. An alternative is to focus on inferring the goal from information provided. A
simple approach to this problem would be to store a set of known transformations which the
actions could be compared to. Each transformation would define how the goal should be
generalized if its set of actions is recognized. A problem with this approach is that it is limited
by the set of transformations included by the user. This approach is useful if a relatively small
number of transformations but in a complex domain the number of different possible
transformations may make this solution impossible. A more appealing approach would be to use
the explanation of the changes from the initial to the final state to determine the goal. The
system could then explore the explanation tree for simple generalizations such as recognizing
that some action is repeatedly or recursively applied and making this information explicit in the
goal. The system could also interact with the user concerning sections of the explanation that it
is unable to generalize. This approach would allow the system to generalize the goal without
having to include a large number of domain-specific transformations. That would decrease the
amount of information the user would have to provide.

An issue raised by the current system is the role of multiple examples, which is not
currently addressed. The system may interpret the solution to a specific example from a
viewpoint other than that intended by the user. In addition, the system may under-generalize or
over-generalize its explanation of the specific solution. Finally, it may be impossible to present a
single example that will cover all of the possible cases. The system is being extended so that in
these situations further examples will be used to refine rather than replace the existing solution.
A simple method to do this might be to allow the disjunction of the rules learned in the further
examples. The problem with this approach is that the rules might become to unwieldly or
inefficient, which defeats the purpose of the system. A better approach would also generalize
the resulting rules to produce single general rules. The use of multiple examples will allow the
user to interactively correct solutions with counter-examples and will also allow the user to build
large complex programs from multiple simple cases.

Another interesting issue raised in PLEESE is the possibility of automatically parallelizing
the code produced. During construction of the explanation of the solution PLEESE identifies
dependencies among portions of the explanation produced. Since dependencies among sections
of the explanation are known then it should be possible to construct parallel code for those
sections that are independent. A more complex problem would be to identify the type of
dependency that holds between two sections. Code could then be produced in those cases where
the dependencies matched existing compiler techniques for producing parallel code where
dependencies are present.

A goal of PLEESE is to provide a mechanism for producing programs that can be used by
non-programmers. These people would program by showing how their program would work on
some specific cases. One step toward this goal would be the introduction of a more powerful
interface based on a graphical and mouse representation of the possible programming constructs.
Another step would be to introduce methods to improve the readability of the code produced.
Also, the system could introduce more powerful methods of interacting with the user, possibly
by including some method for.analyzing sections of the code produced for its effects (generating
explanations of the interesting section and then providing a means to explain the explanation to a
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user). The system could provide the user with complex debugging and testing facilities, some
method of maintaining a library of test examples, and methods such as the multiple examples
method mentioned above for refining the code produced by the system.

Conclusion

The system developed, PLEESE, is an interactive automatic programming system using
EBL techniques. The user enters a solution to a specific programming problem. The system uses
the solution presented by the user to produce an explanation of the solution using domain
knowledge about actions in the solution. The system then generalizes the goal of the problem
with domain knowledge about patterns of actions. Finally the system generalizes the explanation
which involves both relaxing constraints on the explanation and recognizing situations involving
implicit iteration and recursion. The system is heavily dependent on the BAGGER system which
takes the general explanation produced by PLEESE and produces a general rule which solves
conceptually similar problems.

EBL gives PLEESE a number of advantages over other automatic programming systems.
EBL is used by PLEESE to control the amount of search performed in producing general
solutions. The system focuses on understanding a user generated solution to a specific problem
rather than trying to solve the general case which greatly limits the search space involved. The
PLEESE system also focuses on the problem of allowing the user to enter information to the
system in a form comfortable to them. Each step of the PLEESE process augments the
description presented by the user to produce a general form to solve similar problems. Finally,
EBL allows PLEESE to integrate a large amount of domain knowledge in a domain-independent
way. The PLEESE approach provides a promising way to simplify the interaction of user and
computer in producing programs.

Appendix: Domain Knowledge for Arrays and Registers

The predicates in Table A.1 describe the initial state of the example presented. The initial state consists of the
predicates defining the array A and the values of its 4 elements.

Table A.1 Initial State Predicates
Predicate Description
(array-size A 4) Array A has 4 elements.
(array-value A 14 S0Q) A[l] =4 in state SO
(array-value A2 11 S0) | A[2] = 11 in state SO
(array-value A 3 3 S0) A[3] =3 in state SO
(array-value A 4 8 S0) A[4] = 8 in state SO

The rules in Table A.2 implement the actions of clearing the value of a register and adding the value of an
array element to a register. The rules define how to determine the value of a register or array element in a particular
state. Note that the rules describing how to determine the value of an array element are frame axioms - the rules
state that the value before and after each action remain the same. These rules are used to produce the initial
explanation of the users problem solution.
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Table A.2 Original Action Rules

Rule

(register-value 7r O (do (clear 7r) 75)) «
(register-value ?7r ?v 7s)

(array-value ?7a 7p ?7v (do (clear 7r) 75)) «
(array-value ?a 7p 7v 7s)

(register-value ?r ?7v (do (add ?r 7a 7p) 7s)) «
(register-value 7r 7vr 7s)
(array-value ?a 7p ?va 7s)
Iv="2vr+7va

(array-value ?al ?7p1 ?v (do (add ?r ?a2 7p2) 25)) <
(array-value ?al 7pl v 7s)

Description
A register has the value 0 after a clear

All array values remain the same after a
clear action.

After an add the register holds the sum of
old register value plus the array value.

All array values remain the same after an

The rules in Table A.3 are the set of rules produced when the goal is generalized in the example problem
presented. Since the example problem’s goal was generalized to include the idea that EACH element of the array
should be added to the register, the rules are altered to reflect this information. In this case this is done by including
rules to mark each array value after it is added to the register and counting how many array elements have been
marked. These new rules are then used to produce the second explanation of the problem with respect to the
generalized goal.

Table A.3 Augmented Action Rules

Rule

Description

(mark ?a 7p marked (do (add ?r ?a ?p) 7s))

Array element is marked after it is added.

(mark 7a ?p free SO)

An array element is free in the initial state.

(mark ?a ?7pl ?7m (do (add 7r 7a 7p2) 7s) ¢
(matk 7a 7p1 7m 7s)
pl <> M2

An array element different from the one
added retains its mark in the new state.

(mark ?a ?p ?m (do (clear 7r) ?s)) «
(mark ?a ?7p 7m ?s)

An array element retains its mark after a
clear action.

(counted-unique 0 SO)

The count is 0 initially.

(counted-unique ?ip (do (add ?r ?a 7p) 7s)) «
(counted-unique ?i 7s)
lip=1+7T

The count is incremented after each add
action.

(counted-unique ?i (do (clear 1) 7s)) «—
(counted-unique ?i ?7s)

The count is unchanged by a clear action.

(register-value 7r 0 (do (clear 7r) 75)) «-
(register-value ?r ?v 7s)

A register has the value 0 after a clear.

(array-value 7a 7p ?7v (do (clear 71) 7s)) «
(array-value ?a 7p 7v 7s)

All array values remain the same after a
clear action.

(register-value ?r 7v (do (add 7r 7a 7p) 7s)) «
(mark ?a ?p free ?s)
(register-value 7 7vr 7s)
(array-value ?a 7p 7va 7s)
="+ Mva

If the array element is unmarked the an
add sets the register value to the old
register value plus the array value.

(array-value ?al ?pl ?v (do (add ?r 7a2 7p2) 7s)) «
(array-value 7al ?7pl ?v 7s)

All array values remain the same after an
add action,

(total 7a 7v 75) «
(array-size 7a n)
(counted-unique n ?7s)
(register-value ?r 7v 7s)

For an array of size n add n different
the result is the final register value.
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