ON THE ALGEBRAIC PROPERTIES
OF PROGRAM INTEGRATION

by

Thomas Reps

Computer Sciences Technical Report #856

June 1989

ON THE ALGEBRAIC PROPERTIES
OF PROGRAM INTEGRATION

THOMAS REPS
University of Wisconsin

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time
consuming task to merge programs by hand. The program-integration algorithm recently proposed by Horwitz, Prins,
and Reps provides a way to create a semantics-based tool for integrating a base program with two or more variants.
The integration algorithm is based on the assumnption that any change in the behavior, rather than the fext, of a program
variant is significant and must be preserved in the merged program. An integration system based on this algorithm will
determine whether the variants incorporate interfering changes, and, if they do not, create an integrated program that
includes all changes as well as all features of the base program that are preserved in all variants., To determine this
information, the algorithm employs a program representation that is similar, but not identical, to the program depen-
dence graphs that have been used previously in vectorizing and parallelizing compilers.

This paper studies the algebraic properties of the program-integration operation. To do so, we first modify the
integration algorithm by recasting it as an operation on a Brouwerian algebra constructed from sets of dependence
graphs. (A Brouwerian algebra is a distributive lattice with an operation a =~ b characterized by a ~b cc iff
acbuc.) In this algebra, the program-integration operation can be defined solely in terms of v, n, and ~. The
bulk of the paper investigates this operation’s algebraic properties; this investigation makes use of the rich set of alge-
braic laws that hold in Brouwerian algebras.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques — programmer work-
bench; D.2.6 [Software Engineering]: Programming Environments; D.2.7 [Software Engineering): Distribution and
Maintenance — enhancement, restructuring, version control; D.2.9 [Software Engineering]: Management — program-
ming teams, software configuration management; F.4.m [Mathematical Logic and Formal Languages]: Miscellane-
ous; G.2.m [Discrete Mathematics]: Miscellaneous

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Brouwerian algebra, dependence graph, program slice, program integration

1. INTRODUCTION

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious
and time consuming task to merge programs by hand. Given a program P and a set of variants of P —
created, say, by modifying separate copies of P—the goal is to determine whether the modifications inter-

This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering, by the National Science
Foundation under grant DCR-8552602, by the Defense Advanced Research Projects Agency, monitored by the Office of Naval
Research under contract N00014-88-K-0590, as well as by grants from IBM, DEC, and Xerox.

Author's address: Computer Sciences Department, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, W1 53706.
Copyright © 1989 by Thomas W. Reps. All rights reserved.

fere, and, if they do not, to create an integrated program that includes all changes as well as all features of
P that are preserved in all variants [6, 7]. Opportunities for program integration arise in many situations:

(1) A system may be “customized” by a user while simultaneously being upgraded by a maintainer.
When the next release of the system is sent to the user, he must integrate his customized version and
the newly released version with respect to the original version of the system so as to incorporate both
his customizations and the upgrades.

(2) Program integration also arises as systems are being created. Program development is usually a
cooperative activity that involves multiple programmers. If a task can be decomposed into indepen-
dent pieces, the different aspects of the task can be developed and tested independently by different
programmers. However, if such a decomposition is not possible, the members of the programming
team must work with multiple, separate copies of the source files, and the different versions of the
files must ultimately be integrated to produce a common version.

(3) The program-integration problem also arises in a slightly different guise when a tree or dag of related
versions of a program has been created (to support different machines or different operating systems,
for instance), and the goal is to make the same enhancement or bug-fix to all of them. For example,
if the change is made to the root version—by modifying the root manually-—the process of installing
the change in all other versions requires a succession of program integrations.

Anyone who has had to reconcile divergent lines of development will recognize these situations and appre-
ciate the need for automatic assistance.

At present, the only available tools for integration implement an operation for merging files as strings of
text. This approach has the advantage that the current tools are as applicable to merging documents, data
files, and other text objects as they are to merging programs. However, these tools are necessarily of lim-
ited utility for integrating programs because the manner in which two programs are merged is not safe—
one has no guarantees about the way the program that results from a purely textual merge behaves in rela-
tion to the behavior of the programs that are the arguments to the merge. For example, if one variant con-
tains changes only on lines 5-10, while the other variant contains changes only on lines 15-20, a text-
based program-integration algorithm would deem these changes to be interference-free; however, just
because changes are made at different places in a program is no reason to believe that the changes are free
of undesirable interactions. The merged program produced by such a tool must, therefore, be checked
carefully for conflicts that might have been introduced by the merge.

The program-integration algorithm recently proposed by Horwitz, Prins, and Reps provides a way to
create a semantics-based (i.e., language-based) tool for automatic program integration [6,7]. Changes in
behavior rather than changes in text are detected, and are preserved in the integrated program. Although it
is undecidable to determine whether a program modification actually leads to a change in program
behavior, it is possible to determine a safe approximation by comparing each of the variants with the origi-
nal program P. To determine this information, the algorithm employs a program representation that is
similar, but not identical, to the program dependence graphs that have been used previously in vectorizing
and parallelizing compilers. It makes use of an operation on these graphs called program slicing {11] (ori-
ginally defined to aid in debugging [17]) to find potentially changed computations.

This paper concemns the algebraic properties of the program-integration operation. We actually study a
version of the program-integration algorithm that is slightly different from that given in [6,7]; in the ver-
sion studied here, program integration is cast as an operation on a Brouwerian algebra constructed from
sets of dependence graphs. A Brouwerian algebra [9] is a distributive lattice with an operation a = b
characterized by a -~ b c ¢ iff a cb vc (see Section 3 and the Appendix). In this algebra, the program-

-3=

integration operation can be defined solely in terms of v, n, and . The bulk of the paper investigates
this operation’s algebraic properties; this investigation makes use of the rich set of algebraic laws that hold
in Brouwerian algebras.

The program-integration problem studied in [6,7] is a greatly simplified one, and the capabilities of the
algorithm developed there are severely limited. In particular, the algorithm applies only to programs writ-
ten in a simple language in which expressions contain scalar variables and constants, and the only state-
ments are assignment statements, conditional statements, and while-loops. Current research focuses both
on extending the set of language constructs to which the program-integration algorithm is applicable, as
well as investigating some alternatives to using program dependence graphs and program slicing. How-
ever, our hope is that such extensions and modifications will share with the original integration algorithm
some common set of algebraic properties.

We feel that Brouwerian algebras provide the right “abstract interface” for studying the common proper-
ties of different integration algorithms. The integration operation in a Brouwerian algebra is defined purely
in terms of U, mn, and =, and thus has an analogue in all Brouwerian algebras. In Sections 5, 6, 7, and 8,
the properties of this integration operation are studied using only algebraic identities and inequalities; con-
sequently, the results obtained apply to all Brouwerian algebras. Thus, to show that a proposed program-
integration algorithm shares these properties, one merely has to show (as we do in Section 4 for three varia-
tions on the program-integration algorithm from [6,7]) that the algorithm can be cast as an integration
operation in a Brouwerian algebra.

It is important to understand that, because the set of dependence graphs does not form a Brouwerian
algebra, not all of the results established about integration in Brouwerian algebras carry over to the
program-integration operation given in [6,7]. However, as shown in Section 4, it is possible to generalize
that algorithm slightly to construct a Brouwerian algebra from sets of dependence graphs. In this algebra
(as well as all other Brouwerian algebras), the integration operation satisfies the properties demonstrated in
the paper.

An additional contribution of this work is that it allows one of the restrictions that is part of the algorithm
given in [6,7] to be relaxed. We show how to eliminate the requirement that the editor used to create pro-
gram variants from a given base program provide a tagging capability so that common components (i.e.,
statements and predicates) can be identified in different versions. (The assumption is stated fully at the
beginning of Section 2.2.) As discussed in Section 4, it is possible to construct dependence-graph algebras
for which this restriction is no longer necessary; the elements of these algebras do not have tags on their
components. Thus, in principle it is no longer necessary for program integration to be supported by a
closed system; programs can be integrated, no matter what their origin.

The paper is organized into nine sections. Section 2 provides a brief overview of the program-
integration algorithm that was described in [6,7]. Section 2 also reviews the semantic properties of the
program resulting from integration that were established in [15, 16]. Readers familiar with the algorithm
from [6, 7] should skip directly to Section 3, which defines Brouwerian algebras and introduces some nota-
tion used throughout the rest of the paper. (To make the paper self-contained, the algebraic laws that hold
for elements of Brouwerian algebras are discussed in an Appendix that appears at the end of the paper;
thus, it may be helpful to read the Appendix in conjunction with Section 3. Throughout the body of the
paper, when a law given in the Appendix is used to justify a step of a proof, it is referred to by the number
given for the law in the Appendix.)

Section 4 defines a particular Brouwerian algebra constructed from sets of dependence graphs. Section 5
defines the operation to integrate elements of a Brouwerian algebra. For the dependence-graph algebra dis-

cussed in Section 4, this operation corresponds very closely to the operation for integrating programs by
combining dependence graphs summarized in Section 2. Section 6 gives the proof of an associative law for
the integration operation. It also defines a generalization of the integration operation to one that simultane-
ously integrates more than two variants with a given base element. Section 7 addresses the question of
whether there is an integrand compatible with a given base b, integrand a, and result m. This problem is
related to one of the applications of program integration, that of separating consecutive edits on some base
program into individual edits on the base program. Section 8 concerns a similar question; it looks at the
question of whether there is a base element that is compatible with given integrands a and b, and result m.
Section 9 discusses the relationship of the work described in the paper to previous work.

2. OVERVIEW OF AN ALGORITHM FOR PROGRAM INTEGRATION

This section provides a brief overview of the algorithm that uses program dependence graphs to integrate
programs. (Full details of the algorithm can be found in [6,7].) Given a program Base and two variants A
and B, the program-integration algorithm determines whether the changes made to Base to produce A and
B interfere; if there is no interference, the algorithm produces a merged program M that incorporates the
changed behavior of A with respect to Base, the changed behavior of B with respect to Base, and the
unchanged behavior common to Base, A ,and B.

The algorithm applies to a simplified programming language with the following characteristics: expres-
sions contain only scalar variables and constants; statements are either assignment statements, conditional
statements, while loops, or a restricted kind of “output statement” called an end statement, which can only
appear at the end of a program. An end statement names one or more of the variables used in the program.
The variables named in the end statement are those whose final values are of interest to the programmer;
when execution terminates, the final state is defined on only those variables in the end statement. Thus a
program is of the form
program

list-of-statements
end(id").

2.1. Program Dependence Graphs and Program Slicing

The program dependence graphs used by the program-integration algorithm are similar to those used previ-
ously for representing programs in vectorizing compilers [8,2]. Vertices represent the predicates and
assignment statements of the program; in addition, there is a special vertex called the entry vertex, there are
initial-definition vertices for each variable that may be used before being defined, and there are final-use
vertices for each variable named in the end statement. There are two kinds of edges: control dependence
edges and data dependence edges. The source of a control dependence edge is either the entry vertex or a
predicate vertex and each edge is labeled either true or false. A control dependence edge v —>, w from
vertex v to vertex w means (roughly) that during execution, whenever the predicate represented by v is
evaluated and its value matches the label on the edge to w, then the program component represented by w
will eventually be executed.

A data dependence edge from vertex v to vertex w means that the program’s behavior might change if
the relative order of the components represented by v and w were reversed. There are two kinds of data
dependence edges, flow dependence edges and def-order dependence edges: A flow dependence edge
v —>; w runs from a vertex v that represents an assignment to a variable x to a vertex w that represents a
use of x reached by that assignment; a def-order edge v — 4,y w runs between two vertices that represent
assignments to x, both of which reach a common use u.

Example. Figure 1 shows an example program and its program dependence graph. The boldface arrows
represent control dependence edges; dashed arrows represent def-order dependence edges; solid arrows
represent loop-independent flow dependence edges; solid arrows with a hash mark represent loop-carried
flow dependence edges.

For a vertex s of a program dependence graph G, the slice of G with respect to s, written as G /s, is a
graph containing all vertices on which s has a transitive flow or control dependence (i.e., all vertices that
can reach s via flow or control edges): V(G /s)={we V(G) |w —)‘c', s }. We extend the definition
to a set of vertices S = k‘J 5; as follows: V(G /S)=V(G /(ki)s,-))= k‘) V(G /s;). It is useful to define

V(G /v)=0foranyv e V(G).

The edges in the graph G /S are essentially those in the subgraph of G induced by V(G /§), with the
exception that a def-order edge v —> 4,y w is only included if, in addition to v and w, V(G /§) also con-
tains the vertex u that is directly flow dependent on the definitions at v and w. In terms of the three types
of edges in a program dependence graph we have:

EGIS)y= {(v=Iw)eEG)Iv,weV(G/S))
u{(v >, w)eEG)|v,weV(G/S))
V(v 2%wmw)eEEG) | u,v,weV(G/S))

program
sum = 0;
x=1;
while x <11 do
sum = sum+Xx;
x=x+1
end
end(x, sum)

FinalUse (x)

Figure 1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and its
program dependence graph. The boldface arrows represent control dependence edges, dashed arrows represent def-
order dependence edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a hash
mark represent loop-carried flow dependence edges.

Example. Figure 2 shows the graph that results from slicing the program dependence graph from Figure
1 with respect to the final-use vertex for x.

The significance of a slice is that it captures a portion of a program’s behavior in the sense that, for any
initial state on which the program halts, the program and the slice compute the same sequence of values for
each element of the slice [15]. In our case a program point can be (1) an assignment statement, (2) a con-
trol predicate, or (3) a final use of a variable in an end statement. Because a statement or control predicate
can be reached repeatedly in a program, by “computing the same sequence of values for each element of
the slice” we mean: (1) for any assignment statement the same sequence of values are assigned to the target
variable; (2) for a predicate the same sequence of boolean values are produced; and (3) for each final use
the same value for the variable is produced.

THEOREM. (SLICING THEOREM {15]). Let Q be a slice of program P with respect to a set of vertices. If
G is a state on which P halts, then for any state & that agrees with & on all variables for which there are
initial-definition vertices in Gy : (1) Q halts on &', (2) P and Q compute the same sequence of values at
each program point of Q, and (3) the final states agree on all variables for which there are final-use ver-
ticesin Gg.

2.2. An Algorithm for Integrating Programs

The program-integration algorithm requires that a special program editor be used to create variants A and
B from (copies of) Base . This editor is assumed to have the following properties:

program
x =1
while x <11 do
x=x+1
end
end(x)

FinalUse (x)

Figure 2. The graph that results from slicing the example from Figure 1 with respect to the final-use vertex for x,
together with the one program to which it corresponds.

(1) The editor provides a tagging capability so that common components (i.e., statements and predicates)
can be identified in all three versions. Each component’s tag is guaranteed to persist across different
editing sessions and machines; tags are allocated by a single server, so that two different editors can-
not allocate the same new tag.

(2) The operations on program components supported by the editor are insert, delete, and move. When
editing a copy of Base to create a variant, a newly inserted component is given a previously unused
tag; the tag of a component that is deleted is never re-used; a component that is moved from its origi-
nal position in Base to a new position in the variant retains its tag from Base .

A tagging facility meeting these requirements can be supported by language-based editors, such as those
that can be created by such systems as MENTOR [1], GANDALF (3, 10], and the Synthesizer Generator
[13,14].

These tags provide a means for identifying how the program-dependence-graph vertices in different ver-
sions correspond. It is these tags that are used to determine “identical” vertices when we perform opera-
tions using vertices from different program dependence graphs. For instance, when we speak below of
“identical slices”, where the slices are actually taken in different graphs (e.g., (Gpase /v)=(Ga /V)), we
mean that the slices are isomorphic under the mapping provided by the editor-supplied tags.

The first step of the program-integration algorithm determines slices that represent a safe approximation
to the changed computation threads of A and B and the computation threads of Base preserved in both A
and B the second step combines these slices to form the merged graph Gy, ; the third step tests Gy for
interference.

Step 1: Determining changed and preserved computation threads

If the slice of variant G, at vertex v differs from the slice of Gp,,, at v, then G4 and Gg,, Can compute
different values at v. In other words, vertex v is a site that potentially exhibits changed behavior in the two
programs. Thus, we define the affected points of G, with respect to Gga,, , denoted by AP4, ga. , to be the
subset of vertices of G, whose slices in Gpase and Gy differ
AP4 Base 2 (veV(GL) | (Gpase | V)#(Ga /v)). We define APp p,, similarly. It follows that the slices
Ga ! AP4 pase and Gp /APp g, capture the respective computation threads of A and B that differ from
Base .

We define the preserved points PPpas, 4.5 Of Gpase as the subset of vertices of Gga,, With identical
slices in G, Ga, and Gp:

PPBan,A.B = {V € V(GBau) | (GBau /v)= (GA /V)= (GB /V) }

Thus, the unchanged computation threads common to both A and B are captured by the slice
GBa.rc /PPBau,A.B-

Step 2: Forming the merged graph

The merged graph Gy is formed by taking the graph union of the slices that characterize the changed
behavior of A, the changed behavior of B, and behavior of Base preserved inboth A and B:

GM 2 (GA /APA,Base) v (GB /APB.Base) v (GBm'e /PPBa.rc.A,B)'

Step 3: Testing for interference

There are two possible ways by which the graph Gy, can fail to represent a satisfactory integrated program;
we refer to them as “Type I interference” and “Type II interference.” The criterion for Type I interference
is based on a comparison of slices of G4, Gy, and Gy. The slices G4 /AP, g, and Gg/APp p,,
represent the changed computation threads of programs A and B with respect to Base. A and B interfere
if Gy does not preserve these slices; that is, there is interference of this kind if either
(Gy 1 AP g Base) #(Ga I APy pase) OF (Gyy | AP pase) # (Gp / APp pae)-

The final step of the integration method involves reconstituting a program from the merged program
dependence graph. However, it is possible that there is no such program—the merged graph can be an
infeasible program dependence graph; this is Type II interference. (The reader is referred to [7] for a dis-
cussion of reconstructing a program from the merged program dependence graph and the inherent
difficulties of this problem.)

If neither kind of interference occurs, one of the programs that corresponds to the graph G, is returned
as the result of the integration operation.

The following theorem characterizes the execution behavior of the integrated program produced by the
program-integration algorithm in terms of the behaviors of the base program and the two variants [15, 16].

THEOREM. (INTEGRATION THEOREM [15,16]). If A and B are two variants of Base for which integra-
tion succeeds (and produces program M), then for any initial state ¢ on which A, B, and Base all halt,
(1) M halts on ©, (2) if x is a variable defined in the final state of A for which the final states of A and

" Base disagree, then the final state of M agrees with the final state of A on x, (3) if y is a variable defined
in the final state of B for which the final states of B and Base disagree, then the final state of M agrees
with the final state of B on y, and (4) if z is a variable on which the final states of A, B, and Base agree,
then the final state of M agrees with the final state of Base on z .

Restated less formally, M preserves the changed behaviors of both A and B (with respect to Base) as
well as the unchanged behavior of all three.
3. TERMINOLOGY AND NOTATION

Definition. A lattice is an algebra (L, v, n), where L is a set of elements that is closed under v and n,
and foralla, b, and ¢ in L the following axioms are satisfied:

ava=a ana=a av(anb)=a
avb=bvua anb=bna an(avb)=a
(avb)uc=avu(buc) (anb)nc=anbnc)

The symbol ¢ is used to denote the partial order on the elements of L givenbya cb iff anb =a (or,
equivalently, @ ¢ b iff a ub = b). All lattices considered in this paper have a least element and a greatest
element, which are denoted by @& and 1, respectively.

Definition. A Brouwerian algebra [9] is an algebra (L, v, n, ~,1) where
(i) (L,v,n)isalattice with greatest element 1.
(ii)) L isclosed under ~.
(iii) Foralla,b,andc inL,a ~b cc iffa cb uc.

It can be shown that L has a least element, given by @ =1 =1, and that L is a distributive lattice; that is,
foralla,b,andc inL,

iv) av®nc)=(@uvb)n(@awvc).
V) anpuc)=@nb)u(@nc).
Definition. A double Brouwerian algebra [9] is an algebra (L,v,n,+,+,1) where both
@,v,n,~,Dand (L, ~,v, +,1-+1)are Brouwerian algebras. In particular,
(i) L isclosed under +.
(ii) Foralla,b,andc inL,a +b 2c iffaabnc.

4. AN ALGEBRA OF DEPENDENCE GRAPHS

We now recast the integration algorithm as an operation on a Brouwerian algebra constructed from sets of
dependence graphs.

Let G be the set of well-formed program dependence graphs, and let the relation symbol < denote the
relation “is-a-slice-of,” (i.e., x <y means that graph x is a slice of graph y). Define set G, the set of all
program dependence graphs that are single-point slices, to be
G,2(geG|IxeV(G)suchthat (g /x)=g }.

Define set L, the set of all downwards-closed sets of single-point slices, to be
L2{SeP(G)|VseS,VxeG,ifx<sthenxe S},

where P (G) denotes the power set of ;. Forall x,y € L, define the operation x -y to be
x~y2{zeG,|3pe (x~y)suchthatz<p }.

THEOREM 1. (L, v, n, ~,G,) is a Brouwerian algebra.

PROOF. Because the elements of L are downwards-closed sets of single-point slices, it is clear that G,
which consists of all single-point slices, is a superset of any element of L. Suppose s € G, and x is a
single-point slice of s ; because x-—being a single-point slice-—must also be a member of G, it follows that
G, is itself downwards closed. L is closed under « and n,and (L, v, n) is a lattice ordered by set inclu-
sion.

It remains to be shown that = has the properties required of a pseudo-difference; that is, we must show
(1)L isclosed under - and (2) foralla,b,ceL,a~bcc iffacbuc.

To show property (1), consider any two elements a,b € L. From the definition of ~ we see thata = b
is the downwards closure (under the “single-point slice” relation) of a —b, and hence a = b € L. (Note
that a — b denotes the set difference of @ and b; a — b is not necessarily downwards closed, and hence, in
general, is not a member of L.)

Two show property (2), there are two cases to consider,

=> case: Assuming a ~ b cc, we must show thata ch uc.

From the definition of @ ~ b, we know thata -b ca ~ b.

a-bcc by transitivity
(a-bYubgcbhbuc
avbcbuc because (@ -b)ub =a vb
acbuc because a ca v b

<= case: Assuming a ¢ b vc, we must show thata - b cc.

Let z be a member of a ~ b; we will show that z € ¢. From the definition of ~ we know that there exists
a (single-point slice) p € @ such that p ¢ b and z <p. By the downwards-closure property of elements of

-10-

L, because p € a we know that z € a as well. There are two cases to consider:

(i) Suppose z ¢ b. By the assumption that a b uc and the fact that z € a, we have z € b uc. How-
ever, because z 2 b, we conclude thatz e ¢.

(ii) Suppose z € b. Consider again the element p, where p e a, p ¢ b, and z <p. By the assumption
that @ b v and the fact that p € a, we have p € b uc. However, because p € b, we havep € c.
But because z < p and because ¢ --being an element of L —is downwards closed, we conclude that
zZEC.

|

The significance of this algebra is that the program-integration algorithm from [6,7] corresponds very
closely to the operation on elements of a Brouwerian algebra defined in Section 5, which is defined solely
interms of U, n,and ~.

Recall that in Section 2.2, we stated a requirement that a special program editor be used to create the
program variants from the base program. Our assumption about this editor was that it provides a tagging
capability so that common components can be identified in all versions. Note, however, that this assump-
tion is not used in the proof of Theorem 1; therefore, a second example of a Brouwerian algebra that can be
used for integrating programs is the set of downwards-closed sets of untagged single-point slices.

It is also possible to work with the notion of a “slice of a program” rather than that of a “slice of a depen-
dence graph.” For example, in [15] a program slice is any program whose dependence graph is isomorphic
to some (dependence-graph) slice of the original program. For example, when the program

program
x =0
y=1
wi=x;
z:=Xx+y
end

is sliced with respect to the statement z := x +y, the two possible results are:

program program
x =0; y =1
y=1 x =0
z2=x+y z2:=x+Yy
end end

Thus, we can construct a third example of a Brouwerian algebra that can be used for integrating programs
by starting with the supposition “let G be the set of well-formed programs,” rather than “let G be the set of
well-formed program dependence graphs.” In this case, lattice L is the set of downwards-closed sets of
programs that correspond to single-point slices. (We refer collectively to all three possible definitions by
the term dependence-graph algebras.)

When the operation defined in Section 5 to integrate elements of a Brouwerian algebra is used, the three
different definitions of dependence-graph algebras correspond to three different variations on the program-
integration algorithm given in [6,7]. Although these variants produce somewhat different answers (both in
terms of the final program that is the result of an integration, as well as in their notion of when integrands
interfere), a successful integration that results from any of the algorithms satisfies the properties of the
Integration Theorem, by essentially the same proof given in [15, 16].

-11-

Examples presented in the paper technically follow the last of the three approaches (using sets of pro-
gram slices), although the points illustrated also apply to the other two, as well. For brevity, examples are
presented using individual programs, rather than by listing the program’s downwards-closed sets of single-
point (program) slices. For instance, the program

program
x =0;
Yy =x;
2=y,
wi=x
end

stands for the following set of slices:

{ program , program , program , program }.
x =0 x =0; x:=0; x =0
end y=x Yy =x; wi=x
end z:=y end
end

Note that the same set of slices also corresponds to the program

program
x =0
Yy =x;
z=Yy,
wi=x;
x =0
end.

It is instructive to consider how the dependence-graph algebras differ from the (tagged) dependence
graphs and operations on them used in Section 2 (which is a lower semi-lattice (G, <)). The differences
are due to the fact that the operation of unioning two dependence graphs is not a join operation for (G, <).
For example, consider the union of programs a and b, shown below, in the case where y = x has the same
taginbothag and b.

a b
program program
x =0 x =1
y=x yi=x
end end

The result of @ ub is an infeasible dependence graph with flow edges from x :=0 to y :=x and from
x =110y :=x. Although both a and b are subgraphs of a wb, neithera <a vb nor b <a vb hold, as
is required of a join.

In the dependence-graph algebras (both with and without tags) @ U b corresponds to the following set of
slices:

avb = { program , program , program , program }.
x =0 x =0 x =1 x:=1
end yi=x end yi=x
end end

Note thata ca vb and b <a v b both hold.

-12-

A Brouwerian algebra is similar, but not identical to a Boolean algebra; some of the properties that hold
in a Boolean algebra do not hold in a Brouwerian algebra. (Consequently, applying one’s intuition about
Boolean algebras to Brouwerian algebras can be risky.)

Example. The laws for distributivity of +~ over v and ~ for Brouwerian algebras are somewhat dif-
ferent from the laws for distributing ~ over w and ~ in Boolean algebras. Two of the laws are the same:

(16) (b ~a)w(c~a)=phuc)=-a
17 (¢ ~a)v(c ~b)=c ~(anb)
However, the laws for distributing = through ~ on the left and w on the right are weaker:!
(29) (@anb)-ccl@a=c)nd+c)

PROOF.
((@nb)=c)=(@=c)n =cH=(((anb)~c)=(@=c)Hu((@anb)=c)=(b =c))
by (17)
=(@nb)=(cu@=c)ul@anb)=(cvd =c))
by (18)
=(@anb)=(@avc)v{@anb)=(bvc) by(4)
=@u@d by (4)
=
Therefore, by (4), (@ nb)~c c(a ~c)n(b ~c). O
(32) c+(avb)c(c ~a)n(c=b)
PROOF,
c+(@avb)cc ~a by (11)
¢c~(avb)cc b by (11)

Therefore, ¢ ~(aub)c(c ~a)n(c ~b). O

We can show by means of examples that the inequalities in laws (29) and (32) are, at times, strict.

a b c (anb)+c a-c¢ b=-c (a=+c)n® +c)
program program program 1] program program program
x =0 x =0 x:=0 x :=0; x =0; x =0
y=x z2:=X end yi=x z=Xx end
end end end end

In this example (a nb) = ¢ =(a = c)n (b = c) because the (singleton) slice

program
x =0
end

occursin botha ~c and b ~c¢.

'Note, however, that law (18) does provide an identity that can be used to transform ¢ =~ (a U b).
(18 (c~b)ra=c=(@aub)=(c +~a)+b

-13 -

a b c c=(auvb) c~a cb (c ~a)n{c=b)
program program program @ program program program
x =0 x =0 x =0; x =0 x =0 =0
y =X =x y =x; z:=X y =X end
end end =x end end
end

In this example ¢ ~ (@ vb)c(c + a)n(c = b) because the (singleton) slice

program
x =0
end

occursinboth¢c ~a andc - b.

For all x,y € L, define the operation x <+ y to be
x+y2(zeG,|Vpe(y-x)p<z}.

THEOREM 2. (L, v, n, =, +,G}) is a double Brouwerian algebra.

PROOF. We must show that (L., ~, v, +,@) is a Brouwerian algebra, which involves showing (1) L is
closed under < and 2) foralla,b,ceL,a+boc iffanbnec.

To show property (1), consider any two elements a,b € L. From the definition of + we see that, for all
g€ a+b,if z is a single-point slice of ¢, z is alsoamemberofa <+ b,hencea +be L.

Two show property (2), there are two cases to consider.

=» case: Assuming a = b o ¢, we must show thata Db nec.

Letg_ be the complement of b withrespecttoGl(i.e.,l; = G;-b). From the definition of a + b, we know
thathuaa <+ b.
_ buana+bac
_ (buaynbobnec
(bnab)ul@anb)obnc
Gulanb)abnc
anbabnec
anbnc.

& case: Assuming a b nc, we must show thata < b Dc.
Let z be a member of ¢ ; we will show that z € a + b. There are two cases to consider:

(1) Suppose ze b. Because zec,zeb,and a2bnc, we know z € a. By the downwards-closure
property of elements of L, Vg € G such that ¢ <z, g € a. This means that ¢ ¢ (b —a). Thus,
2p e (b—a)such thatp <z, or, equivalently, Vp e (b—a)p £z. Hence, we conclude that
zea+b.

(2) Suppose z ¢ b. We first observe that z ¢ (b —a). Now suppose there exists a p € (b —-a) such that
p <z (*). By the downwards-closure property of elements of L , because p <z and z € ¢, we know
that p € ¢. Butsince p € (b —a), we also have p € b. Therefore p € b nc¢, which means thatp € a
(because a 2b nc¢). From p € a and p € b, we conclude that p ¢ (b —a), which contradicts (*).
Hence, 3p € (b —a) such that p < z, or, equivalently, Vp € (b —a) p £z. Consequently,z€a < b.

—-14-

In this paper, the only results that make use of the quotient operation are in Section 7.3 and Section 7.4.

5. INTEGRATION OF ELEMENTS OF A BROUWERIAN ALGEBRA

We now introduce a ternary operation on elements of a Brouwerian algebra that, for the the dependence-
graph algebra discussed in Section 4, corresponds very closely to the temary operation on dependence
graphs used for program integration in [6, 7]. The integration operation on elements of a Brouwerian alge-
bra, denoted by a [b1c, combines two elements a and ¢ with respect to a third element b.

Definition. The integration of elements a and ¢ with respect to element b is the element a[b]c defined
byalblc &(a ~b)u(@nbnc)u(c ~b). If alblc =m, we refer to element b as the base, elements a
and ¢ as the integrands, and element m as the result of the integration.

Because the integration operation is defined solely in terms of U, n, and =, it has an analogue in all
Brouwerian algebras, not just the dependence-graph algebra from Section 4. Because we will study its pro-
perties strictly from an algebraic standpoint, our results apply to this operation in all Brouwerian algebras.

We now demonstrate some basic properties of the integration operation.

PROPOSITION. alalb =b.

PROOF.

alalb =@ ~a)v(@nanb)u ~a)
=@du(@nb)u(~a)
=bh

by (26)
0
PROPOSITION. albla =a.
PROOF.
albla=(@=b)v(@nbna)u(a~b)
=(a=b)u(anb)
=qa by (26)
O
PROPOSITION. a[@]b =a vb.
PROOF.
al@lb =(a ~Dyv(@anBnb)ub ~Q)
=aub
O
PROPOSITION. a[l]lb =anb.
PROOF.
alllb=@+~Dv@nlnb)u® ~1)
=@du(@nb)ud
=anb
0

PROPOSITION. a[b](x;vxy)=alblx,valb]lx,.

-15~

PROOF.

albl(xivxp=(a =b)u(anb nx;vx))u((x;uxy) = b)
=(@+b)v(@nbnx)v(@nbnx)ux;+~b)u(x,~b) by (16)
=alblxvalblx,

O
PROPOSITION. afbl(xinx)calblxinalblx,.

PROOF. Because a nb n(x;nxy)canbnx,and (x;nxy = b cx,+b, we have

alblxinx)=(@=b)u(@nbn(x;nx))u((x;nx) ~b)
c@=b)v@anbnx)u(x,~b)
=alblx,

Therefore, al[bl(x;nxp)calblx;. Similarly, we have a[b](x,nx)calblx,.

alblxinxgalblxinalblx,. O
PROPOSITION. al[blc is monotonic ina.

PROOF. Suppose a ca’. We will show thata[blc ca’lblc.

alblc ~a’blc =@ ~b)v(@nbnc)u(c 2b)={a’+b)ul@a nbnc)u(c ~b))
=(@<b)=~((a’~b)u(@’ nbnc)u(c ~b))
u(@nbnc)=(a’~b)v(@’ nbnc)u(c ~b))
v((c =b)=((@a’~b)u(@' nbnc)u(c ~b)) by (16)
=(((@=~b)=(a’+b))=((a’'nbnc)ulc ~b))
v((@nbnc)=(@ nbnc))=(a’=~b)vic ~b))
u(((c =b)=(c b))~ ((a’=b)u(a’nbnc))) by (18)
=Qudud
=0

Therefore, by (4),a{blc ca’lblc. O
PROPOSITION. alb]lc is antimonotonic in b.

PROOF. Suppose b cb’. We will show thata[b’]c calb]c.

alb’lc ~alblc =@ ~bHvi(anb’'nc)uc b)) ~alblc
=((a+~b)=alblc)v@anb’'nc)=alblc)v((c ~b)+alblc)
by (16)
=(@*~b)=((a~b)u(@nbnc)u(c ~b))
v(@anb’nc)+((a+b)u(anbnc)u(c ~b))
V((c =b)=((a =b)u(anbnc)u(c b))

Consequently,

=@u(@anb'nc)=({(a=b)vlanbnc)u(c ~b)))vd by(11)and @)
=((@nb’'nc)>~@nbnc))~{(@avc)=b) by (18) and (16)
=(((@anb’nc)y+a)u(@anb’nc)=b)v((@anb’'nc)~c)) = (avc)=b)

by (17)
=(@u((@anb’nc)=b)ud)=((avc)=b) by (4)
=({@anb’nc)=b)=((avc)=b)
=(@nb’nc)~(buv(avc)=b)) by (18)
=(@nb’nc)=(avbuc) by (14)

Therefore, by(d),a[b’lc calblc. [
PROPOSITION. afblc ~b=(a =~b)ul(c ~b).

-16-

PROOF.
alblec =b={a =b)v(@nbnc)ulc ~b))+b
=((@=~b)=b)v((@nbnc)~b)u((c ~b)=b) by (16)
=(a ~b)vBu(c ~b) by (4)
=@ ~b)ul(c+bd)
O
PROPOSITION. al[blc ~¢c=(a ~b)=c.
PROOF.
alble ~c={a+-b)vl@anbnc)u(c ~b))~c
=(@a=b)=c)v((@anbnc)+c)u(c +b)=c) by (16)
=@ +b)*c)vDud by (4)
=(a-=-b)+c

D .

6. ASSOCIATIVITY OF INTEGRATION

In this section, we prove an associative law for the integration operation. We also generalize the integra-
tion operation to simultaneously integrate more than two variants with a given base element, and show that
a three-variant simultaneous integration can be done as a succession of two-variant integrations.

Definition. The simultaneous integration of elements x,, x5, -, x, with respect to element b is the
element (x,[b]x,, * - - ,x,) defined by
(x1[b1x2, =+ Xg) £ (X1 =b)U(xp = b)Y - U(xy b)U(x1 XN - Oxy 0b).

THEOREM 3 (ASSOCIATIVITY THEOREM).
xbIy)blz =x b1 [blz)=(x[b12)bly = (x[bly)bI(x[blz) = (x[bIy)x}x[blz) = (x[b]y,2).
PROOF.

PartI. Show that (x [(b1y)[blz =x[(b1(y[b1z) = (x[blz)bly = (x[bly.2).

xBI)blz =&bly =b)uxlbly nbnz)u(z ~b)
=(x =b)vy =b)u(((x =b)uxnbny)u(y ~b)nbnz)u(z ~b)
=(x -b)u(y b)u(z ~b)u(xnynznb)
=(x[bly,2)

By analogous arguments, one can show x [b1(y[b1z) = (x[b1z)[b]y = (x[bly,2).

PartII. Show that (x[bly)(b1(x[blz)=(x[bly,2).

xBI)bIXxblz)=&[bly =b)u(x[bly nbnx[blz)u(x[b]z - b)
=(x+b)u(y ~b)
U(((x =bYuxnbny)u(y =b)nbn((x =b)uxnbnz)u(z = b))
u(x=b)u(z ~b)
=(x =b)u(@y ~b)u(z ~b)v(xnynznb)
=(x[bly,z)

-17 —

PartIII. Show that (x[bly)x1(x[b]z) = (x[bly,z).
xBbI)xlxblz)= %[b]i);x);)(x[b]y nxnx[blz)u(xlblz = x)
= -— .L.x
V(((x =b)u(xnbny)u(y =b)nxn(x = b)vxnbnz)u(z +b)))
vz ~b)+x)
=(0 ~b)=x)
U((x =b)nx)u((x = b)n(x nbnz))v((x ~b)n(z = b))
v(x =b)nbny)v(xnbnzny)uxnbnyn(z=b))
V(@ =b)nx =b)V(y =b)nxnbnz)u(y =b)n(z ~b)nx)
u((z ~b)+x) (*)

Note that each term in (*) is dominated by a term of (x ~b)uU(y =b)u(z =b)u(x ny nznb); thus,
EBIY)xxblz)c(x[bly,2).

However, by continuing from (*), we can also show that (x[b1y)x1(x[b1z) 2(x[b]y,2).
=(x=b)
U((y = b)=x)u(~b)nx =b)u(= b)nxnbnz)u((y =b)n(z =b)nx)
u(z=b)=x)v(z =b)nx = b)u(z =b)nxnbny)u((z ~b)n(y ~b)nx)
ulxnbnzny) because (x ~b)nx =x b
=(x -~ b)
vy ~b)u(z ~b))+x)
v =b)u(z ~b)n(x ~b))
V((x nb)n((y =b)nz)u((z ~b)ny)))
V({(y =b)n(z ~b))nx)
u{xnbnzny) **)

Now consider the second and third terms of the expression in line (**). Their union is of the form
(@~x)u(@n(x+b)),wherea=(y ~b)u(z ~b)=(yvz)=b.

@=x)v@nx=b)a(@=x)vu(@anx)=b) by (28)
2((@ ~x)=b)u((anx)+b) by (13)
=((a ~x)v(anx))=-b by (16)
=a-b by (26)
=((yvz)=b)~b
=(ywz)=b
=y ~b)u(z ~b)

Substituting into (**), we have

xbIxIxDBIz) 2@ =b)uy ~b)vu(z =b)v(xny nznb)
=(x[bly,z)

We have shown (x[b1y,z)2(x[bly)x1(x[b]z)2(x[bly,z); thus, (x[b1y)x1(x[b]z) = (x[b]y,z). O

7. COMPATIBLE INTEGRANDS

Program integration deals with the problem of reconciling “competing” modifications to a base program.
A different, but related, problem is that of separating consecutive edits to a base program into individual
edits on the base program.

Example. Consider the case of two consecutive edits to base program O ; let O +AA be the result of
modifying O, and let O +AA +AB be the result of modifying O +AA. By “separating consecutive edits,”
we mean creating a program O +AB that includes the second modification but not the first. One way of
formalizing this goal is to say that we are looking for an integrand O + AB that is compatible with base O,
integrand O +AA, and result O +AA +AB; that is, O +AB should satisfy the equation
(O +AA)ON(O +AB)Y=0 +AA +AB.

-18 -

In this section the algebraic approach introduced in the previous sections is used to study this question.
The question is posed as “When does there exist an integrand compatible with a given base b, integrand a,
and result m?,” or, equivalently, “When does there exist an element x such that a[b]x =m?” We show
that, if they exist, the solutions to a[b1x =m form a distributive lattice with a least element and a greatest
element, and we give closed formulas for the least and greatest elements.

7.1. Existence of a Compatible Integrand

The theorem proven in this section provides a test for the existence of a compatible integrand. It shows
that a solution to the equation a[b]x = m exists if and only if m itself is a suitable integrand (i.e., if and
only if m itself has the property thata[b}m =m).

LEMMA. alblx =m iffa ~(mvwb)=TBand(m ~a)~(m ~b)=2.
PROOF.

&= case: Assuming a ~(mub)=C and (m ~a)~ (m ~ b) =, we must show that there is a solution to
alblx =m.

We will show that there is a solution to a[blx =m by showing that m itself is a solution (ie.,
alblm =m). The proof breaks into two parts: in part (i), we show that a [b]m < m; in part (ii), we show
thatal[bJm om.

(i) Wewillshowthatalblmcm.
- We start by considering the terms of a [b Jm :
alblm =@ =b)yvwl@anbom)u(m ~b).

(1) By the properties of n,weknowanbm cm.
(2) Becausea ~(mub)=0 weknowa cmub,and consequentlya ~b cm.

(3) Becausemgcmub,weknowm ~bcm.

Thus,alblmcmumum =m. M
(i) We will show thata{bjm om.
From the assumption (m ~a) -~ (m - b) =&, we know that (m ~a)c(m = b). *)
m-=-{anbam)=m ~a)vu(im ~b)uim +m) by (17)
=(m ~a)u(m-b)uvd by (6)
=(m ~b) by (*)

We now start fromm =~ b =m (@ ~nb nm) and union both sides by (@ nb nm).

m-=b)yv@nbrnm)=m-=(@nbnrm))v(@nbnm)
=mu{anbnrm) by (14)
=m (**)

alplm=@-b)ul@nbom)w(m=b)
2(@anbrm)u(m =b)
=m by (**) ®

Combining () and (}), we have m ca[blm cm; hence,alblm =m.

=> case: Assuming a[blx =m,wemusts: that(i)a ~(mub)=,and (i) im ~a)=~(m ~b)=0.

We consider each case in turn below.

-19-

(i) Ifalblx =m,then we have

D=m-=-m
=qfblx ~m
={a ~b)vl@nbnx)ux =b))=m
=(@=+b)=m)v(@nbnx)~m)u(x ~b)+m) by (16)
2@ =b)~m
=a~(mub) : by (18)

Therefore, a ~(mvb)=0.

@ii)) Ifalblx =m,then

(m=~a)=~(m=b)=(alblx ~a)=(alblx ~b)
=[((a =b)v(@nbnx)u(x ~b))=al
~[((a =b)v(@nbnx)u(x ~b))=~b]
=[((@+b)=-a)v((@nbnx)+a)u(x ~b)=a)l
~[((@=b)=b)v((@anbnx)~b)u((x =b)=b)]

by (16)
It is possible to simplify five of the six terms in the last expression.
(@+~b)y~ra=@=a)~b=D+-b=0 by (18), (6), and (7)
(anbnx)ca,so@nbnx)~a=92 by (4)
(a~b)~b=a-+-(bub)=a-+b by (18)
(@nbnx)ch,so(@anbnx)~b=0 by (4)
x=b)y~b=x=bub)=x=b by (18)
Picking up the derivation, we have
(m=a)=(m=b)=[@uDu((x ~b)+a)l+[@+b)vDu(x +b)]
=(x =(avb))=((a+b)u(x~b)
=x+({(@avb)u(a =b)u(x -b)) by (18)
=x=(@vbu(x-~b) because, by (13),a ~b ca
=((x=b)~(x=~b))~a by (18)
=J<a bY(6)
=0 by (7)
0
THEOREM 4. a[blx =m iffalblm =m.
PROOF.
& case:

The proof of this case is immediate: To show that a [b]x = m has a solution we merely choose x tobe m.

= case:

If a[b]x =m, then by the previous lemma, a ~ (m vb)=D and (m ~a) -~ (m ~b)=. Asshown in the
proof of the < case of the lemma, ifa - (mvub)=Dand(m ~a)=(m ~b)=D,thenalblm =m.

7.2. Existence of a Minimum Compatible Integrand

In this section, we give a closed formula for the least solution of the equation a [b]x =m and show that it
is, in fact, the least solution.

~20-

LEMMA. Ifalblm =m thenm ~a =m ~(avb).

PROOF. Because alblm=m, we know from Theorem 4 and the preceding Lemma that
a-(mub)y=Dand(m ~a)=-(m ~b)=0.
m=-a)=(m-=b)=0

m-=-acm-=»>b

m=-a=(m-=a)y~ac(m-=b)~a=m-+=(auvb) ™

However, by (13) we know that
m-as(m-=a)~b=m-=(@ub) (**)
Therefore, by (*) and (**),m ~a=m -(avb). O

LEMMA. Ifa[blm =m then (@ ~b)v(@nbrm)v(m ~a)=m.

PROOF. The proof breaks into two parts: in part (i), we show that (@ = b)u(@nbnm)u(m ~a)cm;
in part (ii), we show that (@ ~b)u(@nbnm)u(m ~a)om.

®

(ii)

Because a[blm =m, we know that a = (m ub)=@. Consequently, a cm ub, or equivalently
a<-bgcm. Thus,(@ ~b)ul@anbrm)u(m ~a)cmumum=m.

By (20), (@ =b)u(m ~a)2m = b; thus, (@ ~b)u(@nbm)u(m ~a)2(anb Am)u(m = b).
From part (ii) of the < case of the Lemma preceding Theorem 4, we know that from
m-a)~-(m=-b)=92 we can deduce (@nbrm)uim =b)=m. Therefore,
(a~byvl@anbnm)u(m -a)om. O

Definition. Xpmn & (m ~a)u((@nbnm)=(a = b)).

THEOREM 5. If a[blm =m then x ,;, is the minimum x such thata{blx =m.

PROOF.,

Partl. Show that alblx pyx=m.
alblxmn=(@ =b)u(@nba(n +a)v((@nbnm)=(a=b)))

v(((m ~a)o((@nbnm)=(a b)) +b) ™

First, we simplify the second term of (*).
anba(m=a)u((@nbnrm)=(@=b))=@nbn(m=a)v@nbn(@anbnm)=(a+b))

=@nbn(m=-a))v(@nbnm)=(a+b))
because a nboanbnm

Next, we simplify the third term of (*).

(m ~a)v((@nbam)=@=b))=b=((m=-a)~b)v((@anbom)=(a=b))~b)

(m ~(avb))v(((@anbnm)=b)=(a =b))

(m =(avb))v(D~(a=b))

(m =(avb))vd

=m ~a by previous lemma

[

alblxmn=(a =b)v[(@anbn(m=a)v(anbnom)=(a=b)lvim-a)

=(@=b)u((@nbnm)=(a=b)u(m=a)u@nbnim+a))
=(@~b)yvl@nbrnm)u(m ~a)v(@anbn(im =a)) by (14)

By a previous lemma, we know that (a ~b)u(@nbam)u(m ~a)=m. Thus we can continue the
derivation above as follows:

=mu(anbnim+a))
=m

This completes the proof of Part I; we have shown thata[b 1x;, =m.

-] -

PartIl. Show that x ,;, is the minimum x such thatalblx =m.

Suppose that x is an element such that e [b]x = m. We will demonstrate that x D x ;.

D=alblxmz=alblx
=[@=b)uv@nbnxm)Vxmn=~b)] =@ =b)u@nbnx)u(x ~b)]
=[(a=b)+((a@a=b)u(@anbnx)u(x=b))]
vl(@@nbnxmy)=((a@a=-b)u@nbnx)u(x b))
Ul min=b)=((a =b)u(@anbnx)u(x +b)) *)

Note that, by (4), the first term equals . In addition, because the outermost connectives in (*) are joins,
each of the remaining two terms must also equal &.

First, consider the third term of (*).

Xmin—bgl@a=b)ul@anbnx)u(x ~b)
XminG(@ =b)v(@nbnx)u(x ~b)ub
={auvb)u@nbnx)u(x +b)
=aqubuxvu({@anbnx)
=qgubux

Therefore, x ;s ~ (@ Wb) cx, or, expanding with the definition of x ,,
((m =a)yv((@anbnm)=(a=b)))~(avb)cx.

x2((m=a)=@vb)v((@anbnm)=(a=b))=(avb))
=({((m ~a)+a)=b)o({(anbom)=(avb))=(a+b))
=((m+a)=~b)u(@=(a=+b))
=(m-=-(avb))vD
=m-+-a by a previous lemma

Thus,x 2m ~a. M

Now consider the second term of (*).

anbnxcla~b)u@nbnx)u(x ~b)

(anbnxyy~@=-b)clanbnx)u(x-b)cx

x2(@nbnxy)=~(a=b)
=lanbn((m-a)v(@nbnm)=(a=b))]+(a=b)
l@anbn(m=a)v@nbn((@anbnm)=(@=>b))l+(@~+b)
l(@anbn(m+a))v(@nbnm)=(a+b)l+(a +b)

because a nb 2anbnnm

=((@anbn(m-=a)-=(@=b))v((@nbnm)=(a=b))=(a+b))
=(@nbn(m=a))=(@=b))v@anbnm)=(a=b))
D(@nbnrm)=(a=b) €3]

ol

By (f),x2m ~a.

By (}),x 2(@nbnm)=(a +b).

Therefore, x 2(m ~a)u((@nbam) = (@ = b)) =X
O

7.3. Existence of a Maximum Compatible Integrand

In this section, we give a closed formula for the greatest solution of the equation a [b]x =m and show that
itis, in fact, the greatest solution. Note that our formula for the greatest solution makes use of the quotient
operation, and thus holds only for double Brouwerian algebras.

—-22-

Definition. X 2 mu(b N (m +a)).
THEOREM 6. If a[blm =m then Xy, is the maximum x such thatalblx =m.
PROOF.

Partl. Show thatalblxpa=m.

The proof breaks into two parts: in part (i), we show that a[blxmax2m; in part (ii), we show that

alblxpcm.
@
alblxpx=alblimud n(m +a)))
=alblmvualbl(bn(m +a))
=mualb]l(b n(m +a))

2m

(ii)
alblxpm=alblm o n(m = a)))
=glblmualbl{bn(m +a))
=mualbl(b n(m +a))
cmu(alblbnalbl(m +a))
=mulanalblm +a))
=mu(@n(@=b)u(@nbn(m+a))v((m+a)=b))

™

=mu(@an(@=b)uv(@nanbnim+a)v@n((m+a)=b))

Because a ~bca, the second term (an(a =b)) simplifies to a=b. By (14),
an(m +a)y=anm, so the third term simplifies to anbnm. However,
(@ <b)u@nbnm)calblm =m, so the last line in the above derivation simplifies to
mu{an{(m+a)=b)).

Additional simplification is possible because, by (13), we have (m +a)~b cm +a. Therefore,

an(m +a)=b)cm,anda(blxmcm. (**)
Combining (*) and (**), we have m calblx,.cm;hence,alblxp=m. O
PartII. Show that X pa is the maximum x such thatalblx =m.
Suppose that x is an element such that a [b]x = m. We will demonstrate that x C X yay.
m=alblx
={a<b)v(@nbnx)u(x =b)
x~bcm
xcmub *)
anbnxgcm
xcm +(anb) (**)

Putting (*) and (**) together, we have

xc(mub)n(m +{a@anb))
=(mnm<(@nb))vdnim+(@nd))

=mubn(m +(@nb))) by (15)
=mubn{(brm)+(b nlanb)))) by (24")
=moudn({bom)+®dna))

=mubn(im+a)) by (24"
:xw

O

7.4. Properties of Solutionsof a[blx =m
LEMMA. Solutions of a{blx =m are closed under v

PROOF. Let x; and x, be two solutionsof a[b]x =m (i.e.,alb]lx;=m and a[blx, = m).

albl(xivx))=alblx;valblx,
=mum
=m

a
LEMMA. Solutions of a[blx =m are closed under .

PROOF. Let x; and x, be two solutions of a[blx =m (i.e., a[blx;=m and a[blx,=m). The proof
breaks into two parts: in part (i), we show that a[bl(x;nx)cm; in part (i), we show that
alblx;nx)om.

@
albl(x;nx)calblx;nalblx,

=mam
=m *

(ii) Because alblx;=m and alblx=m, we know that x,Dx,;, and ngx,,..-,.; therefore,
X1MX22 X min.
albl(x;nxy)=(a =b)ul(anb nxnxy)u((x;nxy) - b)
2(a ~b)u(@nb Nxpmp) V(X min=b)
=m **)

Combining (*) and (**), we have m ca[b](x;nxy)cm; hence, a[bl(x;nxx)=m. O

THEOREM 7. Solutions of alblx =m form a distributive lattice with least element x ;, and greatest ele-
ment X paz.

PrROOF. Immediate from the previous two lemmas, together with Theorem 5 and Theorem 6. O

7.5. Separating Consecutive Edits by Re-Rooting

In this section, we consider a different approach to the problem of separating consecutive edits to a base
program into individual edits on the base program.

Example. Consider again the case of two consecutive edits to a base program O, where O +AA is the
result of modifying O, O +AA +AB is the result of modifying O +AA, and we want to create a program
O +AB that includes the second modification but not the first. Our approach is to re-root the development
history O — O +AA — O +AA +AB so that O +AA, rather than O, is the base program. Programs O
and O +AA +AB are treated as two variants of O +AA. For instance, instead of treating the differences
between O and O +AA as changes that were made to O to create O +AA, they are now treated as changes
made to O +AA to create O: when O is the base program, a statement s that occurs in O +AA but not in
O is a “new” statement arising from an insertion; when O + AA is the base program, we treat the missing s
in O as if a programmer had deleted s from O +AA to create O. (The status of variant O +AA +AB is
unchanged; it is still treated as a variant derived from O +AA.) O +AB is created by integrating O and
O +AA +AB with respect to base program O +AA, that is, by performing the integration
O[O0 +AAYO +AA +AB),

In this section, our algebraic techniques are used to demonstrate that this approach is, in fact, reasonable.
We show below that, although in general it does not produce an integrand compatible with base O,
integrand O +AA, and result O +AA +AB (even when a compatible integrand does exist), the element E

produced, where E =0 [0 +AAJO +AA +AB), has the property (O +AA)O]E 20 +AA +AB. This
property shows that E captures everything that is different between O +AA +AB and O + AA (as desired),
plus more.

THEOREM 8. a[bim calbl(mlalb).
PROOF.

alblmlalb)=(a~b)u(@anbnmlalb)w(mlalb ~b)
=(@~b)v@nbn(m=a)yv@nbam)ud =a))v(m-a)=-b)
=(@=b)u@nbn(m=-a)v(@nbnanbrm)u(@nbnd ~a)v(im+-a)=b)
=(@+b)v@nbnom)v@n(b +a))v((m=a)=-b)
=((av(im =a))=~b)u@nbnom)v(an(b =a))
=((mua)~b)v@nbnm)u@np +~a))
=(m ~a)v(m=b)vu@nbnm)u@n(d ~a))
Dalbim

COROLLARY. Ifa[blm =m, thenm ca[bl(mlalb).
PrOOF. Immediate from Theorem 8. [
We can show by means of an example that the < in the above corollary is, at times, strict.

Example. The programs shown below have the properties that a{b]m =m and m ca [bY(mlalb).

a b m alblm mlalb albl(mlalb)
program program program program program program
x:=1 =1 x =1 x:=1 x:=1; x =1
y=x y =X y =2 y =2 yi=x; y=x;
end z:=y wi=Yy =y z:=Y; y=2;
end end end Yy i=2; W=y
w =Yy end
end

Note that m c a[b](m[a]b) due to the presence of the slice

program
x =1
y=x
end

ina[b](mlalb). Even though this slice is not a subslice of m, it does occur in a, b, and m [a]b; thus, itis
part of a nb ~nm[a]b and hence occurs in a[b}(m[a1b).

8. ACOMPATIBLE BASE

We now tum to the question of whether there is a base element compatible with given integrands a and b
and result element m; that is, we want to know “When does there exist an element x such that
alxlb=m?7

8.1. Existence of a Compatible Base

Note that, because a [x1b is anti-monotonic in x, we have
anb=al[llbcalxlb=m=alxlbcalDb =aub.

LEMMA. alxlb=m has a solution for x iff (@=-(@=m))~{@anby=m-=b and
b=b--m)=bna)=m-+-a.

PROOF.

= case:

Assuming that a[x]b =m has a solution for x, we must show that (a = (@ ~m))~(@nb)=m =~ b and
(b=®=-m)~(bna)=m+a. The proof breaks into two parts: in part (i), we show that
(@a=(@~m))=(@nb)cm ~b; in part (ii), we show that (a ~ (@ ~m))=(a nb)2m ~b. (The identi-
cal arguments with @ and b interchanged show that (b = (b = m))~(bna)=m ~a.)
@
(@a=@+m)=@nb)=(a~+(@=-m)-a)va~(@-=m)=b)
=@u((a=b)=~(a+m))
=(@=b)*(am)
cm-=b by (21)
(i)
(@a-@=m)=~@nb)y=(a+@=-m)=a)u((a=(@=-m)-=b)

=@u((a=b)=(a+m))
=(@=b)=-(a+m)

(m=b)~((@~(@=m)=~(@nb))=(m=b)~({a~b)=(a~+m))
=(alxlb ~b)=~((@a ~b)=(a=m))
=(@a+x)=b)=~(a=+b)=(a+m))
=(a=b)~x)=(a=b)+~(a~+m))
c@+m)~x by (21)
=(@<x)~m
c(@=+x)=m)yv(@nxnb)=m)u(®d ~x)=-m)
=((a=~x)v(@nxnb)ub ~x))-m
=alxlb-m
=m-m

=
Therefore, (@ ~ (@ ~m))=~(@nb)om =~ b. (**)

Putting (*) and (**) together, we have m=bo(@=-(@-m))~(anb)om b, hence
(a>(@a~-m))=(anb)y=m-=>.

&= case:

Assuming that (@ ~ (@ *m))~(@anb)=m ~b and (b ~ (b ~m))~ (b na)=m = a, we must show that
a[x1b = m has a solution for x. We will show that a solution exists by showing that (a ~m)u (b ~m)is
a solution.

The proof breaks into two parts: in part (i), we show that a[(a ~m)u (b = m)}b <m; in part (ii), we
show thata[(a ~m)w (b ~m)lbom.
@
al(@a=m)wu®~m)b=(@~+{(a+-myvd--m)v@na=m)vbd-=-m)nb)
v =(a+m)ud=-m))
=(@=@=m)=-{b-m)vi@nbnia=-m))
vi@anbn®d =m)v(d=0b-=-m)=(@-m))
c@nm)=@®b +m)vian(~m)) by (30)
v((bnm)=~(@=-m)vbn(a+m))

—26—

cl@=@G=m)nm-={G-m)))v@nd-m)) by29)
u((b-'-(a*m))ﬁ(m*(a*m)))u(bﬁ(a*m))
=(((@=®-m)v@n®=m))n(m-~@® -+ m))U(an(b =m)))
(b =@=m)udn@=mMn(m=@=m)vdanl@=-m)))
=(@n(m=b -m)v@and =m))) by (26)
vbn((m-=(@-~ m))U(bn(a ~m)))
=({(@an(m=@b-m))vi@anb +m))
u(Bn(m =(@<m))vdna- m)))
=@n(m=®-m)vd =m))vdn((m=(@=-m))v@-=m))

=@n(mud=-m)Hvdnimu(a+m))) by (14)
=@n{mub))ubn(mua)) by (14)
=(@vb)n@u(mua)ndbumub))n(imvavb)
=(aub)n@um)nbum) because m ca wb
=(@ub)n({(@nb)u(mnb)u(@nm)um)
=(@vb)nm because a nb cm
=m because m ca vb
Therefore, m 2al(a ~m)u(b ~m)lb. *
(i)
al@a =m)u ~m)lb2alalmiblb by the anti-monotonicity of a [x]b
=alla+m)vl@nmanb)ud ~-m)lb
=al(a ~m)u(@nb)ud ~m)lb becausea nbcm

=@=(@+m)v@nb)u -m))v@n((a-m)ul@anb)od ~m)nb)
v = ({(a@a=-m)vl@anb)u(d+~m))

=(((@a=@=m))=@nb))~(b +m)vianbd)
v(((b = +m))=~(anb))+(a+m)

=((m =b)=(b -m)u(@nb)u((m ~a)=(a ~m)) by the assumptions

=(m ~b)v(@nb)u(m~a) by (33)
=(m ~(anb))v(anbd) by (17)
=m
Therefore, al(a ~m)u(® ~m)lb am. (**)

Putting (*) and (**) together, we have mpDpal(a<-m)u(b-m)lbom, hence,
alla=m)vb =m)b=m. 0

8.2. Existence of a Minimum Compatible Base

In this section, we show that when the equation a[x]b =m has a solution for x, (@ = m)u (b + m) is the
least solution.

THEOREM 9. If alx]b =m has a solution, then (a ~m)v(b ~m) is the minimum x such that
alxlb=m.

PROOF. By the proof of the previous lemma, if the equation a[x]b =m has a solution for x, then
(@ =m)u (b = m) is a solution to the equation. It remains to be shown that (a = m)u (b ~m) is the least
solution.

In the following derivation, let x be any solution to the equation a[x}b =m.
D=m-m

=alx]lb ~m

=@ ~x)v@nxnb)u ~x)=m
=((@@+x)=m)yv(@nxnb)>m)u(b-x)+-m)
=(@~m)=x)vu{(@nxnb)=m)u(d-m)=- x)
o2((a=m)=x)u({(b-m)-x)

=((a~m)od ~m))=x

-7 -

Therefore, (@ ~m)v(b ~m))~x =D, and hence (@ ~m)v(b ~m)cx. O

8.3. Properties of Solutionsof a[x]b =m
LEMMA. Solutions of alx1b =m are closed under .

PROOF. Let x, and x, be two solutions of alx1b =m (i.e., alx,]b =m and a[x,]b =m). The proof
breaks into two parts: in part (i), we show that a [x; nx,]b'2m; in part (ii), we show that a[x; nx,]b cm.

®

XiNXa Xy
alxinx,lb oalxlb by the anti-monotonicity of a[x]b
=m *)

(i)
alxy nxalb =(a = (x;nx) (@ nxinxnb)ub = (x1nx2)
=(a=x)v@ ~x)uv(@nx;nxnb)u ~x)ub ~x))
cla~x)ul@nxnb)ud ~x)u(a-xu(@nxnb)ub ~x5)
=alx}bvalxyld
=mum
=m **)

Putting (*) and (**) together, we have m ca(x;nx,lb cm; hence, alx;nxolb =m. O

9. RELATION TO PREVIOUS WORK

In unpublished work, Susan Horwitz and I found proofs of several algebraic properties of the program-
integration algorithm from [6,7]. The results given in this paper consist of the analogues for Brouwerian
algebras of these earlier results, together with a number of new results. However, the method of proof used
in this paper is much different than the proof techniques used to establish our earlier results, which
involved complicated arguments—with many sub-cases and argument by reductio ad absurdum—about
operations on dependence graphs. In contrast, the proofs given in this paper are strictly algebraic in
nature, making use of the rich set of algebraic laws that hold in Brouwerian algebras.

The work described here was motivated by the desire to find a simpler way to prove properties about
program integration. In this, I feel it succeeds—proofs in Brouwerian algebra are less complicated than
direct proofs about dependence graphs. It also provides an abstraction for studying common properties of
variations on or extensions to the program-integration algorithm. The integration operation in a
Brouwerian algebra is defined purely in terms of v, ~,and =, and thus has an analogue in all Brouwerian
algebras. Thus, to show that a proposed program-integration algorithm shares these properties, one merely
has to show that the algorithm can be cast as an integration operation in a Brouwerian algebra.

It is important to understand that, because the set of dependence graphs does not form a Brouwerian
algebra, not all of the results established about integration in Brouwerian algebras carry over to the
program-integration operation of [6,7]. However, it is possible to generalize that algorithm slightly by
constructing a Brouwerian algebra from sets of dependence graphs. As shown in Section 4, the
downwards-closed sets of single-point slices form a (double) Brouwerian algebra. The operation a [b]c in
this algebra is very close to the integration operation of [6,7]. In this algebra (as well as all other
Brouwerian algebras), the operation a [b]c satisfies the properties demonstrated in the paper.

One of the virtues of this generalization of the integration algorithm is that it removes a restriction that is
part of the original algorithm. In the original algorithm, it is assumed that a specialized program editor—
providing a tagging capability so that common components can be identified in different versions—is used

-28 -

to create the program variants from the base program. As discussed in Section 4, it is possible to construct
dependence-graph algebras for which this restriction is no longer necessary; the elements of these algebras
do not have tags on their components. Thus, in principle it is no longer necessary for program integration
to be supported by a closed system; programs can be integrated, no matter what their origin.

Some of the properties of a[b]c in Boolean algebras are discussed in [4,5]. The notation a[b]c that
has been used here for the integration operation in Brouwerian algebras is taken from that paper.

APPENDIX: ALGEBRAIC LAWS FOR BROUWERIAN ALGEBRAS

This appendix covers algebraic laws that hold for Brouwerian algebras. The material presented here is
meant to make the paper self-contained; further information about Brouwerian algebras can be found in
91

Fundamental Properties of -
(@ a=bcciffacbuc
() a-=-b=min{z|lacbvz)

Algebraic Properties of =

The following properties of Brouwerian algebras are taken from [12] (pp. 59-60); the numbering for laws
(4) — (24) follows that given in [12]. (In [12], the laws are expressed in dual form, using a “pseudo-
- complement” operator, rather than in the form given below, where pseudo-difference is used.)

@ b-a=Qiffaab
(5 a=biffb-a=D=a-=+b

©6) a+-a=9
N Dra=9
8 b-D=b

9 (@-~-a)ub=b
(10) av® ~a)ab
PROOF.

b-a=b-+a
b~acgh-+a
bc(+a)va “ by (a)

a
(11) Ifa,2a,thenb ~a,0b ~a,
PROOF.

a2a;
avb ~aynavd ~ay
ob by (10)

a,v({b = ay) b, hence, by fundamental property (a), b ~a,2b ~a;. O
(12) Ibeszlheﬂ bl ~a sz—'-a

(13) bob ~a
PROOF. b cb va, hence, by fundamental property @), b ~acb. O

-29

(14) av(ta)=avb

(15) (b ~a)vub=b

(16) (b ~a)v(c+a)=(vc)~a

a7 (¢ ~a)v(c =b)=c =(anb)

(18) (c ~b)~a=c~(avb)=(c +a)=b
(19) a+c2b=c)=(b+a)=c)

20) (b ~a)v(c ~b)oc+a

(21) (b +a)a(c+a)*=(c+b)

22) ao(@vb)=b

23) (c=b)~ax(c+a)=(b ~a)

PROOF.

aul+a)v(c ~b)+a)y=avbu(c-b)
=auvbuc
oc¢

ccavd -a)u((c ~b)~a)
c~ackhra)yv{(c ~b)=-a)
(c+a)~(b+a)c(c ~b)+a)

a
24) cv(cvwb)=(cva)=cu ~a)
PROOEF.

cu((cuvb)=(cva)=cu((c =~(cva)v(b ~(cva))
=cv(@u(b ~(cva))
=cu(b ~{cva))
=cu((b+a)=c)
=cu(b ~a)

a

Additional Algebraic Properties of ~
25) (@=+b)~(anb)=a~+b
PROOF.

(@a+b)=(@anb)=(a=b)=a)u(la=b)=b)
=((@~a)=b)ula=(buvb)

=(@=b)u(a=b)
=@u(a ~b)
=q-=b
O
(26) (b ~a)vbna)=b
PROOF.
(b=-a)una)=(b+a)ub)n((b+a)va)
=bn(@avb)
=b
m

27 (¢ =b)+a=(c ~a)~(b+a) (This is a stronger version of (23).)

PROOF.

by (14)
by (14)

by (a)
by (a)

by (16)
by 4)

by (18)
by (14)

by (17)
by (18)
by (6)
by (D

(28)

29

(30)

€2y

(32)

(33)

(34

-30—

(@) (c=b)~ax(~a)=(+~a) by (23) *)
()b b ~a by (13)
(c+a)={d-a)a(c+a)=b by (11)
=(c+~b)*a by (18) **)

Putting (*) and (**) together, we have (¢ ~b)~a2(c ~a)=(b ~a)a(c ~b)-a; therefore,

(c~b)~a=(-=a)=(b+a) O

(anb)+ccanp=c)

PROOF.

((@anb)=c)+(@nb =cH=(anb)=c)~a)yv(((anb)=c)=~b =c)
=(((anb)za)=c)v((@anb)=(cvb ~c))
=(@=c)u((@nb)=(bvc))
=dud
=

Therefore, (a nb)~ccanp ~c). O
(@nb)+ccla=c)nb ~c)
PROOF.

(@anb)=c)=(@=c)nb=c)=(anb)~c)=(@=c)Hvanb)=c)=b =c))

—(@nb)=(cula=c))ul@anb)=(c o ~c))
= (@nb) = @ucHul(@nb) = (bve)

=@ud

=

O
b=~(b-+a)canb
PROOF.

b=@nb)ub+a) by (26)
bc@nb)u ~a)
b= <~a)canb by (a)

a

Ifa~bcbh,thenach

PROOF. a ~ b cb, thereforeacbub =5. O
¢ ~(avb)c(c ~a)n(c ~b)

PROOF.

c=(avb)c(c ~a)
¢ ~(avb)c(c ~b)

Therefore, ¢ ~(avwb)c(c ~a)n{c =b). O
(a-b)=~Mb+a)y=a-~+b

PROOF.
@ (@=~b)=b-+-a)ca-=b by (13)
(i)(@a=+b)=~(b ~a)2(@=b)~b by (11) and (13)

=a-<b by (18)
Therefore, (a ~b) (b ~a)=a ~b. O

aub)~(@anb)=(a=b)u +a)
PROOF.

~31 -

(@avb)~(@anb)=(a=@nb))ub =(anb)) by (16)
=(a ~a)vla =b)ud ~a)u ~b) by (17)
=(a+b)u(b ~a) by (6)
O

Fundamental Properties of +
@) a+bociffanbnc

®) a+b=max{zlapbnz)

Algebraic Properties of +

@4) b+ra=liffach

(5 a=biffb+ta=1=a+b
(65 a+a=1

7 1+a=1

@) b+1=b

9) (@+a)nb=b

(10 an(d +a)ch

(11) Ifa;caythend +a,cb +ay
(12 If bycb,ythenb; - achr,+a
(13 bch +a

(14 an +a)=anb

(15) (b+a)nb=>b

(16" (b ~a)n(c +a)=(Bnc)+a
(A7) (c +a)n(c +b)=c +(avb)
(18) (c +b)+a=c+(@nb)=(+ta)+bh
A9 a+cc+c)=((b+a)+c)
Q0 (b +a)n(c +b)cc +a

Q1) b +a)g(c+a)+(c+b)
22) ag(@nb)+b

23) (c+b)+ac(+a)+® +a)
24D cn(cnb)+(cna))=cnb +a)

Relationship Between - and +
PROPOSITION. (@ = b)n(b ~a)=an(b ~a).

PROOF, The proof splits into two cases: in part (i), we show that (@ +b)n(b ~a)ca n(b + a); in part
(ii), we show that (@ = b)n (b ~a)2an(b ~a).

~32-

(i) Wewillshowthat(a +b)n(b ~a)gcan(~a).
(a+b)n~a)ca+b,so({a+b)nb-a))nbca. ™
(a+b)n(d+a)ch ~ach,therefore, (@ - b)n(b ~a))nb=(@+b)n(~a). **)
Substituting (**) into (*), we have
@+b)n-+a)ca
Therefore, (a ~b)n(b ~a)can(d ~a). ‘ M

(ii) We will show that (@ +b)n(b ~a)2a n(b ~a) by showing that (a) b ~a nan(b ~a), and
(b)a+boan ~a).

(a) follows immediately from the properties of n. To show (b), we have

a Da
2an(+a)
abnan ~a)

Therefore, a +b 2an (b ~a).
Thus, (@ = b)n(b ~a)2a (b ~a). ®

Combining (1) and (}), we have (@ + b)n(b ~a)=an(b ~a). [
PROPOSITION., bu((b +a)~a)=b +a.

PROOF. The proof splits into two cases: in part (i), we show that b v ((b +a)~a)cbh + a; in part (ii),
we show thatb v (b +a)~a)2b + a.

®

bch +a by (13)
(b+a)~ach=+a by (13)
Therefore, b u((b +a)~a)ch ~a. *
(i)
boan(b +a) by (10)
o +a)=(b+a)=a) by (30)
Therefore, b u((b +a) ~a)2b +a. (**)

Putting (*) and (**) together, we have b +abu((b+a)+a)ob+a. Therefore,
bu({b+a)~a)=b+a.O

COROLLARY. (b +a)~bg(+a)=>a.

PROOF.
bra=bu(b+a)=a) by the previous proposition
bragbu((b+a)=a)
b+ra)~bch+a)+a by (a)
O
ACKNOWLEDGEMENTS

Tony Hoare suggested using the notation a {b]c for the integration operation and pointed out the existence
of [4,5], which discusses properties of a[b]c in Boolean algebras. Susan Horwitz provided many com-
ments and helpful suggestions.

-33 -

REFERENCES

L.

10.

1L

12.
13.

14.
15.

16.

17.

Donzeau-Gouge, V., Huet, G., Kahn, G., and Lang, B., “Programming environments based on structured editors: The MENTOR
experience,” pp. 128-140 in Interactive Programming Environments, ed. D. Barstow, E. Sandewall, and H. Shrobe, McGraw-Hill,
New York, NY (1984).

Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems %(3) pp. 319-349 (July 1987).

Habermann, A. N. and Notkin, D., “Gandalf: Software development environments,” IEEE Transactions on Software Engineering
SE-12(12) pp. 1117-1127 (December 1986).

Hoare, C.A.R., “A couple of novelties in the propositional calculus,” Zeitschr. f. math. Logik und Grundlagen d. Math. 31 pp.
173-178 (1985).

Hoare, C.A.R., “A couple of novelties in the propositional calculus,” pp. 325-331 in Essays in Computing Science, ed. C.B.
Jones,Prentice-Hall, New York, NY (1989).

Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” pp. 133-145 in Conference Record of the
Fifteenth ACM Symposium on Principles of Programming Languages, (San Diego, CA, January 13-15, 1988), ACM, New York,
NY (1988).

Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” To appearin ACM Trans. Program. Lang.
Syst., (1989).

Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler optimizations,” pp. 207-218
in Conference Record of the Eighth ACM Symposium on Principles of Programming Languages, (Williamsburg, VA, January
26-28, 1981), ACM, New York, NY (1981).

McKinsey, J.C.C. and Tarski, A., “On closed elements in closure algebras,” Annals of Mathematics 47(1) pp. 122-162 (January
1946).

Notkin, D., Ellison, R.J., Staudt, B.J., Kaiser, G.E., Kant, E., Habermann, A.N., Ambriola, V., and Montangero, C., Special issue
on the GANDALF project, Journal of Systems and Software 5(2)(May 1985).

Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,” Proceedings of
the ACM SIGSOFTISIGPLAN Software Engineering Symposium on Practical Software Development Environments, (Pittsburgh,
PA, Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics, Polish Scientific Publishers, Warsaw (1963).

Reps, T. and Teitelbaum, T., “The Synthesizer Generator,” Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development Environments, (Pinsburgh, PA, Apr. 23-25, 1984), ACM SIGPLAN Notices
19(5) pp. 42-48 (May 1984).

Reps, T. and Teitelbaum, T., The Synthesizer Generator: A System for Constructing Language-Based Editors, Springer-Verlag,
New York, NY (1988).

Reps, T. and Yang, W., “The semantics of program slicing,” TR-777, Computer Sciences Department, University of Wisconsin,
Madison, WI (June 1988).

Reps, T. and Yang, W., “The semantics of program slicing and program integration,” pp. 360-374 in Proceedings of the Collo-
quium on Current Issues in Programming Languages, (Barcelona, Spain, March 13-17, 1989), Lecture Notes in Computer Sci-
ence, Vol. 352, Springer-Verlag, New York, NY (1989).

Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering SE-10(4) pp. 352-357 (July 1984).

