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sharp minimum. An important application of the MPS property is that minimizing on the feasible region
a linearization of the objective function at a point in a neigborhood of a solution point gives an exact
solution of the convex program. This leads to finite termination of convergent algorithms that periodically

minimize such a linearization.
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1 Introduction

It is well known by the minimum principle (see [8, Theorem 9.3.3] and [16, Theorem 7.1.1])
that each solution of a convex program with a differentiable objective function minimizes the
linearization of the objective at any solution point on the feasible region. Our concern in this
paper is the converse: When do all minimizers (over the feasible region) of a linearization of
the objective function at any solution point give an exact solution of the convex program? To
see that this converse does not hold in general, even when the objective function is strongly
convex, consider the trivial example: ming»o2? with the unique solution = 0. For this
problem, arg min 5, (V f(Z),z) is the nonnegative real line, which is the entire feasible re-
gion of the problem, rather than the optimal solution set. Curiously however, for a solvable
monotone linear complementarity problem, the converse implication holding is completely
equivalent to the existence of some nondegenerate solution to the complementarity problem
(see Theorem 13 below). We shall refer to this converse condition as the minimum principle
sufficiency (MPS) property. Part of the importance of the MPS property stems from the
consequence that minimizing a linearization of the objective at any point in a sufficiently
small neighborhood of any solution point gives an exact solution of the convex program (see

Theorem 10 and Corollary 14 below). This leads to a finite termination of any computa-

tional algorithm which periodically solves the linearized problem mingeg <V f(zh), :c> where

{mk} are the iterates of the algorithm. Related results on finite termination have recently

been given in [5, 4, 1, 3]. Another useful relation is the equivalence of the MPS property to
the existence of a weak sharp minimum [6] for convex quadratic programs. The weak sharp
minimum property, which is naturally possessed by all solvable linear programs [14] extends
the finite termination property of the proximal point algorithm for linear programs[17, 2] to
convex programs|6].

The paper is organized as follows. In Section 2 we give various results for the MPS
property for general convex and quadratic programs and in Section 3 we specialize and

sharpen these results to monotone linear complementarity problems. The monotone linear



complementarity problem seems to be a particularly suitable problem for invoking the MPS
property in the sense that it endows the problem with a useful quasi-linearity property which
was already pointed out in [12]. In [12], the MPS property was obtained as a consequence of
nondegeneracy. In this paper we show that these two properties are equivalent to each other
as well as the existence of a weak sharp minimum for the equivalent quadratic program.

The first principal result of Section 2, Theorem 3, establishes the MPS property for a
general convex program with a twice differentiable objective function under the assumption
that the span of the Hessian of the objective function is contained in the algebraic sum of
the normal cone to the feasible region at any optimal point plus the cone generated by the
gradient of the objective function at any optimal point. This sufficient condition for the MPS
property turns out to be also necessary for a convex quadratic program (Theorem 6). It is
also equivalent to the existence of a weak sharp minimum for a convex quadratic program
(Theorem 6). In Theorem 9 we give a simple proof of a strong-upper semicontinuity result
for perturbed linear programs due to Robinson[18] which shows that if perturbations of a cost
vector of a linear program converge to an unperturbed cost vector such that each perturbed
problem is solvable, then for all sufficiently small but finite values of the perturbation, all
solutions of the perturbed problems solve the unperturbed problem. This result is used in
Theorem 10 to show how finite termination can be achieved under the MPS property by
periodically solving a problem with a linearized objective function.

In Section 3 we specialize the MPS property to linear complementarity problems (LCP’s).
We first show (Lemma 11) that for a feasible LCP, its linearization at any feasible point is
solvable. In Theorem 12 we show that for an LCP with a nondegenerate vertex solution, the
linearized problem at any point in a neighborhood of the vertex solution is uniquely solved
by the nondegenerate vertex. The principal result of Section 3, Theorem 13, establishes the
equivalence of nondegeneracy, the MPS property, the existence of a weak sharp minimum,
as well a normal cone inclusion property for a monotone linear complementarity problem.
Corollary 14 shows that for nondegenerate monotone linear complementarity problems, solv-
ing the linearized problem at a point in the neighborhood of any solution point (degenerate

or not) will yield a solution to the LCP.



A brief word about notation is provided here for the reader’s convenience. For a vector
in the n—dimensional real space IR®, ||z|| will denote the Euclidean norm and (z, y) will denote
the scalar product of z and y in IR™. For an m x n real matrix A signified by A € R™*, A,
denotes the ith row, while AT will denote the transpose. For M € IR**®_ |[M]| will denote
the Euclidean norm. The identity matrix will be denoted by I while a vector of ones will be
denoted by e. The closed ball of radius é around Z will be denoted by IBs(%X). The normal
cone N(Z | S) to a convex set S C IR at € S is defined by {y| (y,z —z) <0,Vz € S}.
For a differentiable function f:IR™ — IR, V f(z) denotes the gradient at z. For a convex set
S C IR™ the cone generated by S is defined by cone S = {Az| A > 0,z € S}. For a matrix
B € R™*" we define the linear spaces span(B) and ker B by {z| z = Bu,u € IR*} C IR™ and
{u| Bu=0,u € IR} respectively and the conjugate cone conj B by {u| Bu > 0,u € IR*}.
If S € R" and f:IR® — IR, the set arg min,g f(z), denotes the (possibly empty) solution

set of minges f(z) and if S is convex, the set arg vertex .S denotes the (possibly empty) set

of extreme points of S.

2 Convex and Quadratic Programs

We shall be concerned with the convex program

minimize  f(z)

(1)

subject to € S

where S is a closed convex subset of IR® and f:IR® — IR is a differentiable convex function

on IR". We assume that the solution set of (1)

S: = arg min f(z)
z€S

is nonempty. We begin by stating the following key result that will be used throughout the
paper.



Theorem 1 ([13]) Let f be differentiable and convez on IR®, let S be a closed conver subset
of R* and let € S. Then

S={z eS| (Vf(a),z—3)=0,Vf(z)=Vf(@)}
={z € S| (Vf(2),2—-7) <0,Vf(z)=V[(z)} (2)

As a consequence, the minimum principle (see [8, Theorem 9.3.3] and [16, Theorem 7.1.1})

can be written in the following form which will be useful for our purposes.

Theorem 2 Let f be differentiable and conver on IR®, let S be a closed convex subset of
IR™. Then
(Vf(z),z—y) >0,Vz,y e S,Vz € S

It is obvious from the minimum principle that S C argmin,eg (Vf(z),2) for all z € S.
We begin by giving a sufficient condition for the opposite inclusion for the general convex
program (1). Later, we will show this condition is also necessary for a convex quadratic

program and the monotone linear complementarity problem.

Theorem 3 Let f be a twice differentiable conver function on IR®, let S be a closed convex

-subset of R®, let £ € § and let

Hz):= | TV (3 + 1z — 7)) dt

Then
span(H(S)) € N(z | S) + cone Vf(z) = argmin(Vf(z),z) C S (3)

z€S

where N(Z | S) is the normal cone to S at Z, coneV f(Z) is the cone generated by V f(z)
and span(H(S)): = U,esspan(H(z)).

Proof
span(H(S)) € N(z | S) + cone V f(z)
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< Vz € §,Vh € R®,3¢(x,h) > 0:
(H(z)h — EVf(Z),y—T) <0 Vye S

_ < Vz € S,Vh € R, 3¢(x,h) > 0 :
(H(z)h — ¢V f(z),z - &) <0

(Set y = z in previous statement)

< Vhe R*: (Vf(z),z—-z) <0,(H(z)h,z—Z) >0

has no solution z € S

(For if it did have a solution z € S then we would contradict
the previous statement)

&> (Vf(z),z—-2z) <0,H(z)(z — Z) #0, has no solution z € S
< (Vf(z),z—-z) <0,z € 5, Vf(z)#Vf(z) has no solution
(Since Vf(z) — Vf(z) = H(z)(z — T))

< argmin(Vf(z),z) CS
zeS

the last equivalence following from Theorem 1. 0
It is interesting to note that the first inclusion of (3)
span(H(S)) C N(z | S) + cone V f(Z)
which is an extension of the Minimum Principle (Theorem 2)
0e N(z|S)+ Vf(z)

may be interpreted as the inclusion in N(Z | S) + cone V f(Z) of all possible contributions of
the gradient of the “quadratic part” of f. When f(z) = 1/2(z, Hz)+ (d, z), as in Theorem 6

below, this is merely Hz for all z.



We now show for a convex quadratic program that the backward implication of (3) also
holds, and in fact the MPS property is equivalent to the existence of a weak sharp minimum

[6] for the convex quadratic program. First of all, we define this notion.

Definition 4 ([6]) Let f:IR" — IR and S C IR™ be convezx and let S:= argmin g f(z) be

nonempty and closed. The problem minges f(z) is said to have a weak sharp minimum

if there exists a positive constant o such that
f@)=F(P(z]8) > alz - P(z|8)|,vze S

where P(z | §) € argmin, 5 ||z — z|| and ||-|| is some norm on R™.

Note that all solvable linear programs have weak sharp minima [14]. Note also that a weak
sharp minimum generalizes the concept of a sharp minimum [16, p. 205], in which P(z | §)
is replaced by the fixed unique solution Z of minges f(z). The sharp minimum condition is
more stringent than the weak sharp minimum condition and does not hold, in general, even
for linear programs. We also relate the MPS property to the notion of nondegeneracy for the

convex problem and its dual. We shall use the following equivalent forms of the definition,

which we state as an easily established lemma.

Lemma 5 Consider the convex quadratic program minges f(z) with nonempty solution set

S and

f(z):= (e, Hz) + (d,z),S: = {z| Az > b,z > 0}

B | -

where H € IR™™ is symmetric and positive semidefinite, A € IR™*", d € IR® and b € R™.

The following are equivalent:
() minges f(z) and its dual have a nondegenerate primal-dual solution (%,4) (see (7))
(it) =V f(Z) €riN(2 | S) (see Dunn[5])

(ii) there exist (u,v) > 0 with Vf(2) = ATu + ITv where Ay = {A;| At = b;} and
I ={L;| % =0}.



We characterize now the MPS property for convex quadratic programs.

Theorem 6 Consider the conver quadratic program minges f(z) with nonempty solution set -

S and

f(z):==(z,Hz) + (d,z),S = {z| Az > bz > 0},2€ S

B -

where H € IR™™ is symmetric and positive semidefinite, A € R™*®, d € IR® and b € IR™
and let Az:= {A;| AiZ =b;} and Ini= {I;| Z; =0}. Then (i) to (iv) below are equivalent
and they imply (v).

(i) argmin,es (Vf(z),2) C § (MPS)
(it) minges f(z) has a weak sharp minimum (WSM)

(iii) span(H) C N(z | S) + cone V f(z) for each T € S, or equivalently

Az
conj Iz C ker H
~Vf(z)

(iv) span(H) C N(z | S) + span(V f(z)) for each z € S

(v) minges f(x) and its dual have a nondegenerate primal-dual solution (2,1)

Furthermore (v) implies (i) to (iv) under the assumption

span(H) C span(N(# | S)) + span(V f(%))

or equivalently

ker I; CkerH (4)
~Vf(£)



Proof Note that the equivalence given in (iii) follows immediately from the Farkas Theorem

[8, Theorem 2.4.6], since, for each z € S
span(H) C N(z | S) + cone V f(z)

< Hh = —ATu — o+ Vf(z)n >
has solution (n,u,v) > 0, Vh € R®
Az
= < I; x> 0,(h,Hz) > 0, has no solution z, Vh € IR® >
-V f(z)
(By Farkas Theorem [8, Theorem 2.4.6])
Az
= < Iz w20,::$H:c:0>

-Vi(z)

Az
<= conj Iz CkerH

-V (z)

(i) <> (iii) By Theorem 1, it follows that V f(Z) is constant on the solution set of a convex

program, and hence for any z € §

arg min(V f(z),z) C §
€S

has no solution z

- < (Vf(Z),2—2) <0,Az > b,z >0,V f(z)-Vf(Z)=H(z —z)#0 >

(By Theorems 1 and 2)

- < (Vf(Z),z—2)<0,Az > b,z > 0,(h, Hlz — %)) > 0 >
has no solution z, Vh € IR®



- < F(@)n + ATut v+ EHR = 0, (VF(&),8) 7 — (byu) — (b, HE)E+ p =0 >
has solution (n,u,v) > 0,0 # (£,p) >0, Vh € R®

(By Motzkin’s Theorem [8, Theorem 2.4.2])

< “Vf(j)n + ATU’ +v+ Hh = 0’ <Vf(.'1-2),f>17 - <b>u> - <haHi> S 0 >
has solution (n,u,v) > 0, Vh € R®

(Set ¢ = 1. For, if £ = 0, setting n = 0 contradicts primal feasibility,
while setting 7 > 0 contradicts the fact that (V f(Z), Z) = minges (V f(Z),z).)

- < ~Vf@n+ATu+v+ Hh=0,0 < (u, AT — b) + (v,7) <0 >
has solution (n,u,v) > 0, Vh € R™

(Substitute for Hh from the equality in the inequality)

<Hh: —Alu — ITv+ Vf(z)n >
has solution (n,u,v) > 0, Vh € R®

< span(H) C N(z|S) + cone Vf(z) for each z € S
(ili) <= (iv) The forward implication is trivial. For the backward implication we have by

Theorem 2 that
0€ Nz |S)+ Vi)

Combining this with
span(H) € N(z | §) + span(V ()

gives (iii).
(ii) <= (iv) See [3]

(i) = (v) We need to show that the dual quadratic programs [8, Problem 8.3.9]

mmin{%(a;,H:c)—l—(d,x)leZb,a:ZO} (5)

10



and

max{——%(w,Hm)—{-(b,u)lH:D~ATu+d2b,u_>_'O} (6)

T,u
have a nondegenerate primal-dual solution (£, @), that is

g+ H:—ATa+d > 0

(7)
a+AE—b > 0

Let # € S. By the nondegeneracy result for linear programming [7, Corollary 2A], the dual
linear programs

min {(V f(%),z) | Az 2 b,z > 0}

and

mgx{(b, u) ! ATu < Vf(&),u > 0}

have a nondegenerate primal-dual solution (Z, @), that is

>0,8>0,(0, A —b) = 0,4+ A% —b> 0

b
’ (8)
—ATa+ Vf(7) > 0,2 > 0,(&,— ATt + Vf(7)) = 0,& — ATa + Vf(F) > 0

By hypothesis of (i), # € S, and since & € S, it follows by Theorem 1 that V f() = V(%)
and therefore V f(&) can be replaced by Vf(Z) in (8). With this replacement conditions
(8) are sufficient Karush—-Kuhn-Tucker conditions for £ to solve the primal problem (5) and

(#,4) satisfy the nondegeneracy conditions. Since (£, ) is feasible for (6) and

= (& Hi — ATa + d) + (a, Az — b)
0

it follows that (£,4) is also optimal for the dual (6).

11



(v) = (iii) We establish this implication assuming (4) holds.

(v) <= Vf(&)— Afu— ITv = 0 has solution (u,v) > 0
(By Lemma 5)

= VF(#)¢ ~ Alu — ITv = 0 has solution (£,u,v) > 0

Az
= 0# I; z > 0 has no solution z
-V f(#)
(By Stiemke’s Theorem [8, Theorem 2.4.7])
[ 4 As
<= conj I C ker I
| —Vf(E) ~Vf(£)
B A -
=> conj I; C ker H
| —Vf(#) |

the last inclusion following from (4). Hence (iii) holds with & replaced by & which means
that (i) holds with Z replaced by & and since Vf(Z) = V f(£) by Theorem 1 the required

result follows. 0

Example 7 The example

minimize (x7 — 1) + (z2 + 1)?

subject to z1,x2 >0

does not have the MPS property at its unique solution point Z = (1,0). However, Z is
nondegenerate and does not satisfy (iii). This shows that condition (4) cannot be removed

for convex quadratic programs as is the case for monotone linear complementarity problems

(see Theorem 13).

12



We proceed now to show how the MPS property leads to an exact solution of a convex
program by minimizing a linearized objective function in a sufficiently small neighborhood
of any solution point. For that purpose we need a strong upper-semicontinuity result for
linear programs due to Robinson[18, Lemma 3.5], for which we give a simple derivation. We
employ an extreme point characterization of a possibly unbounded solution set of a linear
program which is based on a Goldman-Tucker characterization [7, Theorem 15] of such a
set. Our characterization is in terms of vertices of polyhedral sets (S and T') which depend

on the feasible region but not the objective function.

Lemma 8 Let

S:={z| Az > b,z > 0},5:= argmin{c,z) # 0 (9)
z€S

where A € R™™, b € R™ and ¢ € R™. Let

T:={z| Az >0,z > 0,(e,z) =1}

Then
S={z|z=rU+sV,r>0,{(e,r)=1,5 >0} (10)
where
U
U:=] i | = argvertex melél (¢, z) C arg vertex S (11)
Ui
and
" DifT =0 i 0
= ser (€, z) > ,
Vi=| ¢ | = < if or minzer (¢, ) > C arg vertex T (12)
v arg vertexminger (c,z), otherwise

Proof Note that either U or V may be empty. By [7, Theorem 15, p. 89], (10) holds with
U being defined by (11) and V being the finite set of extreme directions of optimal rays of

13



minges (¢, z). But by [7, Lemma 9, p. 87|, the rows of V are the extreme points of the set
fels €T, (ca) <0} = {z] o € T (e,z) = 0}

the equality following from (9). However, these extreme points are precisely the extreme

point solutions of minger (¢, z) when minger (¢,z) < 0, from which (12) follows. 0

We use the above lemma to establish Robinson’s strong upper-semicontinuity of solution
sets of linear programs with a perturbed objective function which is stronger than the upper

semicontinuity result of Meyer[15, Theorem 2].

Theorem 9 ([18, Lemma 3.5]) Let {ck} — ¢ such that argmin,g <ck,x> # 0, where

S:={z| Az > b,z > 0}. Then

arg min <ck,:c> Cargmin(c,z) # 0, for k> K, some K (13)
z€S €S

Proof Let §*:= argmin,g <c’°,w>, then by Lemma 8
S'k={$IIE=TUk+SVk,T20,<6,T>=1,SZO} (14)

where U* and V* are defined in (11) and (12) with ¢ replaced by c*. Since U* C arg vertex S

and V¥ C argvertexT and the sets argvertex S and argvertexT are finite and indepen-

dent of k, it follows that for £ > K for some K, there is a fixed finite number, say [,

of subsets {(U’“l, Ve L (U, Vk’)} of {(arg vertex S, arg vertexT")} that appear infinitely
often in the sequence {(U’“,V")} defining S* in (14). For each (U*,V*), j =1,...,1, the

corresponding S*i defined by (14) solves both minges (¥, z) for £ > K and minges (c, z).
O

We can immediately use the above theorem to show that for a differentiable objective function

minimization over a polyhedral set, the MPS property ensures finite termination with exact

solution of any convergent algorithm which periodically solves mingeg(V f(z*),z) where
g g €

{:ck} are the algorithm iterates.

14



Theorem 10 Let f:IR® — IR be a continuously differentiable function on IR®, let S:=
{z| Az > b,z > 0}, let {mk} — Z, {:ck} C S and let S*:= argmin, g <Vf(a:k),:t> # 0.
Then

Sk C argergin (Vf(z),z) #0 fork > K, for some K (15)

If in addition Z € arg min,cg f(z) and the MPS property is satisfied, that is

arg min (V f(z), ) C arg min f(z) (16)
z€S z€S
then
S* C argmin f(z) for k > K, for some K (17)
z€S

Proof The inclusion of (15) follows from (13) of Theorem 9 by setting ¢* = V f(z¥) and
invoking the continuity of V f(z). The inclusions (15) and (16) imply (17). 0

3 Linear Complementarity Problems

In [12] it was shown that the existence of some nondegenerate solution to a monotone linear
complementarity problem was sufficient for the MPS property to hold as well as for the
equivalent convex quadratic program (19) below to have a weak sharp minimum. In this
section we obtain the rather surprising result that all these properties are equivalent (The-
orem 13). They all lead to the useful property that solving a linearized complementarity
problem at a point in a sufficiently small neighborhood of a solution gives an exact solution

(Corollary 14). Throughout this section we consider the linear complementarity problem
Mz+¢>0,22>0,(z,Mz+q)=0 (18)
where M € IR™*" and ¢ € IR™. We define the equivalent quadratic program

0 = mip f(x) (19)

15



where
S:={z|Mz+q>0,2>0}, f(z): = (z, Mz + q) (20)

and the solution set of (18) and (19) as
Si={z|z €5, f(z) =0} (21)

We say that the linear complementarity problem is nondegenerate if it posseses a nonde-

generate solution, that is
1€8,24+Mi4+¢>0
We begin with an elementary result which shows that for any feasible linear complementarity

problem, not necessarily monotone, the linearized problem is always solvable. This result

also follows from [19, Lemma 3.2.4].

Lemma 11 S # 0 = argming,s(Vf(z),y) #0 forallz € S.

Proof The dual of the feasible primal linear program minyes (V f(z),y) is

maximize (—q,u)
: MTu < (M+MT)z+gq
subject to
u > 0
for which u = z € S is feasible. Hence the feasible primal linear program is solvable. 0

We next show that the linearized linear complementarity problem at any point in a sufficiently
small neighborhood of any nondegenerate vertex solution is uniquely solved by the
nondegenerate vertex solution. Note that the linear complementarity problem need not be

monotone, and the point at which the linearization is made could be infeasible.

Theorem 12 Let Z be a nondegenerate vertex solution of the LCP (18). Then % is a locally
unique solution of (18) and there exists a ball Bs(X) such that % is the unique solution of the

linear program

min (Vf(y), ),y € By(%) (22)

16



Proof That Z is a locally unique solution of (18) follows from [9, Corollary 3.2]. By The-
orem 1 we have that Z € arg min,cg (V f(Z),z). We also have that @ = & solves the dual

linear program

maximize (—q,u)
(uv)

v = —MTu+Vf(z)

subject to
(uv,v) > 0

Hence optimal dual basic variables (or optimal reduced costs) are given by
op=MiZ+q; >0, ay=2;>0

where IUJ = {1,...,n} and INJ = 0, by nondegeneracy. It follows from [10, Theorem
2.1] that Z is the unique solution of minges (V f(Z), z) and by [11, Theorem 4] it follows that

T = minges (V f(y), z) for all y satisfying ||V f(y) — Vf(Z)|| < € for some € > 0. The desired

conclusion of the theorem follows by letting 0 < § < AT 0

A practical consequence of Theorem 12 is that for a nonmonotone LCP with some nonde-
generate vertex solution it is advisable to periodically solve the linear program given by (22)
no matter what algorithm one is using, because Bs(X) may contain a current iterate and
hence an exact solution could be obtained by solving the linear program.

We now establish the principal result of this section, namely the equivalence of the
MPS property, the existence of a weak sharp minimum, nondegeneracy and a normal cone
inclusion property. Note that the nondegeneracy assumption for the LCP is equivalent to the

nondegeneracy assumption of Dunn[5] specialized to quadratic programs and also employed

by Calamai and Moré[4].

Theorem 13 Let the LCP (18) be monotone, that is let M be positive semidefinite and let
S #0. Then S # 0 and the following are equivalent:

(i)-(iv) as in Theorem 6 with S, S and f defined by (20) and (21).

(v) The LCP (18) is nondegenerate

17



Proof The implication S # @ = S # 0 is standard for M positive semidefinite. The
equivalence of (i)—(iv) follows from Theorem 6. The implication (v) = (i) follows (without
the extra assumption used in Theorem 6) from [12, Lemma 2.2]. We now establish the
implication (i) == (v) by contradiction. Note that the same implication from Theorem 6
cannot be used directly because it applies to minges (z, Mz + ¢) and its dual and not to the
LCP (18).

Let z € S, argmin,es (Vf(Z),z) € S and suppose that (18) is degenerate, that is, it

is not nondegenerate. Then, using (i)
n;ien{—el Mz+q¢>0,2>0,(Vf(z),z2—-z)<0,(I+M)z+q>e}=0 (23)

The dual of the linear program (23) is

T Ty, T =
<um?‘)x>o{~<q,u+v>—-<f,M:z>§ MTu+(I+ M%) - (g+ (M + MT)z){ <0 }

(e,v) =1

Let (u,v,&) be optimal dual variables, then setting the optimal dual objective equal to zero

and premultipling the first dual constraint by (u + v) gives:

M) €, (u+v, MTu+ (I + MT)v — £q — €(M + MT)z) <0 >
>

. <(u+v,v)+<u+v,.MT(u+v)>+£2(:7:,Mi':)—£<u+v,(M+MT):E>SO>
(e,v) = 1,(u,v,€) > 0

N <OS(u+v,v)+(u+v---§o':,M(u+v-§§:))go>
(6>U)=1,(U,'v,€)20

= < v=0,(e,v) =1 >
which is a contradiction.

The following corollary follows from the above theorem and Theorem 10.
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Corollary 14 Let the assumptions of Theorem 13 hold together with one of the conditions
(i)-(v). Let {azk} —Z €S, {wk} C S and let S*: = arg min g <Vf(mk),x>. Then

S5¥ C 8 for k> K, for some K
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