SIEVE ALGORITHMS FOR
PERFECT POWER TESTING

by

Eric Bach
Jonathan Sorenson

Computer Sciences Technical Report #3852

June 1989

Sieve Algorithms for Perfect Power Testing

Eric Bach and Jonathan Sorenson

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706
USA

June 19, 1989

Abstract.

A positive integer n is a perfect power if there exist integers z and k, both at least 2,
such that n = z*. The usual algorithm to recognize perfect powers computes approximate
kth roots for k < logn, and runs in time O(log® n).

We present an algorithm that avoids kth root computations by seeing if the input n is
a perfect kth power modulo small primes. If n is chosen uniformly from a large enough
interval, the average running time is O(log? n). We also give an algorithm that incorpo-
rates trial division and has an average running time of O(log’ n/ log® logn), and a median
running time of O(logn).

The first two average time bounds assume that a table of small primes is precomputed.
We give a heuristic argument and computational evidence that the largest prime in the
table is O(log't* n); assuming the Extended Riemann Hypothesis primes up to O(log®*t¢ n)
suffice. The table can be computed in time proportional to the largest prime it contains.

We also present computational results indicating that our new algorithms perform very
well in practice.

Sponsored by NSF [Grants DCR-8552596 and DCR-8504485]

University of Wisconsin Computer Sciences Technical Report #852

Typeset by ApS-TEX

1. Introduction.

This paper presents fast and practical algorithms for deciding if a positive integer n
is a perfect power, that is, can be expressed as z* for integers z,k > 1. By trying all
possible powers, this problem is solvable in O(log® n) steps. (This shghtly improves results
known to us and seems new.) Unfortunately, the average running time for this method is
not much better than the worst-case running time. We give algorithms in this paper that
perform much better on typical inputs. One of our methods has an average running time of
O(log? n), and another runs in O(log® n/ log’ logn) average time, with a median running
time of O(logn). Our average-case results assume that certain tables are precomputed; as
a practical matter these tables are small, but we need to assume the ERH to bound the
values of their entries.

In number theory, most analyses of algorithms address worst case complexity, although
there are some studies of average behavior [8, 11, 13, 19, 27]. However, we are unaware of
any average-case results for this problem.

Before describing our methods, we indicate some applications for them. The fastest
known methods for integer factorization [10, 23] find non-obvious solutions to the congru-
ence 2 = y? modulo n; if z and y are solutions with z different from +y, then ged(z—y,n)
splits n. However, if n is odd, such z and y will only exist if n is not a prime power, and
this condition should be checked before attempting to factor n. It is simplest to check that
n is not a perfect power, for if it is, then we have a factorization.

Similar comments apply to many other factoring algorithms [2, 3, 13, 20]; it is common
when analyzing them to make the assumption that the input is not a perfect power.

We also mention an application where the average case behavior of a perfect power
algorithm is significant; in fact, it is the source of the present problem. Earlier, one of us
published an efficient algorithm for generating random integers in factored form [1]; we
will not discuss this algorithm in detail except to say that it repeatedly draws integers
(according to some distribution) and rejects them when they are not prime powers, saving
the prime powers for further processing. Since the perfect powers are rare, any perfect
power test that performs well on the average will be useful in this context.

Our algorithm is based on the following idea: if a number n is not a pth power mod ¢
for some small prime ¢, then it cannot be a pth power. (This is a simple application of
the local-global principle.) The time to check this condition is roughly proportional to the
length of n, much less than the time needed to compute a pth root of n to high precision.
Of course, this advantage is offset somewhat by the fact that a pth power modulo ¢ need
not be a pth power. Hence, tests using more than one ¢ are necessary; our algorithm does
enough of these tests to ensure that a pth root computation will be rare.

We also present an algorithm that combines perfect power testing and trial division;
this algorithm performs even better on the average than the method outlined above. This
latter algorithm is useful as a preprocessing step for factorization, since factoring programs
usually start by performing trial division. Indeed, in practical factoring one often learns
that a number is not a perfect power as a by-product of trial division. This perfect power
algorithm is the most efficient one known to us.

Sieving ideas for testing pth powers have been suggested by Cobham [7] and V. Miller
[21]. Cobham, assuming the ERH, showed that a sieve method for testing if a number

1

is a perfect square is optimal to within a constant factor in its use of work space. To
prove this, he showed that if a number is not a perfect square, then it must fail to be a
square mod g for some small g. Miller generalized this last result to pth powers of algebraic
numbers; for certain fields, he found that a sieve algorithm outperforms methods based on
root approximation in the worst case.

In contrast, we do not attempt to make the sieve part of the algorithm completely
foolproof. Instead, we use pth power tests modulo ¢ to make the relatively expensive
root computations rare on the average. Hence our algorithms are always correct, and our
probabilistic results only apply to the running time.

Throughout this paper we discuss algorithms to solve the decision problem for the set
of perfect powers. Any of them could be easily modified to output roots and exponents
when the input is a perfect power, or compute the value of Golomb’s arithmetic function
v(n) (which counts the positive integral solutions to n = a®) [12], but we leave such
modifications to the reader.

2. Notation and Definitions.

Let k be a positive integer. We call a positive integer n a perfect kth power if n = z* for
some integer z > 1. In this case, we refer to k as the ezponent, and z as the root. If nis a
perfect kth power for some integer k > 1, then we say n is a perfect power.

We will use log n to denote the logarithm of n to the base 2, and Inn to denote the natural
logarithm. Note that the length of a positive integer n, written in binary, is |logn] + 1.

In our analysis, we will assume that arithmetic on large numbers is done by classical
methods. Hence the complexity of basic arithmetic we take to be as follows (see [18]):

1. To compute a x b, |a/b], or a mod b takes time O(log alogb).

2. To compute a =+ b takes time O(log a + logb).

These imply that when a and b are positive integers, computing ¢ = ab takes O(log® c)
steps, and computing a® mod m takes O(log alog m + log blog? m) steps.

In the sequel, p and ¢ will always be prime. For z > 0, n(z) denotes the number of
primes less than or equal to z, and 7p(z) the number of primes less than z and congruent
to 1 modulo p. The notation p || n means that p | n (p divides n), but not p? | n. By
the Extended Riemann Hypothesis (ERH) we mean the Riemann Hypothesis applied to
Dirichlet L-functions (see [9]).

In asymptotic bounds expressed with O, o, and ©, the implied constants are absolute.

3. Root Computation Algorithms.

In this section, we review the usual root-finding algorithm for perfect powers, which
seems to be folklore. We present a slight variation of one given by Shallit [26].

The idea is very simple. If n is a perfect kth power, k¥ < logn. So, we compute an integer
approximation z of nl/¥ for each such k, starting with k¥ = 2. If for some £k, z*¥ =n, we
accept n and halt. If we reach k = logn without finding an exact root z, we reject n and
halt. We can do a little better by noting that only prime values of k need be tried. Putting
this together we get Algorithm A.

Algorithm A.
Input: positive integer n.
For each prime p < logn:
Compute z = |n'/?|
If n = zP accept and halt
Reject and halt.

To compute z = |n'/?|, we first use the value of logn to get a rough upper limit for
z, say 2Uogn/pl+1 Then we do a binary search between 2 and this limit. To test each
possible pth root y encountered in the search, we can compute y? using any reasonable
powering algorithm.

THEOREM 3.1 [26]. Given as input a positive integer n, Algorithm A will decide if n is a
perfect power in time O(log® n log loglog n).

PRrOOF: Clearly Algorithm A is correct.

Each time a pth root is computed, binary search will iterate O(%log n) times. During
each iteration, an approximation y of the pth root of n is raised to the pth power. This
takes time O(log®n). So then for a fixed exponent p, [n!/P| can be computed in time
O(-;;Ioga n). Summing over all prime exponents p gives

) L 10g%n = O (log® nlogloglog)
p<logn

since) < 1/p = O(loglog b), where the sum is over primes (see Rosser and Schoen-
feld [25]).

That takes care of everything, except for finding all the primes below logn. Using the
Sieve of Eratosthenes, this can be done in time O(lognlogloglogn). Hence the overall
running time is O(log® nlogloglogn), as we claimed. il

Note that there are more efficient algorithms than the Sieve of Eratosthenes for finding
all the primes below a bound m. Pritchard [24] discusses some of these, and presents an
algorithm which uses only O(m) additions and O(y/m) space.

By replacing binary search with Newton’s method, we can improve the running time of
Algorithm A. However, without a good starting point, Newton’s method is no better than
binary search. So we first prove that if the first logp bits of n'/P are provided, Newton’s
method converges quadratically.

LEMMA 3.2. Let f(z) = zP — n, and let r > 0 satisfy f(r) = 0. Suppose z, satisfies
0 < (zo/r) — 1 < 27182, Then, Newton’s method, using o as an initial estimate for r,
will obtain a estimate of absolute error less than 1, in 0(log(-:; logn)) iterations.

PRrOOF: Newton’s method computes successive approximations z1,z,... to r using the
iteration Zp4+; = g(z,), where g(z) = z — f(z)/f'(z). Note that g(r) = r and ¢'(r) = 0.
Using a Taylor expansion for g around z = r, the mean value theorem implies that for

3

some &, T < a < Ty,

g(zp)—1 = g"(a)(;? k) “—”(g;pi)ln(wn —r)? < 'z%(wn ~r).

Since ¢(zn) = Tn+1, dividing by r gives

Tn4l p Tn 2 D [Tn 2
-1 < (-- - 1) < 2 (-— ~1)".
T - 2afr)\r - 2\r)

Thus, if (z,/r) — 1 < 27082+ for some ¢ > 0, then (zp41/r) — 1 < g~(logpt+2i+1) Ip
other words, at each step we double the number of bits of r we have found. To get an
error less than 1 means we only have to match O(% logn) bits, so the number of iterations

is O(log(; logn)). 11
Note that this result still holds if we use |g(z)] for the iteration function, which is easy
to compute. Now we assume that |n!/?] is computed by obtaining the first log p bits of

nl/?P with binary search, and the rest with Newton’s method. Calling this the Modified
Newton Method, the following theorem holds.

THEOREM 3.3. Using the Modified Newton Method to find roots, Algorithm A runs in
time O(log® n).

PROOF: For each p, the number of approximations needed is logp + 1og(%log n) =
O(loglogn). Since the cost of each iteration is O(log® n), the total running time is

Y~ O(log’nloglogn) = O(log’n).

p<logn

COROLLARY 3.4. Computing integer approximations of kth roots (for k > 1 an integer)

and solving the recognition problem for the set of perfect powers are both in logspace-
uniform NC2.

PROOF: Let n be the input. From Lemma 3.2 we know that O(loglogn) iterations of
binary search, followed by O(loglogn) iterations of the modified Newton method, suffice
to compute an integer approximation to the kth root of n. Each iteration requires a power
computation and possibly a long division. By methods of Beame, Cook, and Hoover [4]
(see also [17]), these two tasks can be done by a circuit of depth O(loglogn) and size
polynomial in logn.

These circuits are not known to be logspace uniform, but the only nonuniformity is a
requirement for certain products of small primes, which can be generated easily by logspace
uniform circuits of O(log? logn) depth. So we use an NC? circuit for generating these,
followed by O(log logn) levels of binary search and O(loglogn) levels of Newton’s method,
to compute kth roots. The total depth is O(log® logn).

4

For recognizing perfect powers, we note that the circuit size for computing pth roots
can be bounded independently of p, and simply compute pth roots of the input for every
prime p < logn, in parallel. Il

Of course, finding an approximate pth root of n is a special case of finding roots of
polynomials over the integers. This more general problem has efficient sequential methods
(see, for example, Pan [22]), but parallel solutions seem more difficult. Ben-Or, Feig,
Kozen, and Tiwari [5] showed that, if a polynomial has only real roots, then all of its
roots can be found in NC. However, it is not known if finding all the complex roots of a
polynomial, or even the real roots when some are complex, can be done in NC.

One might ask whether the modified Newton method helps in practice. The answer is
yes; in section 7 we support this with timing results comparing binary search with the
modified Newton method when used in Algorithm A.

4. A Simple Sieve Algorithm.

In this section we present a second algorithm that improves on Algorithm A’s average
running time. Qur main idea is the following. Most numbers are not perfect powers, so the
algorithm will run better if it can quickly reject them. We will do this using the following
lemma.

LEMMA 4.1. Let p and q be primes, with ¢ = 1 (mod p). Further suppose that n is a
perfect pth power, and gcd(n,q) = 1. Then n4~D/P =1 (mod g).

PROOF: If n = z?, then by Fermat’s little theorem, n(4=1/? = 2971 =1 (mod q). §

In other words, if n{4971)/P £ 1 (mod ¢), then n cannot be a perfect pth power, assuming
all the other hypotheses are satisfied. We will call this computation a sieve test for ezponent
p, and the prime modulus ¢ the sieve modulus. We say n passes the test if nle-D/r = 0,1
(mod gq); it fails the test otherwise. (Note that we are evaluating the pth power residue
symbol mod g; see [15].)

We modify Algorithm A as follows. Before computing an approximate pth root, we do a
certain number of sieve tests on n for exponent p. The number of tests, [2loglogn/logpl,
will be justified later; it results from balancing the goals of accuracy (few non-perfect
powers should pass all the sieve tests) and efficiency (not too many sieve tests should be
done). These modifications give the following procedure.

Algorithm B.
Input: positive integer n.
For each prime p < logn:
Perform up to [2loglogn/logp] sieve tests on n
If n passed all the tests, then:
Compute z = |n'/?|
If n = z? accept and halt
End if
Reject and halt.

To analyze this procedure, two questions must be answered.

1. Do enough sieve moduli exist, and if they do, how large are they? Moreover, how do we
find them?
2. What are the chances n will pass all the sieve tests for a fixed p?

Regarding the first question, Dirichlet showed that any “reasonable” arithmetic progression
contains infinitely many primes (see [15]). Although this guarantees the existence of enough
sieve moduli, it says nothing about their size. To reasonably bound this we will have to
assume the ERH; in section 6 we will prove the following result.

LEMMA 4.2 [ERH]. If every input for Algorithm B is less than or equal to n, then the
largest sieve modulus needed is O(log” n log*logn).

This suggests that the required sieve moduli are all small, and our experience with the
algorithm corroborates this. In fact, we believe that the above result is still an overestimate,
and offer in section 7 a heuristic argument and numerical evidence for a sharper estimate
of logn lnz(log n). In practice, the sieve of Eratosthenes will suffice to quickly generate the
primes less than this bound, and hence the required list of sieve moduli.

Regarding the second question, we first argue informally. The chance an integer n is a
pth power modulo ¢ is about 1/p. If we perform 2loglogn/logp sieve tests whose results

are independent, the chance n passes them all is about (1/ p)z'l_c‘:gil%’u = 1/ log® n. However,
the tests are not quite independent and we must modify this rough argument. In section 6
we will prove the following result, which uses the ERH only to bound the magnitude of
the sieve moduli. ’

LEMMA 4.3 [ERH]. Let n be an integer chosen uniformly from an interval of length L, and
assume for every such n, L > (logn)3l°8lo8logn Then the probability n passes [-’“’-‘—‘;-%&2]
different sieve tests for a fixed exponent p in Algorithm B is bounded above by

0 <log1<;>gn> .
log”n

We expect that any implementation of our algorithm will have available a list of sieve
moduli. For this reason, we will analyze Algorithm B under the assumption that they have
been precomputed. In particular, we assume that Algorithm B has available a table, called
the sieve table, which contains, for each prime p < logn, a list of the first fgl—‘;gé—‘;s—'—"l sieve
moduli for p. Note that the number of entries in this table is at most
Z [210glogn] - 0 (logn)

il logp loglogn

and so the total space used by the table, once computed, is O(logn). Using the Sieve of
Eratosthenes, or a variant, the table can be constructed in O(log2+6
this is pessimistic, as we demonstrate in section 7.

We also note that computing the exact values of [2—1(—;5&1—‘;5-2] for each prime p < logn can
be done using the methods of Brent [6] easily within the above time bound. In practice,
of course, this is not a concern.

n) time. In practice

Assuming the above lemmas, we now present our average-case result.

THEOREM 4.4 [ERH]. Letn and L be as in Lemma 4.3, and assume that a sieve table is
available. Then Algorithm B will decide if n is a perfect power in expected time O(log® n).

PROOF: The correctness of Algorithm B follows immediately from Lemma 4.1; it is inde-
pendent of the ERH.

To get an upper bound on the running time, we may assume that all the possible
sieve tests are actually done. By Lemma 4.2, logg = O(logp). Since the sieve table is
precomputed, the time to find each sieve modulus ¢ is O(1). Computing n(8=1/P mod ¢
can be done using one division and then modular exponentiation in time O(lognlogq +
log® ¢) = O(log nlogp + log® p) = O(lognlogp) since p < logn. If [2—1%8—19’}5—'1] sieve tests
are performed, the total time spent is at most O(lognloglogn) for each prime exponent

.
From the proof of Theorem 3.3, the time needed to approximate the pth root of n and
compute its pth power is O(log® nloglogn). However, by Lemma 4.3, the probability that
we even have to make the computation is O(loglogn/log®n). Thus, the average time
spent is O(log” log n).
Hence, for each prime exponent p, the average time spent is O(log nloglogn). Summing
over all primes below log n gives the average time of O(log® n), and the proof is complete. §

In connection with Algorithm B, the following question is also of interest: “Can we
guarantee that n is a perfect power by only performing sieve tests?” By applying quadratic
reciprocity and Ankeny’s theorem, Cobham [7] showed that O(log? n) sieve tests suffice to
check that n is a square, if the ERH is true. V. Miller [21] has recently extended this result:
if one assumes the Riemann hypothesis for certain Hecke L-functions then O(p? log?(np))
sieve tests for the exponent p will prove that 7 is a pth power. Since we are only interested
in p < logn, this would imply that O(log“r"*'E n) tests suffice to check perfect powers. Note
that this leads to another NC algorithm for perfect power testing.

It is also of interest to ask what can be proved without assuming the ERH. The main
difficulty with this seems to be in finding a large number of sieve moduli efficiently. When
the sieve moduli are not bounded by a small polynomial in logn, then the Sieve of Er-
atosthenes and its variants are no longer practical for finding them. As an alternative, one
might use probabilistic search, but then the sieve moduli found must be proved prime. It
is an interesting theoretical question as to how this might be done, but such an approach
is unnecessary in practice, and we discuss it no further here.

5. A Sieve Algorithm with Trial Division.

In the previous section we discussed Algorithm B, a substantial improvement over Algo-
rithm A, which used a simple sieving idea to weed out non-perfect powers. In this section,
we will use trial division by small primes to further improve Algorithm B. The resulting
method may be of use in situations, such as factorization, where trial division is done
anyway.

Algorithm C.
Input: positive integer n.
Compute the smallest integer b such that blog® b > logn
S « {p: p <logn/logb}
Trial divide n by each prime r < b:
If a divisor r is found then:
Find e such that r¢ || n
S«—{p:ple}
Stop trial division
End if
While S # 0 do:
p « the smallest element of S
Perform up to [2loglogn/logp]| sieve tests on n for p:
If for some sieve modulus g, ¢ | n, then:
Find e such that ¢¢ || n
S«Sn{p:ple}
End if
If n passed all the tests and p € S, then:
Compute z = |nl/?|
If n = zP accept and halt
End if
S« S—{p}
Reject and halt.

Our basic idea is the following. To test n, we see if n has any small prime divisors, by
checking all primes less than or equal to b. The trial division bound b is much smaller than
n; we take b to be about logn. There are two ways this modification can help:

1. If we find a prime r that divides n, we can compute the integer e such that r® || n. Then
if n is a perfect pth power, p must divide e. Since e will typically be quite small, this
will greatly reduce the number of possible prime exponents p that must be checked.

2. If we do not find any divisors of n below b, then if n is a perfect pth power, its pth root
z must be larger than b. Hence p < log; n = logn/logb, which will also save time.

Our new algorithm does trial division up to some bound b, and then applies either 1. or

2. above, depending on whether or not a divisor is found. It then uses an appropriately

modified version of Algorithm B. The procedure above, Algorithm C, gives the details.

To analyze this algorithm we will need a technical lemma.

LEMMA 5.1. Let P be a set of primes, and for a positive integer n, let e(n) denote the
largest e such that p® | n for some p € P. If n is chosen uniformly from an interval of
length L, then the expected value of e(n) is at most lﬂ%’s—ﬁ + O(1).

PROOF: At most L/p® + 1 integers in the interval are divisible by p®. Since e(n) > k if

8

and only if p¥ | n for some p € P, Prle(n) 2 k] < 3 cp 1/p* + |P|/L. Using this,

Ele(n)] = Y Prle(n)2k] < ——f-+1+22—k ——t2
= PEP k=2

THEOREM 5.2 [ERH]. Let n be an integer chosen uniformly from an interval satisfying
the hypotheses of Lemma 4.3. Then Algorithm C will decide if n is a perfect power in time

O(log® n)
log® logn

PROOF: Correctness follows from Theorem 4.4 and from the two observations made at the

beginning of this section. All that remains is to prove the average running time bound.
First we note that b is ©(logn/ log? log n), from which it follows that log b = @(log logn).
By a large sieve estimate of Jurkat and Richert [16, 4.2] the probability that no prime

below b divides n 1s
II(1) (1 (1 1L>)’
p<h P 8

provided that L, the interval length, satisfies log b < (log L)/(2loglog(3L)). By our choice
of L, this holds for sufficiently large n, so by Mertens’s theorem (see [14, p. 351]), the
probability of escaping trial division is O(1/ log b), a fact we will need later.

We break the running time into four parts: the time spent on trial division, the time spent
computing maximal exponents e for various primes, the time spent on approximating pth
roots and computing pth powers of these approximations, and the time spent performing
sieve tests.

The time spent on trial division is O(3 ., log nlog p). Combining this with our estimate

on the average.

for b shows that the expected time for trial division is O(log®n/ log® log n).

By Lemma 4.2 no sieve modulus or trial divisor is larger than O(log®*¢n), so the time
spent finding a maximal exponent e for any such base is O(elognloglogn). By Lemma
5.1 the expected value of e is O(1), so the expected work for finding maximal exponents
is negligible.

To estimate the third part, we note that the time spent computing pth roots and their
pth powers is no more than the time Algorithm B would spend in the same task, on a
given input. Hence the argument used to prove Theorem 4.4 applies, and we find that the
total expected time for this part is 2P<108 n O(log® log n), which is O(log nloglogn).

To estimate the expected time for sieve tests, we condition on whether or not a divisor
is found. If a divisor r of n is found, its maxunal exponent e is at most logn. Thus e
has at most loglogn prime divisors, Which is how many exponents remain to be tested.
From the proof of Theorem 4.4, we know the maximum time spent on each possible prime

9

exponent is O(lognloglogn). Thus the average sieve time, given that a divisor is found,
is O(lognlog?logn). If no divisor is found, the average sieve time is similarly found to
be O(n(log n/ log b)log nloglogn) = O(log? n/logb). Multiplying this by the probability
that no divisor is found and using the asymptotic value of log b gives the result. §

The distribution of Algorithm C’s running time exhibits the following anomaly. Al-
though its expected running time is high (consider the fraction 1/log b of inputs for which

all trial divisions are performed), its median running time is much lower, in fact O(logn).
We prove this below.

THEOREM 5.3. Let n be chosen uniformly from an interval of length L, and assume for

every such n, L > f(n), where lim;_. f(z) = oco. Then the median running time of
Algorithm C is O(log n).

PROOF: We must show that there is a set of inputs, of probability at least 1/2, on which
the running time is O(logn). First consider the asymptotic probability that some prime
less than B divides n, and the least such prime divides n exactly once. This is

ZPr[noq<pdividesnanden]: Z —1-]:[(1—--1—> .
p<B p<B \? 1< 1

If B = 20, this is some constant «, greater than 1/2. Hence with probability a + o(n),

e = 1 at the end of the trial division phase. Given that this happens, no further work will

be required. Furthermore, the work of trial division is O(log n), since no r greater than 20

and no exponent larger than 2 was ever used on these inputs. [

6. Technical Results.

In this section we will prove Lemmas 4.2 and 4.3 with the aid of the ERH. Recall
Lemma 4.2 states that the largest sieve modulus needed by Algorithm B is O(log®* n).

Let mp(z) denote the number of primes less than or equal to z which are congruent to
1 modulo p or, what is the same thing, are possible sieve moduli for p. Below we give
two estimates for the density of such primes; the first is due to Titchmarsh (28], and the
second, which we need later, is similar to a result of Turan [29)].

THEOREM 6.1 [ERH]. Let = be a positive integer, and p a prime. There is a constant
A > 0, independent of p and z, such that

1 Todt
> - [—=_ .
wp(z) > p=1), int AVzinz

PROOF: See Theorem 6 in [28]. I

COROLLARY 6.2 [ERH]. Let p be a prime and z = Cp*log* p. Then
1 =z In®*C
> (1= .
(@) 2 T g (1 O(x/C»

10

PROOF: Since [, dt/Int > (z — 2)/Inz,

1 =z 2 Alncz
>~ % (1_2_ .
7rpw)"p—lln:z:(T ﬁ)

The result follows from noting that 1/z < 1/C, lnz/y/z < vC(lnz/logp)?, and
Inz/logp <InC +6. 1

We now prove the sieve modulus bound.

LEMMA 4.2 [ERH]. If every input for Algorithm B is less than or equal to n, then the
largest sieve modulus needed is O(log® nlog* logn).

ProOF: Let A be the constant from Theorem 6.1 and choose B so that VB > 4A1n?2.
Let z = Blog® n(loglogn)*. Then

1 z-2
logn Inz

— Ayzlnz ~ (-——12— - 24vVBln 2) log n(loglogn)®.

>
(@) 2 2n2

By the choice of B, the right-hand expression is larger than [2loglogn/log p| for all
sufficiently large n. R

Now we will prove Lemma 4.3, which states that an input n to Algorithm B is unlikely
to pass multiple sieve tests.

LEMMA 4.3 [ERH]. Let n be an integer chosen uniformly from an interval of length L, and
assume for every suchn, L > (logn)31°81°8108 " Then the probability n passes [2%%%—'3]
different sieve tests for a fixed exponent p in Algorithm B is bounded above by

0 (1%.}_;&) ,
log“n

PROOF: Let T be the set of sieve moduli from the sieve table for p. Define m = [] e

and note that |T| = [2%-%%5—"-] . Write L = dm + r where d and r are integers satisfying

d > 0,0 < r < m. The chance that n passes all f?_l%gl%s_ﬁ‘l sieve tests is, by the Chinese
Remainder Theorem, at most

7| IT|

dm [q,w—-l(l) 1] T dm 1(p--l) r
- — =) +=l+ = —=—||-\1+—)+
L £[1 ¢ \p/ @l L L g p gi L
where qi,. .., qjr| are the primes in T in increasing order. Since ¢; > ip, 1 +(p—1)/¢i <

(1 + 1)/1, so the first term is at most

1 ﬁz%z—l _ 0(loglogn>‘
=1

logZn ; log® n

11

To estimate the second term, let z = 16p%(log’ p)|T|log|T|. Noticing that C =
16(log p)|T'|log |T| > 2loglogn — oo with n, by Corollary 6.2,

T

Tp(z) 2

plnz(l”"(l)) > plogip|T| > |T|

for sufficiently large n. So we can assume that the largest sieve modulus in T is at most
z. Since r < m, it suffices to show m/L = o(1/log® n), which is true since

m = Hq < Tl = (10gn)2108103103n(1+0(1))_
qeT

It would be interesting to show that this result holds for intervals of “polynomial size,”
that is, L > log®n for some ¢ > 0. We require slightly larger intervals, in which only the
last (loglogn logloglogn) bits of the input vary.

Finally, we remark that it would be easy to modify our algorithm so that a corresponding
result held for the interval [1,n].

7. Implementation Results.

In this section we give empirical results on our algorithms. As the performance of
Algorithms B and C is sensitive to the size of the entries in the sieve table, we also
give a heuristic argument, backed up by experimental data, that this table is efficiently
computable.

Lemma 4.2 indicates that the sieve table will have entries bounded by O(log**“n). In
practice, we have found this bound to be pessimistic, and believe that lognln®logn is
a more accurate estimate. Below we give a heuristic argument, patterned after one by
Wagstaff [30], that results in this bound.

Let p be the largest prime less than or equal to B = logn. We consider a sieve modulus
bound m > B and estimate the probability that this suffices to obtain enough sieve moduli
for all primes up to B. Call a prime “small” if it is less than (log n)!/3, and “large”
otherwise. If n is sufficiently large, then Lemma 4.2 guarantees enough sieve moduli for
small primes. For large primes, we need at most ¢ sieve moduli, where ¢t = 6 (the particular
constant does not matter). We now make the heuristic assumption that an integer z is
prime with probability 1/lnz, and estimate the probability that more than t sieve moduli
exist for all large primes. This probability is at least

Pr{ ¢ sieve moduli exist for p |2,

assuming that the chances of success for each p are independent and monotonically de-
creasing. Now consider a sequence of m/p integers p+ 1,2p + 1,... ,m. The probability
that there are at most ¢ primes in this sequence is at most

m/p-t
(mt/P) (1 1) < (m/p)te(t—m/p)/ln m

T lnm

12

Write the right-hand expression as e¥ where y = tln(m/p) + (t — m/p)/Inm; then
Prfat least ¢ sieve moduli exist for all p < B] > (1 — e¥)B.

We wish this estimate to be e~ for some small positive c. Setting these equal we find that
eV =1--e~¢/B ~ ¢/B; taking logarithms of both sides and simplifying we find that

m Bt m
E—;n— ~ BInB —_ Blnc+ II-;,—’)'); +Bt1n(—1—3—)

(note that p ~ B). If ¢ is a constant, this implies that
m ~ Bln® B = lognIn*(logn).
(We can also take ¢ = 1/(In B)¥ — 0 and get the same result.)

Although its derivation is suspect, this bound seems reasonably precise, as Table 7.1
shows.

Table 7.1.

Decimal Maximum Heuristic Table CPU Time

Digits Modulus Bound Memory in sec.
10 373 407 48 0.005
25 1609 1622 94 0.017
50 3769 4341 147 0.050
100 9767 11197 245 0.116
250 24229 37525 498 0.350
500 78577 91327 865 0.850
1000 152017 218398 1510 2.084
2500 527591 676371 3289 6.700
5000 1449271 1568522 5981 16.166
10000 2839301 3600522 10977 38.700
25000 9731863 10655493 24781 120.333
50000 21021569 23998967 46169 282.466

In this table, the first column lists various values of d for n = 104, Mazimum Modulus is
the largest sieve modulus, where the first [2loglogn/log p| were taken for each p < logn.
Heuristic Bound is the value of lognIn®logn. Table Memory gives the number of integers
needed to store all the sieve moduli (the space in words was about double this). Finally,
CPU Time indicates the number of CPU seconds used to construct the sieve moduli from
scratch and store them in a table.

In conclusion, we needed the ERH to give provable bounds on the size of the sieve
moduli, and the resulting bounds forced us to use precomputation to construct the table.
In practice this is not a problem, as Table 7.1 demonstrates.

13

Next we give the results of our implementations of Algorithms A, B, and C. We coded all
three algorithms using the same multiple precision arithmetic routines on a DEC VAXs-

tation 3200. Table 7.2 gives these results.

Table 7.2.
Decimal A-BS A-MN B C
Digits CPU sec CPU sec CPU sec CPU sec

10 0.155 0.309 0.033 0.046 (10)

25 0.519 0.984 0.048 0.065 (8)

50 1.751 2.960 0.079 0.093 (7)

75 4.058 6.030 0.121 0.091 (9)

100 8.150 10.193 0.173 0.112 (9)
150 22.034 22.645 0.299 0.128 (10)
250 87.453 68.540 0.626 0.229 (9)
500 636.780 349.803 2.218 0.312 (10)
750 2109.134 1012.668 8.845 0.442 (10)
1000 4936.074 2096.609 28.676 0.699 (9)
1500 16256.909 6263.153 131.138 0.826 (10)
2000 - - 321.581 1.540 (9)

Decimal Digits is the size of the inputs; we ran each algorithm on the same 10 pseudo-
random integers and tabulated the average running time for each algorithm. There are
two columns for algorithm A: the first gives timings using binary search, and the second
gives timings using the modified Newton method. Note that Algorithm B’s running time
seems relatively large for the last few input sizes; we believe this is caused by multi-word
sieve moduli. For Algorithm C we also give the number of times (out of 10) a divisor was
found during trial division; this accounts for the irregularities in Algorithm C’s running
time.

For Algorithm B we did not precompute the sieve table. Instead, a modified version of
the Sieve of Eratosthenes found all the primes below the heuristic bound, which were then
stored in a bit vector. When sieve moduli were needed, we searched for them sequentially
in this bit vector.

For Algorithm C, we first found the primes below b, the trial division bound. Only when
trial division failed did we find all the primes below the heuristic bound.

The system’s timing clock has unreliable low order digits, so we ran each algorithm
several times on the same input and timed the whole group. The number of times per
input was inversely proportional to an algorithm’s average running time. The program
which generated the data in the table took about four days to run.

REFERENCES
1. E. Bach, How to generate factored random numbers, SIAM J. Comput. 2 (1988), 179-193.

14

A~ o

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.
20.
21.
22.
23.
24.

25.

26.
27.

28.
29.

30.

. E. Bach, G. Miller, and J. Shallit, Sums of divisors, perfect numbers, and factoring, SIAM J. Comput.
4 (1986), 1143-1154.

. E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp. 52 (1989), 201-219.

. P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related problems,
SIAM J. Comput. 15 (1986), 994-1003.

. M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, A fast parallel algorithm for determining all roots of
a polynomial with real roots, SIAM J. Comput. 17 (1988), 1081-1092.

. R. P. Brent, Multiple precision zero-finding methods and the complezity of elementary function
evaluation, in “Analytic Computational Complexity,” J. F. Traub, Ed., Academic Press, 1976, pp.
151-176.

. A. Cobham, The recognition problem for the set of perfect squares, IBM Research Report RC 1704
(1966).

. G. E. Collins, Computing multiplicative inverses in GF(p), Math. Comp. 23 (1969), 197-200.

. H. Davenport, “Multiplicative Number Theory,” Springer-Verlag, New York, 1980.

J. D. Dixon, Asymptotically fast factorization of integers, Math. Comp. 36 (1981), 255-260.

S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, 18th Ann. ACM Symp.

Theory Comp. (1986), 316-329.

S. W. Golomb, A new arithmetic function of combinatorial significance, J. Number Theory 5 (1973),

218-223.

J. L. Hafner and K. S. McCurley, On the distribution of running times of certain integer factoring

algorithms, J. Algorithms (to appear).

G. H. Hardy and E. M. Wright, “An Introduction to the Theory of Numbers,” 5th ed., Oxford

University Press, 1979.

K. Ireland and M. Rosen, “A Classical Introduction to Modern Number Theory,” Springer-Verlag,

New York, 1982.

W.B. Jurkat and H.-E. Richert, An improvement of Selberg’s sieve method I, Acta Arith. 11 (1965),

217-240.

R. Karp and V. Ramachandran, A survey of parallel algorithms for shared memory machines, Tech-

nical Report UCB/CSD 88/408, Computer Science Division, University of California, (1988). To

appear in “Handbook of Theoretical Computer Science,” North-Holland.

D. E. Knuth, “The Art of Computer Programming,” vol. 2, 2nd edition, Addison-Wesley, Reading,

Mass., 1981.

D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theor. Comp. Sci. 3

(1976), 321-348.

H. W. Lenstra Jr., Factoring integers with elliptic curves, Ann. Math. 126 (1987), 649-673.

V. Miller, Private communication.

V. Pan, Fast and efficient algorithms for sequential and parallel evaluation of polynomial zeros and

of matriz polynomials, 26th Ann. IEEE Symp. Foundations Comp. Sci. (1985), 522-531.

C. Pomerance, Fast, rigorous factorization and discrete logarithm algorithms, in “Discrete Algorithms

and Complexity: Proceedings of the Japan-US Joint Seminar,” eds. D. S. Johnson, A. Nishizeki, A.

Nozaki, H. S. Wilf, Academic Press, London, 1987, pp. 119-143.

P. Pritchard, Fast compact prime number sieves (among others), J. Algorithms 4 (1983), 332-344.

J. B. Rosser and L. Schoenfeld, Approzimate formulas for some functions of prime numbers, Ill. J.

Math 6 (1962), 64-94.

J. Shallit, Course notes for Number Theory and Algorithms, Dartmouth College.

V. Shoup, On the deterministic complezity of factoring polynomials over finite fields, Info. Proc.

Letters (to appear).

E. C. Titchmarsh, A divisor problem, Rend. Circ. Mat. Palermo 54 (1930), 414-429.

P. Turdn, Uber die Primzahlen der arithmetischen Progression, Acta Sci. Math. 8 (1936/1937),

226-235.

S. S. Wagstaff Jr., Greatest of the least primes in arithmetic progressions having a certain modulus,

Math. Comp. 33 (1979), 1073-1080.

15

