SPARE: REFERENCE MANUAL

G A Venkatesh
Charles N. Fischer

Computer Sciences Technical Report #850

June 1989

SPARE : Reference Manual

G A Venkatesh and Charles N. Fischer
University of Wisconsin - Madison

venky@cs.wisc.edu, fischer@cs.wisc.edu

Abstract

The Structured Program Analysis Refinement Environment (SPARE) is a tool for rapid prototyping
of program analysis algorithms through high-level specifications. An analysis algorithm is specified
through denotational specifications. The specification language is based on the notation of lambda-calculus
and the conventions used for writing denotational specifications for semantics of programming languages.
Language features have been specially designed to express analysis algorithms in a clear and concise

fashion.

SPARE is designed to be used in conjunction with the Synthesizer Generator [2]. Analysis
specifications are translated into specifications in the Synthesizer Specification Language (SSL). The SSL
translation, combined with the SSL specification for an editor for the language on which the analysis is
defined, can be used to generate an editor for the language. The generated editor performs the specified

analysis on programs input to the editor and the results can be displayed to verify the analysis.

This work was supported by National Science Foundation under grant CCR 87-06329.

Authors’ address: Computer Sciences Department, University of Wisconsin, 1210 W.Dayton, Madison, WI 53706

Table of Contents

1. Introduction ...
2. SPARE Languageccoceevevureeunennc
2.1. Syntax Notationeeeeerereens
2.2. Lexical Descriptioncceeceeneerns
2.3. Domain Declarationsc..eeee.
2.3.1. Primitive Domains

2.3.2. Domain Constructors

2.3.3. The join operation

2.3.4. Ordering Specification

2.4. Function Declarationsceeeeenee
2.4.1. Function Type Declaration ..

24.2. Auxiliary Functions

..

..

..

..

...

..

..

...

..

..

...

2.4.3. Semantic FUnCton DeCIarationSc.c.cieviiiiieniesisessssessssesissessssessssesssecssnavsnes

24.4. Collect Optionccccevennee.

2.5. Semantic Function Definitions
2.5.1. Expressionsceeeccnn.

2.6. Type compatibility rules

3. Using the SPARE Editor

...

...

...

4. Interfacing with SSL editor specificationscoooeevenicinnenee s

4.1. Conventions to be used in SPECIfiCAtIONSvccverecerrercaeesreresrernerereessescessssssessssesseeses

4.1.1. Syntactic domain names

...

4.1.2. Productions and abStract SYNIAXceeerreverersseressarerssssessnsssssssnessnssssesssereseseans

4.2. Domain representations
4.3. Function representations

4.4, The Interpretercmevevervvennens

...

...

...

4.5. Displaying the results from the analysiscccecveeeinnevicrniniernsiesnissssserscesesssscnns

4.6. Domain implementations

4.7. External domain order definitions

5. SPARE Prototype 1.0ccccceveueneeene

..

...

Appendix A. Reserved words and pre-defined identifiers in SSLccccovvennevcvnninvenens

Appendix B. Syntax of SPARE language

..

NeREEe YT T U 2= S o B oV]

11
11
12
12
12
13
14
20
21
22
22
22
22
23
23
24
24
25
26
27
28
29

Appendix C. Example 1 : Sign analysis of eXpressionsccoueoverennseoreennenscerensens

Appendix D. Example 2: Conditional Constant Propagationcceeecvreevecnvererenensens

Appendix E. Domain definitions generated for the specification in Appendix D.

References

..

34
35
38
39

.1-

1. Introduction

The Structured Program Analysis Refinement Environment (SPARE) is a tool for rapid prototyping
of program analysis algorithms through high-level specifications. It is designed to be used in conjunction
with the Synthesizer Generator {2]. This manual assumes that the reader is familiar with the Synthesizer

Generator.

An analysis algorithm is specified through denotational specifications. Readers unfamiliar with the
denotational approach to language semantics may wish to read the tutorial paper in [5]. Other literature on
denotational semantics include [3,4]. SPARE translates denotational specifications of algorithms into
specifications in the Synthesizer Specification Language (SSL). The SSL translation, combined with the
SSL specification for an editor for the language on which the algorithm is defined, can be used to generate
an editor for the language. The generated editor performs the specified analysis on programs input to the

editor and the results can be displayed (o verify the analysis.

SPARE provides a syntax-directed editor to construct the denotational specifications. The editor is
built using the Synthesizer Generator and follows the editing paradigm described in [2]. When editing is

finished, the specification can be written 1o files in three formats.
(1) A textual representation of the specification.
(2) The abstract structure of the specification.
(3) A representation used by the translator to create a SSL specification.
Only (2) can be read back into the editor for further edits.

The language supported by SPARE is based on the notation of lambda-calculus and the conventions
used for writing denotational specifications for semantics of programming languages. Language features
have been specially designed to express analysis algorithms in a clear and concise fashion. It should be
noted that unlike the abstract mathematical notation used to provide denotational semantics, the SPARE
language is an applicative language with an underlying evaluation model specified through an axiomatic
definition [6].

A specification consists of domain declarations and functions defined over these domains. There are
two kinds of functions. Semantic functions define the analysis corresponding to various syntactic objects in

the language. Auxiliary functions provide a way 1o abstract operations used in the specifications.

Every specification is required to be sufficiently typed to allow complete static type checking of
operations. All functions must be defined statically. The editor performs the type checks and provides error

messages. It also resolves the types of certain overloaded operations and literals.

The translation process produces SSL specifications that maintain semantic functions as atiribute
values and provide implementations for user-defined domains and operations on those domains. The

translated specification can be evaluated using an interpreter provided as a pre-defined SSL function.

2.

This manual describes Prototype 1.0 of SPARE. Section 2 describes the SPARE language. Section 3
provides details about using the editor. Section 4 describes the translation steps used to obtain SSL

specifications and conventions used in the translated specifications.

2. SPARE Language

An algorithm specification consists of four sections. The domain declaration section defines the lat-
tices (or cpos) that may be used in the analysis as well as any other domains that the functions in the
specification are defined on. The optional auxiliary function section provides the definitions for functions to
abstract operations required in the specifications. The function declaration section provides the functionali-
ties of the semantic functions. The function definition section consists of a set of semantic equations.

Example specifications are provided in Appendix C and D.

2.1. Syntax Notation

The syntax is defined using an extended BNF notation. Nonterminals are denoted by lower case
words (possibly with embedded hyphens). Reserved words are denoted in bold. Square brackets enclose
optional items and braces enclose a repeated item. A vertical bar separates alternatives. Square brackets
and braces when enclosed in quotes denote themselves. The non-terminals with the suffix "-name" denote

identifiers unless otherwise specified.

2.2. Lexical Description

As the analysis specifications are constructed using the syntax-directed SPARE editor, many of the
syntactic rules are automatically enforced. The following description applies to the parts of the

specification that are typed in by the user.

(1) The following character set is used:

Letters:A..Z,a..z

Digits : 0..9

Special Characters : " -<>[]()$*+,’=."{}/_: &
White Space : space tab end_of_line

(2) An identifier is a string of letters, digits and underscores starting with a letter. Identifiers are used to
name domains, functions, variables and productions. Upper and lower case letters are considered dis-

tinct characters. The following are reserved keywords and may not be used for other purposes.

©)

@)

&)

add and argument boolean bottom bound
by cache collect div do external
false fix foreach function head identity
in integer s label lambda let

lifted list minus mult not nil

null of or ordered powerset store
strict sub syntactic tail top topped
true

The following identifiers are pre-defined and should not be re-defined:

bool FALSE id |IDENT int INTEGER TRUE

In addition, the identifiers should not conflict with the reserved and pre-defined identifiers in the Syn-
thesizer Generator [2]. A list of such identifiers is provided in Appendix A.

Literals are either integers or character strings. Integers are sequences of digits. Character string
literals begin and end with a double quote (") and may contain any sequence of characters in the

character set. A double quote inside a string must be repeated.

The following are compound symbols:

Adjacent identifiers, integer literals and reserved words must be separated by either white space or

any of the special characters that may not appear in those tokens.

2.3. Domain Declarations

A4

Domain declarations associate names with explicit domain definitions.

domain-declaration-section

domain-declaration

domain-definition

{ domain-declaration ; }

domain-name { , domain-name }

= domain-definition [ordering-option]

primitive-domain
enumeration-domain
lifted-domain
topped-domain
product-domain
union-domain
powerset-domain
list-domain
store-domain

function-domain

A domain name must be defined before it is used except when it is used in a function domain con-
structor. Hence, recursive domains can be constructed only through function domains. A domain name can-

not be re-defined within the the same specification. When two or more specifications are used together

common domain names must be bound to identical declarations.

Partial orders within domain elements are either pre-defined, induced by domain constructors or

explicitly specified by the user. All function domains are considered to be flat.

2.3.1. Primitive Domains

SPARE provides 4 primitive pre-defined domains: boolean, integer, syntactic and label. All the

primitive domains are flat domains.

boolean:

The boolean domain contains elements from the set of booleans, B.

The reserved identifiers true and false denote values in this domain. The domain has the following pre-

defined operations:

B = { false, true }

-5.

and : boolean x boolean — boolean
or : boolean x boolean — boolean
not : boolean — boolean
corresponding to the standard boolean operations.
integer:
The integer domain contains elements from the set of integers, I.
1={..,-2,-1,0,1,2,..)

The integer literals denote values in this domain. The domain has the following pre-defined operations:

add : integer X integer —> integer

sub : integer x integer —> integer

mudt : integer x integer —> integer

div : integer x integer — integer

minus : integer —> integer
corresponding to the standard integer operations.
syntactic and label:

The syntactic domain contains as elements the syntactic objects in the language for which the
specification is constructed. The identifiers that name nonterminals in the abstract syntax of the language

denote values in this domain.

Every syntactic object in the language is associated with a value from the label domain. There are no

explicit denotations for values in the label domain. The operation
label . syntactic — label

can be used to refer to elements in the label domain. The only other pre-defined operation on syntactic

domains cache is described in Section 2.5.1.

The identifiers id, bool and int can only be declared as syntactic domains in a specification. These
names denote syntactic objects as well as values in semantic domains and provide a mechanism to coerce
primitive syntactic objects into semantic values without explicit semantic functions. bool and int are
coerced into values in boolean and integer domains respectively. Details about use of these identifiers are
described in Section 4.

-6-

2.3.2. Domain Constructors

The SPARE language contains nine domain constructors to create new domains. Each of the con-
structors induce partial orders (a flat ordering in some cases) in the new domains. The facilities to define

alternative orderings are discussed in Section 2.3.4.

ENUMERATION DOMAIN

enumeration-domain = "{" string-literal { , string-literal } "}"

For example, the declaration for Signs in Appendix C is as follows:
Signs = { "4w, won wQu

The domain is ordered flat unless an explicit ordering is specified. String literals can be shared (i.e., over-
loaded) between different enumeration domains. The elements of an enumeration domain are denoted by

the string literals with explicit type qualification (Section 2.5.1). Examples: Signs "+", Signs "-".

LIFTED DOMAIN

lifted-domain = lifted domain-name

The lifted domain contains all the elements of the base domain plus an additional element L. The
overloaded identifier bottom denotes the element L of all lifted domains. The induced ordering is defined

as follows:
Let A = lifted B.

The partial order <, is defined as,

Vay,azeh aj5a iff aj= 1L or ay,8,€ B and ay <z a,

Lifted domains inherit all the pre-defined operations on the base domain. If any of the arguments are
L, they return the L element of the result domain (i.e., they are strict). If the result domain does not have

a L, the operations are undefined on L arguments.

TOPPED DOMAIN

topped-domain = topped domain-name

The topped domain contains all the elements of the base domain plus an additional element T. The
overloaded identifier top denotes the element T of all topped domains. The induced ordering is defined as

follows:

1.

Let A =topped B.

The partial order <, is defined as,

Va,aen a5a iff aa=T or aj,a,e B and a; <z ap

Topped domains inherit all the pre-defined operations on the base domain. The operations are

undefined if any of the arguments are T.

Domains can be turned into lattices by using the lifted and topped constructors.

PRODUCT DOMAIN

product-domain = domain-name * domain-name { * domain-name }

The product domain contains tuples of elements from the component domains.
LetaA=A{ 2" -+ *"A,
An element of A is denoted by (X4, Xp, - - - , X,) where X; denotes an element of a;. The select
operator (denoted by 7) is pre-defined on all product domains.
(X9, %2, ~-- X)) i =x if 1<ign
The induced ordering <, is defined as follows:
(X1, X2, X)) Sa (Yr, Y2, 0 Yn) W Xi<p i, 1<i<n

A product domain has a least element if and only if all the component domains have least elements.
The least element if it exists is denoted either by the wple (L, La, -, La) where L, denotes the

least element in A; or synonymously by the identifier bottom.

UNION DOMAIN

union-domain = domain-name + domain-name { + domain-name }

The disjoint union domain contains elements from its component domains with the elements impli-
citly labeled to mark their origins. The elements of an union domain are denoted by explicit type qualified

denotations of elements of the component domains.

For example, let A = integer + boolean. (A 1) and (A true) denote elements of A.
Note the possible ambiguity in the denotation of elements if the list of component domains contain the
same domain name more than once. The resolution of the origin in such a case is left to the implementa-

tion. The specification should not depend on the resolution rule used.

The operator is is used to test the origin of an element of an union domain. In the above example,

(A 1) isinteger and (A true) isboolean evaluate to true while (A 1) isboolean

evaluates to false.
LetA=Ay+As+ -+ +A,

The induced ordering <, is defined as follows:

(ARay) s (aay) iff (aay)isa; and (A ay)is Ay and a <, a, forsome i,1<ign

Union domains have no least element.

POWERSET DOMAIN

powerset-domain ;= powerset of domain-name

The powerset domain contains as elements sets of elements from the component domain. The ele-
ments of a powerset domain are denoted by {Xy, ‘-, X,} where X; denote elements in the component
domain. The induced ordering is the subset relation. { } and the identifier bottom synonymously denote the
least element. The operators <=, +,"*,— and in are pre-defined as the standard set operations subset,

union, intersection, difference and membership respectively.

LIST DOMAIN

list-domain = list of domain-name

The list domain consists of lists of zero or more elements from the base domain. The list with zero
elements is denoted by the overloaded identifier nil. For all list domains A = list of B, the following

operations are pre-defined:
!IBXA—=>A Concatenation operator
& : AXA—> A Append operator
head : A—> B
tail : A—> A
null : A —> boolean

A list domain is considered to be flat unless explicitly ordered.

STORE DOMAIN

store-domain = store domain-name --> domain-name

Store domains contain as elements specialized functions with the functionality specified by the

declaration. The empty store, denoted by bottom[] (or just bottom), maps all elements in the first domain

9.

to the least element in the second domain if it exists. Otherwise, the function is undefined for all elements.
let A = store B --> C.

The pre-defined operation lookup : A X B —> C, denoted by a[b] where a : A and b : B, provides the
element of C to which b is mapped. An element of the store domain can be constructed from another ele-
ment using the pre-defined operation update : A X B X C —> A. The update operation uses the notation
a[c/b] where a : A, b : B and ¢ : C. There is also an expression to denote multiple updates and is described
in Section 2.5.1,

Let @’ be the store denoted by a[c/b]. @’ is defined as follows:
a'lx]=if x=Db then ¢ else a[x]
The store domain is ordered pointwise.
Vaj,aena S, a iff aylx]<ca)x] VxeB

If the codomain for the elements in the store domain contains the least element then all the elements
in the store domain are total functions and the empty store is the least element of the store domain. Note
that in lifted store domains, bottom denotes the least element of the domain while the empty store is
denoted by bottom[]

FUNCTION DOMAIN

function-domain = function [argument-list] --> domain-name

i

argument-list t= domain-name { --> domain-name }

The elements in the function domain are denoted using expressions described in Section 2.5.1. All
function domains are considered to be flat. Domain names can be used in function domain declarations

before they are defined.

2.3.3. The join operation

In addition to the pre-defined operations mentioned in the previous sections, the overloaded operator
join is pre-defined on all domains.
JOIN

The operation join : Ax A —> A for any domain A is denoted by +. If a; and a, denote values in the
same domain A, then &, + a, denotes the least upper bound of the values denoted by a, and a,. If the least

upper bound for the two values does not exist then the join is undefined.

-10-

UNARY JOIN

The binary operator join can be generalized to denote the least upper bound of a set of elements. The

unary join is defined on powerset and store domains only.

Let S = powerset of A. If s denotes anelementin S then +s denotes the element ain A
(if itexists) where a=lub{xe A | yins ,x=M[y]}

Let S = store I --> R.If sdenotesanelementin S then +s denotes the elementrin R (if

itexists) where r=Ilub{x e R | 3i:I, s[i}y, x= M[y]}
M[y] is the semantic value denoted by the syntactic object y.

The unary join is undefined if the least upper bound does not exist. For the powerset domain P and
the store domain S, the unary join operation is total if and only if A and Vv are complete join semi-

lattices.

2.3.4. Ordering Specification

ordering-option ordered by ordering

ordering i= order-enumeration

| order-name

order-enumeration

(order-tuple {, order-tuple })

order-tuple < string-literal , string-literal >

There are two ways to provide explicit ordering.

ENUMERATION

This method may be used for enumeration domains. The ordering is specified as a list of tuples
<a , b> where a and b are string literals specified in the enumeration domain declaration. The tuple estab-
lishes the order a < b. It is sufficient to provide all the "immediately less than" relations in the required ord-
ering. The ordering through transitivity is implicitly established. The declaration for Signs in Appendix
C is an example.

Signs — {II+II’II__|I'"0"} Ordered by (<"O"'"__">,<"0"’“+“>);

EXTERNAL DEFINITION

This is an escape clause to specify complex orderings in SSL rather than in the SPARE language. It
can also be used to provide a library of standard orderings (e.g. power-domain orderings). order-name is

.11-

an identifier that stands for a collection of four SSL functions providing the join operation, the equality test,

and the two constant functions that return the bottom and top elements if they exist.
<order-name>_join : Dx D — D w {error}
<order—name>_equal : D x D — boolean
<order-names>_bottom : —> D U {error}
<order—name>_top : —> D U {error}

SPARE will assume that the functions have been named as above and generate calls to these func-
tions in the translation. Writing these functions requires information about the conventions used in transla-

tion of SPARE language to SSL. The translation details are provided in Section 4.

2.4. Function Declarations

The functions in SPARE language are of two kinds - auxiliary functions that abstract operations in
the specifications and semantic functions that specify the analysis for the various syntactic objects in the
language. Auxiliary functions are declared and defined in the auxiliary function section while semantic
functions are declared in the semantic function declaration section and defined as semantic equations in the

semantic function definition section,

2.4.1. Function Type Declaration

The function type declaration is similar to the function domain declaration except for the facility to
specify strictness. The function type declaration is used to specify the types for both semantic functions as

well as auxiliary functions.

function-type-declaration

¥

[funarg-list } --> domain-name

funarg-list

w

[strict] domain-name [--> [strict] domain-name]

The strict option forces the function to be strict in the arguments for which the option is used. If the
codomain does not have a L then the function will be undefined if any of the arguments with the strict

option are L .

Although the strict option appears in the type declaration, it is not considered as part of the type

description (functionality) of the function. It implicitly modifies the function body.

.12

2.4.2. Auxiliary Functions

aux-function-section = {aux-function}

aux-function

W

function-name : function-type-declaration is expression ;

Auxiliary functions are defined using expressions described in Section 2.5.1. Auxiliary function

names must be defined before they are used.

2.4.3. Semantic Function Declarations

semantic-func-decl-section = semantic-func-decl { semantic-func-decl }

semantic-func-decl

function-name "[[" domain-name "]|" :

function-type-declaration [collect-option } [external-option] ;

external-option

W

external

The semantic function declarations associate function names with syntactic objects and provide their
type declarations. Semantic functions can only be associated with objects from syntactic domains. For
example, in Appendix C, the declaration

E [[exp]] = Store --> Sign_Lattice;

associates the semantic function E with the syntactic object exp.

Semantic functions cannot be declared for the pre-defined syntactic objects id, int and bool. Func-
tions declared as external are assumed to be defined in other specifications. These functions must be

declared with identical type declarations in the specifications in which they are defined.

2.4.4. Collect Option

collect-option collect collect-domain

collect-domain [powerset of] selected-domain

w

selected-domain = domain-name [" integer]

The collect option specifies information that must be collected and associated with syntactic objects
during the analysis. The domain—-name in the collect option must appear in the function type declaration.

If the name appears more than once in the type declaration, the occurrences must be differentiated by using

-13-

suffixes of the form "$n" where n is an integer. For example, in the declaration
P [[prog]] : D§1 --> S --> D$2 collect DS1;
the value of the first argument rather than the result is collected. The suffix does not create new domains.

Both D$1 and DS2 are the same as the domain D.

Whenever a semantic function with the collect option specified is evaluated, the value of the
specified argument (or result) is included in the information associated with the instance of the syntactic
object corresponding to the current evaluation. The pre-defined operation

cache : syntactic — cache
can be used to access information associated with syntactic objects. cache is a store domain
cache =store label --> collect-domain

where collect-domain is determined from the declaration. The collect-domain will be one of the fol-
lowing:

(1) The domain domain-name

(2) A component domain of domain-name where domain—-name is a product domain.

(3) The powerset of (1)

(4) The powerset of (2).

If the semantic function associated with an instance of a syntactic object is evaluated more than once,
the information from successive evaluations is "joined" together using the join(+) operator in the collect-

domain.

If the collect option is specified for more than one semantic function, then the cache domain maps
label to an union domain of all the respective collect domains. Semantic functions for the same syntactic

object must specify identical collect domains.

2.5. Semantic Function Definitions

semantic-func-defn-section

semantic-equation { semantic-equation }

W

semantic-equation function-name "[[" (production) "]]" =

expression

W

production production-name { syntactic-domain-name }

Semantic functions are defined through a list of semantic equations. A semantic equation defines the
function for a single production in the abstract syntax for the syntactic object with which the function is

associated. Semantic equations can be listed in any order. A semantic equation must be provided for each

-14-

production in the abstract syntax. A production is specified as a list (possibly empty) of syntactic domains
headed by a production name. If the same syntactic domain occurs more than once in the production, the
occurrences must be differentiated by using suffixes of the form "$n" where n is an integer. For example, a

semantic equation from Appendix C is given below:
E [[(Add exp$2 exp$3)]]1 = lambda x. (E [[exp$2]] + E [[exp$3]]) x

The conventions used to relate the productions in the spéciﬁcation to an SSL description of the abstract
syntax is discussed in Section 4. Appendix D provides the abstract syntax in SSL for a simple language and

an analysis specification for that language.

2.5.1. Expressions

expression = constant
variable
primitive-expression
lambda-expression
function-application

expression-composition

|

I

I

|

|

| expression-union
| conditional-expression
| fixed-point-expression
| let-expression

| typecast-expression
|

(expression)

CONSTANTS

Integer literals, string literals and boolean literals are constants. Integer and boolean literals denote
values in integer and boolean domains respectively. String literals denote values in enumeration domains.
Reserved identifiers bottom, top and nil are over-loaded and denote constant values from domains as
described in Section 2.3. The reserved identifier identity denotes the constant function (see the section on

lambda expressions).

VARIABLES

Variables can be used to denote values from various domains. They are either identifiers or semantic
function instance denotations. Identifiers are introduced through lambda expressions, let expressions and
fixed-point expressions. The pre-defined identifiers bool, int and id denote syntactic objects as well as

corresponding values in boolean, integer and identifier—string domains respectively (these are described

-15-

in more detail in Section 4). Semantic functions instances are denoted by a pair of identifiers consisting of a

function name and a syntactic domain name.

PRIMITIVE EXPRESSIONS

primitive-expression

[

pre-defined-operation
| set-construction

| product-construction

i

set-construction "{" [expression-list] "}"

product-construction

([expression-list])

expression-list

expression { , expression }

The pre-defined operations were introduced in Section 2.3. They are summarized in this section. For
operands to be compatible, they must denote values in the same domain (i.e., the domains must be name

equivalent).

boolean operations:

Operation Notation Type Usage

logical and and D x D> boolean binary infix
logical or or D x D —> boolean binary infix
logical not not D --= boolean unary prefix

D must be a boolean domain or a boolean domain that has been lifted and/or topped.

integer operations:

Operation Notation Type Usage

addition add DxD—>D binary prefix
subtraction sub DxD—D binary prefix
multiplication mult DxD—D binary prefix
division div DxD->»D binary prefix
unary minus minus D—=D unary prefix

D must be an integer domain or an integer domain that has been lifted and/or topped.

-16-

syntactic and label operations:

Operation Notation Type Usage
label d’label syntactic —> label unary postfix
cache d’cache syntactic —> cache unary postfix

d must denote a syntactic object. The symbol ’$’ can be used in semantic equations to denote the
instance of the syntactic object for which the semantic function is being evaluated. For example, in the
semantic equation

S [[(Assign id exp)]] = lambda x. x[exp’cache/$’label];
$flabel refers to the label of the syntactic object (Assign id exp). exp’cache refers to the

cache associated with the syntactic object exp.

product domain operation:

Operation Notation Type Usage

selection

D x integer —> D1 binary infix

D must be a product domain, D1 is a component domain of D.

union domain operation:

Operation Notation Type Usage

origin test is D x D1 —> boolean binary infix

D must be an union domain, D1 is the set of names of component domains of D1,

powerset operations:
Operation Notation Type Usage
subset <= D x D —> boolean binary infix
union + DxD-—->D binary infix
intersection * DxD— D binary infix
difference - DxD-— D binary infix
membership in D1 x D — boolean binary infix

D must be a powerset domain, D1 is the base domain of D.

.17-

list operations:
Operation Notation Type Usage
concatenation : DixD— D binary infix
append & DxD—D binary infix
head head D— DIl unary prefix
tail tail D—D unary prefix
nil test null D —> boolean unary prefix

D must be a list domain, D1 is the base domain of D.

store operations:
Operation Notation Type Usage
lookup sfi] DxDl— D2 binary mixfix
single update s[v/i] DxD2xDl—>D ternary mixfix
multiple update s[foreach x in el do e2/e3] DxD3xD2xDl— D quarternary mixfix

D must be a store domain, D1 the index domain of D and D2 the value domain of D. D3 must be a
powerset domain. The multiple update consists of a sequence of single updates with the identifier x succes-

sively bound to each element of el. The identifier is introduced with a scope covering e2 and e3.

overloaded operations:
Operation Notation Type Usage
join + DOx D0 —> DO binary infix
unary join + D1 — D2 unary prefix
equal = D3 x D3 — boolean binary infix

DO is any domain. D1 is a powerset domain and D2 is the base domain of D, or D1 is a store domain

and D2 is the value domain of D. D3 is any domain except a function or a syntactic domain.

LAMBDA EXPRESSIONS

lambda-expression :i= lambda identifier . expression

Lambda expressions are used to create functions. The evaluation of a lambda expression results in

the representation of a function in some function domain. The expression in the lambda expression

-18-

becomes the function body. The function body is evaluated in the context that is active at the point of
definition of the lambda expression augmented with the binding of an actual parameter to the binding
identifier. Static scoping is used to determine the context. The lambda expression creates a new scope for
the inner expression in which the binding identifier is visible. The pre-defined identifier identity denotes the
identity function. The pre-defined identifier bottom is over-loaded to include bottom functions
(AX1.AXz. - - - AXp. L) and the identifier top is over-loaded to include top functions (AX4.AXz. * - * AXp. T)

FUNCTION APPLICATION

function-application = expression expression

The first expression must evaluate to a function. The evaluation of the second expression must
denote a value in a domain compatible with (i.e., name equivalent to) the argument domain of the function.
The result of evaluation of a function application is the result of applying the function to the result of the

evaluation of the second expression.

EXPRESSION COMPOSITION

expression-composition = expression . expression

Both the expressions must evaluate to functions. The result of the evaluation of an expression com-
position is a function that is a composition of the functions resulting from the evaluation of the two expres-
sions. Let the first expression evaluate to the function A —> B for some domains A and B. The second

expression must evaluate to a function of type X — A for some domain X or to a constant function of type
—-> A.

EXPRESSION UNION

expression-union = expression + expression

Both expressions must evaluate to denote values in the same domain, If the expressions evaluate to
non-function domains, the result of evaluation of the expression union is the join (+) of the results of
evaluation of the two expressions. If the expressions evaluate to functions, then the result of evaluation of
the expression union is a functional form [1] defined as follows:

flef2=Ax.flx+f2x

-19-

CONDITIONAL EXPRESSION

conditional-expression = expression --> expression , expression

The first expression must evaluate to denote a value in the boolean domain. The second and third
expressions must evaluate to denote values in identical domains. The result of evaluating the conditional
expression is the result of evaluating the second expression if the first expression evaluates to denote true.

Otherwise, it is the result of evaluating the third expression.

FIXED-POINT EXPRESSION

fixed-point-expression

fix [termination-option] function-name . expression

termination-option argument [bound-option]

| cache [bound-option]

bound-option “= bound (integer-literal)

Fixed-point expressions are used to define recursive functions. The function—name is bound to the
fixed-point expression and can be used in the expression to refer to it. The termination—option is used to
specify termination criterion for the fixed-point expression evaluation. The formal semantics of these
options are provided in [6]. Operationally, the termination options control the evaluation of the fixed-point

expression as follows:

If the fix argument option is specified, the recursive function is evaluated until the arguments to the
recursive call reach a fixed-point. To detect the fixed-point, the arguments to a recursive call are compared
with the arguments in the previous call. If they are the same (tested using the equal operation), then the
recursive call is substituted with the L function. Hence, the expression

fix argument F. lambda x1. ... lambda xn. E
denotes the function
AXqy. AXp. +c 0 AXp. E]X/ xi] [G(Lq, Lo, -+, L,)/ F] where

G=2py. Ap2. **APn. AYs. Ay - Y i;(piz i) => L, Elyi/ xi] [G(y1.y2, - - - yn) / F]

Note that the use of the termination option does not guarantee termination of the evaluation. The fix
argument option is useful when the arguments to successive recursive calls form a strictly non-decreasing

chain.

For example, the least fixed-point solution to equations of the form
x = f(x) when x is not a function

can be specified using the fix argument option as:

=20~

(fix argument F. lambda x. (F (f x)) + x) bottom

The cache option is similar to the argument option except that the recursive function is evaluated

until the cache values computed by semantic functions during the recursive evaluation reach a fixed-point.

The bound option can be used to limit the depth of recursive calls. The integer provides an upper
bound on the number of recursive calls. If the fixed-point is not reached within this number of recursive

calls, the next recursive call is substituted with the constant function T.

LET EXPRESSION
let-expression = let let-clause { ; let-clause } in
expression
let-clause = identifier = expression

The expression in the let expression is evaluated in the context of the let expression augmented by
the binding of each identifier to the result of evaluating the expression in the corresponding let clause.
Static scoping is used to determine the context. The scope of an identifier extends from the let clause fol-

lowing its definition (if any) to the end of the let expression.

TYPECAST EXPRESSION

typecast-expression = domain-name expression

Type casting is used to coerce denotations of values from one domain to another (or possibly itself).

Type casting is valid in only the following cases:

(1) The domain-name is the name of a lifted or topped domain and the expression denotes a value in

the base domain.

(2) The domain-name is the name of an union domain and the expression denotes a value in one of its

component domains.

(3) The domain-name is the name of the domain to which the value denoted by the expression belongs

(i.e., the null or trivial coercion).

2.6. Type compatibility rules

(1) Two denotations that denote values in function domains are compatible if and only if belong to two
domains that are structurally equivalent. The strict and collect options are not considered as part of

the type structure (functionality).

-21-

(2) Two denotations that denote values in non-function domains are compatible if and only if they

denote values in the same domain (name equivalence) with the exception in (3).

(3) The cache domain implicitly defined through the collect option is a store domain that maps labels
to the specified collect domain (Section 2.4.4). The cache domain is compatible with any store

domain that is structurally equivalent to it.

3. Using the SPARE Editor

The SPARE editor is constructed using the Synthesizer Generator and follows the editing paradigm
described in [2]. It is assumed that the reader is familiar with the editing commands common to all editors

generated through the Synthesizer Generator.

The editor is syntax-directed and provides warnings and error messages for type errors. In cases
where the type information in the declarations is insufficient to derive the type of an expression, the user
must explicitly typecast the expression. For example, consider the expression

let x = {1,2,3} in e
where e is an expression using +x (the unary join of x). To be type consistent, the set literal can denote
a value in any powerset domain over an integer base domain. Such expressions must be explicitly typecast

(Section 2.5.1). The editor will output a warning message for such expressions.
Syntactic object names in expressions are automatically enclosed in double square brackets.
The specifications can be written to files in three formats:

(1) The specification text: This is used to get a print copy of the specification and is created by using

the write command with the rext option.

(2) The specification structure: This allows specifications to be saved for future edits. It is created by
using the write command with the structure option. Specifications saved in this format can be read

back into the editor.

(3) The specification translation: This format is used by the translator to create SSL specifications. This
is created using the write command with the text option on the alternate unparsing scheme for the

specification.

SPARE does not perform any consistency checks between productions in the specifications and the
abstract syntax of the language specified in SSL. The conventions to be followed are described in the next
section. It also does not check the consistency of declarations for identical names in multiple specifications

that may be used together.

22

4. Interfacing with SSL editor specifications

Although the specification translation output by the editor is very close to a SSL specification, it must
be passed through a pre-processor that generates several SSL specification files to implement user-defined
domains and to support operations on those domains. These files must be included with the editor

specifications to generate an editor with the analysis built in.

In order to use SPARE specifications in editors generated through the Synthesizer Generator, it is
necessary to know some details about the translation of SPARE specifications into SSL specifications. This
section provides these details as well as some conventions that must be followed in creating SPARE

specifications.

All the phylum names generated by SPARE in SSL translations are prefixed with the string "_ _" to
prevent inadvertent collisions with pre-defined identifiers in SSL as well as identifiers declared by the user

in editor specifications.
4.1. Conventions to be used in specifications

The abstract syntax of the language for which an analysis specification is written, is specified in SSL
as part of the editor specification. The SPARE specification must follow certain conventions in order to be
consistent with the abstract syntax. Appendix D provides an example SPARE specification along with the
abstract syntax written in SSL.

4.1.1. Syntactic domain names

The names defined as syntactic domains in SPARE specifications must be production (phylum)
names in the abstract syntax. In Appendix D, the the names prog, stmtlist, stmt, exp and

b_exp are declared as syntactic objects and are phylum names in the abstract syntax.

The names id, bool and int are pre-defined phylums and can be used in the abstract syntax.
Their SSL declarations are available in the file "SPARE.domains.ssl" which must be included with all edi-
tor specifications that use SPARE generated specifications. The user may change these definitions to suit
the langnage for which the editor is to be constructed. The names id, bool and int can be used in
SPARE specifications as syntactic objects. When they are used in expressions they are implicitly coerced to

denote values in semantic domains. The domains that they denote values in are described in Section 4.6.

4.1.2. Productions and abstract syntax

When a semantic function is associated with a syntactic object, semantic equations must be provided
for every production associated with the corresponding phylum in the abstract syntax (including any com-
pleting and/or placeholder productions). The production in each semantic equation must use the operator

name in the abstract syntax as the production name and list the argument phylum names to this operator.

223

For example, in Appendix D, the phylum stmt has the following production:
Assign (id exp)
The semantic equation corresponding to this production for the semantic function S is defined as follows:

S[[(Assign id exp)]] = lambda x. let n=E [[expl] x in x[n/[[id]]]:

If a phylum name occurs more than once in the argument list or occurs on both sides of the produc-
tion, then the occurrences must be distinguished by adding a suffix of the form "$n" where n is an integer
literal. The numbering begins with 1 and increases from left to right. This is the same convention as the one
used in writing attribute equations in SSL specifications. For example, the occurrences of exp in produc-

tions with two different left hand sides in Appendix D are distinguished as follows:

production semantic equation

exp : Add(exp exp) E[[(Add exp$2 exps$3)]] = ...
b exp : Equal (exp exp) Bt [[(Equal exp$l expS$2)]] = ...

Although the argument phylum names can be specified in any order (after the different occurrences
have been distinguished) in the semantic equation, it is recommended (for readability) that they are listed in

the same order as they appear in the abstract syntax.

4.2. Domain representations

Values of all domains used in the specifications are represented in the translation as terms belonging
to the pre-defined phylum __userdomains. A unary operator is associated with this phylum for each
domain defined in the specification. The single argument is the name of a phylum that implements the par-
ticular domain. The structure of ___userdomains is not relevant to the user if the editor is to simply
display the information provided by the analysis. Reasonable unparsing statements have been provided for
these phylums in the file "SPARE.domains.ssl".

The next three sections provide the details necessary to generate editors that use this default display
for the information obtained from the analysis. Section 4.6 provides some details about the internal struc-
ture of domain implementations to allow the user to process the analysis information in editor

specifications.

4.3. Function representations

The semantic functions are defined as attribute values in attribute equations associated with nodes in
the abstract syntax tree. The SPARE translation defines two attributes for every semantic function in the
phylum associated with the semantic function. The first attribute is a string that labels the node. The label is

24-

generated using the SSI. built-in function gensym and consists of a string with the prefix label- and is
unique to each instance of the production. The second attribute is defined to be of type __fexpr which is a
pre-defined phylum in "SPARE.domains.ssl". The phylum __fexpr defines the productions required to
represent the semantic functions as attribute values. The internal structure of this phylum is not relevant to

the user.

The label attribute is named __ X_label while the semantic function attribute is named __ X where X
is the name of the semantic function. The expression corresponding to the semantic function is represented

by the value of the second attribute.

4.4. The Interpreter

The interpreter for evaluating expressions in the SPARE language is provided as a pre-defined SSL
function with the type:

_ _userdomains ___Interpreter (__fexprf)

and can be used inside attribute equations in editor specifications.

4.5. Displaying the results from the analysis

In most situations the interpreter is used in an attribute equation for the root phylum. The semantic
function attribute in the root phylum usually contains the expression corresponding to the analysis of the
entire program. However, it is possible to use the interpreter in any phylum for which the corresponding

semantic function expects no arguments.

To display the information obtained from the conditional constant propagation specification in
Appendix D, the following schema may be used:
prog : Prog {
local _ _userdomains output;

output = __Interpret(__P);

other attribute equations

}

The attribute output can then be used in the unparsing statement for Prog to display the result of the
analysis. The semantic function will be interpreted whenever a change in the program results in a different

semantic function. The output will be presented using the default display.

225.

It is possible to control the granularity of edits before successive analyses are carried out by making
the attribute output a demand attribute and providing two unparsing specifications which are identical
except that only one of them displays the atiribute output. The semantic functions are then interpreted
only when the output is to be displayed. All the edits can then be carried out when the principal unparsing
scheme (without the output displayed) is in effect. After all the edits are completed one can switch to the

alternate unparsing scheme to initiate the interpretation and observe the results of the analysis.

4.6. Domain implementations

All semantic values are represented as terms belonging to the pre-defined phylum __userdomains.
It is necessary to know some details about the internal structure of this phylum, if the information obtained
from the analysis is to be displayed in a format different from the default, or is to be further processed

before display.

The operators (or productions) associated with ___userdomains fall into two categories:
(1) Operators common to all specifications:
top and bottom operators:

The nullary operators __bottomrep and __toprep are used to create the terms ___bottomrep() and
__toprep() that represent L and T respectively in any domain. There may be more than one representa-

tion for the top and bottom elements of some domains.
error operators:

These operators are used to catch run-time errors. The nullary operators __notop and __nobottom
create terms that represent the non-existence of the least upper bound and 1 respectively during the
evaluation of expressions. For example, the join operation on two elements from some domain generates

the term __notop() as the result, if the two elements have no least upper bound in the domain.

The third operator ___errorvalue is used to cover errors other than the two above. Some of the
operations defined in Section 2 are undefined for certain arguments. The __errorvalue operator is used to
make these functions total, by generating the term ___errorvalue() when the operations are undefined. All

operations in the SPARE language propagate the error values.
These values are useful in debugging of analysis specifications.
primitive domain operators:

The unary operators __intdomain, __booldomain and __labeldomain are used to represent
values from the primitive domains integer, boolean and label respectively. The single arguments are
terms from phylums that implement these domains. The pre-defined phylums int and bool implement the

integer and boolean values. The labels are implemented as the SSL-predefined string phylum STR.

.26-

The special syntactic objects int and bool used in specifications are implicitly coerced into semantic
values by using the operators ___intdomain and __booldomain respectively with the corresponding nodes
of the abstract syntax tree provided as arguments.

Semantic functions must be defined to provide semantic values of syntactic objects. However, the
special syntactic object id is implicitly coerced into the semantic domain by using the unary operator
__syntacticdomain. The operator takes a term from the pre-defined phylum id as an argument. The node
in the abstract syntax tree corresponding to an instance of id is used as an argument to this operator to

obtain the corresponding semantic value.

Values in all function domains are constructed using the unary operator __functiondomain. The
argument is a term from the SSL-predefined pointer phylum PTR. An expression is converted into a value

in the function domain by using this operator and the pointer to the representation of the expression.
cache domain operator:

The cache domain that is implicitly defined through the collect option is implemented using the
unary operator __cache. The argument is a term from the phylum for the implementation of a store

domain.
(2) User defined domain operators:

A unary operator is created for each domain defined in the specification. The domain name is used
as the name of the operator (i.e., production name). The single argument is the name of a phylum that
implements the particular domain. The phylums that implement the various domain constructions are in the
file "SPARE.domains.ssl". Appendix E provides the definition of __userdomains generated for the
specification in Appendix D.

4.7. External domain order definitions

In Section 2.3.4., the facility to define domain orderings through SSL functions was described. The
four functions required for the ordering must be defined as SSL functions with the types given below:

. _userdomains <order-name>_join (__userdomains ul, __userdomains u2)

_ _userdomains <order-name>_equal (_ _userdomains ui, userdomains u2)

_._userdomains <order-name>_bottom ()
. _userdomains <order-name>_top ()

If the domain for which the ordering is being defined contains other domains as components then the

above operations can be defined in terms of the following pre-defined functions (in SSL) to perform the
corresponding operations in the component domains;

27-

__userdomains _ _join (__ _userdomains u1, userdomains u2)

___userdomains _ _equal (_ _userdomains ul, _ _userdomains u2)

__userdomains ___bottom ()

_ _userdomains _ _top ()

5. SPARE Prototype 1.0

This section lists certain features and limitations of the current prototype that are not implied by the

description in the previous sections. These features and limitations are most likely to change in future ver-

sions.

M

@

)

@
®)

(©6)

Functions can be "curried” only if they do not have the strictness and collect options specified in
their type declarations. Currying of functions with either the strictness or collect option are not

detected by the editor and will produce unreliable results on interpretation.

The editor does not resolve types of all overloaded expressions and requires the user to provide
explicit typecasting. Warnings are provided for expressions that require explicit typecasting. The
warnings can be ignored. However, type errors in such specifications may result in unreliable

results on interpretation.

All domains are currently implemented through list structures. The speed of interpretation can be

greatly improved by providing more efficient implementations.
Auxiliary functions cannot be shared among multiple specifications.

Identical domain names declared differently in multiple specifications may produce unreliable

results on interpretation.

The interpreter uses a cache to provide incremental evaluation of semantic functions. In the worst
case, there is an overhead of roughly 10 percent compared to complete re-evaluation. The incre-
mental evaluation scheme is not very effective for re-evaluation of expressions that involve fixed-

point expressions.

.28-

Appendix A. Reserved words and pre-defined identifiers in SSL

RESERVED WORDS
and as class default demand
exported ext_computers false foreign in
inh inherited left list let
local nil nil_attr NONAassoc on
optional prec repeated right root
store style syn synthesized transform
true typedef with
PRE-DEFINED IDENTIFIERS
ASYNCHPAR attr Attr boolean
Bottom BOTTOM Bool character
Char coll COLLECTIONS default_store
double dreal DontCare DONTCARE
Dreal Fcn FCN GetBottom
hashtable integer Int LINEBREAK
mapping NAME NUMBER PatVarDef
PATVARDEF PatVarUse PATVARUSE ptr
P real Real str0
Str SYNCHPAR Table TEXTLINE
Yiextfile Ytextline

-29.

Appendix B. Syntax of SPARE language

specification = domain-declaration-section
aux-function-section
semantic-func-decl-section
semantic-func-defn-section

domain-declaration-section { domain-declaration ; }

domain-declaration = domain-name {, domain-name }

= domain-definition [ordering-option]

domain-definition

primitive-domain
enumeration-domain
lifted-domain
topped-domain
product-domain
union-domain
powerset-domain
list-domain

store-domain

function-domain

primitive-domain 2= boolean | integer | syntactic | label
enumeration-domain = "[" string-literal { , string-literal } "}"

lifted-domain i= lifted domain-name

topped-domain i= topped domain-name

product-domain = domain-name * domain-name { * domain-name }
union-domain := domain-name + domain-name { + domain-name }
powerset-domain = powerset of domain-name

list-domain = list of domain-name

store-domain

function-domain

argument-list

ordering-option

ordering

order-enumeration

order-tuple

aux-function-section

aux-function

semantic-func-decl-section

semantic-func-dec|

function-type-declaration

funarg-list

collect-option

collect-domain

selected-domain

semantic-func-defn-section

semantic-equation

production

-30-

store domain-name --> domain-name

function [argument-list] --> domain-name

domain-name { --> domain-name }

ordered by ordering

order-enumeration

order-name

(order-tuple {, order-tuple })

< string-literal , string-literal >

{aux-function}

function-name : function-type-declaration is expression ;

semantic-func-decl { semantic-func-decl }

function-name "[[" domain-name "]]" :

function-type-declaration [collect-option] [external-option] ;

[funarg-list] --> domain-name

[strict] domain-name [--> [strict] domain-name]

collect collect-domain

[powerset of] selected-domain

domain-name [" integer]

semantic-equation { semantic-equation }

function-name "[[" (production) "]]" =

expression

production-name { syntactic-domain-name }

-31-

syntactic-domain-name identifier

| identifierSinteger-literal

expression = constant
variable
primitive-expression
lambda-expression
function-application

expression-composition

I

[

|

|

|

| expression-union
| conditional-expression
| fixed-point-expression
| let-expression

| typecast-expression
|

(expression)

constant = integer-literal
| boolean-literal
| string-literat

| il

| bottom

| top

variable e g
| identifier
| "[[" syntactic-domain-name "]J"

| function-name "[[* syntactic-domain-name "}J"

primitive-expression = pre-defined-operation
| set-construction

| product-construction

set-construction = "{"[expression-list] "}"
product-construction = ([expression-list])
expression-list = expression{, expression }

pre-defined-operation = unary-prefix-operation

unary-prefix-operation

binary-infix-operation

binary-prefix-operation

unary-postfix-operation

mix-fix-operation

store-expression

lambda-expression

function-application

expression-composition

expression-union

conditional-expression

fixed-point-expression

termination-option

bound-option

let-expression

-32-
binary-infix-operation
binary-prefix-operation
unary-postfix-operation
mixfix-operation
unary-prefix-op expression
expression " integer-literal
expression is domain-name
expression binary-infix-op expression
binary-prefix-op expression expression
identifier * unary-postfix-op
expression '[" store-expression "]"
expression
expression / expression
foreach identifier in expression do expression / expression
lambda identifier . expression
expression expression
expression . expression
expression + expression
expression --> expression , expression

fix [termination-option] function-name . expression

argument | bound-option]
cache [bound-option]

bound (integer-literal)

let let-clause { ; let-clause } in expression

let-clause

typecast-expression

unary-prefix-op

binary-infix-op

binary-prefix-op

unary-postfix-op

.33-

identifier = expression

domain-name expression

minus | not | head | tail | null | +

and|or|in|<=|+|"|-|1] &=

add | sub | mult | div

label | cache

-34-

Appendix C. Example 1 : Sign analysis of expressions

Domain Declaration:

id, exp = syntactic;

Signs = {“+|l,"_'l,"0|'} Ordered by (<"0","_">’<"O",'l+“>) ;

Sign SemilLattice = lifted Signs;
Sign_Lattice = topped Sign_Semilattice;
Store = store id --> Sign Lattice;
Semantic Function Declaration:

E [[exp]] : Store --> Sign_Lattice;
Semantic Function Definition:

E [[(Id id) 1] = lambda x. x[[[id]]]

E [[(Add exp$2 exp$3)]] =

lambda x. (E [[exp$2]] + E [[exp$3 1]

)

-35.

Appendix D. Example 2: Conditional Constant Propagation
(based on the algorithm by Wegbreit [7])

The abstract syntax in SSL:

root prog;

prog : Prog(stmtlist)

list stmtlist;
stmtlist : Stmt:ListNil ()
| StmtList (stmt stmtlist)

stmt : StrmtNil ()
| Assign(id exp)
| If(b_exp stmt stmt)
| While(b_exp stmt)

] Comp (stmtlist)

exp : ExpNil()
| ExpId(id)
| Int_Lit(int)

| Add (exp exp)

b_exp : B ExpNil ()
| Bool_Lit (bool)
| And(b_exp b_exp)
| Equal (exp exp)

-36-

Conditional Constant Propagation specification:

Domain Declarations:

bool, int, id, exp, b_exp, stmt, stmtlist, prog = syntactic;

i

con lifted integer;

Con = topped con;

cstore store id --> Con;

Cstore lifted cstore;

Semantic Function Declaration:

P[[prog]] : ~--> Cstore;

SL[[stmtlist 1] : strict Cstore$l --> Cstore$2 collect Cstore$2;
S[[stmt]] : strict Cstore$l -~-> Cstore$2 collect CstoreS$S2;
El[exp 1] : strict Cstore ~-> Con;

Bt{[b_exp 1] : strict Cstore --> Cstore;

Bf[[b_exp 1] : strict Cstore --> Cstore;

Semantic Function Definitions:

P[[(Prog stmtlist)]] =

let c=SL [[stmtlist]] (bottom[]) in +([[{stmtlist]]’cache);

SLI[(StmtListNil)]] = identity;

SL{[(StmtList stmt stmtlist$2)]] = SL [[stmtlist$2]]

S[I(StmtNil)}] = identity;

S[[(Assign id exp)]] = lambda x. let n=E [[exp]] x in

S[[(If b_exp stmt$2 stmt$3)]] =

S [[stmt]];

x[n/[[id]]

lambda x. let bt=Bt [[b _expl]] x; bf=Bf [[b _expl] x in

(S [[stmt:$2]] bt + S [[stmt$3]] bf);

it

S[[(While b_exp stmt$2)]]

fix argument f£. lambda x.

let bt=Bt [[b_expl] x; bf=Bf [[b _expl] x in

1:

-37-
(f (S [[stmt$2]] bt + x) + bf);
E[[(ExpNil)]] = identity;
E[[(ExpId id)]] = lambda x. x[[[id]]];
E[[(Int_Lit int)]] = lambda x. Con [[intl];
E[[(Add exp$2 exps3)]] =
lambda x. let nl=E [[exp$2]] x; n2=E [[exp$3]] x in
(nl = top) or (n2 = top) --> top ,add nl n2;
Bt[[(B_ExpNil)]] = identity;
Bt[[(Bool_Lit bool)]1] = lambda x. [[bool]] --> x ,bottom;
Bt[[(And b_exp$2 b _exp$3)]] =
lambda x. let btl=Bt [[b_exp$2]] x; bt2=Bt [[b_exp$3]] x in
(btl = bottom) or (bt2 = bottom) =--> bottom ,x;
Bt [[(Equal exp$l exp$2)]1] =
lambda x. let nl=E [[exp$l]] x; n2=E [[exp52]] x in
(nl = top) or (n2 = top) or (nl = n2) --> x ,bottom;
BE[[(B_ExpNil)]] = identity;
BE[[(Bool_Lit bool)1] = lambda x. [[bool]l] --> bottom ,x;
Bf[[(And b_exp$2 b_exp$3)]] =
lambda x. let bfl=Bf [[b_exp$2]] x; bf2=Bf [[b _exp$3]] x in
(bfl = bottom) and (bf2 = bottom) --> bottom ,x;
Bf[[(Equal exp$l exp$2)]] =

lambda x. let nl=E [[exp$l]] x; n2=E [[exp$2]] x in
(not ((nl = top) or (n2 = top)) and (nl = n2)) -~-> bottom

1 X7

.38-

Appendix E. Domain definitions generated for the specification in Appendix D,

__userdomains : __bottomrep ()

| __toprep()

| hotop ()

| __nobottom()

| __errorvalue()

| ___intdomain (int)

] __booldomain (bool)

| __labeldomain (STR)

| __syntacticdomain (id)
__functiondomain (PTR)
| __cache(__store impl)

| ...Cstore(__store_impl)

con(__lifted domain_impl)
| _.Cstore(__lifted domain impl)

i _.Con(__topped domain impl)

-39.

References

1.

J. Backus, “Can programming be liberated from the von Neuman style? A functional style and its
algebra of programs,” Communications of the ACM 21 pp. 613-641 (1978).

T. Reps and T. Teitelbaum, The Synthesizer Generator Reference Manual, Springer-Verlag, New
York (Third Edition, 1988).

D. A. Schmidt, Denotational Semantics - A methodology for language development, Allyn and
Bacon, Boston (1986).

Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, The MIT Press, Cambridge, Massachusetts, and London, England (1977).

R. D, Tennent, “The denotational semantics of programming languages,” Comm. of the ACM 19 pp.
437-452 (1976).

G. A. Venkatesh and C. N. Fischer, “Formal Semantics of SPARE,” Tech. Report in preparation,
University of Wisconsin-Madison (1989).

B. Wegbreit, “Property extraction in well-founded property sets,” IEEE Trans. on Software
Engineering SE-1(3) pp. 270-285 (Sept 1975).

