STRONG SEPARATION OF THE
BOOLEAN HIERARCHY OVER RP

by

Danilo Bruschi
Deborah Joseph
Paul Young

Computer Sciences Technical Report #847

May 1989






STRONG SEPARATION FOR THE BOOLEAN HIERARCHY OVER RP~

DANILO BRUSCHI
Dipartimento Scienze dell’Informazione, Universita degli Studi - Milano
Computer Sciences Department, University of Wisconsin - Madison

DEBORAH JOSEPH
Computer Sciences Department, University of Wisconsin - Madison

PAUL YOUNG
Computer Science Department, University of Washington
Computer Sciences Department, University of Wisconsin - Madison

Recently, boolean hierarchies over NP and over RP (denoted BH and RBH respectively) have been introduced
in complexity theory. They have proved useful in classifying natural problems which are not easily classified
using standard time and space complexity classes. In this paper we are particularly interested in the structural
properties of these hierarchies and relationships between the various boolean hierarchies.

Establishing the most significant relationships between BH, RBH and other complexity classes would imply
solving some of the major open problems in complexity theory. To date the only significant relations known are:
NP C BH C A}, RP C RBH C BPP C PP, and RBH C BH . Essentially nothing is known about the fine
structure of BH or RBH.

In [BISY89] an oracle X is constructed for which both BHX and RBH™ have an infinite number of proper
Jevels. Further each level of RBH is properly contained in the corresponding level of BH, and RBH is properly
contained in PP. In this paper we further explore these constructions. We prove that some of these separations
are “strong” separations. That is, they can be witnessed by sets that cannot be “approximated” by sets in the
smaller class: the separating sets are immune to sets from the smaller class.

Specifically, we prove that the separations between RBH, P, PP and each level of BH, can be witnessed
by immune sets.

Contents

. Introduction

. Basic Definitions

. Strong Separation Results for RBH

. Strong Separation between RBH and P

. Strong Separation between RBH and BH
. Strong Separation between RBH and PP
. Bibliography

-3 O Ut B W

Categories and Subject Descriptors: F.1.3 [Theory of Computation]: complexity classes.
General Terms: Structural complexity theory.
Additional Key Words and Phrases: boolean hierarchy, NP, RP.

Date: May 12, 1989

* The work of the first author is supported in part by Ministero della Pubblica Istruzione, through “Progetto
40%: Algoritmi e Strutture di Calcolo.” The work of the second author is supported by the National Science
Foundation under grant DCR-8520597. The work of the third author is supported by a Brittingham Visiting
Professorship in the Computer Sciences Department at the University of Wisconsin-Madison.

Authors’ 1989 address: Computer Sciences Department, University of Wisconsin, 1210 West Dayton St., Madison,
WI 53706.






1. Introduction

Understanding the computational complexity of natural problems is one of computer science’s major research
concern. For cases in which precise upper or lower bounds on the complexity of a problem seem difficult to
obtain, it may be possible to obtain a good estimate of the problem’s “difficulty” by showing it complete
for some complexity class. Unfortunately this is not a universal method, in fact there exist problems (for
example the “graph isomorphism” problem) that to date cannot be classified as complete for any complexity
class, and there exist complexity classes that do not have complete problems.

The first classes introduced in com plexity theory were quite coarse and were primarily based on restricted
uses of deterministic and nondeterministic time and space. As a result for many interesting problems
standard deterministic and nondeterministic classes are not adequate to provide a precise characterization
of complexity Looking for complexity classes that cither better capture the compulational complexity of
these problems or for which these problems are complete has led to the introduction of many new complexity
classes, for example various probabilistic complexity classes, circuit classes, difference classes, and bounded
query classes. We will be concerned with some of these.

In 1982 Papadimitriou and Yannakakis [PaYa84], studying the complexity of languages associated with

NP optimization problems, proved that the language:
{< G k> the maximum clique in the graph Gt is of size kY,

is complete for D¥, a complexity class that lies between NP and AL!

On the basis of this result, researchers began to investigate the possibility of defining additional com-
plexity classes between NP and AL Recently [WeWaBb, CaHe86, K6SchWad7, BJSY89] have shown that we
can define over NP, or over RP, potentially infinite hierarchies which lie below AL These hierarchies, called
boolean hierarchies (or difference hierarchies), are an extension to complexity classes of a notion introduced
by Hausdorff in 1914 in the context of descriptive set theory and adapted to recursive enumerable sets by
Ersov [Er68a,Er68b,Er69].

Boolean hierarchies are typically formed by taking at the base level a class of sets which is closed under
union and intersection but not complement, and then forming the & — th level of the hierarchy by iterating
closure under k operations involving complement. In this paper we are particularly interested in structural
properties and relations among the boolean hierarchy over NP (which in the following will be denoted by
BH) introduced in [WeWa85, Cale86, K6SchWag7] and in the boolean hierarchy over RP (which in the
following will be denoted by RBH), introduced in [BJSY89].

Establishing the most significant relations among BH, RBH and other complexity classes would imply

the solution of some of the major open problems in complexity theory. To date the only significant relations

! Mote precisely DP is the class ol all languages that can be expressed as the intersection of a language in NP and
of a language in coNP, or equivalently that can be decided by an NP machine that can access an NP oracle exactly
once.



known are: NP C BH C AL, RPC RBH € BPP C pP, and RBH C BH . Essentially nothing is known
about the fine structure of BH or RBH. Given this situation, a reasonable first attempt to understand
what structure and relations concerning BH and RBH might exist in the “real world” is to use oracle
constructions. Although oracle constructions will not give definitive information, such constructions can be
helpful for gaining a better understanding of the problem and its difficulty.

Some oracle results for BH and RBH are already known. For example, in [CaHeSG], oracles A and
B have been built such that BH? is a proper infinite hierarchy, and BH? extends exactly k levels. In
the same paper relations between BH and AL and between BH and the counting classes are settled In a
relativized environment. In [BJSY8Y] an oracle X is built for which both BH?” and RBHX have infinitely
jany proper Jevels; further cach level of RBH 1s properly contained in the corresponding level of BH, and
RBH is properly contained in PP in this paper we continue to explore the latter constructions. In particular
we extend the proofs given in [BISY89] to prove that these separations can be witnessed by sets that cannot
be “approximated” by sets in the smaller class; such separations are called “strong” separations. We define
this notion more formally below.

Results on strong geparations were introduced in complexity theory by Bennet and Gill [BeGiSl]. Ina
certain sense, if relativization results give some evidence to support 2 conjecture, strong separations can be
interpreted as further evidence lor the conjecture. Strong separation results are usually introduced for the
(ollowing reasons Oracle constructions are generally obtained by diagonalization so that an oracle A and
a language La are built such that, given two complexity classes Cand D, La € cA — DA, The fact that
L4 is built by diagonalization ensures that L4 differs from every set in DA at least infinitely often. This
is not enough to ensure that infinite subsets of L4 are not in DA, That is, although La is not in DA it
could happen that a significant and “nontrivial” portion of La is contained in DA To avoid this criticism,
one can exhibit oracles that not only ensure the separation between two relativized complexity classes, but
also ensure that the set which witnesses this difference does not contain infinite subsets belonging to the
~amaller” class Sets with this structure are well known in recursion theory and are generally referred to as
smamune sets. Formally, a (-immune set is an infinite set which contains no infinite subset belonging to '

Separation results witnessed by immune or simple sets are called “strong separations,” and their proofs
generally require a somewhat more sophisticated diagonalization technique called “slow dia,gona,lizat;ion,” ot
«yait and see ” ([To 86]).

In this paper we prove that the entire boolean hierarchy over RFP can be separated from P, from each
lavel of BH, and {rom PP by immune sets. The constructions given here can be interspersed with the

construction given in [BISY89] to obtain infinite boolean hierarchies over NP and over RP.

-

2 . . . . -
2 Another concept for oracle constructions borrowed {rom recursion theory, but which we do not need, is that of
a simple set. A C.simple set is a set belonging to C whose complement is C-gmmune.

2



2. Basic Definitions

First we describe some of the notation used in this paper. We assume that the reader is familiar with
definitions of standard complexity classes. For a detailed description of these we refer the reader to [Hopcroft
and Ullman, 1979], or to [Balcdzar et. al., 1986].

For all of our constructions we will use the usual two character alphabet ¥, with X" denoting the set
of all strings of length n.

Several definitions of the boolean hierarchy over NP have been given. Subsequently all have been shown
to be equivalent. We use the following characterization: the i-th level of BH is denoted by NP(i) and is
defined by

NP{0) = P,
NP(i+1)={L; —Ls: Ly € NP, Ly € NP(i)}.

For RBH the definition is similar: the i-th level of RBH is denoted by RP(i) and is defined by

RP(0) = P,

RP(i+1)={Ly — Ly: L, € RP, L2 € RP(i)}

We fix enumerations {P;}ien, {NVP;}ien, of polynomial time-bounded deterministic and non-deter-
ministic oracle Turing machines respectively. We also fix an enumeration {BH;}ien of polynomial time
bounded machines for the boolean hierarchy over NP. For example a BH machine might be something like a
NP A coNP machine Among the NP; machines we will distinguish machines as having a nondeterministic
(NP) acceptance criterion or an (RP) acceptance criterion, i.e. RP machines are those whose computation
trees have, for each input, either more than half accepting computations or else all rejecting computations.
We will refer to nondeterministic oracle Turing machines with an RP acceptance criterion as “RP machines”.
We denote the corresponding oracle machines that use oracle X by P, NP¥ and BHYX. We assume without
loss of generality that the polynomial p;(n) = n' + i bounds the running times of P/, 1\7P{\’ and BH} We
denote the languages accepted by the machines P by L(P?), the languages accepted by the machines NPI’-\’
by L(/\’P,;X) and the languages accepted by the machines Bffix by L(BH?')H

Following [Pa83], we use R'* to denote the “random” quantifier. Thus R"xP(x) means that more than
half the strings, z, of length n satisly the relation P(z). We will also use the restricted universal quantifier V',
where V"2 P(2) means that all strings, @, of length n satisfy the relation P(z), and the restricted existential
quantifier 37, where 3"z P(z) means that there exists at least one string =, of length n which satisfies the

relation P(z).



3. Strong Separation Results for RBH

[Cale86) answers some questions concerning the membership of certain types of immune sets at various levels
of BH. Analogous questions can be answered, using the same arguments adopted in [CaHe86], with respect
to RBH. In particular it can be shown that no sets in RBH can be RP bi-immune or coRP bi-immune,® and
that no sets in RBH can be RP(2)-immune. However the question of whether there exists some set in RBH
which is RP-immune is instead unsolved

Here we show a relativized world where it is possible to obtain a stronger result, in particular we will
show the existence of an oracle X such that there is a language Lx € RPX(2) which is coNP¥ (2)-immune.*
The method used to obtain this result is essentially the same used by Cai and Hemachandra to obtain the
corresponding result for BH. The main difference being the fact that we have to construct an oracle X
such that there is a language Lx which, respect to that considered in [CaHe86], has to satisfy the further
requirement of being accepted by a probabilistic machine. This implies the construction of an oracle that
has to satisfy more stringent constraints and so a bit more sophisticated oracle construction technique is

used.

Theorem 1. There exists an oracle X separating the entire boolean hierarchy over RP such that for all

k> 2, RP* (k) contains a coNP%X(2) immune set.

Proof: It is sufficient to build an oracle X such that some set in RPX(2) is simultaneously RP* -immune
and coRP¥X -immune. More precisely, we build an oracle X for which it is possible to construct a language
Lx € NPX(2)N RPX (2), but such that Tx has a nonempty intersection with each infinite language in NPA
or in coNP? 1n this manner any coNPX('Z) machine (and therefore any CORPX('Z) machine) which accepts
an infinite language accepts at least one string in the complement of Lx and so cannot accept some infinite
subset of Lx

Consider the language:
LX = {OZm . (me)[w c X] AND (vm+1ﬂ,‘)[.'l: g /\]}

Clearly, Ly € NPX(2). In order to ensure that Ly is in RPX(2) our oracle X will be forced to obey

the following simple language construction constramnts, for all sufficiently large m :
either no string of length m is in X OR, more than halfl the strings of length m are in X.

We now show how to build, in successive stages, an oracle X satisfying the above constraints and such
that for each index n’ there is some Stage n which guarantees that some associated string 0% is in Lyx

if and only if it is accepted by the n/th C()NP?‘;/ (2) machine. To achieve this goal at each Stage n we keep

3 o P . = N
3 We recall that a set S is € bi-immune i{ both S and S are C-immune.

! ’Siuce by definition coRP C coNP, and for each k > 2, RPX (2) C RPX(lc), our result easily implies that Vi > 2,
RPX (k) is coRP* (2)-immune.

4



a finite list S of k < n coNP(2) machines and we verify that if some of the machines contained in the list
accept the associated string 0Mn) then an accepting computation of those machines is fixed and the oracle
changed so that 0" is in Tx. ° If none of the machines contained in the list accept the string IO
then the oracle will be designed so that 0"") ¢ Lx. In this manner at the end of the construction of X,
for all #', no infinite subset of Lx can be accepted by the coNPX,(2) machine, which implies that Lx 1s

coNP¥ (2)-immune.

We now describe Stage n of the construction if it is designed for “spoiling” the k machines contained in
S, To this end, consider a coRP(2) machine which accepts a language given by the union of the k coRP(2)
languages accepted by the machines contained in S. More formally, we consider the machines NP, and

NP,,, such that:

L(NPm, OR NPm,) = | L(coNP:,(2)).
1<t<k

Stage n for “spoiling” the machine NPy, OR NPy, -

a) Choose h(n) large enough that all strings already put into X or marked [or holding out of X at earlier
stages of the construction have length less than h(n). Also choose h(n) large enough that, in each path
of the computation 0™ the nondeterministic machines contained in the stack query at most 1 /4 of the
strings of length h(n). (Thus h(n) is chosen large enough to avoid any conflicts with earlier assignments
of strings to X or to X)) For all m such that hin —1)+1 <m< R(n), using whatever criteria are
appropriate with respect to the various language constraints, either place all strings of length m which

are not marked for holding out of X into X or else place no strings of length m into X

We now take X to be the set of strings placed into X during earlier stages and during Step (a) of Stage n,

and then we try to extend X to a larger oracle by trying various extensions, X uUW(n), of X

b) If there exists a set of strings W(n) which does not contain strings previously marked for holding out
of X and such that 0%(™) € NP,},\;SW("),
then

¢) fix and {reeze an accepling computation path of jVPﬁ:,LlJW('”(O”‘(”))‘ Call all queries made on this path
which receive negative veplies critical. Mark for holding out of X all critical strings and put into X
all strings of length h(n) and h(n) + 1 which are not critical. (Obviously, this puts more than three
quarters of the strings of length h(n) and h(n)-+1 into X . This both satisfies our language construction

constraints for Ly and forces oM™ into Lx )

® What generally happens in these cases is that we can satisly the requirement relative to i-th machine in a Stage
n' > 14, so that we have to wait for an opportune stage to diagonalize against a given machine, hence the name “wait
and see” or “slow diagonalization.”



d) Delete from the list S all the machines which accept the string R,
else

e) If there exists a set of strings W (n) which does not contain strings previously marked for holding out

of X and strings of length h(n) 4 1, such that oM g NP,i‘;lfW("'),
then
f) Fix and {reeze an accepting computation path of NPi‘;le/(”)(O"'(”')). Call all queries made on this path

which receive negative replies critical. Mark for holding out of X all critical strings and put into X all
strings of length h(n) which are not critical. (Obviously, this puts no strings of length h(n) + 1 into
X and puts more than three quarters of the strings of length h(n) into X This satisfies our language

construction constraints for Ly and forces 0"(") into Lx.)

g) Insert the next coNP(2) machine into the list 5.
else
h) Mark for holding out of X all critical strings of length h(n)+1 and delete from S all the machines which
accept the string 0™} (In fact at this point we know that if we do not place into X strings of length
h(n) + 1, then 0Mn) is accepted by some of the machines on the list, and also satisfies our language
construction constraints for Lx and forces 07") into Lx -

End of Stage n.

To complete the proof we must show that Ly is infinite and that each infinite set in coNPX(2) contain

at least one string of Lx

The fact that Ly is infinite {ollows from the observation that at any moment the list S contains only a
finite number of machines so that Step (d) or Step (h) can be executed consecutively only a finite number
of times, thus Step (f) and Step (g) are executed infinitely often. Hence Lx cannot be fintte

We now show that each infinite set in coNPX (2) has a nonempty intersection with Lx. Note that we
only need to worry about machines which accept languages in {0}*. If coNPlX (2) accepts infinitely many
strings of the form 0™Mn) | then there are must exist a stage § during which we diagonalize against coN.Pf(j(Q),
(where X; denotes the content of the oracle at Stage 7). On the other hand if there exists a stage k such
that for each stage j > k we are not able to diagonalize against coJ\’P:Y-f(Q), then we can conclude that

|L(coNP (2)) N Lx/| is finite. @

4. Strong Separation between RBH and P

It is unclear the extent to which bounded probabilistic complexity classes like BPP and RP differ from P.
On the one hand, on intuitive grounds it seems strongly believable that P # RP and P # BPP, but on
the other hand, there is the surprising result obtained in [BeGi81] that, with respect to a random oracle X,

pX = BPPX with probability one.



In this section we produce evidence that perhaps the bounded probabilistic classes should differ from P
by showing that there are relativized worlds in which ZPP* (ie. RP¥ N coRP™) contains a PX_immune
set. This result immediately implies that each level of the boolean hierarchy over RPX can be strongly

separated from pX
Theorem 2. There exists an oracle X such that some infinite set in 2PPX is PX-immune.

Proof: We show how to construct an oracle X and an infinite language Lx in 7zPP* — PX that does not
contain infinite subsets that can be recognized in polynomial time. The construction is slightly different with
respect to the previous one because of different constraints that the oracle X has to respect to ensure that Lx
is contained in 7PP* — PX In particular the technique that we use is an adaptation of slow diagonalization
to the technique used in [BaGiSo75] to separate PX from NP¥ ncoNPX

Consider the language:

Lx = {0™: (R™z)[z € X1}

Clearly, Lx € RPX In order to ensure that Lx is in RP* N coRPX, our oracle X will be forced to

obey the following simple language consiruction consiraints, for all sufficiently large m:
(more than half the strings of length m are in X) AND (no string of length m +1 is in X)
OR
(no string of length m is in X) AND (more than half the strings of length m + 1 are in X).

We now show how to construct an oracle X which respects the above constraint and such that Ly is
infinite and contains no infinite subsets in PX  The strategy used to build this oracle is essentially the same

as that used in the preceding section.

Stage n -

a) This step is exactly like the Step (a) of the construction used to prove Theorem 1, except that now the
list S contains deterministic machines.

b) Verify whether among the machines contained in the stack there is some machine which accepts 0h(m),
using as oracle the strings put into X at earlier stages. Call the strings that each machine in S queries
in its computation on O critical sirings.

c) If there is some machine which accepts,

then

d) Mark for holding out of X all critical strings, and place into X all strings of length h(n) + 1 which are
not critical strings. (Obviously, this places at least three quarters of the strings of length h(n)+1 into
X and forces Ty NL(PXY #0)

e) Delete from the list S all of the machines which accept the string oM.

7



else

[y (Comment: 0 s rejected by all the machines in the stack.) Place into X all strings of length h(n)

which are not critical strings. (Obviously, this places at least three quarters of the strings of length 2(n)

into X and forces 0™ € Lx.)

g) Insert the next P machine into the list S.

End of Slage n.

The same arguments as those ased in the proof of Theorem 1 can be used here to show that Ly isinfinite

and that no infinite subset of Ly can be recognized by a P machine which accepts an infinite language. Thus,

we conclude that Ly is P -immune. g

5. Strong Separations between RBH and BH

Probabilistic computations with bounded error have

terministic computations Unflortunately many langu

always been considered a good alternative to nonde-

ages contained in nondeterministic classes seem not to

be recognizable using probabilistic algorithms with bounded error. In this section we support this evidence,

showing the existence of a relativized world in which NPX N coNPX contains a language which is RBH

-immune

The proofs used in this and n the next section diagonalize against RBH machines so that we face the

problem that the subtree of accepting (or rejecting) computations of such machines may contain exponentially

many queries. Thus the techniques used in the preceding proofs, hased on the fact that the acceptance of

a word by a machine depends on a polynomial number of queries, must be readdressed. To overcome this

difficulty we will use the notion of a critical set with respect to an RBH machine M, an oracle X and an

input z, introduced in [Ra82] as generalized in [BJSY89]. 6

Informally, a set of strings W is critical with respect to an RP machine M an oracle X and an input a, if

when W is added to X or subtracted from X, it modifies the input/output behavior of the machine M* (1),

while maintaining M an RP machine. By this we mean that z € L(M*XY if and only if x ¢ L(MXAW)

while M*2W remains an RP machine (Here A denotes the symmetric difference of the sets X and Wsie

XAW = (X - W)U (W — X))

A non-critical set relative to an RP machine M, an oracle X and an input z, is a set W such that either

¢ € L(MX) if and only if x € L(MXAWY while MXB8W remains an RP machine or else MXAW isno longer

an RP machine.

The fundamental property of critical sets for RP machines is stated in the following lemma proved in

[BJSY89], which generalizes a lemma proved in [Ra82].

¢ More specifically in [Ra82] a method is introduced to diagonalize against single RP machines using the notion
of critical string. In [BJSY89] the problem is instead to diagonalize against a k-tuple of RP machines; for this case
the notion of critical string is too weak, and the more general notion of critical set has been introduced.

8



Lemma. Let M be an RP(k) machine with input z, oracle X and running time bounded by a polynomial
p(n). For each t-tuple of nonempty disjoint sets {Xo, -+, X:} with t 2> (2p(lz]) + 1)¥ there exists at least
one X; € {Xo, -, X} whichisa non-critical set with respect to MX (), i.e. such that.

o MX8Xi(z) = M¥*(z) or

o MX&X:(z) is not a RP (k) machine.
Theorem 3. There exists an oracle X such that some infinite set in NPX N coNPX is RBH -immune

Proof. We show how to construct an oracle X and an infinite language Ly in (NPY N coNP¥) — RBHY
(hat does not contain infinite subsets that can be recognized by an RBIH machine.
Consider the language:

Lx = {0™: (3z)[z € X]}

Clearly, Lx € NPX . In order to ensure that Ly is in NPX 0 coNPY | our oracle X will be Jorced 1o

obey the following simple language consiruction constraint, for all sufficiently large m:
(at least one string of length m isin X) AND (no string of length m + 1 is in to X)
OR
(no string of length m is in X') AND (at least one of the strings of length m +1isin X)

We now show how to construct an oracle X which respects the above constraint and such that Lx
is infinite and contains no infinite subsets in RBHX . The strategy used to build this oracle is again slow

diagonalization.

Stage n:

a) Tirst choose h(n) large enough that all strings already put into X or marked for holding out of X at
carlier stages of the construction have length less than h(n). Also, choose h(n) large enough that the
number of critical sirings with respect to all the machines in S, the oracle X at previous stage and
input 00" is smaller than the number of strings of length h(n). Also, choose another value h'(n)
large enough that, for all X, all machines in S query only strings of length less than R!(n). For all m,
h(n) + 1 < m < h'(n), using whatever criteria are appropriate with respect to the various language
constraints, either place one string of length m into X or place no strings of length m into X.

b) Using for oracle X the strings put into X at earlier stages and during Step (a) of Stage n, verify whether
there exists some machine in the stack which accepts the input 0"(") with a random acceptance criterion.

¢) If there are machines of this type,

then
d) Choose the one with the smallest index i, remove it from the stack. Put into X a non-critical string

of length A(n)+ 1 Go to the next stage. (Since there are an exponential number of strings of length

9



h(n)+1 and the lemmastates the existence of a non-critical string for each polynomialn umber of strings
of a given length, we are sure of the existence of a non-critical string, so we can execute this operation
Obviously, none of the strings of length h(n) is put into X and this forces 0"(") ¢ Lx )
else
e) (Comment: Q™) ¢ L(BHX,).) Place into X a non-critical string of length h(n). (Obviously this forces

one of the strings of length h(n) into X and forces 0Mm) e Lx.)
End of Stage n.

It is easy to verify that we have forced the oracle X to obey the language constraint, and that Loy s
infinite and has no infinite subsets accepted by a BH machine whose acceptance criterion is a random one.

6. Strong Separations between RBH and PP

In this section we prove the existence of a world were bounded error probabilistic computations are strongly

separated from unbounded error ones. More formally:
Theorem 4. There exists an oracle X such that some infinite set in PP* is RBH -immune.
Proof. Since the proof is virtually the same as that of Theorem 3, we will only outline the proof. We force
the oracle X fo respect the following language construction constraini:

X n{z:|z]=m}|> @™+ 1

OR
NN {e el =m}] < (2m-H - 1.
For such an oracle X, consider the language:

Lx = {0 : (R™a)[z € X]}.

We easily see that if X respects the above constraint, then Lx € ppX.

The main difference between the constraints used in this construction and those used in the previous
construction is the number of strings of length m which must be forced into the oracle. In this case we
must put into the oracle at most half — 1, or at least half + 1 of the total number of strings of length m.
To satisfy this requirement, at the beginning of each Stage n of the oracle construction, adopting the usual

strategy described in Step (a) of the preceding constructions, we choose an appropriate value h(n) 7 and

7 Tn particular h(n) should be chosen large enough that besides satisfying the usual requirements, the number of
critical pairsin the computation lor each of the machines in S on input 0™M") is less than the number of disjoint pairs
of strings of length h(n), i.e. ghtn)=1

10



place 2M(")=1 _ ] sirings of length A(n) into X'. Then we proceed to consider the machines in the list S, on
input 0"(™)_ If one of these machines accepts, we do nothing, so that 0" € Tx. On the other hand if all
machines contained in S reject, then the lemma assures us that, if k(n) is large enough then there exists at
least one pair of non-critical strings that we can put into the oracle. Obviously, this forces half + 1 of the

strings of length h(n) into X and forces M) e Ly.

Clearly in this manner we force the oracle X to obey the constraint which keeps Lx € PPX | and for
n' we have forced Tx N L(RBHY) # 0. Thus, if for each index n/, some Stage n, is forced to be the stage
for “spoiling” the n'th BH %, (k) machine, then we will have forced each RBH machine to accept at least one
string of T x . Since it can be easily verified that Lx is also infinite, we have built a set in PPX which is also

RBHX immune. g

7. Bibliography
[BaGiSo 75] I' Baker, J Gilland R Solovay, “Relativizations of the P = NP question,” SIAM J Compuling,
v 4 (1975), pp 431-442.

[BeGi 81] C. Bennet and J. Gill, “Relative to a random oracle A, pA £ NPA £ coNP* with probability
1, STAM J Computing, v 10 (1981), pp 96-113.

[BJSY 89] Danilo Bruschi, Deborah Joseph, Meera Sitharam and Paul Young, “Generalized boolean hi-
erarchies and the boolean hierarchy over RP > Tec. Rep. # 809, Dep. Compuler Science, Univ. Wisc,

(1989).

[CaHe 86] Jin-yi Cai and Lane Hemachandra, “The boolean hierarchy: hardware over NP 7, Structure in

Complexity Conference, (1986), pp 105-124.

[Er 68a] Yu Ershov, “A hierarchy of sets, I,” Algebra and Logic, v nl (1968), pp 25-43.
[Er 68b] Yu Ershov, “A hierarchy of sets, 1I,” Algebra and Logic, v7 nd (1968), pp 15-47.
[Er 69] Yu Ershov, “A hierarchy of sets, ITI,” Algebra and Logzic, v9 (1969), pp 20-31.

[K6SchWa 87] J Kobler, U Schoning and K. Wagner, “The difference and truth-table hierarchies for NP,”
RAIRQ, v21 (1987), pp 419-435

[Pa 83] C. Papadimitriou, “Games against nature,” Proceedings of the 2/th IEEE Foundations of Computer
Science Conference, (1983), pp 446-450.

[PaYa 84] C. Papadimitriou and M. Yannakakis “The complexity of facets (and some facets of complexity),”

J Computer and Systems Science, v28 (1984), pp 224-259.

[To 86] L. Torenvliet, “Structural concepts in relativised hierarchies,” Doctoral Dissertation Univ. Amster-

dam, (1986).

11



[Ra 82] C. Rackofl, “Relativized questions involving probabilistic algorithms,” J ACM, v29 (1982), pp

261-2068

[WeWa 85] G. Wechsung and K. Wagner, “On the boolean closure of NP ,” Proceedings of the Conference

of the Fundamentals of Compulation Theory, Lecture Notes in Computer Science 199 (1985), pp 485-493

12



