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ABSTRACT

Given a multivariate compactly supported function ¢, we discuss here linear projectors to the
space S(¢) spanned by its integer translates. These projectors are constructed with the aid of a
dual basis for the integer translates of ¢, hence under the assumption that these translates are
linearly independent. Our main result shows that the linear functionals of the dual basis are local,
hence makes it possible to contruct local linear projectors onto 5(¢). We then discuss, for a general
compactly supported function, a scheme for the construction of such local projectors.

In the second part of the paper we apply these observations to piecewise»polynomials and
piecewise—exponentials to obtain a necessary and sufficient condition for a quasi-interpolant to be a
projector. The results of that part extend and refine recent constructions of dual bases and linear
projectors for polynomial and exponential box splines.
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On the integer translates of a compactly supported function:
dual bases and linear projectors
Asher Ben-Artzi & Amos Ron

1. Introduction

Let ¢ be a complex-valued compactly supported continuous function defined on IR®, and E* the
shift operator

E%f = f(-+ ).
Associated with ¢ is the semi-discrete convolution operator
(1.1) pricr Pxrci= 2 c(a)E~%¢,
acZ?®

which acts from the domain
C:={c:%Z° — C}
of all complex-valued sequences defined on the multi-integers to the range
5(¢) := ran ¢«

of the functions spanned by the integer translates of ¢.

In multivariate spline approximation, 5(¢) is of potential use as a space of approximants for
a larger function space (e.g., C(IR*)). The operator ¢+ is exploited in the derivation of explicit
approximation schemes from 5(¢). Such a scheme may result in a linear projector onto S(¢) (cf.
[B4] and [BF] for the construction of linear projectors for univariate and tensor product splines).
Since the construction of linear projectors in the multivariate case is usually quite involved, one is
satisfied with the so-called quasi-interpolation schemes, which yield the same approximation order.

In case the integer translates of ¢ are globally linearly independent (ie., ker(¢*) = 0), 2 natural
way to define a linear projector onto 5(¢) is with the aid of a linear functional A that satisfies

ME®@) = b0, @ € 77°.
For then, the functionals A := {\E®}4 form a dual basis for ® := {E~%¢}a, and a linear pro jector
U can than be defined in the usual way:
V=Y ET%¢ AE“.
1Y/

For the analysis of the approximation properties of the projector, its localness is important:
a projector ¥ is termed Wocal” if for every compact A C IR® there exists a compact B C IR® such
that U(f)a is determined by fip. The existence of a local projector is guaranteed in case the
generator A of the dual basis A is local. The construction of local linear projectors is facilitated if
one assumes that the integer translates of ¢ are locally linearly independent i.e., the condition

(1.2) (¢ *c)ja =0and supp E~%¢NA# 0= c(a) =0,
for every open A C IR°. It is one of the main themes of this paper to show that local projectors
can be constructed even under the weaker assumption of global linear independence. As a matter

of fact, that observation neither makes use of the shift-invariance of the space S(¢) nor of the fact
that ¢ is a function:



(1.3) Theorem. Let & = {$a}acz: bea locally finite collection of (globally) linearly independent
compactly supported distributions in D'(IR°). Then each functional Ay in the (algebraic) dual basis
A = {Xo}aecze of ® is local. Precisely, for every a € 77° there exists a compact B, C IR® such that
Ao(f) = 0 whenever supp f N By = 0.

In section 2 we prove (1.3)Theorem and employ this result to show that the assumption of
linear independence of the integer translates of ¢ is already sufficient to allow the existence of a
dual basis based on a linear functional A of point-evaluation at a finite set of IR®. The proof of
the theorem gives also information about the diameter of supp A which in the case of local linear
independence coincides with the standard result. Finally, we comment about the connection of
these results to the area of cardinal interpolation by translates of a compactly supported function.

The construction of local projectors is then discussed in section 3. There we take ¢ to be an
arbitrary function whose translates are linearly independent, and, based on a new extended notion
of a quasi-interpolant, provide a necessary and sufficient condition for a quasi-interpolant to be
a linear projector. With the aid of this observation, we then describe a general scheme for the
derivation of local projectors onto S(¢).

In the two last sections we examine the piecewise-exponential case (which contains the piecewise-
polynomial case). Section 4 is devoted to a brief discussion of some known methods for constructing
quasi-interpolants for piecewise-exponentials. These results, together with observations {from sec-
tion 3, are used in the last section where we show that for piecewise-exponentials a slightly stronger
sense of local linear independence is sufficient to imply that every quasi-interpolant is also a lin-
ear projector. We conclude that section with a review of the constructions of linear projectors in
[DM;, 2] and [J1,2] providing thereby new proofs and extensions to these results.

2. Linear projectors are local

In these section we prove (1.3)Theorem and discuss some of its applications.

The following is an equivalent form of (1.3)Theorem, which is slightly more convenient for the
proof employed:

(2.1) Theorem. Let ® = {¢s}acz® be a locally finite collection of globally linearly independent
compactly supported distributions in D'(IR®). Then there exists a ball

(2.2) B :={z: ||z|| < L}

such that if f = Y 4ez c(@)ba satisfles supp f N B = 0 then ¢(0) = 0.

Indeed, (1.3)Theorem readily follows from (2.1)Theorem: assume (without loss) that a =
0 in (1.3)Theorem. For every f = Y ez (@) € span @, Mo(f) = ¢(0). So, if we assume
(2.1)Theorem and choose By of (1.3)Theorem to be B in (2.2), then whenever supp f N B = 0,
(1.3)Theorem implies Ao(f) = ¢(0) = 0.

We postpone the proof of (2.1)Theorem to the end of this section, and discuss now some of its
applications.



Suppose that ® C C(IR*)} and choose o € 72°. Let B, be the ball associated with o (by
(1.3)Theorem). Define

(2.3) Ve 1= {B € 7Z° : supp ¢p N By # 0}

Since the elements of @ are locally finite, the set v, is finite. Defining

5(®) =span®, S.(®):= span{¢gip, : B € va})

(1.3)Theorem implies that any extension pe € C(IR®)* of the restricted linear functional Ay|s,(a)
is also an extension of Ay, provided that supppe C Ba- Now, So(®) is a finite-dimensional
subspace of C(Bs), Bo being compact, and hence there are various available ways to represent the
restriction of Ay to S(®); e.g., one may choose a set by C By of cardinality #vq, which is total
for So(®) (i.e., no element in So(®)\0 vanishes on by). Then there is a unique linear combination

o = Y.ges, €(2)8s satisfying
(2.4) ta(f) = Aalf), Vf € S(B),

where &, is the functional of point-evaluation at . Thus we conclude

(2.5) Corollary. Assume that ® C C(IR®). Then there exists a projector

(2.6) ¥:C(IR®) — S(®): f = Y pal f)das

a€l?®
such that each pq is supported on a finite set.

In the special case of interest, viz. when ¢o = E—%*¢, we have

> e(@)d(z+ o) = p(E7) = {(1) o . gf

z€b

(with ¢ := do, p 1= po = L pepc(2)ds, and b := by). This proves the following

(2.7) Corollary. Let ¢ be a compactly supported continuous function whose integer translates are
globally linearly independent. Then there exists a finite linear combination 9 of (real) translates
of ¢ satisfying

d)lﬂs = bo-

Such ¥ is usually referred to as “a fundamental solution”. In cardinal interpolation, one looks
for a fundamental solution spanned by (infinitly many) integer translates of ¢. We note that the
existence of the latter fundamental solution does not require the global linear independence of the
translates, yet if one imposes decay conditions on 1 then global linear independence is, in general,
an insufficient condition for the existence of such % (cf. [Ri] for details).

t C(IR®) is chosen only for convenience; any superspace V D 5(¢) in which point-evaluation is
well defined will do.



Proof of (2.1)Theorem: Assume, on the contrary, that such a ball B does not exist. For every
positive integer n, let By be the open ball centered at the origin with radius n and define

(2.8) vn = {a € 7Z° : supp ¢po N By # 0}.

Let M, be the linear space of all sequences ¢ defined on v, and satisfying

(2.9) supp( Y, e(@)da) N B = 0.

[ 7=37

Since ® is locally finite, every vy is finite, and hence every M, is finite-dimensional. On the other
hand, no My, is trivial, since by our assumption each M, must contain at least one element satisfying
¢(0) # 0. To obtain the desired contradiction, we will show that there is a non-trivial sequence in
C whose restriction to each v, lies in Mp. Since the union of the sets {vn}n is 7Z2°, such sequence ¢
induces a non-trivial vanishing combination of @ thus contradicting the linear independence of the
elements in ®.

For this purpose, define Mo := € and for all non-negative integers m > n > 0, let R be the
restriction map from M,, to M, (with Ry :cw ¢(0) and RY the identity mapping). Clearly,

(2.10) Ry} #0, Vm.

Defining K, C M, by
K, = ﬂ ran R},

ma2n
we note that the condition

K,#0

is necessary (but apparently not sufficient) for the existence of a sequence ¢ whose restriction to
each v, lies in M,. Indeed, we claim

(2.11) Lemma. For each n > 0, K, #0.

Proof: Since for every n <k <m
(2.12) R} = RyRY,

{ran R’ }m>n is @ decreasing sequence of finite-dimensional vector spaces. Therefore, for all suffi-
ciently big k and m, R} = RE, and hence K, = ran R for all sufficiently big m. Finally, since
RZ' = RFR™, then (2.10) implies that R™ # 0, hence so is Kn. é

In the following we will prove the existence of a sequence ¢ € C whose restriction to each v,
is in K, hence in M,. For this we first note that the proof of the previous lemma shows that
K, = ran R, for sufficiently big m. Therefore, we can find m such that

K;=ran R}, j=n,n+1,

4



and thus
(2.13) K, = R™ BT M, = R Ko

We can now complete the proof of (2.1)Theorem as follows: let n be arbitrary. By (2.11)Lemma
there exists a non-trivial ¢, € Ky. Invoking (2.13) we may choose ¢pp1 € Kny1 whose restriction
to vy, is c,. Again, (2.13) can be employed to provide ¢ny2 € K 4o whose restriction $0 Vn41 is
cnt1. Proceeding in this manner we obtain (¢m € Km)men such that R™ ¢, = Cn. This gives rise
to a sequence ¢ € C satifying

supp (Z c(a)¢a> N B, =0, Vm,

a€EV,m

while ¢ is non-trivial since its restriction ¢, to vy is non-trivial. We therefore conclude that the
distributions in ® are globally linearly dependent, in contradiction to the assumptions the theorem.

()

3. Linear projectors and quasi-interpolation

Throughout this section we assume that ¢ is a compactly supported continuous function whose
integer translates are globally linearly independent, and A C IR® is an open bounded set which
satisfies for every ¢ € C the condition

(3.1) (pxc)ja=0 = c(0) = 0.

The existence of such an A was proved in (1.3)Theorem.
Given a linear functional A : C(R?) — C, we examine here conditions that guarantee that the
operator

QA:=:¢ﬂ<A(J
is a projector. Here
A:C(R?)—=C:f+— (AE® faczs -

Our aim is to generate a space F C S(¢) (which replaces the missing polynomial space usually
associated with a piecewise-polynomial ¢) that is of help in the identification of a projector @x.
We use the notation f| := fizs, and let

o+’
stand for the semidiscrete convolution operator from C(IR®) to $(¢) defined by
(3.2) o+ fi=¢xfi= y, F@E™¢.
o€l?®
Finally,
o' f

denotes the discrete convolution ¢| * fi-
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(3.3) Theorem. Let F be a subspace of S(¢) satisfying
(3.4) Fa = 5(9)14

and assume that supp A C A. Then the following conditions are equivalent:

(2) oxf)=f, VfeF

(b) Q» is a projector, ie.,
Qx\(f) =1, Yf € S(9)-

Proof: The implication (b) == (a) is trivial. For the converse, it is necessary and sufficient to

prove that

ME™*) = ba(0)-
Fix a and let f € F be such that fij4 = (E~%¢)a; then, since Q=1

Q\(N)a= E7%)a-

Now, E~%¢ = ¢ * 64, while Qx(f) = ¢ * A(f), and therefore, by (3.1), we must have AN =
A(£)(0) = 6,(0). On the other hand, X is supported on A and therefore since E~%¢ and f coincide
on A we conclude A(E~%¢) = A(f) = 6a(0). [

The assumption suppA C A in the theorem is essential, as shown by the following simple

example:

Example. Let ¢ be the univariate hat function supported on [0,2]. Let F = 71, A= %(6% +611)-
Then @ reproduces 71, and F' = 71 also satisfies (3.4) with A being any subset of [0,1] or [1,2].
Yet, A is supported in no one of these A’s and therefore @ is not guaranteed to be a pro jector.
Indeed,

0 e

y Q= 07
ME®$) =4 b, a=zL,

0, otherwise.

Needless to say, there exist projectors whose corresponding A is supported in no admisible A; e.g.,
A= 12-(—-5_15 + 25% + 25% — 5%)

We now employ the above theorem, to show that, with an appropriate choice of the space
F, the task of constructing linear projectors is reduced to the construction of the so-called quasi-
interpolants. For that, assume that F is a shift-invariant (i.e., closed under integer translates)
subspace of S(¢). Then it follows ([B2],[Ro]) that F'is an invariant subspace for ¢#'. If we further
assume that F is finite-dimensional and ¢+’ is 1-1 on F', then ¢+’ induces an automorphism on F.
We may then follow [BH], call this automorphism 7' and define a functional on F' by

)Tt : f s 71 £(0).

6



For p € F* rather than [O]T'l, the linear independence of the integer translates of ¢ would imply
that @, is not the identity mapping on F and therefore no extension of such p would yield a
projector. On the other hand, for p = [0]7~! it follows [BH], that WECf) = T-!f(a) and
therefore (with @, defined only on F)

Quf)=Ff Vfek

In case f + fia is 1-1 on F, this functional can be extended to a functional A : C(IR®) that is
supported on A and then (3.3)Theorem would imply that @y is a pro jector.
We summarize all these observations in the following

(3.5) Corollary. Let F be a finite-dimensional shift-invariant subspace of S(¢) which satisfies
(3.4). Assume that the operator T := ¢ ' |\F s injective and consider the following conditions for
a linear functional A € C(IR®)™:

(a) Q» is a projector.

(b) Mf)=[0T*f, V€ F.

Then (a) = (b), and the converse implication holds provided that A is supported in A.

The construction of a quasi-interpolant using the inverse of the map T' appears first in [BH]
in the context of the approximation order for box splines (hence for a polynomial F ), without
however making the connection to linear projectors. The discussion above emphasizes the fact
(which is by now well-known) that this is (essentially) the only way to construct quasi-interpolants.
In particular, other constructs (cf. e.g., [SF], [DM,], [CD], [CL] for piecewise-polynomials and
[DR] for piecewise~exponentials) are as a matter of fact special ways to extend [0]T .

Our next task is to prove the existence of a space F’ which satisfies all these conditions. This
purpose can be accomplished without appeal to linear independence. First, we associate with A
the set

(3.6) y(A) = vg(A) :={a € 775« A—ansupp ¢ # 0},

which consists of all integers & whose corresponding E~%¢ has some support on A. Furthermore,
we assume without loss that ¢ # 0 otherwise ¢ can be replaces by one of its non-integer translates.

We now look for a shift-invariant space P which on the one hand interpolates correctly on
v(A) (that is, dim P = #v(A) and no p € P\0 vanishes identically on v(A)), while on the other
hand has trivial intersection with ker ¢ %'. Any space satisfying these two conditions will do here.
In particular, we may first choose P to be a homogeneous translation-invariant polynomial space
that interpolates correctly on v(A), (cf. [BRy] for construction of such P of least degree). If ¢ '
is not 1-1 on P, it may be replaced by a space P, := eg P, where the exponential eg : T e T is
chosen such that the discrete convolution ¢ +’eg # 0. This readily implies that the operator o
is 1-1 on egm (and hence so is ¢x'). Since for every g € C°, the space Py also interpolates correctly
on v(A), Py satifies the required conditions.

Define now

F = q[)*' Pg.

7



Since P, is translation-invariant, hence shift-invariant, so is F. F' is also finite-dimensional; in
fact, since ¢+’ is 1-1 on P, dim F' = #v(A). Moreover, by the definition of v(A), S(#)a =
span{E~%¢{4}aer(a), and since P, interpolates correctly on v(A), we have

Fia = 5(¢))a-

Finally, the discrete convolution é ' is injective on Py, thus induces an automorphism on that
space and consequently F' coincides with Py on 7ZZ°. We then conclude

(3.7) Theorem. Let ¢ be a compactly supported continuous function, and assume that ¢ # 0.
Let A be an open subset of IR°. Then there exists a shift-invariant subspace F C S(¢) satislying
(a) dim F = #v(A);

(b) ¢+ | is an automorphism;

(c) Fia= 5(d)a-

(d) Fis, up to multiplication by an exponential, a homogeneous (sequence) polynomial space.

The following scheme sketches the various steps required in the construction of linear projectors
using the approach above.

(3.8) Scheme. Let ¢ be a compactly supported function whose integer translates are globally

linearly independent. Check whether ¢ = 0; if so replace ¢ by a translate of it. Find a subset

A C R® satisfying (3.1); then

(a) Compute the finite set v(A).

(b) Find a polynomial space P which interpolates correctly on v(A). For that you may apply the
algorithm given in [BRy; §4].

(¢) Find an exponential es such that S ez co(@)p(—a) # 0. Define F = ¢ +' egP. At this point
you may wish to replace F' by a shift-invariant subspace of it which still satisfies (3.4).

(d) For a given basis fi,..., fn for F, find the basis g1,..-,9n for F that satisfies

b+ gi=f; i=1.,n

(This step can also be executed with discrete convolution, i.e., with ¢| replacing @)

(e) Define a linear functional on F by u(f;) = g5(0), 3= 1,...,m, and extend p to your favorite
choice of a functional \ defined on some superspace of S(¢) and supported in A. (In case the
extension is to C(IR*), you may choose A to be supported on an appropriate finite subset of A
with cardinality < #v(A)).

(f) The resulting @ is a linear projector.

4. Piecewise-polynomials and piecewise-exponentials: quasi-interpolation

In this section we review some methods concerning the construction of quasi-interpolants for
piecewise-exponentials (and in particular piecewise-polynomials). Most of the results here are
known, and the approach taken follows that of [BRe]. The discussion also makes use of various
observations from [BAR], [Bz] and [Ro].



Let H be a finite-dimensional exponential space. This means, by definition, that each function
in H admits the form

n
(4-1) Zee,-pj, 0j eC’, pjET, j=1,..,n.
J=1

We refer to the elements of H simply as “gxponentials”. Furthermore, we assume hereafter that H
is translation-invariant, which implies that a basis for H is given in terms of functions of the form

eyp, PET.

The spectrum of H is the set of frequencies of all exponentials in H:
(4.2) speccH:={0ecC’: eg € H}.

Now let ¢ be a (compactly supported) piecewise-H function for which
(4.3) H C 5(¢)-

A quasi-interpolant here means any linear map @ from some superspace V of S(¢) into S(¢)
which satisfies

(4.4) Q(fy=f, Vfed.

Under the regularity assumption
(4.5) #(—1i6) # 0, V6 € spec H,

the operator T := ¢ ' pr is an automorphism.

(4.6) Proposition. For A € V'*, the condition

M) =0T~ (), Ve H,

is sufficient for @ to be a quasi-interpolant. Furthermore, this condition is also necessary in case
¢x is injective.

This last proposition shows that a careful study of the map T =1, hence also of T, is essential
for construction of a quasi-interpolant. This study is facilitated by the following

(4.7) Result[BR,]. Let egp be a function in S(¢) (with 6 € C* and p € n). Then
¢+ (eop) = ¢ x (eop),

where the right hand side convolution is the usual convolution between functions (or distributions).

The above result suggests that in order to find a preimage of egp € H, we may solve the
convolution equation

¢ * (eq?) = esp-

9



Dividing both sides by ey and applying Fourier transform we get
(B73) =7

Since supp p = 0 and #(—i6) # 0, we may divide both sides of (4.7) by E-$ to conclude

~ P “p(8) = |
5__D =ZD;b!()D“p, ba) = —

E-9$ 5% $(—iz)’

hence

=Y D2H0) pe,

!
0 o
With —1-)—“—0%@- denoted by ag o, we conclude
(4.8) Proposition. Foregp € I
(4.9) [0]T (esp) = [0] Z ag,o Dp.
a2>0

Combining the last proposition with (4.6)Proposition we conclude

(4.10) Corollary. Assume that the integer translates of ¢ are globally linearly independent. Then
the condition

Megp) = [0] zag,aD“p, Vegp € H

is necessary and sufficient for Q5 to be a quasi-interpolant.

5. Piecewise-polynomials and piecewise-exponentials: linear pro jectors

Here we combine the results of the two previous sections in the derivation of linear projectors for
the piecewise-exponential space S (#)-

Retaining the notations of section 4, (and especially the notation [f] for point-evaluation in
§), we assume throughout this section that H C S(¢), and that there exists an open bounded set
A C IR’ for which

(5.1) #v(A)=dim H,

(where v(A) is as in (3.6)). It follows that I satisfies the condition required of F in (3.4). Fur-
thermore, the translates of ¢ are locally linearly independent on A (in the sense of (1.2)), and in
particular A satisfies (3.1). With the aid of [Ro; Lem. 2.2] we can also easily conclude that ¢+’ is
1-1on H.

Therefore, (3.5)Corollary reads here:

10



(5.2) Corollary. Let A be a linear functional defined on an extension V of S(¢) and vanishing on
all f € S(¢) supported in R\A. If

o =f VfeH,
then @y is a projector.

Equivalently, @ is a pro jector if A extends the linear functional [O]T“1 € H*. The precise
values of [0]T! on H were determined in (4.10)Corollary, but of course many extensions (to various
V’s)of [0]7~! are available. To draw the connections between the results here and the constructions
of dual bases for a box spline space in [DM; 2] and [J1,2], we concentrate now on the case when
[0]T-! is represented (and thus extended) with the aid of differential operators. First, we associate
with every ¢ € 7 a linear functional ¢* € H* defined by

¢ (f) = ¢(D)f(0), Vf € H.
Note that for esp € H
¢*(eap) = P E*(g) =101 ) (D°0)(E) o,

o!
a>0

while on the other hand, by (4.10)Corollary

(0T~ (eop) = [0] ) _ 06,6 D°P-

a>0
Hence we conclude
(5.3) Corollary. Let g€ satisfy
(5.4) D%q(0) = al aga, VO € specH, |a] < max{degp: esp € H}Y,

with {ag o} as in (4.10)Corollary. For a space V D S(@), let A € V* be an extension of ¢* € H”
which vanishes on all functions in S(¢) with support in R°\A. Then @y is a projector.

In case all the integer translates of ¢ belong to H in a neighborhood of the origin, one may
choose to extend g* (at least on 5(¢)) to the functional A(f) = ¢(D)f(0), f € 5()- We note that
in general condition (5.4) is sufficient but not necessary for the equality 0Tt = ¢*.

Choosing ¢ to be a polynomial or exponential box spline, (5.3)Corollary verifies [DMy; Thm.
5.1] and [DMay; Thm.5.1]. Note that the approach taken here avoids the application of Poisson’s
summation formula, hence we need not to impose any further restrictions on the polynomial ¢ (see
[J2] for a discussion of the difficulty in the application of Poisson’s summation formula). Poisson’s
formula is implicitly used here, since this is the key tool in the proof of (4.7)Result. Nevertheless,
that latter result holds for any compactly supported distribution ¢.

In case ¢ is not smooth enough at the origin, one may wish to represent [O]T~1 by nge with
9 ¢ IR® chosen such that S(¢) is locally in H in a neighborhood of 8. To find the connection
between the various gg’s, let P C w be a space dual to H in the sense that the map

*

P—H":q—q

11



is bijective (hence every p € H* is uniquely represented by some g* with ¢ € P). With {f;}7=1
and {p;}j=1 dual bases for H and P respectively, one has

f=3 05N, Vf e H

i=1

Let g be the unique polynomial in P satisfying ¢* = [0]7-! and let 6 € IR®. Then
[T-'(f)=q¢"(f) = (¢*E~")(E’f)

=S (B g (E7'S3)

= Y DIN=Opi (D))

Since H is translation-invariant and ¢ does not vanish on spec H, ¢(D) is injective on H, hence
{q(D)f;}%=y is also 2 basis for H. We have proved

(5.5) Corollary. Given a basis {g;}7=1 for H and a dual space P C « for H, there exists a unique
basis {p;}j=1 for P satisfying for all 6 € R°

o7~ = 1010 95(-=0)ps(D))-
j=1

J

Moreover, {p;}7=, is the basis for P which is dual to {f;}j=1, where {f;}7=, are defined by

fjeHa Q(D)fj"_’gj, i=1..m

with ¢ € P the unique polynomial satisfying ¢* = [0)7-*.

For an exponential box spline ¢ there are two natural choices for a dual P for H (cf. [BDR; §4]
for details).

For a polynomial H, one may write each of the polynomials { gi}i= In the above corollary in
power form and then use summation by parts to obtain

(5.6) Corollary. Assume that H C my for some non-negative integer k. Then there exist polyno-
mials {pa}ia|<k such that

(o]~ = [0] (Z 0°'pa(D)> :
lol<k

The sequence {Pu}|aj<k 18 unique in case we impose the restriction {po} C P for a space P
dual to H. We mention that in case H is invariant under the complex involution, it is self-dual and
we then may choose {pa} C H.

(5.6)Corollary captures the construction in [J1]. There ¢ was a polynomial box spline and P
was chosen as a specific known dual of H.
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