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INTRODUCTION

This paper is a report on algorithms to solve problems in number theory. I believe the most
interesting such problems to be those from elementary number theory whose complexity is
still unknown. For this reason, I shall concentrate on methods to test primality, to find the
prime factors of numbers, and to solve equations in various finite groups, rings, and fields.
These problems have the attractive feature that they are easily stated, and frequently can
be solved by algorithms that are easy to implement. However, the intuition behind these
algorithms and the methods used to analyze them are often anything but elementary; for
this reason I describe not only the algorithms but also the underlying mathematics.

It should be pointed out early on that the present review is not an exhaustive survey of
the area, and necessarily reflects my own biases and interests. For example, the inclusion of
algorithms for polynomials over finite fields may seem inappropriate. However, the polyno-
mials in one variable over a finite field have a well-studied and attractive arithmetic, and it
seemed interesting to contrast algorithms for this domain with algorithms for the integers.
At other points, the subject impinges on algebraic number theory, but I shall omit the de-
tails of such connections, for lack of space. For similar reasons I shall not fully describe the
many interesting and important applications of this material. Finally, because the literature
on the subject contains a profusion of different computational models, it seemed important
to analyze algorithms from one perspective; perhaps a survey of results compiled with this
in mind will be useful.

Number theorists in the past thought of their field as a purely theoretical area devoid
of potential applications. But recent developments have shown this not to be so: algebraic
methods are important in several areas, in which the basic techniques are all number the-
oretic in nature. As examples one might note computer algebra, algebraic coding theory,
cryptography, and pseudo-random number generation.

Already classical number theory contains a wide variety of algorithms for various prob-
lems, and mathematicians such as Gauss were well aware of the difference between good and
bad algorithms (his Disquisitiones is peppered with remarks on this topic). In fact, there is
a direct connection from 19th century constructivism, through Hilbert’s program and com-
putability theory, to the modern science of algorithms. However, the notion of algorithm
complexity became predominant only in the computer age. There are two reasons for this.
First, when doing hand calculations, one can often apply clever tricks or some particular
knowledge about the instance at hand, so that the worst-case behavior of an algorithm
may not be apparent. Second, the relative difference in performance between efficient and
inefficient algorithms becomes magnified when fast computers are used.

Because the integers are God-given (at least to Kronecker), number theory has some
of the characteristics of a natural science. Some of the earliest algorithm analysts were
experimental number theorists, most notably Lehmer, who more than 50 years ago built
sieve machines for factoring (1933). This empirical tradition has been carried on to the
present day, as evidenced in the results cited by Williams (1982a). A striking example of
such computational effort is Odlyzko and te Riele’s refutation (1985) of a famous conjecture
of Mertens in analytic number theory.

Despite much work on the theory of computation, theorists and practitioners disagree
on what features a good algorithm should have. The theory has been largely dominated by
considerations of asymptotics, which demand that one get the best possible function for the
running time bound (never mind the constants), and by the requirement that every running
time be rigorously proved. In contrast, implementors are often comfortable using algorithms
that are asymptotically not the best known, and whose observed behavior cannot yet be
formally justified.






As might be suspected, research in this area has always shown a major influence from
analytic and algebraic number theory and the theory of finite algebraic objects such as
Galois fields. In this regard the subject is thoroughly classical; the ideas of “post-modern”
algebra such as categories tend to be used only indirectly, to prove results about the simpler
structures in which computation takes place.

Several distinctly modern aspects of the area are notable.

First, computational number theory shows a profound influence from combinatorics,
via the theory of NP-completeness and its assumption that an algorithm is useful if and only
if it runs in polynomial time. This theory has been very helpful in organizing our knowledge
about combinatorial optimization: most problems in this domain are now known to be either
NP-complete, meaning that they can encode propositional logic, or solvable in polynomial
time, by a practical algorithm. Inspired by this success, number theorists now work within
the polynomial time paradigm, but the advantage of this viewpoint is less clear than for
combinatorics. Although some problems involving Diophantine equations are NP-complete
(see the paper of Manders and Adleman (1978)), for more important problems such as
factorization this is not known. Number theory seems to lack the sharp boundary between
solvable and intractable problems exhibited in combinatorics. For example, subexponential
time algorithms are known for difficult problems such as factorization and the discrete
logarithm, and for structural reasons these problems are probably not NP-complete.

A second major influence is that of probability theory and the idea of randomness,
which has been injected into the area in three ways. First, probability theory is a powerful
tool for formulating conjectures about the behavior of number-theoretic functions; such
conjectures often lead to practical algorithms. Second, the area of pseudo-random number
generation, which has always been influenced by number theory, has undergone a revival
with the recent interest in cryptography. The most striking idea in this realm is that
computational intractability is good for something: if a number-theoretic problem is not
efficiently solvable, then it can be used to construct sequences that appear “featureless” to
an algorithm. For such results, see the papers of Blum and Micali (1984) and Yao (1982).
Third, the recent notion of randomized algorithm has clarified our ideas concerning tentative
methods in computation; one may now deal with such procedures in a formal way.

Finally, and this is a very recent trend, our ideas about number-theoretic algorithms
have been irreversibly changed by algebraic geometry. This subject, an outgrowth of classi-
cal complex analysis, embraces a general theory of polynomial equations - exactly the sort
of equations that would arise in computation using rational operations. In the realm of
algebraic complexity theory, this was recognized 15 years ago by Strassen (1973). In num-
ber theory, algebraic geometry is especially useful because of the deep connections between
the topology of complex manifolds and bounds for the number of solutions of equations
over finite fields. Although the ultimate results of this trend remain to be unveiled, the
geometric approach has led to important algorithms for primality testing and factorization,
and has helped sharpen the analysis of randomized algorithms.

Before going on to a detailed review, I would like to mention other sources for this
subject. The primary literature is easily accessible through three important compilations.
Dickson (1919) wrote an exhaustive three-volume history of number theory, and the relevant
articles in Mathematical Reviews from 1940 to 1983 have been complied by LeVeque (1974)
and Guy (1984). For longer treatments of number-theoretic algorithms, see the books of
Lenstra and Tijdeman (1984), Riesel (1985), Knuth (1981), and Koblitz (1987b). The
last two discuss applications in depth, as do the books of Davenport, Siret, and Tournier
(1988) and Berlekamp (1968). I shall mention other books and surveys as appropriate; for
detailed coverage of recent algorithms, the article of Lenstra and Lenstra (1987) is especially
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recommended.

The rest of this paper is organized as follows. The next section presents mathematical
background from computation theory, algebra, analytic number theory, algebraic geometry,
and probability theory. The next five sections are problem-oriented, and discuss arithmetic,
solving equations in finite fields, primality testing, factorization, and discrete logarithms.

BACKGROUND

This section summarizes the background used in the rest of the paper. To start this from
scratch would be impossible, and I presume that a certain amount is known by the reader.
For more background on the topics of this section, the books of Aho, Hopcroft, and Ullman
(1974), van der Waerden (1970), Davenport (1980), Hartshorne (1977), and Feller (1968)
are useful standard references. For number theory per se, a comprehensive introduction has
been written by Hua (1982).

Computation theory

To compare algorithms, one needs a notion of computation step that does not depend on
the particular problem being solved. Although one may formalize this idea in many ways,
it is most common to use either a step of a multitape Turing machine computation or
an instruction executed by an idealized random-access computer with no bound on the
word size. Since number-theoretic algorithms are intended to deal with large integers on
real computers, with random access but a fixed word size, neither of these conventions is
entirely satisfactory.

In addition, running time estimates serve a dual function: that of prediction (how
quickly will my algorithm run?) and comparison (is my time bound an improvement on
what is known?). With number-theoretic algorithms, these two goals are often at cross
purposes, for a problem size that seems large by one measure (300 bits) may be small
by another (10 computer words). In addition, an asymptotically efficient algorithm for
a problem may not beat an ordinary method until the problem size is so large that any
algorithm would be useless.

In line with the principle that theory should explain and enlighten practice, my em-
phasis here is on the side of prediction. Therefore, I shall present running times in terms
of “naive bit complexity.” This phrase refers to a set of assumptions about how arithmetic
operations are implemented, together with simple running time bounds for these opera-
tions. These assumptions are as follows. All arithmetic on large numbers and polynomials
is done by classical methods, the running time bounds count only arithmetic operations on
numbers of some fixed size (say, one bit), and all considerations of addressing and space
requirements are ignored. Using this model, one can very easily estimate how long a simple
computation should take on a given machine.

Although this is the model currently in favor among computational number theorists,
two other approaches are common in the literature. One model, used by complexity the-
orists, replaces classical algorithms for arithmetic with the asymptotically fastest methods
but still measures bit operations. Another approach, commonly used in algebraic complex-
ity theory, is similar in spirit to this but counts algebraic operations in a ring or field. Often
the ring or field is not specified, but may be constrained to satisfy certain assumptions such
as having characteristic zero. Results using these models point out the ultimate limits of
computational methods, and they are of considerable interest. However, they are not central
to this paper. I shall only summarize them when appropriate, labeling them “asymptotic”,
and provide references.

So that the reader may easily compare results from the various approaches, all running
times in this paper will count bit operations. I shall, however, employ slightly different
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notations for classical and asymptotic results; in general, bounds in terms of a binary
length [ are asymptotic.

In a similar spirit I shall also briefly describe results in parallel complexity theory,
using the following framework. A feasible parallel algorithm, or NC algorithm, can be
implemented by a family of Boolean circuits whose Ith member has [ input bits, 19 gates,
and paths of length (log 1)) from inputs to outputs. It is customary to impose uniformity
conditions that guarantee that the circuits are simple to build; for different approaches to
this problem see the papers by Ruzzo (1981) and Allender (1986). A set L is said to be in the
complexity class NC if it is recognizable by a logspace uniform circuit family satisfying the
above size and depth restrictions. This class may be further stratified into levels; one then
speaks of N Ck sets, which can be recognized by uniform circuit families of depth O(log )*.

This notion must be distinguished from that of an “algebraic NC” algorithm, which
is a uniform family of straight-line programs, of which the /th family member takes [0(1)
inputs, does [?(}) operations, and has depth (log1)°(M). The instructions in such programs
are typically arithmetic operations in a given class of rings or fields. For the purposes of
the present discussion, the algebraic NC model suffers from the drawback that operations
such as inversion in large finite fields, which so far lack NC circuits, are presumed to take
one time unit.

Another difficulty with NC algorithms is the large number of circuit elements allowed,
and the assumption that any interconnection pattern whatsoever can be used without af-
fecting performance; in practice, these problems are more severe than a lack of uniformity.
Nevertheless, no model with a comparable appeal has yet emerged, and without a clear con-
sensus on the issue, it seems justifiable to use the NC framework when presenting parallel
algorithms. (For a survey of parallel algorithms, see the article by Karp and Ramachandran
(1988)).

For problems that do not have efficient algorithms, it is useful to take a coarser point
of view, in which the notion of polynomial time algorithm is primitive. One may define
polynomial time in various ways, but the end result does not change; see, for example, the
book by Machtey and Young (1978). In such a definition, one always compares running
time to the binary length of the input; thus an algorithm with input n runs in polynomial
time when its bit complexity is bounded by a power of log n, not a power of n. In addition,
there is a further simplification: every problem is represented as a decision problem, that
is, as a subset of the natural numbers. With appropriate coding we may speak of sets of
integers, pairs of integers, and s> on. P is the collection of sets having decision algorithms
that run in polynomial time.

The following complexity classes have proved to be the most important for number-
theoretic problems. NP is the class of sets L such that for some set M in P, and for some
positive d,

z €L < for some y with logy < log?z, (z,y) € M

Intuitively, a set is in NP if each of its elements has a short, easily checkable, proof of
membership in that set. A set L is said to be in RP if for M € P, d> 0,

z € L = for at least half of the y’s with logy < (logz)?, (z,y) € M

and

z ¢ L = for none of the y’s with logy < (log z)¢, (z,y) € M;
from this it follows that RP ¢ NP. L is in ZPP if both it and its complement are in RP.
Finally, the class BPP is defined similarly to RP, by replacing “at least half” by “at least
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3/4” and “none” by “at most 1/4.” These notions were introduced by Gill (1977); the
constants in their definitions are somewhat arbitrary. Intuitively, a set is in BPP if it has a
reliable probabilistic polynomial time algorithm to test membership, in RP if one can find
a short, easily checkable, proof of set membership without being extraordinarily lucky, and
in ZPP if there is a probabilistic algorithm to decide membership that is always correct and
probably fast. None of these classes are known to equal P.

Although these are names of complexity classes, it is common to signal a result’s salient
features by informal phrases such as “NP-complete problem” or “BPP algorithm.” Efficient
randomized algorithms whose output is always correct are called Las Vegas procedures;
this notion, although used mostly for randomized algorithms, can apply to any heuristic
procedure.

Algebra
I shall take as known definitions and properties of basic algebraic structures: groups,
fields, and rings (presumed commutative). In the sequel 7 will denote the integers,
IN = {0,1,2,...} the natural numbers, @, IR, and € the rational, real, and complex num-
bers, and IF, a finite field with ¢ elements. If the size of the finite field does not matter, it
will simply be called k. Note that if p is prime then IF, is the same as ZZ/(p). If A is a ring,
then A[X] denotes the polynomial ring in one indeterminate, and A™ denotes its group of
units.

A fundamental idea of algebra is that of factorization, in which one breaks up a struc-
ture into simpler ones. The most useful factorization theorems are the following two.

The Chinese remainder theorem asserts that if A is a commutative ring, and I and J
are ideals with I + J = A then A/(IJ) = A/I & A/J. Applying this recursively to the
prime factorization pf* - - -pér of a positive integer n,

Z/(n) = Z[(p7) ® - -- & L/ (p}")-

A similar result holds for polynomials in k[X]; if f = f;*--- fér with the fi’s irreducible
and relatively prime, then

KX1/() = RIX)/(fi) @ - - @ kIX]/(f7)-

In both cases, the group of units is the direct product of the unit groups of the direct
summands. By definition, ¢(n) denotes the size of Z/(n)*, and ¢(f) the size of k[X]/(f)™.
The fundamental theorem of abelian groups, due to Frobenius and Stickelberger (1879),
states that if G is a finite abelian group, then G is the direct product of cyclic groups of
prime power order. The number and type of these factors are invariants of the group.

Each of these theorems gives an algebraic object an alternate “data structure.” One
may either transform a computational problem by converting it to the alternate represen-
tation, or just imagine in one’s analysis that such a transformation has been made; both
techniques are commonly used.

Another use of the Chinese remainder theorem is the following, which has been dubbed
the “pretend-field” technique. When doing computations in the finite ring Z/(n), one may
pretend that it is a field, until an inversion operation fails. This is especially useful in
factorization, for a nonzero element z of 7Z/(n) that is not a unit will have a nontrivial ged
with n. When inversion fails in other situations, one just factors the ring, and proceeds
with computations in the direct product; such an interruption can happen only a few times.

It is also useful to know some facts about finite fields. I shall only give the basics;
for complete coverage, see the book of Lidl and Niederreiter (1984). The most important
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properties of these fields are the following. The multiplicative group of a finite field is cyclic.
If a finite field has characteristic p, then the function taking an element to its pth power is
IF,-linear, and called the Frobenius map. This function is an automorphism and generates
the Galois group of a finite field. (In a ring of characteristic p, it is an endomorphism but
need not be injective.) Similar facts are true about gth powers, relative to a subfield of order
g. The product of an element’s conjugates is called its norm, and the sum of its conjugates
its trace.

Because they occur as the multiplicative groups of finite fields, it is useful to know
some facts about finite cyclic groups. A cyclic group of order n = p; ---p, has a chain
factorization

1=GoCG1C---CGr=G

where G;/G;_1 is cyclic of order p;. A fundamental “exactness” result, due to Euler, states
that if d|n, then z is a dth power if and only if /i =1,

In certain situations one seeks the structure of the unit group modulo an integer or
polynomial. By the Chinese remainder theorem this reduces to finding the structure of the
unit group for each direct factor. This was found by Gauss (1801, §82) for Z/(p®)*, but
apparently only recently by Claasen (1977) for k[X]/(f¢)". The first result states that the
group of units modulo p® is cyclic, except when p = 2and e > 3, in which case it is the direct
product of a group of order 2 and one of order 2¢=2_ The second case is more complicated.
If k = IF,, a field of characteristic p, and f is an irreducible polynomial in k[X] of degree d,
then the unit group of k[X]/(f¢) is the direct product of a cyclic group of order g¢—1and
a group of order q%e=1) . The second group is composed mainly of direct factors of order p;
roughly speaking, the number of cyclic factors of order p' decreases exponentially with 1.

If pis an odd prime the following defines the Jacobi symbol:

a 1, if a and p are relatively prime and a is a square modulo p;
(=)= { —1, if a and p are relatively prime and @ is not a square modulo p;

P 0, otherwise;
if n = py---p, with each p; an odd prime, then (2) = H,T:l(é‘—') Squares in the group
7Z/(n)* are called quadratic residues; (£) = 1 is necessary but not generally sufficient for
z to be a quadratic residue modulo n. The law of quadratic reciprocity, proved by Gauss
(1801, §131), states that for odd primes p and g, (&) = +(Z), with the minus sign taken if
and only if p and ¢ are congruent to 3 modulo 4; this was later extended by Jacobi (1837)
to all odd p and g. One may also define a similar symbol in k[X] if the characteristic is odd;
the corresponding reciprocity law states that if f,g € k[X], with f, g monic and of positive
degree, then

(i) = (_1)("51) deg fdegg(g_)_
)

This was proved by Dedekind (1857) for prime fields k and extended by Kiihne (1902) to
cover all finite fields.

From an abstract viewpoint, reciprocity laws solve the following problem: given a ring
A and an irreducible polynomial f in A[X], explain how f factors when A is reduced
modulo a prime ideal. This is the motivating problem for a major area of algebraic number
theory, called class field theory. Some results of this theory are useful in algorithms; the
book of Ireland and Rosen (1982) provides an introduction to higher reciprocity laws, and
the volume edited by Cassels and Frohlich (1967) is a more technical introduction to the
sub ject.



For a thorough introduction to algebraic number theory, see the book of Narkiewicz
(1974). For a discussion of the computational aspects of algebraic numbers, see the book
of Zimmer (1972).

Analytic number theory

The fundamental fact of analytic number theory is the prime number theorem, due inde-
pendently to Hadamard (1896) and de la Vallée Poussin (1896). It states that 7(z), the
number of primes less than or equal to z, is asymptotic to z/logz.

This theorem has been generalized in various ways. De la Vallée Poussin went on
to show that if @ and ¢ are positive numbers, relatively prime, then 7, (), the number
of primes not exceeding z and congruent to a modulo g, is asymptotic to z/ (¢(q) logz).
Consequently, there are infinitely many such primes. Cebotarev’s density theorem (1926)
leads to similar estimates for the number of prime ideals with given splitting properties in
a ring of algebraic integers. Because every prime ideal of such a ring is associated with
an ordinary prime number, this last result may be used to estimate the density of prime
numbers with desirable properties.

Besides questions of density, one may be interested in the first prime in an arithmetic
progression modulo g. This was shown by Linnik (1944) to be 0(g®) for some C > 0.
Fogels (1962) found a corresponding result for algebraic number fields.

Unfortunately, in this subject there is a large gap between what is currently provable
and what is apparently true. For example, there is ample empirical and heuristic evidence
to support the belief that

m(z) = li(z) + gl/2+o1)

where li(x) = f; dz/logz. This is true if and only if the zeta function has no zeroes to
the right of the line Re(s) = 1/2, which is the famous hypothesis of Riemann (1859). Since
this is a precise statement, one can investigate it computationally by proving that all zeroes
up to a given height lie on this line. Culminating investigations by many researchers, Van
de Lune, te Riele, and Winter (1986) showed that the Riemann hypothesis holds for the
first 1.5 billion zeroes of the zeta function. Odlyzko (1987) has examined some blocks of
extremely large zeroes, which are similarly placed.

For primes in progressions, the corresponding estimate is that for each relatively prime

a and g,
1

©(q)

this is equivalent to the assertion that Dirichlet L-functions, generalizations of the zeta
function, satisfy the Riemann hypothesis. This conjecture was apparently first stated by
Piltz (1884); similar conjectures apply to more exotic L-functions appearing in algebraic
number theory. It is common for number theorists to derive results assuming the truth of the
Riemann hypothesis or some of its generalizations. Such assumptions usually go under the
collective (and vague) name of the Extended Riemann Hypothesis (ERH). If true, the ERH
would have many important consequences. However, it has not been checked as thoroughly
as the ordinary Riemann hypothesis; to date the most comprehensive computations are
those of Spira (1969), who examined zeroes of Dirichlet L-functions for moduli ¢ < 24.
Lagarias and Odlyzko (1979) report computations involving more general L-functions.

In some sense the ERH encapsulates certain observed facts about the behavior of
number-theoretic functions, and this alone gives it value as a heuristic. In addition, there
are many results that can be sharpened if Riemann hypotheses are assumed. Below I list
some important consequences of the ERH.

h(.’L‘) + :1:1/2+°(1);

Ta,g(2) =




First, if the ERH holds, then the multiplicative group of 7ZZ/(n) is generated by the
numbers up to O(logn)?; this was first proved by Ankeny (1952) for n prime and later
extended by Montgomery (1971) to all n. A similar result due to Lagarias, Montgomery,
and Odlyzko (1979) holds in the algebraic number case. Here one defines groups that
generalize the group of units modulo n; it would follow from the ERH that they also are
generated by small prime ideals.

Second, every integer a not equal to 1 or a perfect square is believed to be a prim-
itive root for infinitely many primes; this is Artin’s conjecture. Artin also found heuristic
estimates of the densities, depending on a, of such primes; computations by Lehmer and
Lehmer (1962) showed some of these estimates to be in error, but the corrections have been
“channeled” by Lang and Tate (1965). Hooley (1967) has shown that Artin’s conjecture
would follow from the ERH.

Finally, it seems to be true that every prime has a small primitive root; assuming the
ERH, Wang (1961) showed that the least primitive root modulo p is O(log p)8. Perhaps a
similar bound holds for algebraic number fields, but I am unaware of any such result.

When designing algorithms, it is useful to have numerical versions of results in analytic
number theory. Rosser and Schoenfeld (1962) gave explicit versions of the prime number
theorem, and Schoenfeld (1976) gave corresponding bounds that assumed the Riemann
hypothesis. Explicit bounds were given by McCurley (1984a, 1984b) for the density of
prime numbers in arithmetic progressions. To my knowledge there are no unconditional
numerical estimates for Cebotarev’s density theorem, except for the special cases cited in
this paragraph.

The best published constant C in Linnik’s theorem is C' = 16, due to Wang (1986). (A
value of 15, for which a proof apparently never appeared, is cited in Hua’s book ( 1982)).
Such a result, however, merely estimates the exponent in Linnik’s theorem and does not
provide explicit bounds for the least prime in a progression. Oesterlé (1979) announced
explicit versions of Cebotarev’s theorem that assumed the ERH; for the rational case his
results specialize to yield

Faal@) - —5li(2)] < VE(2loga +loga)

for z > 2. As noted by Chowla (1934), a bound of this quality would imply that the
constant C in Linnik’s theorem is arbitrarily close to 2. Presumably, then, the least prime
in a progression modulo g is ¢*t°(M) and an explicit bound if desired could be computed from
the above formula. According to heuristic arguments and empirical evidence of Wagstaff
(1979), even this is an overestimate; he argued that the least prime in any progression
modulo q is likely less than ¢(q)logqlog ¢(q).

The case of Ankeny’s theorem is especially interesting, as algorithms such as Miller’s
prime test (1976) cannot even be specified without a concrete version of this result. Bach*
(1985) showed, assuming the ERH, that if G is a nontrivial subgroup of the integers modulo
n, then there is some z outside G with z < 2(log n)?; generalizations to algebraic number
theory appear in a further paper (1989a).

For the analysis of recent primality algorithms it is important to know not only the
average behavior of primes, but also their local distribution. That is, one wishes to know
the growth rate of d,,, the difference between the nth and the n — 1st prime. Unfortunately,
even with Riemann hypotheses the results on this problem do not agree with observations.

* This self-referential style should aid readability.
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Various bounds of the form d, = n®+t°(1) are known. In the paper of Halberstam, Lou, and
Yao (1989), @ = 6/11 is claimed by the last two authors; & = 1/2 would follow from the
Riemann hypothesis, as shown by Cramér (1921). But computations such as those of Brent
(1973) suggest that o = 0; this is implied by heuristics such as that of Cramér (1937), who
gave a probabilistic argument that d, = (logn)**°(}). Were this or a similar conjecture
true, the distance from a number z to the smallest prime greater than z would be, for z
large, bounded by a polynomial in log .

Finally, the factorization patterns of numbers show a statistical regularity that can be
stated informally as follows: the factors of a random I-bit number have the same asymp-
totic distribution as the cycle lengths of a random permutation on / letters. In various
algorithmic settings, it is important to find numbers all of whose prime factors are less than
a certain bound, say M; a number is called M-smooth if it has this property. Dickman
(1930) investigated a function p(z) that asymptotically gives the probability that a random
number n is n!/®-smooth, as a function of z. His heuristic arguments were made rigorous by
Knuth and Trabb Pardo (1976), who also investigated distributions for the relative length
of the kth largest factor of a number.

Because Dickman’s function is useful in the analysis of algorithms, I summarize some
facts about it here. First, the rule of thumb that p(z) & z~7 is useful in rough calculations;
for ranges of practical interest, 5 < z < 10, say, it is surprisingly accurate. Although rea-
sonable approximations for p in terms of the exponential integral were given by de Bruijn
(1951), if one needs accurate values one should simply compute it numerically. Good algo-
rithms to do this were published by van de Lune and Wattel (1969). Of course, one usually
needs not the rho function but a probability of smoothness. In estimating such probabilities
asymptotically, results of Canfield, Erdds, and Pomerance (1983) are quite useful. These re-
sults do not provide explicit smoothness estimates; however, from computations of Odlyzko
in Schnorr and Lenstra’s paper (1984) it can be concluded that the use of p(z) probably
suffices for practical purposes.

Several important results in analytic number theory have analogies in the polynomial
ring k[X]. The prime number theorem, which implies that the fraction of n-bit primes is
roughly inversely proportional to n, becomes Dedekind’s result (1857) that the number of
irreducible monic polynomials of degree n in IF,[X] is ¢"/n+O(g"/?). Artin (1924) proved
the result, analogous to the prime number theorem for arithmetic progressions, that if a
and b are relatively prime polynomials in IF,[X], then the number of irreducible monic
polynomials of degree n congruent to @ modulo b is ¢"/(ng(b)) + O(¢™) for § < 1; 6 = 1/2
is an analog of the ERH. From results of Weil (1974, appendix V) one can show that an
analog of Ankeny’s theorem holds for k[X]. However, it states that groups k[X]/(f)" are
generated by elements of small degree, which is useful only if the degree of f is large relative
to the size of k; an efficient construction of a generating set for all cases would be interesting
and useful. Bilharz (1937) reduced the analog of Artin’s conjecture in k[X] to the Riemann
hypothesis for finite fields, which is now known. Finally, by analogy with numbers, one
may call a polynomial in k[X] smooth if all of its irreducible factors have small degree.
Asymptotic smoothness estimates using Dickman’s function hold in this case as well; for
some useful non-asymptotic bounds see the paper of Odlyzko (1985).

Algebraic geomnetry

Classical algebraic geometry studies the solution sets of polynomial equations in affine or
projective space. For number-theoretic applications, it is usual to consider solutions lying
in a subfield k of some fixed algebraically closed field; it will suffice here to assume that & is
finite. The basic questions the theory tries to answer are: do such equations have solutions
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in k, how many solutions are there, and do they have any additional structure?

Already by considering k = IF;, one sees that the first two questions are probably not
computationally tractable, for the question of the existence of a solution over IF, is NP-
complete (Garey and Johnson (1979) ascribe this to Fraenkel and Yesha), and the problem
of computing the number of solutions is complete for the class #P defined by Valiant (1979).
Often, however, useful estimates are possible.

Assume that the algebraic set X is a nonsingular d-dimensional projective variety and
that it is specified by equations with integer coefficients that, interpreted over the complex
numbers, define a complex manifold X'. Then one can use the Weil conjectures, which
include analogs of the Riemann hypothesis for function fields, to estimate the size of X.
These conjectures were proved by Deligne (1973) and imply that Ny, the number of IF,-
points on X, can be expressed as follows:

N, = aoqd + Ollilal—l/2 + et a2d—1ql/2 + a4,

where |a;| is at most §;, the ith Betti number of the manifold X’ (i.e. the dimension of
its ith de Rham cohomology group). The invariants 8; may be computed by topological
methods such as those of Hirzebruch (1966).

Most applications to algorithms assume that X is an algebraic curve, that is, d = 1.
Then Sy = 1 (there is one connected component), and f; = 1 (by duality). The middle
dimension fB; is twice the genus g of the curve. In this instance, the bound becomes

qu - (q+ 1)' < 29\/—7

as shown by Weil (1948). If X is nonsingular, and a complete intersection of hypersurfaces

whose degrees are ay,...,a,, then Hirzebruch’s techniques give the formula
T 2izi(e = 1)
= [ 1]+ 1.
g (E ai)[ 2 1+

(If the curve is singular, then one may use this number - the arithmetic genus —in an upper
bound for N,). Special cases of this formula imply the following results on plane curves.
A line or a conic section is always nonsingular, and has genus 0. Therefore the number
of solutions to an irreducible degree 2 equation in two variables may be computed exactly.
A nonsingular plane curve of degree 3 has genus 1 and is called an elliptic curve. It is
usual to take such curves in the standard form

y2=z3+am+b

and include an extra point at infinity, given by (0:1:0) in projective coordinates. Elliptic
curves have an abelian group structure, which can be specified by requiring that P+Q+R =
0 when P, @, and R are collinear, and that (0:1:0) is the identity of the group. Formulas for
the addition law follow by elementary analytic geometry; they express the sum rationally
using coordinates of the addends and the parameters a and b defining the curve. For these
formulas and more facts about the arithmetic of elliptic curves, see the article of Tate (1974)
or the book of Silverman (1986).

Curves of genus greater than 1 do not have a naturally defined group structure, but such
curves are associated with algebraic groups called abelian varieties. For an introduction to
this topic, see the book of Cornell and Silverman (1986) and the references therein.
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Probability

I shall assume that the notions of elementary probability theory such as random variables,
expected values, and so on are known. Below I summarize some less well-known facts that
are useful in algorithm design.

Many theorems in algebra can fruitfully viewed in probabilistic terms. For example, if
# is a homomorphism mapping a finite group G onto another group H and z is chosen at
random from G, then ¢(z) will be a random element of H. Since the order of a subgroup
divides the order of a group, a random element chosen from a group G will be outside
any given proper subgroup of G with probability at least 1/2. Finally, direct product
decompositions give independent random variables; for example, if n = pg with p and ¢
relatively prime, then by the Chinese remainder theorem, if z is chosen at random modulo =,
its residues modulo p and ¢ are independent and uniformly distributed. A similar statement
holds for the fundamental theorem of abelian groups.

The Extended Riemann Hypothesis corresponds to the almost sure behavior of a simple
probabilistic model for primes, as follows. Let a and g be relatively prime, and for each
positive integer n congruent to a modulo g, call n “prime” with probability 1/(¢(q)log n).
Then an estimate analogous to 7, 4(z) — li(z)/¢(g) = z/2+°(}) holds with with probability
1. Of course, the primes are not chosen at random, but this suggests that the ERH should
be useful as a guide to their behavior.

The distribution of smooth numbers also has a probabilistic interpretation, which one
could call the “random bisection” process. Imagine that to choose a random number n, one
first picks a prime factor p whose length is uniformly chosen from the interval (0,logn), then
repeats with n replaced by n/p, and so on until all prime divisors are chosen. This model
intuitively explains several results in analytic number theory; for example, the probability
that a number near n is prime is roughly inversely proportional to logn, and a random
number near n should typically have O(loglogn) prime factors. The first result is implied
by the prime number theorem, and the second by the Erdés-Kac theorem (1940), according
to which the number of prime factors of a random number n is roughly normally distributed
with mean and variance loglog n. Using random bisection one can see, heuristically at least,
that the “probability” p(z) that n is nl/%_.smooth should satisfy the relation

pe) =1 [ oty

with the initial condition p(z) = 1 for 0 < z < 1. This is Dickman’s recurrence (1930) for
the function p.

Finally, for plane curves over IF,, Weil’s bound corresponds to the rough idea that a
point (z,y) € IF?, “decides” to be on the curve with probability 1/p.

However, caution is advised in the use of heuristic probability arguments, as the fol-
lowing examples show. An appealing probabilistic model of an elliptic curve over IF', results
from imagining that for each z, z3 + az + b is a quadratic residue modulo p independently
with probability 1/2. Were this true, the number of points on the curve would, for p large,
have a binomial distribution with mean and variance close to p. Therefore, there would be
a small probability for such a curve to have more than p + 2,/p + 1 points, but this is im-
possible. The presumably correct distribution, conjectured independently by Tate (1965)
and Sato, is more subtle and follows from considering measures on Lie groups; for this
connection see the book of Serre (1968).

One may also consider the least quadratic nonresidue modulo a prime p heuristically.
Were (-’-T;-) an independent random variable for each z, equally likely to be 1, then the
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least nonresidue would be almost surely O(log p). Although this conjecture matches a lower
bound implied by Linnik’s theorem, it is false: Graham and Ringrose (1988) have shown
that the least nonresidue modulo p is Q(log plogloglog p), and Montgomery (1971) showed
that Q(log ploglog p) follows from the ERH.

Finally, out of the grab-bag of tricks in finite probability theory, the following should
be mentioned. The birthday problem asks how many independent samples from {1,...,n}
are needed to find a duplicate; on the average, one needs O(y/n). The geometric distribution
governs the waiting time until the first success, when one flips a coin with success probability
p; its expected value and standard deviation are O(1/p). Finally, large deviation bounds
such as Chernoff’s (1952) are useful for improving the success rate of a BPP algorithm. For
example, if a recognition algorithm has probability at least 1/2 + € of correctly accepting
inputs in some set, and probability at most 1/2 — € of falsely accepting inputs not in the
set, then one may run n independent trials and side with the majority; the probability of
error is at most (1 — 4¢2)™/2.

BASIC ALGORITHMS
This section discusses algorithms for the classical problems in arithmetic. Although some
questions of asymptotic complexity are unresolved, the sequential algorithms for these prob-
lems are generally satisfactory. However, some important problems that are easily solved
sequentially do not have good parallel algorithms.

To simplify descriptions, in this section I shall denote the binary length of a number u
in Z by log u, and the length of a polynomial v in k[X], that is, (degu + 1)logg, by logu.
Also if u and v are polynomials, then u < v means that u has smaller degree than v.

Basic arithmetic

Let u and v be positive integers or polynomials in k[X] with v < u. Then the ordinary
algorithms for arithmetic have the following complexities: addition and subtraction take
O(log ) steps, and » and v may be multiplied in O(logulogv) steps. The complexity of
performing the long division u = qv + r is O(log glogv), that is, the cost of a division is
roughly proportional to the cost of the corresponding multiplication.

Evidently the time needed for addition and subtraction cannot be reduced in general.
Various authors have found nearly linear-time algorithms for integer multiplication; the
best such result is that of Schénhage and Strassen (1971), who showed that the product
of two [-bit numbers may be computed in O(llog!loglog!) steps. Their algorithm involves
a recursive application of the Fast Fourier Transform (FFT) and is quite intricate. Using
Newton’s method, the complexity of multiplication can be shown to equal that of approx-
imating reciprocals and square roots; no one has ever found a linear-time algorithm for
these problems nor shown that O(l) time is impossible to achieve. Asymptotically, the
basic arithmetic operations on [-bit polynomials in k[X] may also be performed on [ito()
steps.

However, even the simpler multiplication algorithms based on the FFT are not used
much in practice, unless enormous numbers are involved; the only such situations I am
aware of arise in testing Mersenne and Fermat numbers for primality, and in computing
constants such as 7 to record-breaking precision. Haworth (1986), Young and Buell (1988)
and Borwein, Borwein, and Bailey (1989) discuss these applications. More useful, perhaps, is
an O(I'5%) multiplication method published by Karatsuba and Ofman (1962); for example,
the designers of Maple, a computer algebra system, found that this method outperformed
classical multiplication when ! exceeded 1200 (about 360 decimal digits).

Regarding parallel computation, integer addition, subtraction, and multiplication have
NC! algorithms. Therefore one may add, subtract, or multiply two I-bit numbers with
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191) gates, in time O(log!). For Boolean circuit families with such properties see the
papers of Sklanksy (1960) and Karatsuba and Ofman (1962). The parallel complexity of
integer division is a long standing open problem. Quadratically convergent methods for
approximate inversion, such as that used by Anderson and his co-authors (1967), will lead
to an NC? division algorithm. Only recently did Beame, Cook, and Hoover (1986) show
that division circuits of polynomially bounded size and logarithmic depth are possible. This
result, however, does not completely resolve the problem. Because it is based on residue
arithmetic and computation of discrete logarithms, it suffers theoretically from a lack of
logspace uniformity, and practically from a large hardware requirement.

For polynomials in k[X], the situation is different. NC algorithms are known that will
add, subtract, and multiply such polynomials, but simple examples show that a quotient
with remainder in k[X] cannot be thus computed unless the inversion problem in £ is in
NC. This is only known to be true if the characteristic of k is small.

Modular arithmetic, powering

The bounds above lead to complexity estimates for operations in rings of the form 7ZZ/(u) and
k[X]/(u). In either case, addition and subtraction take O(logu) steps, and multiplication
and division by units take O(logu)® steps. The last result is not obvious; it uses the
quadratic time bound for the extended Euclidean algorithm given below.

Asymptotically, one may perform these operations in {1+°(}) steps when u is [ bits
long. Regarding parallel computation, NC algorithms are known in such rings for addition,
subtraction, and multiplication, although for the last result in k[X] u should be monic.
Inversion in k[X]/(») may be done in NC if the characteristic is small.

The usual repeated squaring algorithm leads to the following bound: in either ring one
may compute a® in O(logelog® u) steps. Since in general e need be no greater than the
size of the ring, this gives an O(logu)? bound for exponentiation. Arguments based on the
characteristic zero case suggest that repeated squaring or a similar technique is necessary,
but this has never been proved.

If u is { bits long, then exponentiation in the above rings takes [2+0(1) steps, asymptoti-
cally. The parallel complexity of modular exponentiation is an important unsolved problem;
no NC algorithm is known for the integers, although von zur Gathen (19872) has given one
for the special case of smooth moduli. Fich and Tompa (1988) gave an NC algorithm to
compute powers in k[X]/(u), but the characteristic of k is required to be small. In the
remaining cases, the the question is open.

The greatest common divisor

The division algorithms for 7 and for k[X] may be used in Euclid’s algorithm to find the
greatest common divisor (gcd) of two elements. The iteration is as follows. Starting with u
and v, one repeatedly applies the division algorithm and computes

Uu=qu+r, r<uv,
v=qr+1, <,
until some remainder vanishes; the last divisor is the gcd. The elements ¢, ¢, ... are called
the quotients of the algorithm; they are also the quotients of the ordinary continued fraction
expansion of u/v.
Lamé (1844) showed that the Euclidean algorithm applied to positive integers v and v

with v < u stops after O(log u) division steps. From this result it is easy to conclude that the
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bit complexity of Euclid’s algorithm is O(log u)3, but its true bit complexity is O(logu)
Intuitively, this holds because not all the quotients can be large, and large quotients reduce
the intermediate values considerably. This bound seems to have been first proved by Collins
(1969), who also showed a corresponding estimate for k[ X].

Since the Euclidean algorithm in 7 is crucial to many computations, several authors
have improved it, notably Lehmer (1938). To use his method, one computes the continued
fraction expansion of a single-precision approximation to u/v, using an “interval arithmetic”
scheme to decide which quotients are correct. These quotients may be used to produce new
values of u and v, from which the process continues. An alternative is the so-called “binary
method,” due to Stein (1967). This algorithm first determines the number of 2’s in the
ged, then uses a subtractive algorithm in the ring Z[1/2], in which 2 is a unit and may be
removed by shifting. However, neither of these methods reduce the running time of Euclid’s
algorithm by more than a constant factor.

Since any Euclidean domain is a principal ideal domain, if d is the greatest common
divisor of  and v in Z or k[X], then there are a and b for which au +bv = d. If v < v,
they do not exceed u in absolute value or degree, and may be found in O(log u)? steps by
an extension to the Euclidean algorithm. When u and v are relatively prime, one may thus
invert v modulo u in O(logu)? steps.

The greatest common divisor algorithm leads to the following question, which was
studied by Bach, Driscoll, and Shallit (1988): given a set of numbers or polynomials, what
is the “best” factorization obtainable using only repetitions of the Euclidean algorithm?
This is the factor refinement problem. The result is well-defined and may also be computed
in O(logu)? steps, where u is the product of the inputs; in the case of multiple inputs, the
proof involves amortized analysis.

Schonhage (1971) showed that the time needed to compute the ged of two I-bit integers
and the continued fraction of their quotient is, asymptotically, [1+°(1); the same suffices for
expressing the ged linearly in terms of the inputs. Using this result and an algorithm of
Moenck (1973), the same asymptotic bounds hold for I-bit polynomials in k[X].

In Z no one knows an NC algorithm for the greatest common divisor. The most
practical parallel method is perhaps that of Brent and Kung (1983), who showed that the
ged of two I-bit positive integers may be computed in O(l) time units using O(l) circuit
elements, each of which computes a particular six-bit Boolean function. Asymptotically,
this result has been improved by Chor and Goldreich (1985), who showed that the gcd
of two I-bit positive integers may be computed in O({/logl) parallel time with 1°01) bit
operations. Adleman and Kompella (1988) found that O(log!) depth is possible, with a
subexponential number of gates.

In k[X] computation of gcd’s may be reduced to linear algebra; using this technique
Borodin, von zur Gathen, and Hopcroft (1982) gave an algebraic NC algorithm for the
problem. However, it is not a true NC algorithm, unless the characteristic of k is small.

Characters

Since the multiplicative group of a finite field is cyclic, one may decide if an element 2 of
IF; is a square by raising it to the (p — 1)/2th power and checking for 1. Although this
algorithm takes O(logp)? steps, it is not optimal. Perhaps this was sensed by Gauss, who
called the method “impractical” (1801, §106).

A much better approach uses the reciprocity law for Jacobi symbols, together with the
observation that (3)n and (%) depend only on n modulo 8. Various algorithms of this type
are known, which all take O(log n)? steps to evaluate (£); the time bound seems to have
been first proved by Collins and Loos (1982). Shallit (1989) has examined the worst-case
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behavior of these methods, of which the best is an algorithm due to Lebesgue (1847); it is
based on the least-remainder Euclidean algorithm and removes powers of 2 at each step.
Using the Dedekind-Kiihne reciprocity law, one can also compute (%) in k[X]in O(log f)*
steps, as shown by Bach (1988b). These results all imply that for any ¢, the quadratic
character in IF, may be evaluated in O(logq)?® steps.

When m divides ¢ — 1 one may use Euler’s criterion and compute (3-1/m 1o see if
an z in IFy is an mth power. This will take O(log q)® steps, but as the case m = 2 shows,
better methods may be possible. So far none seem to be known.

Asymptotically, the Jacobi symbol of two I-bit numbers may be found in {1+ steps
by combining Gauss’s algorithm (1817), which computes (£) from the continued fraction
of z/n, with Schonhage’s nearly linear-time continued fraction algorithm. The quadratic
symbol in k[X] has similar asymptotic complexity. Little is known about the parallel com-
plexity of this problem beyond Fich and Tompa’s result (1988) that an NC algorithm exists
for quadratic residuacity in finite fields of small characteristic.

Linear equations
Even in its computational aspects, linear algebra is a vast area; I shall only mention a few
results here that are useful in designing number-theoretic algorithms.

Linear equations in Z/(u) or k[X]/(u) may be solved by the usual techniques of elim-
ination, for which the cost will be O(d3 log? u) for a d X d system. However, with recently
improved methods for factorization and discrete logarithms, linear algebra has become a
theoretical bottleneck in such procedures. The equations that one needs to solve in these
applications are sparse, and Wiedemann (1986) found a useful randomized algorithm for
solving such systems. Applied to an d X d system of linear equations in IF, with w nonzero
coefficients, his method takes O(dw log2 q) steps. By a pretend-field technique, a similar
result holds in finite rings, as shown by Lenstra and Lenstra (1987).

The system of congruences

zy=a; (mod u),...,zr =a, (mod u,)

where uq,...,u, are pairwise relatively prime is particularly important. In Z or k[X], it
may be solved in O(logu)? steps, where u denotes the product of the moduli u;; this time
also suffices to compute the residue modulo each u;. This result is due to Collins (1969);
it shows that both directions of the isomorphism given by the Chinese remainder theorem
are computable in quadratic time. If the moduli are not relatively prime, the same bound
suffices to compute a solution or to show that none exists.

Asymptotically, both isomorphisms in the Chinese remainder theorem are computable
in [1+2(1) steps, when u is [ bits long. NC algorithms to do this are not generally available;
such procedures are known for 7 only when the moduli are small, and for k[X] only when
k has small characteristic.

In general, a system of linear equations in 7 or k[X] can be tested for solvability in
polynomial time; the same is true for computing a generating set for the free module of
solutions to such a system. A survey of efficient algorithms for such problems has been given
in the book of Schrijver (1986). Since an algorithm to test linear equations for solvability
can decide relative primality, and one to solve such equations can be modified to compute
the ged, NC algorithms for such equations are not known, except for k[X], in the special
case when the characteristic of k is small.
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PROBLEMS IN FINITE FIELDS
In this section I discuss algorithms to count and find the solutions to various equations over
finite fields. As motivation for such problems, the polynomial ring k[X] can be thought of
as a simpler analog to 7, in which factoring is easy and the Riemann hypothesis has been
proved (what more do you want?). As with basic arithmetic, results about k[.X] separate
into two categories, depending on the characterisic of k. If this characteristic is small (e.g.
k = IF;) then problems such as polynomial factorization are solvable deterministically in
polynomial time. If this characteristic is large, random polynomial time algorithms are the
only generally applicable methods.

In this section I shall assume that k is a finite field with ¢ elements and characteristic
p, where ¢ = p". For running time bounds when ¢ is not prime, k is presumed to be realized
as IF,[X]/(f), where f is an irreducible monic polynomial.

Square roots in finite fields

This section discusses algorithms to compute square roots in k. I shall assume that k&
has odd characteristic, for otherwise a square root, which always exists, may be found by
inverting the matrix for the Frobenius automorphism. As noted by Berlekamp, Rumsey,
and Solomon (1967), this takes O(log ¢)? steps once the inverse matrix is found.

By modern standards, the earliest efficient algorithm for this problem was given by
Tonelli (1891) for the case k = IF,. (It also appears in papers by Shanks (1972), and
Adleman, Manders, and Miller (1977)). It uses the fact that k* is cyclic, of order 2°¢ with
t odd. Then there is a chain factorization

H=GyCG  C:---CGy,=k",

H being the subgroup of order ¢. If g € k is not a square (half of the nonzero elements have
this property), then since g generates G/H, there is an e, 0 < e < 2°, and an h in H for
which @ = g®h. The bits of e may be computed one by one, for if a number e; is formed
from the i least significant bits of e, the next bit is zero if and only if ag™® € G,..;—1. Then
ge/2h(t+1)/2 is a square root of a. Since s = O(logq), the expected time for the algorithm
is O(logq)*. (Note that an algorithm for power residuacity more efficient than Euler’s
criterion would improve this.) However, if s < 2, the algorithm can be made deterministic;
for explicit formulas, which are given for k = IF, but work for any k, see the survey article
of Lehmer (1969).

A more efficient algorithm was found by Cipolla (1903). (See also the paper of Lehmer
(1969)). To compute a square root of a, one finds a field element z for whlch z? —- 4a is not
a square; since most other values of x correspond to two nonzero y with y = z% — 4a, the
genus zero Weil bound implies that one may choose z at random and be successful about
half of the time. Then k[T])/(T? — «T + a) is a finite field of order ¢*, in which the norm
of T equals a, so T(9%1)/2 is a square root of a, computable in O(log q)3 steps. If ¢ = p",
this running time may be improved to O((logp + n)log® ¢), by reducing the problem to a
square root computation in IF,.

Both of these algorithms, as well as the methods based on polynomial factoring, fail
with probability about 1/2. Peralta (1986) has found an algorithm that performs well when
g — 1 = 2 and s is large; his algorithm takes O(loggq)® steps and has error probability
roughly 1/2°=1. For all of these methods, however, one can tell in O(log ¢)* steps whether
one’s random choice will work, so Peralta’s method appears to be only of theoretical interest.

The deterministic complexity of this problem is still unresolved. If the ERH holds, p
has a quadratic nonresidue less than 2(log p)?, which can be easily found using the Jacobi
symbol algorithm. Then the Tonelli algorithm in IF, would take O(logp)* steps, as shown

16



by Adleman, Manders, and Miller (1977). For computing square roots in k, O(log ¢)* steps
would also suffice, because one can deterministically reduce the problem to factorization of
a quadratic polynomial over IF, within this time bound. Perhaps a deterministic algorithm
using O(log q)° steps can be found, by combining Cipolla’s or Peralta’s algorithm with the
ERH, but none is known even for IF,.

Asymptotically, computing square roots in finite fields does not seem to be any easier
than polynomial factoring in general; if ¢ has ! bits, then an expected time of [2+o(1) steps
is the best known. No one has found an NC algorithm for this problem, except for the case
where k has small characteristic.

Finally, Schoof (1985) found a deterministic algorithm to factor quadratic polynomials
modulo p; if the polynomial is fixed, his procedure runs in polynomial time, but the degree is
large. Nevertheless, this resolved a long-standing problem about writing a prime p congruent
to 1 modulo 4 as a sum of squares; since such an expression can be found directly once one
knows a square root of ~1 modulo p, it has a deterministic polynomial-time solution. (For
other algorithmic problems concerning sums of squares, see Rabin and Shallit (1986)).

Polynomial factorization

The length of a polynomial in k[X] depends on three parameters: its degree, the degree
of the extension k/IF,, and the characteristic p. It is therefore difficult to unequivocally
identify the best ways to factor such polynomials. I shall merely describe methods that are
conceptually simple and work well with classical arithmetic. As a rule of thumb, most of
them need about O(log f)3 steps to split f.

These algorithms often use linear algebra, which is not available for factoring inte-
gers. More precisely, let f be a polynomial in k[X]; then the Frobenius transformation
z +— 29 is a k-linear map on k[X]/(f), for which a matrix is easily found by com-
puting X7,(X9)*,(X%3,.-- modulo f. This will take O((deg f + log q)log® f) steps;
a similar technique to find the matrix of the absolute Frobenius z — zP will take
O((deg f + n + logp) log?® f) steps. Once its matrix is found, the transformation may be
computed in O(log f)* steps.

Now let f be a polynomial to be factored. If f' is the derivative of f, g = ged(f, f')is a
divisor of f. By applying factor refinement to f = (f/g)-g, one can express f as a product
of squarefree polynomials (one has to carefully consider factors of the form h?). If k = I,
or matrices for the Galois group are available, this will take O(log f)? steps; in any case
this can be done deterministically in polynomial time, so I shall assume henceforth that f
is squarefree.

Berlekamp (1967) gave the following algorithm to factor f. Letting ¢(z) = z? be the
Frobenius map on k[X]/(f), one computes the kernel B of ¢ — 1 using linear algebra. By the
structure of k[X]/(f)*, the dimension of B is r, the number of distinct irreducible factors
of f. Then if g is a nonconstant element in B, for some « € k, gcd(g — o, f) splits f. The
time required to split f is O((deg f + q) log® f).

When k is fixed, this algorithm runs in polynomial time. Berlekamp (1970) also found
a deterministic polynomial time reduction to factoring polynomials over prime fields, so
factoring a polynomial over k is easy if k£ has small characteristic. Berlekamp’s proof is
complicated; a simpler method can be had by adapting a method of Zassenhaus (1969) as
follows. Let ¢(z) = zP be the absolute Frobenius on k[X]/(f). One finds a nonconstant
g in the kernel of ¢ — 1, and considers the ideal in IF,[Y] consisting of polynomials F
for which F(g) = 0 (mod f). This ideal is generated by a polynomial G, whose degree
does not exceed that of f; it may be computed by finding an IF,-linear dependence among
1,9,9% ... modulo f. G will have all its roots in IF,, and if a is such a root, ged(g — a, D)
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splits f. The time to compute G is dominated by the time to find the matrix for @; it is
O((logp + deg f + n)log? f).

For large fields randomization is convenient; the resulting algorithms are the only
generally useful ones if the characteristic is large. Under the present assumptions, the
fastest such methiod seems to be the following one, given by Cantor and Zassenhaus (1981).
One considers k[X]/(f) as an IF,-linear space, and finds the kernel of ¢ — 1, ¢ being the
map z — zP. Then one chooses a random element g of the kernel, that is, a random linear
combination of its basis elements, and computes ged(g(P-1/2 — 1, f); this will split f with
probability at least 1/2. This is a Las Vegas algorithm; using the geometric distribution,
the expected time until f is split is O((n - deg f + log p)log? f).

Another important method, which will not always factor f completely but is often used
as a subroutine, is that of distinct degree factorization. (Its origins are obscure.) Starting
from the observation that

IIx-t=x7-x,
telF,

one finds the ged of f and X7 — X for larger and larger values of ¢, thus extracting the
product of all linear factors, then the product of all quadratic factors, and so on. If one
uses a matrix for the Frobenius map instead of a power calculation, the method takes
O((deg f + log q) log® f) steps.

All the running times above assume classical arithmetic. Asymptotically, they can be
improved by replacing Gaussian elimination by faster linear algebra techniques such as that
of Coppersmith and Winograd (1987). In most cases, however, it is even better to avoid
linear algebra altogether. Rabin (1980b) designed a factorization method based on root
finding; although not competitive by classical standards, it is fast asymptotically. Using
ideas from this procedure, Ben-Or (1981) showed that the expected number of steps needed
to completely factor an I-bit polynomial in k[X]is I2+°(1), The best result on the parallel
complexity of this problem is due to Borodin, von zur Gathen, and Hopcroft (1982), who
gave NC algorithms to factor polynomials in k[X] when the characteristic of k is small.

Finally, the above results imply that the primality problem for k[X] is solvable in
deterministic polynomial time. Although results from which one could easily decide the
irreducibility of a polynomial in k[X] were given by Petr (1937), the first explicit algorithm
running in polynomial time is apparently that of Butler (1954).

Deterministic factorization methods
No one knows a deterministic polynomial time procedure for factoring polynomials over
finite fields; the best asymptotic result, due to Shoup (1988b), is that f in IF,[X] may be
factored in p!/2+°(1)(deg f)2*+°(1) steps. However, algorithms to compute square roots in
finite fields suggest an efficient deterministic procedure should exist, assuming the ERH.
Not even such a conditional result is known; the best results in this direction apply either
to special classes of polynomials or to special finite fields, and are discussed below.

Adleman, Manders, and Miller (1977) showed that if d is a prime divisor of p — 1,
then the Tonelli algorithm generalizes to compute dth roots modulo p in deterministic
polynomial time. Once a dth power nonresidue is found, the running time depends linearly
on d, although this may be improved to d!/2 using discrete logarithm techniques. Their
algorithm extends without difficulty to computing dth roots in any finite field that has a
dth root of unity; such a generalization was given by Mignotte (1980).

Assuming the ERH, Huang (1985) found efficient deterministic algorithms to factor
cyclotomic polynomials modulo p, and more generally, to factor polynomials with abelian
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Galois groups. He also found a partial solution to the problem of quickly constructing gen-
erating sets in large finite fields. His results on polynomial factoring have been generalized
considerably by Evdokimov (1986), who found a deterministic polynomial time algorithm to
factor polynomials with solvable Galois groups, and Rényai (1989), who found algorithms
with similar performance to factor polynomials whose splitting fields have small degree.
The analysis of both methods assumes the ERH.

Rényai (1988a) also took another approach. Starting from the observation that Tonelli’s
deterministic algorithm may be used to factor quadratic polynomials, which always have
few factors, he found an efficient factoring method for “rough” polynomials. More precisely,
he showed that the problem of factoring polynomials in IF,[X] with a bounded number of
irreducible factors has, assuming ERH, a deterministic polynomial time solution.

Influenced by some methods of integer factorization, von zur Gathen (1987b) and in-
dependently Mignotte and Schnorr (1988) devised algorithms to factor polynomials modulo
p, when p— 1 is smooth. Their methods use Ankeny’s theorem to find a generating set for
IF*, which in this case can be done in polynomial time assuming the ERH. (Later Rényai
(1988b) showed that finding certain roots of unity in IF, would suffice.) Bach and von zur
Gathen (1988) have extended these results. The class of primes p to which these generaliza-
tions apply is complicated, but it includes all primes for which p+11is smooth; in particular,
independently of any hypotheses, there is a deterministic polynomial time algorithm to fac-
tor polynomials modulo Mersenne primes. It would be interesting to replace p+ 1 by an
arbitrary cyclotomic polynomial, but no such result is known. Roényai (1989) has recently
also found elliptic curve analogues of these results.

Construction of finite fields
The simplest way to specify a finite field of order p™ when n > 1is to choose an irreducible
polynomial of degree n, although one may use other realizations for purposes of efficiency.

In his paper originating the theory of these fields, Galois (1830) recommended obtaining
such a polynomial by trial and error. This is reasonable: about 1 /d of the monic polynomials
of degree d are irreducible, so about d trials should suffice. Rabin (1980b) analyzed such a
method, using distinct-degree factorization to test for irreducibility. At least in the classical
framework, some improvements can be made, as pointed out by Calmet and Loos (1980).
To use their algorithm, one tests for repeated factors with ged(/f, f1); if this succeeds, one
uses Berlekamp’s algorithm to find the number of distinct irreducible factors of f. As
shown by Carlitz (1932), a random polynomial is squarefree with probability about 1 -1 /4
the first step is especially likely to eliminate reducible polynomials if ¢ is small. Such an
irreducibility test requires O((d + log q)log® f) steps; using the geometric distribution, the
expected time to find an irreducible polynomial is d times this.

The best asymptotic result on this problem is due to Ben-Or (1981), who found an
expected time of [2+o(1) steps to generate an irreducible I-bit polynomial of specified degree
in k[X]. His algorithm also appears to be superior classically to that of Calmet and Loos
when k is small.

For various reasons a direct method would be useful; the possible existence of a deter-
ministic polynomial time algorithm to synthesize finite fields is also of theoretical interest.
Here the relevant results are the following. Independently, Evdokimov (1986) and Adleman
and Lenstra (1986) showed that if the ERH holds, one can generate an irreducible polyno-
mial of degree n modulo p in time (nlog p)°). Recently, Shoup (1988a) found an uncon-
ditional deterministic polynomial time reduction from generating irreducible polynomials
to factoring polynomials; combined with Berlekamp’s deterministic factorization algorithm,
his tesult shows that the problem is in P when p (or more generally the characteristic of
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the field) is bounded.

Finally, although any two finite fields of the same order are isomorphic, one might
wish to quickly find the isomorphism. This problem reduces to polynomial factoring, so in
practice it is easily solvable with randomization. Evdokimov (1986) showed that a fast de-
terministic method would follow from the ERH, and recently Lenstra (1988) has shown that
the problem has a deterministic polynomial time solution independently of any hypothesis.
His method, based on finite ring theory, promises to be of great interest.

Algorithms for elliptic curves

The recent geometric trend in computational number theory can be traced to one source:
a deterministic polynomial-time algorithm of Schoof (1985) for computing N, the number
of points on an elliptic curve E defined modulo an odd prime p.

Since E is an abelian group, the Frobenius automorphism ¢, which raises each coordi-
nate to the pth power, belongs to E’s endomorphism ring. If N, = p+ 1+ ¢, then in this
ring, ¢ satisfies the equation

¢ +top+p = 0

(because of this relation, —t is sometimes called the “trace of Frobenius”). Schoof’s algo-
rithm finds ¢ modulo many small prime values of [, and then recombines these results using
the Chinese remainder theorem to produce ¢.

To do this, one reduces the above identity modulo I, as follows. Let

Elll={Pe€ E:IP =0},
where the points P are allowed to have coordinates in the algebraic closure of IF';. Then
E[l] =1IF x IF,

where IF; denotes the finite field of | elements; furthermore, E[/] is invariant under the
action of ¢. Consider ¢ now as a linear operator ¢; on this vector space; it must be true
that

¢ +id+p=0.

One now searches for a t in IF; satisfying this identity. The search strategy is not fancy;
one just tries every member of IF;. However, there are some clever “data structures”
involved, which use the following trick: a finite set of points on a curve, such as E[l], may
be represented by a polynomial that intersects the curve at those points. Using such a
polynomial representation of E[l], one can decide if ¢? +t¢; + p annihilates E[l] by deciding
if, for a “general” point P in E[l], the three points ¢?(P), t¢;(P), and pP are collinear,
which reduces to a determinant calculation.

To analyze this algorithm, one uses the rational form of the addition law to show that
the group operation can be done in O(logp)? steps; doing this, Schoof found a running
time of O(logp)®. Later Lenstra observed that this could be replaced by O(logp)®; for a
proof see the report of van der Lingen (1987). Recently Atkin has devised some practical
improvements to the algorithm, using the order of ¢; in the 2-dimensional projective linear
group over IF; to exclude false values of ¢; according to Schoof (1988), these improvements
make the algorithm practical for primes p up to 50 decimal digits.

Asymptotically at least, the running time can be improved; Lenstra also showed that if
p is [ bits long, then N, may computed in [5+o(1) steps. Nothing seems to be known about
the parallel complexity of this problem, and it seems doubtful that an NC algorithm could
be found without finding such an algorithm for exponentiation modulo p.
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Besides leading to algorithms for primality testing and factoring, this algorithm has
sparked an interest in constructive aspects of algebraic curves and abelian varieties. Other
ways of representing elliptic curves were studied by Chudnovsky and Chudnovsky (1985),
and Montgomery (1987). Schoof’s algorithm has been generalized by Pila (1987), who
showed that if C is a smooth projective curve defined over @, then there is a polynomial
time algorithm to compute the number of IF,-points of C. Unfortunately the degree of
the polynomial depends severely on the curve C. Finally, Cantor (1987) has given explicit
addition formulas for algebraic groups associated with certain hyperelliptic (genus 2) curves,
and Adleman and Huang (1987) have announced a generalization of Schoof’s point counting
techniques to these varieties.

Limited-randomness algorithms

Weil’s theory of algebraic curves over finite fields is also useful for a deeper study of ran-
domized algorithms in number theory, which explains why these methods work so well in
practice and might lead ultimately to deterministic polynomial time methods. This study
starts from the observation that most of the efficient randomized techniques require num-
bers with specified multiplicative properties; for example, the Tonelli algorithm to compute
square roots modulo p uses a quadratic nonresidue. The Weil theory implies that such num-
bers are “well mixed”. For example, if f is a polynomial, and x a nontrivial character on
IF;, then the joint distribution of x(f(z)) for different, but correlated, values of ¢ approx-
imates stochastic independence. Therefore, the successive random trials in an randomized
algorithm need not be fully independent for the algorithm to be useful, and it is interesting
to see just how far the requirement for randomness can be reduced.

The following analogy seems appropriate. Consider an urn containing red and white
balls in equal proportions, in which one wishes to find a red ball. Knowing nothing about
the distribution of the colors, one should repeatedly choose balls at random, for any other
choice strategy will do poorly on some distribution. If, however, one believes the balls to
be well mixed, then it is useful to choose a random ball and a few of its neighbors. This
corresponds to choosing a random seed and using successive iterates from a pseudo-random
number generator for the random trials. Indeed, if the mixing is good throughout, one
might profitably use a strategy that is altogether deterministic; this is the intuitive idea of
algorithms based on the ERH, which implies that a particular search plan will be successful.

As an illustration of this type of analysis, consider the Cipolla algorithm to compute a
square root of a modulo p. If one chooses a seed z and simply uses the first ¢ numbers in
order, starting from , for the random trials, then the algorithm will fail when

2 - 4a,(z+1)? —4da,...,(z+t - 1) - 4a

are all nonzero squares modulo p. Put another way, the algorithm fails when z lies under
the algebraic curve given by the t equations

y%=m2—-4a,y§=(m+1)2——4a,...,y?=(a:+t-—1)2——4a.

Since there are t equations of degree 2, the curve’s arithmetic genus is O(t2%), and Weil’s
theorem, plus a counting argument, shows that the probability of choosing a “bad” z is
1/2t + O(t/,/P). The optimal value of ¢ is O(log p); for this choice the simple incrementing
strategy will fail with probability O(p~'/?log p), which is exponentially small.

Similar results hold for the other randomized algorithms presented in this section; in
every case one can tailor a deterministic sequence generator to the algorithm’s needs and
show that a number of random bits equal to the input length suffice for exponentially small
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error probability. Analyses of square root algorithms were given by Bach (1987, 1988b),
polynomial factoring algorithms by Bach and Shoup (1988), and algorithms to generate
irreducible polynomials by Shoup (1988a).

Surprisingly, this type of analysis is not improved by more complicated random number
generators. Although all of the results still hold when incrementing is replaced by successive
use of a multiplicative congruential sequence, this modification does not lead to sharper
bound. It would be of interest to extend these results to pseudo-random sequences computed
in structures different than those provided by the original problem.

PRIMALITY TESTING

Since Fermat, it has been known that if p is prime, then any integer a relatively prime to p
must satisfy a?~! = 1 modulo p. This gives a simple necessary condition for p’s primality
that is checkable in O(logp)® steps. However, it is not foolproof; in particular, there are
composite numbers, first found by Carmichael (1912), on which this test fails for every a.
(The smallest Carmichael number is 561, although a more interesting one is 1729.) Much
of the recent work on primality testing may be viewed as an attempt to replace Fermat’s
condition by something equally fast, yet more reliable.

From a complexity theory viewpoint, the problem has the following status. Evidently,
the set of composite numbers is in NP; Pratt (1975) showed that the same holds for the set
of primes. Miller (1976) showed that the set of primes is in P if the ERH is true, and by a
result of Solovay and Strassen (1977), the set of composite numbers is in RP. That is, there
is an efficient randomized algorithm to prove composite numbers composite, and provide
strong statistical evidence that prime numbers are prime. The existence of a zero error (Las
Vegas) random polynomial time algorithm for primality remained open for many years; it
was recently resolved by Adleman and Huang (1987) using complicated mathematical tools,
showing that the primes are in ZPP. I shall examine each of these results in turn.

In this section, I assume that p is odd, but not necessarily prime.

Tests based on Fermat’s theorem

It has long been known that the group of integers modulo p is cyclic of order p — 1 if and
only if p is prime. Knowing the factorization of p — 1 and a generator g of this group, one
may prove p prime by proving that every prime divisor p’ of p — 1 is prime and verifying
that g(P-1)/ 7 # 1 modulo p for each such p'. This leads to a recursive primality algorithm,
requiring a factorization for each number tested. Pratt pointed out that an NP algorithm
can “guess” the generators and the factorizations, since a number’s factorization is roughly
as long as the number itself. In recent work, Pomerance (1987b) has investigated the
question of how long a certificate of primality needs to be.

Miller’s test works as follows. One picks a number a, and evaluates a?~! modulo p by
the usual repeated squaring algorithm, computing b = @™ for odd m first, then b%,b%, and
so on. If p is prime, the sequence of powers of b will end with 1 and will never contain a
square root of 1 different than +1 modulo p. The first requirement is Fermat’s test, and
the second checks for Carmichael numbers; if the computation satisfies both, one reports
that p is prime. A number a that causes the algorithm to falsely assert the primality of a
composite number p is called a liar for p.

When p is composite, some proper subgroup of 7Z/(p)* contains all the liars. So,
if the ERH is true, the explicit Ankeny theorem implies that one can prove p prime by
running Miller’s test for each a < 2(logp)?. This would lead to an O(logp)® method to
test primality. However, even this hypothetical bound is probably an overestimate. For
example, Pomerance, Selfridge, and Wagstaff (1980) showed that to test values of p up to
32 bits long, one may use a < 11; the ERH bound would require a < 983.
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Many other modifications and improvements have been made to Fermat’s test. For
example, Solovay and Strassen (1977) proved that when p is composite, a randomly chosen
a fails to satisfy (%) = aP=1/2 with probability at most 1/2; this test was also given by
Lehmer (1976) without the probability estimate, and Vélu (1978) in a deterministic version
using the ERH. In retrospect, an even better probability estimate holds for Miller’s test;
Rabin (1980a) showed that its chance of failure is, for p large, at most 1/4. These results
lead to simple randomized primality tests using O(logp)® steps. (Minor variants, with
almost identical running times, were published by Atkin and Larson (1982) and Lehmann
(1982); the last can err on all inputs.)

Monier (1980) computed the precise probability of error of both algorithms, which
depends on the structure of Z/(p)*. He also found, as did Pomerance, Selfridge, and
Wagstaff, that any liar for Miller’s test is also a liar for Solovay and Strassen’s test. Therefore
for any p the error probability for Miller’s test is at most that of Solovay-Strassen’s. (See
the paper of Erdés and Pomerance (1986) and references therein for more results on liars.)

Several interesting open problems are connected with these primality tests. For ex-
ample, although the error probabilities for both tests are bounded by simple constants, it
is unknown if either bound is tightly approached for infinitely many composite p. It is
unknown if there are infinitely many Carmichael numbers, although this is widely believed.
Finally, although the empirical data of Pomerance, Selfridge, and Wagstaff suggest that no
fixed number of bases a will suffice in either algorithm, no one has ever proved this.

One may also consider a limited-randomness approach to randomized primality testing.
Bach (1987) showed that if one takes a random seed a modulo p and tries Miller’s test using
bases a,a + 1,...,a + ¢, with ¢ = O(log p), then the error probability is p~*/4*°(1). (This
result is only asymptotic, as the exponent converges to --1/4 rather slowly.) Surprisingly,
there is no such exponentially small error probability known for the test of Solovay and
Strassen.

The results cited above imply that, asymptotically, [-bit numbers can be tested for
primality in [4+°(1) steps if the ERH is true, or in {2+°(1) steps with a randomized algorithm.
Not much is known about the parallel complexity of primality testing; the best sequential
algorithms use exponentiation modulo p, which does not have an NC algorithm. Adleman
and Kompella (1988) have given a randomized parallel algorithm to test an I-bit number
for primality in time (log!)°(V), using a subexponential number gates.

Algorithms to prove primality

The improvements to Fermat’s test suggest that we now have a great algorithm to test
primality; the only problem is that its answer cannot be wholly trusted. To correct this
problem, many algorithms to verify primality have been designed, but until relatively re-
cently, such verifications presented a difficult problem. It is to the credit of research in the
last ten years that one can now check primality by algorithms that, heuristically at least,
run in polynomial time. Below I shall only survey these later developments; for primality
algorithms not covered here, the reader should consult the papers of Williams (1978) and
Lenstra (1981).

A major step toward the goal of quickly proving primality was taken by Adleman,
Pomerance, and Rumely (11983), who showed that a deterministic algorithm could test the
primality of p in (log plesloglogPyeto(l) gteps. (Note that such a result is not sensitive to
the distinction between bit operations and algebraic operations.) They also presented a
randomized version of their algorithm, for which the same expected time is needed to prove
p prime; for this version they conjectured that ¢ = 1/log2. I shall not present any details
of their algorithms, but only summarize them as follows. By performing many pseudoprime
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tests, which generalize Fermat’s criterion to rings of algebraic integers, one may collect
enough information about p’s possible nontrivial divisors to restrict them to a small set.
Extracting information about p’s possible divisors in this way involves an ingenious use of
class field theory, through explicit reciprocity laws in cyclotomic fields. Once the possible
divisors of p have been reduced in number, they may be enumerated and tested one by one;
if none divide p, then p is prime.

As originally stated this algorithm was not practical, as it required finite ring com-
putations that, although insignificant asymptotically, became burdensome in practice. An
important modification to the test was made by Cohen and Lenstra (1984), who simpli-
fied the rings in which the algorithm works, allowing it to be of practical use. With these
modifications, Cohen and Lenstra (1987) reported routinely testing numbers up to about
200 digits in size. However, even the improved method is one of exclusion, and to verify a
primality proof that it produces one must in essence repeat the computation.

The more recent primality algorithms provide much shorter proofs that are easier to
check; they rely on the theory of elliptic curves and their higher-dimensional generalizations,
called abelian varieties. Goldwasser and Kilian (1986) found an elegant method that may
be thought of as an elliptic curve version of Pratt’s results on primality. They based their
algorithm on the following ideas. If p is prime, elliptic curves modulo p have roughly p
points, and if enough numbers of the form 2p’, p’ prime, lie in the appropriate range, one
can choose a random curve, compute its order by Schoof’s algorithm, and hope to find one
of order 2p'. A group element of order p’, whose existence is easy to verify once one knows
that p’ is prime, cannot exist unless p is prime. This observation reduces the primality of p
to the primality of p’, and since p' is roughly p/2, this recursion stops quickly.

Theoretically, the main difficulty with this algorithm is in proving that a short interval
such as

P+1 p+1

-5 P )

contains enough primes; to date, the best analytic results on this matter do not guarantee
the existence of any. If a conjecture such as Cramér’s (1937) were true, however, this
algorithm would show that the set of primes is in RP, hence in ZPP since the composites
are already in RP. But nothing close to Cramér’s presumed bound is known, and Goldwasser
and Kilian were only able to demonstrate that their algorithm quickly proves the primality
of all numbers outside a set of density zero.

Practically, the main difficulty with this algorithm is the use of Schoof’s procedure,
which takes O(logp)® steps. For example, combining Goldwasser and Kilian’s heuristic
running time bound with Cramér’s conjecture, the expected time needed to prove p’s pri-
mality is presumably (log p)m*'o(1 which is too great for practical use.

An algorithm that avoids the theoretical difficulties given above has been announced
by Adleman and Huang (1987). Their idea is to replace elliptic curves by two-dimensional
abelian varieties associated with curves of genus 2. Over C, such varieties are homeomorphic
to the product of two tori, and therefore by Kiinneth’s formula have Betti numbers 3; = (‘f)

Thus the number of points modulo p on such varieties is p* + O(p3/ %), and analytic number
theory now does supply a proof that the appropriate interval is rich enough in prlmes
This reduces the primality of p to the primality of a larger number p’, which is about p°.
In a “multiply-and-conquer” procedure perhaps unique to computer science, the process
is iterated three times to produce another prime r near p®. However, the new prime 7 is
distributed over a large enough interval that it has a reasonable chance of being proved
prime by the Goldwasser-Kilian procedure.
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This algorithm resolves a major open question in complexity theory and shows that the
set of primes is in ZPP. Unfortunately, it is not practical. Although it asserts the existence
of a constant ¢ such that primality can be proved with high probability in O(logp)® steps,
no one has ever estimated ¢, and a presumed constant factor of 812 for the final prime test
alone certainly gives one pause.

A solution to the practical difficulties associated with the Goldwasser-Kilian algorithm
was devised by Atkin. His algorithm avoids Schoof’s procedure in the following way. Letting
K_p denote the quadratic field Q(+/=D), one finds a value of D for which p splits into two
principal ideals of degree 1 in K _p’s ring of integers. This is done by trying values of D
in order, and performing computations in K_p’s class group. These latter techniques are
standard in algebraic number theory and I shall not go into them here; for such algorithms,
see the paper of Schoof (1984). The difficult issue to resolve is how long the search for
such a D should take. Once an appropriate value of D and a generator 7 for the ideal is
known, one forms ¢ = p+ 1 + (7 4+ 7) and hopes that ¢ factors as sp, where s is small
and p' is apparently prime. Only at this point, when the factorization is successful and the
extra work will be worthwhile, does one construct an elliptic curve. This uses techniques
from class field theory, relating certain extensions of K_p to elliptic curves, that allow
one to produce a curve with g points modulo p. (For a brief introduction to this topic,
see Serre’s article in Cassels and Frohlich (1967)). The recursion then proceeds as in the
original algorithm, using the primality of p’ to prove p prime. Lenstra and Lenstra (1987)
have given a heuristic argument that the expected time for Atkin’s method to prove p
prime is (log p)6+°(1). Asymptotically, it is conjectured that 1*+°(!) steps suffice for an [-bit
number; modifications leading to the latter bound are due to Shallit. Atkin’s algorithm,
which is described in detail by Morain (1988), is the most practical algorithm for proving
the primality of large numbers. Morain’s implementation allowed him to find a primality
proof for [(1 + v/2)1991) 4 (1 — +/2)19°1)]/2, a number of 728 digits.

Finally, another long-standing problem regarding the complexity of the set of primes
has been settled. The question deals with the so-called “polynomial immunity” of the set
of primes, and asks if there an infinite set of prime numbers in P. This has long been
suspected, as Mersenne numbers, which have the form 2P — 1, p prime, have a deterministic
polynomial time algorithm for primality, given by Lehmer (1930). However, no one knows
if there are infinitely many Mersenne primes, although heuristic arguments such as that of
Shanks (1978) suggest this. Pintz, Steiger, and Szemerédi (1988) found another infinite set
of primes with a deterministic polynomial-time primality test, thus showing that the primes
are not polynomially immune.

INTEGER FACTORIZATION

Besides being inherently attractive to number theorists, the problem of factorization has
attracted attention in computer science for two reasons. First, it is currently much easier
to generate a pair of large primes than to factor their product, and many cryptographic
schemes have been proposed whose security rests on this fact. Second, integer factorization
offers an intriguing example of a problem that seems to lie midway between P and NP.

The complezity of factoring

Before going on to factorization algorithms, it should be explained why this problem is
intriguing in a structural sense. The decision problem associated with factorization involves
recognizing pairs (z,n) where n is a number with some divisor less than z. Evidently, the
set of such pairs is in NP (guess a divisor), and by Pratt’s results it is also in co-NP (guess
a primality proof for each divisor). Hence, if this set were NP-complete, the surprising
consequence that NP equals co-NP would follow.
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It is, however, widely suspected that factorization is computationally intractable, in
the sense of having no polynomial time algorithm. If true, this would have consequences
for randomized complexity in general, not just for number theory. Yao (1982), taking
this intractability as a suitably formalized hypothesis, showed that any set in RP would
be recognizable deterministically in subexponential time. Boppana and Hirschfeld (1985)
extended this result to BPP (analogous results hold for the discrete logarithm problem as
well).

Although factoring seems hard, there is an efficient way to generate random instances
of the factorization problem. Using the random bisection idea, Bach (1988a) showed that,
assuming the ERH, there is an efficient procedure to generate a random integer of a given
length, together with its factorization.

Factorization is also interesting because no one can prove that deterministic algorithms
for this problem are as fast as randomized ones. The best proved running time for a
deterministic algorithm to factor n is n!/4+°(1) due to Shanks (1971); if the ERH holds,
this bound can be improved to n!/5+°(1) as shown by Schoof (1984). These running times
are exponential in the length of n; there are, however, randomized algorithms that take
expected time bounded by a small power of

L(n) - edlognlog logn_

The best proved running time for a randomized factoring algorithm is L(n)\/“_/g*”"(l), due
to Vallée (1989), although A. Lenstra (1987) has shown that L(n)!*°(}) would follow from
the ERH.

Finally, factorization differs from hard optimization problems such as the traveling
salesman problem in that the solution is immediately checkable. Therefore, one may be
satisfied to use an algorithm whose running time estimates are only supported by heuristic
arguments, and not rigorously proved. Most of the useful factorization algorithms are of
this type.

The possibility of error, which plagues primality testing, is not a problem in factor-
ization. As a practical matter, primality tests are faster than factoring algorithms, and
random bisection suggests that prime factors are usually much smaller than their products.
Theoretically, it follows from the form of Pratt’s primality certificates that any algorithm
for factoring integers can be made error-free without drastically affecting its performance;
this was pointed out by Tompa (1983).

Methods of factoring

As with any algorithmic problem, factorization may be done in many ways, and it is useful to
have a gamut of algorithms, ranging from naive (but simple to implement) to sophisticated
(but difficult to implement). To show that even naive methods could be useful, it helps to
distinguish two versions of the factorization problem, as pointed out by Pomerance (1988).
In “natural number” factorization, one wishes to to factor a number chosen for reasons
unrelated to the difficulty of factoring. Because the instance is not expected to be unusually
difficult, one should try simple methods first; details of such advice have been given by
Brillhart, Montgomery, and Silverman (1988). In “unnatural number” factorization, one
wishes to factor a number chosen so as to guarantee that the problem will be onerous. One
such situation is in decoding messages encoded by a scheme such as Rivest, Shamir and
Adleman’s (1978); since such coding techniques rely on the purported difficulty of factoring,
a cryptanalyst can be assured that any particular factorization required is, by design, not
easy. Another such situation is in factoring the “benchmark” numbers tabulated by Brillhart
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and his co-authors (1988); such numbers help gauge the performance of factoring algorithms,
precisely because they have resisted factorization for so long. For unnatural numbers simple
methods will surely fail, and one should proceed directly to the most sophisticated method.

Below I shall restrict discussion to a limited set of factorization algorithms. For surveys
of factoring, information about other methods, and more references, see the articles of Guy
(1975), Williams (1983, 1984) and Wunderlich (1988).

The oldest factorization method is that of trial division: one simply tries all primes
in order until the divisors appear. Because a list of primes up to m can be constructed in
m1+o(1) steps (for results on this problem see Pritchard (1983)), and any composite number
n must have a prime divisor less than or equal to \/n, this method takes time pt/2te(l) in
the worst case. One may improve the method’s average behavior by noting that whenever
a divisor is discovered, one should test its cofactor for primality. Then the running time of
the method becomes roughly proportional to the second largest factor of n. The random
bisection idea suggests why even with this improvement, the algorithm is unlikely to be
have a subexponential running time. Knuth and Trabb Pardo (1976) have computed the
median running time; it is about n%2t,

Pollard (1975) published an important heuristic algorithm called the “rho” method,
which relies on pseudo-random properties of the iteration z « 2% + ¢. Over an algebraically
closed field, this iteration is equivalent to the logistic map that has been extensively studied
in nonlinear dynamics; for this connection see the survey of Lauwerier (1986). Pollard’s
algorithm is based on the following intuitively appealing argument.

Suppose that numbers produced by this iteration modulo n were independent and
uniformly distributed samples from the set {0...n — 1}. Then if p is a prime divisor of =,
one expects by the birthday problem that two of the iterates would agree modulo p after
O(+/p) iterations; since the iteration function is a polynomial, corresponding iterates from
this point on would also agree. A space-efficient cycle detection trick due to Floyd will find
such a pair, which can be detected because its difference will have a nontrivial ged with
n. (For improved versions of the algorithm see the papers of Brent (1980) and Gold and
Sattler (1983)).

Since every number n has a prime divisor less than n!/?, the running time of the method
should be nl/4+o(1) Unfortunately, this has never been proved, although experimental
evidence supports such a belief. The best rigorous result is the following: Bach (1988¢),
using the Weil theory, proved that when 2z and c are chosen at random modulo n, a factor
p will be detected with probability at least Q(p~? log® p).

Several important factorization algorithms use group theory, particularly the idea that
the factorization of n is related to the decomposition of various groups associated with n.

The simplest such algorithm is the so-called “p— 1” method, first published by Pollard
(1974). 1t is easiest to explain in the special case where n = pq, a product of two distinct
primes. First, one chooses a random integer modulo n; it may be assumed relatively prime
to n, for otherwise = is split. As the Chinese remainder theorem gives a factorization of
7Z/(n)* into two cyclic groups, of orders p — 1 and ¢ - 1, it may be imagined that one has
simply chosen the components in each factor separately. Knowing a multiple F of p — 1,
one computes y = z€ modulo n. In the first component, y will be 1, and in the other
component, one hopes this is not the case. If the second component is not 1, one splits n
with ged(y — 1,n). The entire process takes O(log Elog® n) steps.

The difficulty of this method, as with all such algorithms, is in finding a suitable value
of E. One approach is to choose a bound B and hope that p — 1 splits entirely as a
product of primes less than B. If one takes E to be the product of all such primes, raised
to appropriate powers, then the prime number theorem implies that log £ = O(Blogn),
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which is satisfactory if B is small. However, it is atypical for p — 1 to be smooth.

Faced with this problem, researchers generalized the method in various ways, which in
hindsight involve more general and more exotic groups. For example, since the multiplicative
group of any finite field is cyclic, one may use the subgroup of order p+1 contained in IFj:,
into which a random element may be placed by dividing it by its conjugate. For a description
of this algorithm, based on recurrent sequences, see the paper of Guy (1975).

For this algorithm it is crucial to compute the Frobenius automorphism of I’ differ-
ently than as a pth power, and the usual definition of this field via quadratic extensions
provides such a technique. Extending this to IF, is the principal difficulty in devising an
arbitrary “cyclotomic” method that can extract a factor p of n when ®r(p), the kth cyclo-
tomic polynomial evaluated at p, is smooth. A solution to the problem, for which one needs
the ERH, was found by Bach and Shallit (1989). Although this result unifies the description
of several factoring methods and is the jumping-off point for further work in polynomial
factorization, it is only of interest theoretically; the useful algorithms in the family are the
p + 1 methods.

Of course, one is not restricted to using unit groups of finite fields in this approach. A
major step forward in this regard was taken by H. Lenstra (1987), who realized that algebraic
groups such as elliptic curves would serve the same purpose and also have the desirable
property that their order could be randomized within the range (p+1-2,/p,p+ 1+ 2,/P).
His algorithm is quite elegant and nicely illustrates the pretend-field technique.

It works as follows. To factor n, one selects coefficients a and b at random and considers
the curve defined by the the affine equation y2 = z3 + az + b. If the right hand side of
this equation has distinct roots modulo some prime divisor p of n (this is likely and in
any case easy to verify), then one may attempt to annihilate a point in the elliptic curve
group by multiplying it by a suitably chosen product of primes less than B. In general,
the solution sets of such equations modulo n do not have a group structure, but since the
group operations are rational, one can pretend that n is prime, which will have the effect
of doing operations in the elliptic curve modulo p. However, the identity element of the
curve modulo p is a point at infinity, which cannot be produced by rational operations
unless one divides by zero. It is intuitively unlikely that this division by zero will happen
simultaneously for all prime divisors of n; more often, some division will fail by discovering
a non-unit different from modulo n, and at this point one splits =.

It now remains to choose the smoothness bound B. The tradeoff is between making it
large (which allows more curves to be useful) and between making it small (which makes
the test for each curve less onerous). Without going into details, the best value for B leads
to a heuristic bound of L(p)ﬁ*"’(l) for the time required to extract a prime factor p of n.
Notably, this estimate uses only heuristic assumptions about the density of smooth numbers
near p, and no unproved hypotheses about elliptic curves.

The elliptic curve algorithm shares with trial division and the rho method the desirable
property that its running time is sensitive to small prime factors, which get removed first.
The best known factoring algorithm, the quadratic sieve of Pomerance (1984, 1985) does
not have this property but instead has an expected running time depending only on the
size of n. As it will not perform better on numbers with small divisors, it is ordinarily only
used alter some time has been spent on other methods.

The quadratic sieve is the latest development in a group of algorithms that may be
termed the quadratic-residue family, which all do the following three steps. First, one
generates many quadratic residues modulo n together with their square roots. Second, by
factoring some of these residues using primes less than B, one finds congruences of the

28



form Hp <P = 2, Third, using linear algebra on the exponents modulo 2, one combines
the congruences multiplicatively to find z and y with z® = y?, and tries to split n with
ged(z £ y,n).

Pomerance (1984, 1987a) has reviewed and analyzed many of the known variants; I shall
concentrate here on the quadratic sieve as recent experience has shown that this version runs
most quickly in practice. In particular, the quadratic sieve seems to have now supplanted
the continued-fraction algorithm of Morrison and Brillhart (1975) as the method of choice
for large number factorization.

The basic idea of the quadratic sieve is to generate quadratic residues using a polyno-
mial such as

FX)=(X+Wn])=n

whose values must be squares modulo n. If z is small then f(z) will be about \/n. For the
second phase, one could simply plug in z and factor the result; a much better method results
from noting that if p divides f(z), then p also divides f(z + ip) for all integers i. To take
advantage of this, one starts with a list of all values of f(z) for z in some range, computes
the roots of f modulo p, then uses these roots to identify, in every interval of length p, two
z-values for which p divides f(z). After this is done for all primes p less than B, values of
f(z) with enough divisors are the desired residues. In practice, prime powers must also be
taken into account, and it is convenient to start with an array containing single-precision
values of log f(), subtracting e log p to mark a residue as divisible by p®. At the end of this
process, array elements that are close to zero are identified and the corresponding values of
f are factored.

As in the analysis of the elliptic curve algorithm, one must choose an appropriate value
of B, and estimate the running time. Here practice and theory diverge somewhat. In
practice, the running time of the algorithm is dominated by the cost of the sieving phase,
as a simple elimination procedure suffices to then find z and y with z? = y%. One should
therefore just choose B to minimize the expected time of the first phase, and if this is
done the running time for sieving is conjectured to be L(n)1*°(). However, in analyzing
this version of the algorithm under plausible heuristic assumptions, the time for Gaussian

elimination cannot be ignored and thus L(n)\/§7§+°(1) steps would be needed to factor
n. Theoretical improvements in the elimination procedure, based on ideas of Wiedemann
(1986), allow one to modify the algorithm so that under reasonable assumptions, it has a
running time of L(n)l+e(}).

Remarkably, the running time of the quadratic sieve algorithm equals that of the elliptic
curve algorithm in the special case when n has two factors of equal size. More remarkably,
there are other factorization methods with the same performance; see the papers of Schnorr
and Lenstra (1984), Coppersmith, Odlyzko, and Schroppel (1986), and A. Lenstra (1987).

Perhaps this agreement is evidence that about L(n) steps are needed to factor n in
general, but no one has ever proved such a statement. If true, it would imply that P # NP.
More to the point, perhaps, is the observation that all of the algorithms cited are based on
similar techniques, and the same tradeoffs must be resolved in optimizing their performance.
Under fairly general assumptions, any algorithm using these techniques will have a running
time bounded by a power of L(n) (see, e.g., the paper of Bach (1989b)); why the power
needs to be 1 is much less clear.

Out of all the methods that run in time near L(n), quadratic sieve performs the best in
practice. It is superior because a typical step in its execution is a single-precision subtrac-
tion, compared with other algorithms whose typical step is a group multiplication. Although
negligible asymptotically, these group multiplications typically take O(log n)? steps, and
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cannot be done with one machine instruction. In addition, the quadratic sieve is attuned
to the architecture of vector machines; on such computers it can be sped up substantially.
It can also be easily parallelized, by letting each processor work on a different interval of
z-values. Finally, there is also the possibility of using different polynomials; this variant,
discussed by Pomerance (1985), has been used in all recent record-breaking factorizations.

The record for factorization is currently held by Lenstra and Manasse (1989), who
recently factored (23%% + 1)/3, a 106-digit number, using the quadratic sieve. This compu-
tation is notable because it involves the cooperation of research groups at many sites, who
have contributed otherwise idle time from their machines.

Recent papers by the following authors contain implementation details of factoring
algorithms: Brent and Pollard (1981) on the rho method, Williams (1982b) and Montgomery
and Silverman (1988) on the p £ 1 methods, Brent (1985) and Montgomery (1987) on the
elliptic curve method, and Davis, Holdridge, and Simmons (1985), Gerver (1986), and
Silverman (1987) on the quadratic sieve. In connection with the last algorithm, ideas
developed for the continued fraction method are very useful; Pomerance and Wagstaff (1983)
and Wunderlich (1985) have written recent reports on this topic.

FEquations in rings

Various equation-solving problems in finite rings are related to factorization. Usually these
problems are solvable in random polynomial time when = is prime and therefore, using the
Chinese remainder theorem and Hensel’s lemma, when the factors of n are known; it is
interesting to ask if one needs to factor n to solve them. In some cases this is true. For
example, Rabin (1979) showed that an algorithm to solve the congruence z? = a¢ modulo n
could be used to factor n in random polynomial time, and based an encryption scheme on
this fact.

Rivest, Shamir, and Adleman’s cryptographic scheme (1978) relies for its security on
the following conjecture: when e is relatively prime to ¢(n), the congruence z°® = a cannot
be solved modulo n without factoring n or doing some other computation equivalent in
difficulty. In support of this conjecture, Rivest, Shamir, and Adleman showed that several
cryptanalytic techniques applicable to their method were equivalent to factorization in dif-
ficulty. For example, knowing n and e, one could decode messages if one knew ¢(n), but
Miller (1976) showed that knowledge of ¢(n) allows one to easily factor n. However, such
arguments rely on “guilt by association” and do not prove that a method to find eth roots
modulo n could be used to factor n. No one has ever shown this, nor shown that such a
method could be useful for any other intractable problem.

The quadratic residuacity problem asks if for some z, 2 = a modulo n. If n is
composite, no one knows a polynomial time algorithm to solve it, although it is easily
solved by computing a Jacobi symbol when n is prime or the factors of n are known. It is
similarly an open question if the factorization of n is required, but one relationship between
quadratic residuacity and factorization has long been known. If a is a quadratic residue
modulo n, then for each p dividing 7, a is a square modulo p, and quadratic reciprocity may
be used to restrict the factors of n to certain arithmetic progressions. Although important
in the era of hand computation, this technique is less useful today, because it is apparently
infeasible to recover the factors using only such restrictions. If, however, the problem were
intractable, it would be useful in cryptography; Goldwasser and Micali (1984) designed an
encryption method whose security relies on such an assumption.

Surprisingly, some equations modulo composites are efficiently solvable. For example,
Pollard and Schnorr (1987) presented an efficient algorithm to solve z? — dy® = a modulo 7,
and their result was generalized to certain rings of algebraic numbers by Adleman, Estes, and
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McCurley (1987). At a first glance, there is no reason why this problem should be any easier
than the others mentioned above; indeed, a cryptographic scheme was proposed based on its
supposed intractability. Although the problems discussed in the last two paragraphs seem
hard, they have not received the same intense examination as has factorization. As Pollard
and Schnorr together have shown, beliefs about intractability, no matter how strongly held,
are only conjectures.

DISCRETE LOGARITHMS

Let G be a finite cyclic group generated by g. If ¢° = a, then z is called the discrete
logarithm or indez of a. One also may consider groups that are not cyclic, but I shall not
do this here. If G has order m, then

G = 7Z/(m),

where the isomorphism depends on a particular choice of the generator g. Repeated squaring
provides an efficient technique for computing the reverse direction of this isomorphism; the
discrete logarithm problem takes an element a of G and asks to which element z in Z/(m)
it corresponds. In general, no efficient methods are known for this problem; fast algorithms
are only available if G has special structure.

The case G = 7Z/(p)* when p is a large prime is interesting to complexity theorists
because, taking m = p — 1 and {1,...,p— 1} as residue classes modulo m, exponentiation
is apparently a bijection on G whose inverse cannot be efficiently computed. For this
reason, the discrete logarithm problem is of interest in cryptography, where its uses were
first pointed out by Diffie and Hellman (1978). Other applications and algorithms for the
problem were surveyed by Odlyzko (1985); as this latter paper is especially thorough, I shall
limit myself here to brief algorithm descriptions and a few later references.

The most general methods for the problem are “canonical” in the sense that they use
only the group operations; however, their running times are proportional to some power of
the group’s order. For reasonably encoded groups, such running times are exponential. In
several important cases, though, methods are known with subexponential running times,
equal to or better than those of the best factorization algorithms. However, these methods
require the group to be specified as part of a larger structure.

For the discrete logarithm problem to make sense computationally, one needs explicit
versions of the group operations, as well as a canonical form by which one can test equality.
In this section, I assume that such computations can be done in (log |G])O() steps; this is
true of all special cases discussed below.

General methods
Shanks (1971) designed an algorithm that works in any finite group. To use it, one chooses
a t so that |G| < t?, and seeks a solution to g° = a of the form z = zo+ 2,1 with 0 < z; < t.
By computing the 2t elements g”° and ag~"'* and looking for a match (one can either sort
or use hashing), ¢ can be found in |G|1/2+°(1) steps. This algorithm suffers from the defect
of requiring space for 2¢ elements; a heuristic algorithm with similar apparent performance,
but for which |G| must be known, has been given by Pollard (1978).

Pohlig and Hellman (1978) extended Shanks’s algorithm to be more efficient if |G| is
smooth. Their technique factors G into a direct product of cyclic groups H of prime power
order, each of which can be further decomposed into a chain

1=H0CH1CH2C--'CH}¢=H.
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where |H;/H;_;| is prime, say p. To compute a discrete logarithm, one first reduces the
problem to the computation of a discrete logarithm in each direct factor H , using the
Chinese remainder theorem. In each H, one computes the index in base p one digit at a
time, similarly to Tonelli’s square root algorithm. Since each digit can be found by solving a
discrete logarithm problem in Hj, a group of order p, the running time is p!/2(log |G)oW),
p being the largest prime factor of |G].

Subezponential methods

In certain groups one can use the indez-calculus family of algorithms, which have much
better running times. To use these algorithms G must be specifiable as a “congruence group”
of some ring A. This means that A has unique factorization (or more generally, unique ideal
factorization) and that G is a quotient group of the free Abelian group generated by the
primes, modulo a collection of multiplicative identities. Certain “exceptional” primes may
be omitted. For example, one forms 72/ (p)* by taking the primes in Z relatively prime to
P, modulo products of these primes that are congruent to 1 modulo p. If G is a congruence
group, then factorizations in A lead to identities in G, which can be exploited to find discrete
logarithms.

The basic idea in index-calculus algorithms is to build up a “database” of small primes
whose logarithms are known. To do this, one computes a random power of the generator g
in the group, lifts this power to the ring, and tries to factor it using a set of small primes.
Letting m denote the order of the group, each successful factorization gives a linear equation
in 7Z/(m) for the logarithms of the small primes. When enough such linear equations are
collected, one solves them for the logarithms of the primes, which then form the database.
To find the logarithm of an arbitrary element a, one multiplies it by a random power of
g to produce another element b. If b factors over the prime base, this gives the discrete
logarithm of b, hence that of a.

This technique is reminiscent of the quadratic residue family of integer factoring meth-
ods, as it repeatedly tries to find smooth elements and factor them. It should therefore be
no surprise that the tradeoffs in selecting the prime base are similar, as are the running
times.

Below I indicate groups to which the index-calculus method applies, together with the
best current estimates of the time needed to find a discrete logarithm. All the methods
have the important property that after the first logarithm is found, others can be computed
more quickly, in time roughly the square root of that needed to find the first one. Typically,
the best running times are only heuristic, and are not supported by rigorous analyses.

Coppersmith, Odlyzko, and Schroeppel (1986) gave an index-calculus algorithm to
compute discrete logarithms in ZZ/(p)*; here the ring A is Z. Under plausible but unproved
assumptions, their method requires L(p)'to(1) steps. Pomerance (1987a) found another
randomized algorithm in this case whose complexity is provably L(p)‘/z—“’(l).

Coppersmith (1984) also extended the index-calculus idea to compute discrete loga-
rithms in IF3., which is a congruence group of the ring IF;[X]. Heuristically, his algorithm
requires_roughly K (n)*(™+°(1) steps where K(n) = exp(n*/®log??n) and ¢(n) < 141
(not v/2). The best rigorous running time in this group is also due to Pomerance
(1987a); his method computes a discrete logarithm in expected time M(n)\/mr“’o(l),
where M (n) = eV/nlogn,

The discrete logarithm problem in the multiplicative group of a non-prime finite field
is not well understood. Coppersmith’s algorithm extends to compute logarithms in IF}.,
where p is small. FlGamal (1986) has found index-calculus methods to compute logarithms
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in IFy» when m is fixed (he takes A to be a ring of algebraic integers), but his methods
apparently do not generalize if p and m vary.

Buchmann and Williams (1988) and McCurley (1988a) have considered the discrete
logarithm problem in class groups of quadratic fields (these groups are generally not cyclic).
For applications of the discrete logarithm problem in 72/(n)*, see the papers of Shmuely
(1985) and McCurley (1988b).

No subexponential time algorithm is known for the discrete logarithm problem in
elliptic curve groups and abelian varieties. For this reason, Miller (1986) and Koblitz
(1987a,1989) have argued that these groups might be useful in cryptography.

The discrete logarithm problem seems generally difficult unless the group G has smooth
order. It would be interesting to know if the smoothness of any other numbers related to
the group can be of help. In particular, even the following problem appears unsolved: if
p + 1 is smooth, can one easily compute discrete logarithms modulo p? Another intriguing
unanswered question asks if the complexity of the discrete logarithm problem in Z/(p)
equals that of the factorization problem. Such a question is natural because algorithms to
solve these problems have similar running times. However, no answer to it is known, beyond
the observation that algorithms for both problems use related techniques, which result in
nearly identical tradeoffs when one attempts to optimize their running times. It would be
of considerable interest to show formally that this similarity is necessary.
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