BRAIN-STRUCTURED CONNECTIONIST NETWORKS
THAT PERCEIVE AND LEARN

by
Vasant Honavar
and
Leonard Uhr

Computer Sciences Technical Report #843

April 1989






BRAIN-STRUCTURED CONNECTIONIST NETWORKS
THAT PERCEIVE AND LEARN

Vasant Honavar and Leonard Uhr
Computer Sciences Department
University of Wisconsin-Madison

Abstract

This paper specifies the main features of
Brain-like, Neuronal, and Connectionist
models; argues for the need for, and useful-
ness of, structuring networks of neuron-like
units into successively larger brain-like
modules; and examines Recognition Cone
models of perception from this perspective,
as examples of such structures. Neuroana-
tomical, neurophysiological, and behavioral
data on the structure, function, and develop-
ment of the visual system are briefly sum-
marized to motivate the architecture of
brain-structured networks for perceptual
recognition. The structural and functional
architecture of Recognition Cones, the flow
of information and the parallel-distributed
nature of processing and control in Recogni-
tion Cones are described. The results from
the simulation of carefully designed Recog-
nition Cone structures that perceive objects
(e.g., houses) in digitized photographs are
presented. A framework for perceptual learn-
ing, including mechanisms for generation-
discovery, that involves feedback-guided
growth of new links between neuron-like
units as needed, within a dynamically emerg-
ing network topology, subject to brain-like
constraints on the network connectivity (e.g.,
local receptive fields, global convergence-
divergence, retinotopically mapped layered
heterarchy) is introduced. The information
processing transforms discovered through
generation are fine-tuned by feedback-
guided reweighting of links. A case is made
for the need for generation and discarding of

transforms in addition to reweighting of
links in Connectionist networks for percep-
tual learning. Some preliminary results from
the simulation of brain-structured networks
that learn to recognize simple objects (e.g.,
letters of the alphabet, cups, apples, bananas)
through feedback-guided generation and
reweighting of transforms are presented.
Experimental comparisons indicate that such
networks can give large improvements over
networks that either lack brain-like structure
or/and learn by reweighting of links alone.
The role of brain-like structures and genera-
tion in perceptual learning is examined.
Some directions for future research are out-
lined.

Introduction

It is now widely recognized that mas-
sively parallel hardware/software structures
are needed to perceive and understand the
constantly changing environment. The
Recognition Cones model of perception
(Uhr, 1972; Honavar, 1987; Uhr, 1987)
examined in this paper is suggested by the
brain, which serves as a living existence-
proof of achievable perceptual and cognitive
capabilities, and as a source of potentially
useful mechanisms for achieving its capabili-

This paper is a substantially revised and updated
version of (Honavar, 1987) and has been submit-
ted to Connection Science for publication. Sup-
port for this research was provided by the Nation-
al Science Foundation and by the University of
Wisconsin-Madison.



ties by a computer system. The underlying
hypothesis is that the larger structures of the
brain, how its billions of neurons are con-
nected in complex parallel-serial networks of
layered ensembles of neurons, is central to
its function.

This is not to deny that connectionist
networks are general-purpose computing
structures (McCulloch, 1943), in the sense
that there exist such (sufficiently large) net-
works that can compute any function com-
putable by Turing machines, finite state auto-
mata, or a system of Post Productions; but
the problem of developing the necessary,
sufficiently powerful, efficient and robust
network structures for perceptual recognition
tasks remains, just as it does no matter how
we try to embody intelligent processes.

Human beings recognize complex
objects in less than a second, i.e., at least 10
times faster than today’s computers. This is
an estimate, since no existing vision program
comes close to perceiving as well as the
brain does. Yet, the basic computing unit in
the brain, the neuron, is at least 10° times
slower than a typical computer switch. It has
been argued that the only way to achieve
adequately fast perception with such slow
components is to have large numbers of
them cooperating in massively parallel net-
works performing the necessary computa-
tions (Feldman, 1982). Both an analysis of
what is needed and observations of the way
the brain structures ensembles of neurons
strongly suggest local and successively more
global brain-like architectures that organize
the components, which, in many connection-
ist systems, are linked quasi-randomly. This
approach to machine perception differs
significantly in philosophy from that in
which intelligent behavior is realized in
computer vision programs with little refer-
ence to underlying neural mechanisms. It
also differs from realistic brain models
(Sejnowski, 1988), wherein a neural net
model of a specific portion of the brain is

built and simulated, as faithfully as possible,
based on the current neurophysiological
data, and explanations for, and predictions
of, neural phenomena that might take place
in that part of the brain are advanced. As do
most simplifying brain models (Sejnowski,
1988) that are today called neuronal or con-
nectionist, it uses basic units reminiscent of
simplified neurons to build the larger system.
But it also employs successively larger struc-
tures that are suggested by the brain’s larger
structures, in order to give the system the
power needed for real-world perception.

Neuronal, Connectionist, and
Brain-Like Models Defined and
Characterized

Our characterization of neuronal or
connectionist models is somewhat more gen-
eral than several other formulations (e.g.,
Rumelhart, 1986a; Feldman, 1982; Smolen-
sky, 1988). In the discussion that follows, the
terms neuronal and connectionist are used
interchangeably.

A neuronal or connectionist network is
a directed graph whose nodes compute func-
tions on information passed to them via their
input links, and send results via their output
links.

[1] Each node has, associated with it, an
activation level or a state variable.

[2] Each node computes one or more rela-
tively simple neuron-like functions: its
inputs are integrated or in some other
way combined (e.g., by the application
of a logic function such as, say, AND),
these results might then be evaluated
(e.g., against a threshold or a sigmoid
function); it then outputs accordingly

and updates its activation level.

(3]

Each link has, associated with it, a
transfer function.

[4] Links transmit signals (e.g., packets of
bits, symbols, numbers, etc.) between

nodes.




[5] Learning rules modify any of the fol-
lowing: processing functions of the
nodes, transfer functions of the links,
topology of the graph, and learning
rules themselves.

[6] The topology of the graph, along with
the functions that the individual nodes
compute and the information input to
them, determine the network’s over-all

behavior.

[7]1 The total graph may be (successively)
decomposable into relatively regular
sub-graphs (e.g., layers, windows,
columns, trees). From this, the
network’s behavior, including output,
coordination, control, adaptation, and

learning follow and emerge.

This contrasts with most other charac-
terizations of connectionist models (e.g.,
Rumelhart, 1986a; Feldman, 1982; Smolen-
sky, 1988) as follows:

[1]1 In connectionist models, links transmit
only weights (typically, real numbers);

[2]1 Nodes usually output a simple sum over

the inputs, typically after applying a

threshold or a sigmoid function;

[3] Learning rules usually can modify only
the weights associated with the links;

Organization into higher-level struc-
tures, in many connectionist models,
assumes a completely or randomly con-
nected graph, an ad-hoc, problem-
specific topology, or is left unspecified.

(4]

A Neuronal System and its External
Environment

It is often convenient to treat a neuronal
network as forming a closed system along
with the external environment. The external
environment provides some of the inputs to,
and accepts some of the outputs from, the
interface nodes in the connectionist network.
This closed system may be partitioned into
two sub-graphs: an internal subgraph (that

is, the neuronal system with its input and
output links with the external environment
removed), and an external subgraph (that is,
the external environment with its input and
output links with the connectionist system
removed). The input and output links
between the internal and external sub-graphs
are functionally similar to.input and output
links between the nodes of the internal sub-
graph. The environment may be part of the
real world, linked with the neuronal system
via transducers like TV cameras or robot
effectors, or a representation of some aspects
of the real world, simulated either by a com-
puter program or by human beings interact-
ing via keyboards and monitors.

Specification of a Neuronal Network

In order to completely specify a partic-
ular neuronal system, one needs to define the
topology of the graph, the processing func-
tions of the nodes, the transfer functions
associated with the links, the learning rules
(which can, potentially, modify any of the
above), and the external environment that,
together with the neuronal system, forms a
closed system. The behavior of the system
results from the dynamics of the system, that
is, from the interaction between the large
number of units acting in parallel at each
moment, over a period of time.

Brain-like Neuronal Models

Brain-Like neuronal models are sug-
gested by the known anatomical, physiologi-
cal, and behavioral data about the brain.
They provide a basis for testing competing
theories of perception, development, learn-
ing, and cognition; for suggesting neuroana-
tomical, neurophysiological, and behavioral
experiments designed to fill our gaps in our
understanding of these phenomena; and for
building artificial systems exhibiting com-
parable perceptual and cognitive abilities. In
the hierarchy of brain models, they occupy a
place between realistic models and simplify-



ing models, capturing some aspects of both.
Some basic criteria for brain-like neuronal
models could be stated as follows:

[1] The nodes and links should (at least, to
a first approximation and without gross
violations) model neurons or functional
units realizable with neuron-like units
and connections between them.

[2] The topology of the graph, processing
functions of the nodes, transfer func-
tions, and learning rules should be plau-
sible in terms of the known structure

and the function of the brain.

[3] If the total system is decomposable into
higher level structures (sub-graphs,
columns, areas, etc.), such structures
must be reasonably brain-like (to a first
approximation and without gross viola-
tions, or at least not altogether implau-
sible in terms of the physiology and

anatomy of the brain).

The description of connectionist, neu-
ronal, and brain-like models given here is
broad enough to include a fairly large class
of computational models of perception, ones
that can differ significantly from each other
in terms of structural and functional details.
Thorough empirical and wherever feasible,
theoretical analyses of computational abili-
ties, robustness, efficiency, and explanatory
powers of such models are prerequisites for
our understanding of perceptual and cogni-
tive processes.

The Primate Brain and Visual Sys-
tem: Structure, Function, and
Development - An Overview

This section presents a very brief over-
view of the primate brain and the visual sys-
tem, emphasizing primarily, object recogni-
tion. A comprehensive, critical treatment is
beyond the scope of this paper. The
interested reader is refered to (Kuffler, 1984,
Van Essen, 1985; Uhr, 1986b; Zeki, 1988;
Livingstone, 1988; DeYoe, 1988) for more

details on the anatomy and physiology of the
visual system; and (Honavar, 1989b) for a
review of anatomical, physiological and
behavioral correlates of perceptual develop-
ment and learning and some of their implica-
tions for computational modeling. The origi-
nal papers are far too numerous to mention
here. The reviews cited contain extensive
bibliographies that cover the relevant litera-
ture. The purpose of this overview is to
motivate the architecture of Recognition
Cones as examples of neuronal systems that
attempt to structure networks of neuron-like
units into successively larger brain-like
modules.

The Retina and the Geniculate

The eye’s lens focuses images of the
scene on the 2-dimensional retinal array of
rods (that sense small changes in position
and intensity) and cones (that sense color).
Each of these light-activated sensors sends
excitatory signals straight back to some neu-
rons, and inhibitory signals to surrounding
neurons in the local neighborhood in the
adjacent layer. There are several such layers
consisting of bipolar and ganglion cells, with
horizontal and amacrine cells providing rich
lateral linkings to greater distances. Only
ganglion and amacrine cells in the retina
produce impulses of the kind typically found
in the cortical neurons. The other cell types
respond to illumination or darkness with
relatively slow, graded potentials found in
most neurons only in the synaptic regions.
The rich system of retinal interconnections
and its functional significance is only begin-
ning to be understood (Sterling, 1986).

The orderly, layered organization sug-
gests that the visual information processing
is carried out in hierarchically arranged lev-
els, going from one functionally related
group of cells to the next. Also, the neurons
converge and diverge extensively at any
stage; i.e., each cell receives inputs from and
sends signals to several other cells e.g., the




human eye contains over 100 million pri-
mary receptors (rods and cones) but only
about 1 million optic nerve fibers are sent
from the lateral geniculate nucleus (LGN) to
the cortex. The retinal ganglion cells appear
to enhance differences and emphasize spatial
as well as temporal gradients in the dynamic
input image in the information conveyed to
the cortex (Shapley, 1986). About a million
ganglion cells carry signals from the retina
via one layer of synapses in the lateral geni-
culate to the primary visual area of the cor-
tex, retaining the retinotopic nature of the
map, much like the original image.

In the monkey, the LGN has 6 layers of
cells, 2 parvocellular layers and 4 magnocel-
Iular layers. Different functional properties
are correlated with these layers: The parvo-
cellular layers form part of a pathway that is
believed to be primarily involved in the per-
ception of form and magnocellular layers
form part of the pathway that is primarily
involved in perception of motion. The LGN
cells, like retinal ganglion cells, respond best
to spatial and temporal differences in illumi-
nation. Study of receptive field properties of
LGN cells is far from complete. However, it
seems clear that different functional proper-
ties are represented in different layers of the
LGN e.g., cells in the parvocellular layers
respond to different colors of stimulus and
cells in magnocellular layers respond best to
moving stimuli.

The Visual Cortex

The visual cortex is a thin (1-2mm in
thickness), crumpled, sheet containing a
complex structure of six layers of densely
linked neurons (that form the grey matter),
under which lies a mass of cortico-cortical
axons that carry signals from one part of the
cortex to another (that constitute the white
matter). Several areas have been identified
as involved primarily in visual information
processing (e.g., V1, V2, V3, V4, V5). Each
area contains its own representation of the

visual field projected in an orderly manner.
The significance of these different areas is
that they provide for abstraction, enhance-
ment, and integration of information from
specific visual submodalities (e.g., color,
motion, shape). From area to area there is
much variation in the structural and func-
tional properties of cells (Zeki, 1988), as
well as the relative thickness of different
layers. Characteristically, processes that
connect cells in different layers within an
area run for the most part, perpendicular to
the surface of the cortex. In contrast, the
majority of lateral processes are short.
Lateral connections between areas are made
by axons that run in bundles through the
white matter (Kuffler, 1984).

In the monkey, the inputs from the two
eyes remain segregated in V1 (like in the
LGN), giving rise to the so called ocular
dominance columns, columns of cells that
respond to stimulation from one eye but not
the other (Hubel, 1982). The majority of the
projections from LGN to V1 end in layer IV
of V1.

Another form of columnar organization
found in the visual cortex is that of orienta-
tion columns. Cells responsive to edges at
the same orientation are found grouped in
columns running perpendicular to the surface
of the cortex. It has been suggested that a
basic functional unit of V1 appears to be a
roughly cuboidal aggregate of cells, the so
called hypercolumn, in which all the possible
orientations (in steps of roughly 12°) for
given receptive field area in each of the two
eyes (Hubel, 1982). Cells sensitive to simple
features such as oriented edges, colors, have
been identified in V1. The orientation selec-
tive cells are anatomically seggregated from
the color selective cells (Livingstone, 1988).
There are also cells that respond optimally to
specific combinations of simple features e.g.,
oriented edge seperating patches of different
colors.



It was originally thought that simple
feature detector neurons are followed by
ones that respond to more complex features
in a more or less strict single hierarchical
chain of areas, each carrying out a progres-
sively higher level of analysis over the same
image attributes as its predecessor. But it is
now established that there are several serial
pathways running in parallel, each of which
is functionally specialized to a large extent
(e.g., color, form, motion), suggesting more
complex parallel-serial structures (Zeki,
1988; DeYoe, 1988; Uhr, 1986b), or heterar-
chies rather than a simple hierarchy.

Projections from area V1 lead to V2,
and then to V4, and eventually to parietal
and temporal cortices, constituting what is
thought to be the primary pathway involved
in object recognition. (Zeki, 1988; DeYoe,
1988). Most of these projections are bi-
directional. Very few systematic studies to
date have attempted to identify neurons that
respond to successively more complex struc-
tures of features found in successively larger
regions of the visual field; so at present the
existence of such neurons is at best a reason-
able conjecture. However, cells that respond
in a very specific manner to extremely com-
plex stimuli e.g., hands, faces, or even a
specific face have been found by a number
of researchers in the monkey temporal cortex
(Perret, 1987). Each cell responds to several
stimuli, but optimal response is obtained for
only a small subset of those stimuli. Simi-
larly, several cells respond to each stimulus.
Thus, these cells are not necessarily grand-
mother cells each of which mysteriously
somehow responds to a very complex
stimulus and none else; they form complex
networks of neurons that respond robustly
and flexibly, yet specifically enough to a rich
variety of objects found in the environment.

To summarize, at least 20 visual areas,
and many nonvisual areas involved in per-
ception, have been identified in the brain.
Some of these handle different intrinsic

scene characteristics such as motion, color
and shape. Two major pathways, one pro-
cessing color and shape, leading to recogni-
tion of objects, and the other handling spatial
relations between objects and temporal
changes (due to motion), are suggested by a
large body of anatomical and physiological
evidence. Similar evidence has been used to
show how the 20 visual areas found to date
(in macaque monkey) are wired together by
about 40 major and 40 minor pathways. Note
that this is far from the complete connectivity
that is often assumed in some computational
models, which would link each of the 20
areas to all 19 others, or worse, each neuron
to every other neuron in the cortex; Nor is it
a simple hierarchical tree of the sort imple-
mented in many computer vision systems.

The Over-all Design of the Visual System

The brain contains on the order of 10!
neurons each of which may be connected to
as many as 106 others (typically 3x10* in the
visual cortex). The extremely complex
human visual system forms massively paral-
lel, shallowly serial heterarchies, with func-
tional organizations into larger structures of
neurons interconnected by pathways that
help to integrate diverse sources of informa-
tion. Neurons usually (but by no means
always) interact with near neighbors, and
organize into successively larger structures
(e.g., columns, hypercolumns, areas). The
brain functions effectively in extremely
noisy, distorted, rapidly changing environ-
ments. It can tolerate loss of neurons due to
damage and aging, and change in thresholds
and levels of firing due to drugs and depriva-
tion, indicating large amounts of built-in
redundancy and self-regulating mechanisms.
It is able to gain knowledge of the environ-
ment through a life-long process of learning,
suggesting considerable plasticity in its
structure.




Perceptual Development and Learning in
the Brain

Space does not permit a critical discus-
sion of neuroanatomical, neurophysiological,
and behavioral data on perceptual develop-
ment and learning here. The interested
reader is refered to (Honavar, 1989b) for
details. There is strong evidence that the
structure of the perceptual system is, at best,
underspecified at birth. The full complement
of neurons as well as the layered, topograph-
ically mapped structure of the visual cortex
are present at the time of birth. However, the
connectivity among neurons undergoes
significant changes (at least partly) as a func-
tion of experience throughout the life of the
animal although the exact mechanisms and
locus of plasticity may vary with age. Con-
nections are overproduced during early post-
natal development. Connections are pruned,
perhaps as a result of competition to
somehow represent the input. Neuroanatomi-
cal and physiological evidence suggests that
the plasticity of information processing
structures involves both changes in existing
connections (analogous to reweighting of
links in a connectionist network) as well
growth of new connections in response to
environmental input practically throughout
life (Greenough, 1988).

Development of  certain  visual
processes (e.g., binocular fusion) relies
heavily on the availability of certain kinds of
stimuli (e.g., similar patterns to both eyes)
during appropriate stages of development.
Behavioral studies of infants offers evidence
that at least suggests the possibility that the
emergence of certain perceptual abilities
(e.g., form discrimination) occurs only after
the development of certain other requisite
abilities (e.g., discrimination of line seg-
ments at different orientations). In this con-
text, anatomical and physiological evidence
for a phased development of the visual path-
ways from the retina to successively deeper
cortical layers is tantalizing. Further, there is

some evidence for the gestalt principles of
perceptual organization (Hochberg, 1978)
e.g., proximity (image features that are rela-
tively close together tend to be grouped
together) and similarity (image segments
that have similar brightness, color, or texture
tend to be grouped together) among very
young infants. The initiation, maintenance
and termination of plasticity seems well
regulated in the brain, probably under the
influence of slowly diffusing neuromodula-
tors, peptides, and hormones. All of this is a
rich source of suggestions for the construc-
tion of artificial systems that learn from
experience.

Brain-Structured, Parallel-Serial,
Distributed, Heterarchical, Archi-
tecture of Recognition Cones

This section briefly describes the archi-
tecture of Recognition Cones (Uhr, 1972;
Honavar, 1987; Uhr, 1987) and examines it
in the context of the general characteristics
of brain-like neuronal models outlined
above. The structure described here
corresponds to one that is carefully designed
(or programmed) for the task of recognition
of specific objects or that which emerges as
the result of learning, as explained later. The
emphasis is on visual perception, although
some of the underlying principles appear to
be of relevance to other sensory modalities.

Basic Building Blocks of Recognition
Cones

Conceptually it is useful to think of the
adaptive neuron-like unit as an abstract pro-
cess that computes one or more probabilistic
or fuzzy transforms over its inputs. Such a
unit typically has a small set of inputs which
gather potentially relevant information, usu-
ally over a small compact window (figure 2)
e.g., a region large enough to extract a local
feature like an edge, angle, or (at a higher
level where abstracted image arrays form the
inputs to the arrays of processing units) con-



tours, enclosures, and other higher-level
features.

Alternatively, the adaptive neuron-like
unit may be thought of as a simple finite
state automaton; or, as a device embodying
IF [conditions] THEN [implieds]/[actions]
type production rules. These differ from
standard production rules in their parallel
execution, and their use of weights and
thresholds, and, in the case of Recognition
Cones, of spatial interrelations derived from
arrays containing images and their succes-
sive abstractions.

] - 111

eI B 8
N 20+1p1 ! _
0 |-2k1rl 131 01=0

. — 211l [0

Q

i * vl
i2 02=1

Figure 1: A fuzzy transform over a 3x3
neighborhood: w is the mask of weights; ¢ is
the threshold; i, and i, are inputs in two 3x3
neighborhoods and o, and o, are the
corresponding outputs.

Basic Architectural Features of Recogni-
tion Cones

The basic building block of Recogni-
tion Cones is an adaptive neuron-like unit
described above with a threshold or sigmoid
output function which accepts inputs from
other units via its input links, does some sim-
ple processing of the inputs, and sends out
signals over its output links to the units into
which it fires. Large numbers of such units
are organized, into a layered heterarchy of
converging-diverging structures (hence the
name Recognition Cones). It is converging
because the spatial resolution of the layers
decreases logarithmically as one moves up;
and also diverging because a unit can link to
several others in the layer above. The con-
nectivity between layers is predominantly

retinotopic  (but  effectively  encoding
translation-invariant features, because of the
logarithmically graded resolution as we
move up in the heterarchy). Each layer of
Recognition Cones has a number of node
clusters (the number being determined by the
spatial resolution of that layer). Each node
in layer L is linked to an n-tuple of nodes
drawn from node clusters within a small
window in layer L-I. Thus, each node com-
putes a fuzzy transform on the image or
some abstractions of the image.

Within each layer, each unit is linked
primarily to nearby units in a relatively small
surrounding neighborhood. This reflects the
property of the real world that nearby points
in the scene are likely to influence each other
more than those that are farther apart. For
simplicity, some regularity could be imposed
on the size and shape (and to make imple-
mentations on today’s computers feasible it
typically is - e.g., each unit can link to its 4,
8 or 24 nearest neighbors in a square grid) of
the neighborhoods. Or the connectivity pat-
terns could model, albeit in a simplified
manner, the structure of the retina, the lateral
geniculate and the visual cortex (Uhr,
1986b). Several implementation alternatives
are examined in detail in (Uhr, 1986a; Uhr,
1987).

Recognition Cones are closely related
to Pyramids and other hierarchical architec-
tures and algorithms that have been fairly
extensively studied for image processing
(Uhr, 1983; Rosenfeld, 1983; Burt, 1984;
Uhr, 1986a; Dyer, 1987). Often the proces-
sors in a Pyramid are more powerful than the
basic functional unit of the Recognition
Cones. Recognition cones can be thought of
as multi-apex multi-pyramids emerging from
a common base, possibly augmented with
additional links between the pyramids and
decision networks at the top.

The input to the system is the image of
the scene sensed by transducers (e.g., TV




cameras) at the base layer of the Recognition
Cones. The total system is made of several
cone-like structures emerging from the reti-
nal layer. There are several outputs from the
system, typically, but not necessarily, from
the higher levels (Figure 2 shows a
schematic diagram of one such cone).
Further, there may be a rich set of additional
links, e.g., for feedback loops, between the
different layers, including the output. Com-
puter simulations typically implement 2-way
links, so that units can send out signals both
upward and downward.

Layer 5
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Figure 2:  Recognition cones: A
Converging-diverging heterarchy of
transforms; Each location in a layer has a
cluster of nodes; Each node in a cluster com-
putes a simple function over the outputs of
the nodes in clusters within a small window
in the layer below, to which it is connected.
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Information Flow In Recognition
Cones

Visual information is input into an
array of photoreceptors, which serves a func-
tion analogous to that of the retina. This
layer samples the continuous input from the
environment in space (because of limited,
although fairly high, resolution of the retina)
and time (just as the photoreceptors respond
to light impinging on the retina in the human
visual system - once a receptor fires, it can-

not fire again for a duration of the refractory
period). A whole layer of adaptive neuron-
like units are excited and respond by firing in
parallel (this is a simplification over the
human visual system in which the firing of
photoreceptors may not be completely syn-
chronized, although at any given instant a
large number of them may fire in parallel).
In the process, they compute fuzzy
transforms over their inputs of the kind
described earlier. The firing of the units in
one layer leads to the subsequent firings of
units in adjacent layers, which, because of
the layered heterarchical converging and
diverging structure, naturally results in the
computation of successively more complex,
increasingly global, transformations (for,
e.g., edges, long line segments, corners, con-
tours, and so on).

The rich feedback loops that provide
feedback between adjacent layers of neu-
ronal units and, less often, between more dis-
tant layers, allow the whole process to take
on the nature of a multi-level (involving
several levels of abstraction) and multi-
modal (involving several different kinds of
information, such as shape, color, texture,
motion) transformations and relaxations, i.e.,
parallel iterative computations that achieve
globally consistent interpretations through a
cooperative interplay of several local
processes. (Rosenfeld, 1976; Torras, 1989).
The outputs of the units at any layer are
merged with the outputs of other units com-
puting the same or different transforms at
that layer, and converged into the next layer
(just as the information the retinal cones and
rods sense converges into layers of primary
visual cortex after several retinal transforma-
tions). Similar processing takes place con-
tinually in parallel at every layer. However,
it must not be forgotten that a certain serial
depth of processing (due to the layered,
heterarchical structure of the system) is
essential: it is this serial depth that enables
the computation of successively more com-



plex, more global, transforms of the input.

Designing Recognition Cones for
Visual Perception

This section outlines how Recognition
Cones are used for visual perception - the
recognition of objects in the environment,
given the overall structures and processes
described above. Results of simulation of
the Recognition Cones model for perception
of real-world objects are briefly presented.
More detailed descriptions of the actual
computer programs are found in (Uhr, 1979;
Li, 1987). ‘

Recognition cones are given a specific
structure of transforms, as indicated by the
following example (any cascaded structure
of local processes can be used efficiently):
The image is input into the retinal layer at
the base of the pyramid. It is processed there
with local smoothing (noise suppression)
transforms and then by local gradient detec-
tors e.g., a high-resolution difference-of-
Gaussian operator (Marr, 1982). The next
layer then looks for a family of edges at
several different orientations, as well as
color and textural features. The next layer
combines oriented edges into corners, longer
lines, curves, etc; colored regions into
contrast-corrected larger regions; and so on.
This process of successive transformation
and merging of information to detect more
and more complex features (figure 3) contin-
ues, possibly all the way to the top, until
enough information is gathered so that
specific objects are sufficiently highly
implied by the features detected. In addi-
tion, continuing feedback from higher to
lower layers activates processes at those
layers (which may serve to gather additional
evidence to confirm the implied features, ini-
tiating a relaxation process).
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Figure 3: Heterarchy of transforms detect
increasingly complex features

Performance of  Pre-Designed
Recognition Cones in Visual Percep-
tion

Recognition cone programs that apply
sets of local fuzzy transforms, when given a
small set of transforms (such as edges,
angles and curves) recognize a variety of
simple objects (squares, circles, etc.). When
given a large enough set of carefully chosen
transforms distributed over 4-7 layers, such
programs have demonstrated the capability
to identify hand-printed letters (with gaps,
small distortions and other forms of noise) as
well as stylized hand-drawn sketches of
place settings consisting of plates, spoons,
knives and forks, and also some of the major
structural features (e.g., doors, roofs, win-
dows) of photographed houses (Uhr, 1979).

Simulations of Recognition Cones
which combine data-driven, bottom-up pro-
cessing where many feature-detecting
transform are applied in parallel with
model-driven, top-down processes which are
activated when certain transforms respond to
the image with sufficiently high weights (Li,
1987) recognize complex real-world objects
such as windows, shutters, doors, houses,
etc. from digitized (grey values range from 0
to 255), high resolution (512x512) TV images
of outdoor scenes. The program was tested
on three scenes, each containing a different
house (two of the scenes were used by the




programmer in determining the set of
transforms to be provided to the program and
the third was used to evaluate the generality
of the transforms) and a fourth scene con-
taining an office building (Figure 4 shows
these scenes) with good results in identifying
the building and its major structural com-
ponents. Figure 5 shows some of the results
(Li, 1987): W1 through W12 correspond to
the 12 windows in the office building; N4
and N5 comrespond to 2 of the several
regions in the scene that do not contain a
window. Bel(X) is the output of transform X;
Bel(window) and Bel (window) correspond
respectively, to evidence for a window
before and after relaxation triggered by the
model-driven, top-down processes.

Thus, Recognition Cones, although
they are highly parallel, and also neuronal
and largely connectionist - albeit with addi-
tional more global brain-like structures, have
been shown able to handle complex vision
problems at least as well as do computer
vision systems that rely on explicit serial
model-matching, and are, as a consequence,
much slower and, in most cases, rather brittle
and difficult to extend to a full-blown vision
system, which must handle the much larger
number of object-classes, each with a much
larger number of possible variant object-
instances.

Learning

The results presented in the previous
section illustrate the usefulness of structuring
assemblies of neuron-like units into higher
level structures suggested by the brain for
building systems capable of visual recogni-
tion. Our discussion has so far assumed that
the transforms necessary for endowing the
Recognition Cones with their perceptual
abilities could somehow be put in place: The
programs were given sets of carefully chosen
transforms by the designers of the system.
This is clearly an unreasonable expectation,
given the complexity of the environment and
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House 2

Office buildiﬁg

House 3

Figure 4: Digitized 512x512 pictures of
buildings that were recognized by the multi-
layered image and model-driven Recognition
Cones program

Possible window areas

. W16 | WI0 | W1l-12 | N4 | N5
Bel(elong) 0.50 | 050 050 | 0.30 | 0.50
Bel (text) 0.40 | 0.40 0.40 | 0.40 | 0.00
Bel(left—bound) | 0.60 | 060 0.60 | 0.00 | 0.10
Bel(right—bound) | 0.60 | 010 | 060 | 0.60 | 030
Bel(window) 0.45 | 038 0.45 | 034 | 020
Bel (v—sibling) 0.60 | 0.60 0.60 | 0.00 | 0.00
Bel (h—~sibling) 060 | 060 | 060 | 0001} 060
Bel’ (window) 049 | 046 | 049 | 013 | 020

Figure 5: Results of identifying windows in
wi2

the office

building.

Wi

thro’

correspond to the 12 windows in the office
building (W7 thro” W9 are not shown in the
table); N4 and N5 correspond to 2 of the
several regions in the scene that do not con-
tain a window, Bel (window) and Bel’ (window)
correspond to the evidence for a window
before and after relaxation triggered by the
model-driven, top-down processes.



the ability of humans to learn successfully in
a wide range of environments. How can a
system like Recognition Cones develop per-
ceptual abilities by acquiring the necessary
transforms as a function of experience?

Learning refers to the acquisition of
new knowledge; the development of percep-
tual, motor, and cognitive skills through
instruction or experience; the organization
and integration of acquired knowledge into
effective representations; and the discovery
of new facts, theories, or ideas through
observation, experimentation, and thought
(Uhr, 1973; Michalski, 1983)

Learning as Constrained Induction

Learning entails the building of usable
models of the environment in which the
learner-perceiver  (whether  natural  or
artificial) operates. Given a sufficiently rich
environment, one that captures at least a
significant portion of the great complexity
and variety present in the real world, the
number of possible inputs and the number of
possible structures relating and combining
them is enormous (If there are N inputs, each
capable of taking V values, the number of
possible structures is V). Only a small frac-
tion of these associations is meaningful in
modeling the environment. This suggests
that the perceptual learning system should be
designed so that it is either equipped with,
or, develops through learning, structures that
enable it to detect and respond to the
features, and the relationships among
features, in the environment needed to han-
dle the tasks it has to perform.

Given a certain structure, or a set of
structural constraints for the development of
the perceptual system, knowledge of the
environment is gained by a process of induc-
tion (constrained by the structure of the sys-
tem) applied to the information provided by
the senses. Induction is the process by
which a system develops an understanding of
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principles or theories that are useful in deal-
ing with the environment by generalization
and specialization from specific examples or
instances presented to it (Michalski, 1983;
Holland, 1986) This includes the process of
experimentation and discovery, that is, the
sétting up of hypotheses and then the accu-
mulating of evidence to confirm or deny
their validity.

Basic Neuronal Mechanisms for Learning

Learning in a neuronal system may
involve modification of any of the following:

[1] The processing functions of the nodes
(e.g., change in the threshold or output
function),

[2] The weights (or transfer functions) of

the links,

The topology of the network (addition
and deletion of links), and

The learning rules themselves

(3]

(4]

Most of the work on learning in con-
nectionist networks to date has concentrated
on [2]. Several algorithms for changing
weights associated with the links are avail-
able (Hinton, 1987a). Some of them utilize
feedback that allows the network to compute
the error between its output and the desired
output and use the back-propagated error to
change the weights, e.g., the generalized
delta rule (Rumelhart, 1986b). Some use a
form of reinforcement learning that enables
the network to utilize feedback in the form
of a reward for good actions or a penalty for
bad ones. If a unit can learn to increase the
frequency of reward from a noisy critic, it
can act cooperatively with other units in the
network to improve the performance of the
entire network (Barto, 1985). Some use a
form of association learning ie., a link
between two units is strengthened if both of
them fire at the same time (Hebb, 1949).
Such a scheme tends to sharpen the unit’s
predisposition, getting its firing to become




better and better correlated with a cluster of
stimulus patterns.

A learning scheme for [3] that employs
a mechanism for activity-dependent,
feedback-guided generation of new links is
described in (Honavar, 1987; Honavar,
1988b).

The Learning of Useful Transforms
through Generation and Reweighting

As noted earlier, the adaptive neuron-
like unit, the basic building block of Recog-
nition Cones, computes one or more proba-
bilistic or fuzzy transforms over its inputs. In
such a system, learning by induction can be
viewed as the generation, tuning, and reten-
tion of a set of transforms that are adequate
for the perceptual tasks demanded of the sys-
tem. The system learns, or is initialized with
(as though by evolution) a set of low-level
transforms such as edge detectors, color
detectors, etc. What follows is a general
description of the mechanisms; A particular
implementation is explained in detail in the
next section. Transforms are modified by
changing the weights of their implieds (that
is, the output links of the adaptive neuron-
like units) and their conditionals (the input
links of the units) according to one of the
standard reweighting rules; and by changing
thresholds of firing or the output functions of
the units. New transforms are added by gen-
eration, which involves the growth of new
links between units (implieds, conditionals,
with appropriate weights, which are them-
selves learned), and recruiting units from a
pool of uncommitted units. Thus the network
learns, through both generation and
reweighting, a set of fuzzy transforms ade-
quate to classify the training patterns
correctly, to the desired degree of accuracy;
and, because of their probabilistic structures,
the much larger set of possible instances the
network must handle, and on which it is
tested.
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Modification (Reweighting) of Existing
Transforms

Feedback is used to weaken the links of
the transforms that implied the wrong thing
(and, optionally, to strengthen those that
implied the right thing), by propagating the
information from the unit or units that made
the choice, usually moving from the output
layer of the network, backward through the
network, down to the input layer. At the out-
put layer, a node that made the wrong choice
releases a transform down-weight signal that
weakens the links that fired into it from the
nodes at the next lower layer. This down-
weight signal is propagated back through the
network until the input layer is reached.
Every node that receives a down-weight sig-
nal, weakens the links that fired into it on
the training presentation. In a similar
fashion, a node at the output layer that would
have been correct (had it fired) releases a
transform up-weight signal that strengthens
the links that fired into it from the next lower
layer and this up-weight signal is propagated
back through the network. This is the form
of learning that has been studied widely in
connectionist systems, and several algo-
rithms are available for this purpose (Hinton,
1987a). The one we use is very similar to
the the error back-propagation algorithm
(Rumelhart, 1986b).

The Need for the Capability to Generate
New Transforms

The input to the network represents a
certain encoding of the environment. A sin-
gle layer of neuron-like units computing
fuzzy transforms over this encoding is com-
binatorially explosive and not always
sufficient to produce the desired input-output
mapping (Minsky, 1969). Internal represen-
tations that capture non-linear relationships
between features in the input encoding must
be created to overcome this problem. While
it is true that one layer of hidden units
between the input and output layers theoreti-



cally suffices to enable the network to learn
the desired input-output mappings, the fan-in
and fan-out required of the units is arbitrarily
large. Large fan-in and fan-out imply longer
links, a higher density of links, and hence a
much greater, combinatorially explosive,
cost/complexity. In the worst case, NVV
links are needed for N pixel input images, a
quite impossible number even for toy images
(e.g., 8x8) much less the 256x256 to
4,092x4,092 arrays needed for real-world
images. To fend off this combinatorial
explosion it is essential to restrict the links to
relatively small receptive fields. When
receptive field sizes are limited, multiple
layers of hidden units become necessary to
compute global functions and to represent
the non-linear relationships between features
in the input encoding. It is difficult, and in
practice impossible except for trivial cases,
to foresee the necessary connectivity, and the
number and the depth of transformations
(which corresponds to the number of layers
in the network if no cycling between layers
is permitted) needed for a particular task on
which the network is to be trained; this is
especially true when, in dynamic real-world
environments, the task changes over time
and learning can never cease.

Only if the network has an adequate
number of appropriately linked nodes to start
with, feedback-guided reweighting of links
has a chance of eventually finding the right
set of weights that would result in correct
classification of patterns in the training set.
The only way to ensure that the network has
the needed connectivity is to either build it
that way, using a-priori knowledge, or to
make some guess as to the necessary number
of nodes Ng and the necessary topology Gg
and to start with a network that is sufficiently
large enough to subsume Gg. Thus, genera-
tion of new transforms is an essential learn-
ing mechanism in networks where the neces-
sary connectivity cannot be established in
advance, because no amount of reweighting
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would enable such a network to learn all the
pattern classes on which it is trained. Given
mechanisms to generate new links and
recruit new nodes as needed, the network
can gradually grow, until the number of
nodes in the network approaches Ng, and the
nétwork topology approaches Gg, whatever
Ng and Gg may be.

The Generation of New Transforms

The generation of a new transform is
triggered by negative feedback under certain
appropriate  conditions which will be
explained later. Suppose the feedback indi-
cates that the system implied the wrong
thing. This triggers the release of a transform
generation signal by units that received
negative feedback, which is transmitted to
units successively in the layers below that
contributed inputs to the units in question,
just as the error signal is propagated back for
reweighting. At one or more layers, a subset
of the units receiving the transform genera-
tion signal recruit one or more uncommitted
units from the next-higher layer by growing
a link to that unit. Growth of these links
takes place without violating the topological
constraints (such as those of local receptive
fields, retinotopy, convergence, and layered
organization) imposed by the architecture of
Recognition Cones. The effect of this is to
add a new transform to the existing set. The
transforms so added participate in the learn-
ing process according to the same principles
as those described above. The conditions
under which new transforms are added
through generation, instead of simply
reweighting the existing transforms, will be
explained later.

The Discarding of Poor or Useless
Transforms

Transforms get discarded either by a
gradual lowering of weights as a conse-
quence of negative feedback (when the
weight on the link reaches a value close to




zero, the link is broken) or by an abrupt
breaking of some of the links, under the
influence of appropriate regulatory mechan-
isms. The discarding of transforms that are
deemed poor or useless creates space in the
system, by freeing up units that may then be
used in the generation of new (and hopefully
better) transforms to replace them. The con-
ditions under which it is appropriate for the
network to discard transforms are discussed
later.

Regulatory Mechanisms that Decide
When to Generate and When to Discard
Transforms

A network that both reweights and gen-
erates must somehow strike a reasonable bal-
ance between these two learning mechan-
isms. If learning is restricted to reweighting
alone, the network may never be able to
achieve the desired performance level of
recognition, because of reasons outlined ear-
lier. On the other hand, if new transforms are
generated each time negative feedback is
received by the network the essential process
of tuning of transforms by reweighting is
disturbed and the network is likely to end up
with a large set of transforms most of which
are only rarely useful. Similarly, discarding
existing transforms has to be done when
appropriate. Regulatory mechanisms that
decide when to generate new transforms and
when to discard existing ones are therefore
needed.

One possible mechanism to decide
when to generate a new transform is sug-
gested by the need to guide (and possibly
goad) the network in the direction of
developing into the simplest possible struc-
ture (according to some criteria of complex-
ity), that does not violate the topological
constraints placed on the network (such as,
e.g., the size of a receptive field) that is ade-
quate to perform the pattern classification
tasks for which the system is being trained.
We call this the minimal complexity heuris-
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tic. Several measures of network complexity
suggest themselves, e.g., the number of
transforms (number of nodes, links, or both),
the depth of transformations from input to
output (number of layers, which in turn
determines the time for processing a given
input pattern).

One such regulatory mechanism, based
on the minimal complexity heuristic (Hona-
var, 1987; Honavar, 1988b) that decides
when to add new transforms has been imple-
mented in the simulation to be described
below. This uses the number of transforms
in the network as a measure of complexity.
Thus, we seek networks with the smallest
number of transforms adequate for classify-
ing the patterns in the training set correctly.
This suggests that the network should con-
tinue to reweight existing transforms so long
as its performance is improving; and gen-
erate a new transform when performance
ceases to improve with reweighting alone
(and the network has not yet reached the tar-
get performance). This requires the network
to have some mechanism to keep a (recent)
portion of the learning curve for each pattern
class on which the network is being trained.
The details of implementation are described
later. Other regulatory mechanisms based on
different measures of network complexity
are possible, and are being investigated.

Regulatory mechanisms are needed to
decide when to discard a transform. Dis-
carding a transform by breaking its input and
output links may appear to be a drastic step,
but it is necessary if the network’s perfor-
mance remains consistently poor over
intolerably long periods of time (and
reweighting and prior generation have failed
to give the desired improvement in perfor-
mance), or when it becomes difficult to grow
new links needed to generate new
transforms, without violating the topological
constraints on the network (because most of
the allowed units and links have been used

up).



Additional regulatory mechanisms may
be needed to determine where in the network
to generate new transforms (e.g., in which
layer); or to decide which transforms to dis-
card (a transform with fewer output links
leaves the network relatively undisturbed).
These issues are interesting in their own
right and deserve further examination.

The realization of regulatory mechan-
isms that guide the generation, modification,
and retention of transforms requires struc-
tures that maintain, update and transmit
information (accumulated through local
computations) concerning the performance
of the network at the task that it is being
trained for. Such information may include
some measure of the history of the network
performance which is used to determine the
nature and the extent of changes to be made
with learning. If the system has been
responding correctly most of the time in the
recent past, it perhaps should be conservative
in adding, deleting and modifying transforms
as a result of feedback. On the other hand, if
the system has been responding incorrectly
most of the time in the recent past, it should
perhaps be more radical in making those
changes.

The mechanisms of reinforcement of
good transforms, and the generation of new
transforms explained above, over a period of
time result in the development and retention
of sets of fuzzy transforms that are useful for
recognizing the objects in the environment.
On the other hand, transforms found not use-
ful will fade away, since they are negatively
reinforced, or, if necessary, discarded by the
learning mechanism. Several questions
remain to be answered. For example: What
is an appropriate set of regulatory mechan-
isms? Can higher order control be exercised
by the network, as a function of its perfor-
mance, on the nature of the particular regula-
tory mechanisms that come into play?
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Simulation of Perceptual Learning
through Generation and Reweight-
ing of Transforms

This section briefly outlines the simula-
tion of a connectionist network with brain-
like structures (e.g., local receptive fields,
global convergence) that discovers the
transforms necessary for perception of sim-
ple 2-dimensional visual patterns through
feedback-guided modification of weights as
well as the relatively less frequent generation
of new transforms. The networks that result
from such learning are identical in their
architecture to Recognition Cone networks
designed for pattern perception described
earlier. Much more detailed description of
the implementation of the learning program
can be found in (Honavar, 1988b).
and Network

Topological Constraints

Structure

The input layer (the retina) is a dxd
square array of pixels (where d=2"; m = 2,3,
4, ..). In most of the simulations to date, the
input layer is a 32x32 array. Layer L contains
1/4th the number of node-clusters found in
the adjacent layer L-1, giving a 2x2 loga-
rithmic decrease in resolution as one moves
up from the retina. Each node in a node clus-
ter at layer L can only link to 2-tuples of
nodes drawn from 4 node clusters located
directly below it in layer L-1. Thus, the map-
ping between layers is retinotopic. In the
current implementation, layer 2 is an excep-
tion in that each node in layer 2 receives
input from 9 nodes in the input layer. In
several simulations, layer 2 contained 8 pre-
wired edge detectors (that are extremely
simplified versions of the oriented edge
detectors found in the primary visual area
(V1) of the living primate brains). It is not
necessary to provide these pre-wired
transforms since the learning mechanisms, as
shown by simulations, are capable of discov-
ering the edge detectors and any other
transforms that may be useful.




At each layer, the nodes, with the
exception of those that are already linked
into the network as part of either pre-wired
or learned transforms, form a pool of uncom-
mitted units. Generation grows new links
and recruits uncommitted nodes into the net-
work as the network learns guided by the
input patterns and feedback. The transforms
in the network are fine-tuned through
feedback-guided reweighting of links.
Because generation does not violate the
topological constraints of layered, logarithm-
ically converging structure as well as local
receptive fields, the networks that are
discovered through generation and reweight-
ing resemble Recognition Cones (see figure

1).

Reweighting and Generation

Re-weighting of links is a function of
the back-propagated error signal. Suppose a
pattern class Cy is implied by the network
with a weight Wy, and the pattern class indi-
cated by the feedback, Cr is implied with a
weight Wg, the amount of reweighting at the
output layer is given by (Kx(Ww—Wy)) where
K is a parameter related to the rate of learn-
ing. Our current implementation has K set
equal to 0.25. This weight change is distri-
buted equally among all the links firing into
the node implying Cw. At internal nodes, the
weight changes are computed in a similar
fashion. Other variants of the error back-
propagation, or even other reweighting
schemes could be used.

In addition, the network occasionally
generates a new transform, when it deter-
mines this to be appropriate - on the basis of
information provided by regulatory sub-
structures that monitor the network’s perfor-
mance on each pattern class on which it is
being trained. The design of these sub-
structures is motivated by the need to dis-
cover the simplest networks capable of the
desired accuracy of recognition. The
rationale behind the design is as follows:
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Continue to reweight existing links so long
as the network’s performance is improving.
When it is observed that the network’s per-
formance has leveled off (before reaching
the desired accuracy of recognition), gen-
erate a new transform. This is accomplished
easily by simple networks of neuron-like
units, through local computations performed
incrementally following each training
presentation. An implementation of such
structures is described elsewhere (Honavar,
1988b). The details of the particular imple-
mentation are unimportant for our purposes
here. Suffices it to point out that a variety of
local computations of this kind may be per-
formed by highly structured microcircuits of
neuron-like units (e.g., counters, compara-
tors) as part of information processing, learn-
ing, or control functions in brain-like net-
works

Generation proceeds as follows: In the
Ist layer, a 3x3 sub-array is extracted from
the raw input image (this is done only when
feedback indicates an error was made, and
the history of the recent past indicates that
performance is levelling off rather than
improving. These 9 links fire into a new
node placed directly above it in the next
layer.

The extraction is got from a busy part
of the input image, one where the network
judges there may be useful information. The
present simple system insists that a gradient
be present, but potentially more powerful
mechanisms that enable the system to evalu-
ate a certain region (e.g., a 3x3 window) of
the input for its information content, and
their possible connectionist network imple-
mentations are being investigated.

In layers other than the 1st, extraction
randomly links into a new node from 2 nodes
that actively responded to the present
(incorrectly identified) input image in the
2x2 window of node-clusters directly below
it in the previous layer. For example, two



oriented edge detector nodes may be linked
by this mechanism to generate a transform
that is responsive to an angle; and such gen-
eration is triggered when the existing
transforms, say, edge detectors, by them-
selves have proved inadequate to achieve the
desired performance, given the working of
regulatory substructures that initiate genera-
tion described earlier.

Whenever a node is recruited, it is put
into a node-cluster at that location, and also
at every other location in that layer of the
network, as though it is immediately broad-
cast (either laterally through that layer or up
to the apex of the pyramid and then
showered back down). All the links added to
the network through generation get tuned
through reweighting as a function of feed-
back. The current implementation does not
include mechanisms for discarding poor
transforms (except through a gradual lower-
ing of weights).

Performance of Brain-Structured
Networks That Learn by Genera-
tion and Reweighting at Perceptual
Recognition of Simple Patterns

This section summarizes some prelim-
inary results of simulation of the model
described above. Experimental comparisons
of networks that learn by generation and
reweighting, under the topological con-
straints of local receptive fields and global
convergence with networks with varying
degrees of structure that learn by reweight-
ing of links alone are given in (Honavar,
1988a; Honavar, 1989a) and are mentioned
only briefly here.

Training and Test Data

Simple 2-dimensional patterns such as
letters of the alphabet (T, D, E) and simple
objects (apple, cup, banana) were used for
training the networks. The training and test
sets were obtained by randomly dividing the
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set of drawings of each pattern provided by 3
different volunteers into two subsets. The
drawings were made using the Xgremlin
graphics utility on a Digital VAXstation-
3200, in a 24x24 subarray of a 32x32 grid. A
sample subset of patterns used for training
and testing is shown in figure 6. Figure 7
gives a summary of the pattern classes used
in the runs, ie., (T, D, E), (apple, banana,
cup) and the combined set (T, D, E, apple,
banana, cup).

A run consists of several epochs of
training interspersed with epochs of testing,
repeated until the desired accuracy of recog-
nition (currently set to 100 percent) is
attained or the performance clearly levels
off, as indicated by the learning curve. An
epoch of training (or testing) involves
cycling through the entire training set (or test
set) once, in some arbitrary order.

The figures 8A and 8B show the results
of these runs on the pattern set (T, D, E).
With no pre-wired edge detectors, the net-
work attained 100% accuracy of recognition
on the test set in 26 epochs of training; 14
new transforms were generated and they
were replicated at each location in the
corresponding layers. When 8 oriented edge
detectors were provided at the first layer to
start with, 100% accuracy of recognition was
attained in about 8 epochs of training, and 6
new transforms generated in the process.
The results with pattern sets (apple, cup,
banana) were qualitatively similar in all the
cases (the runs were slightly longer (took
about 10% more epochs), and about 10%
more links were generated. The runs were
repeated with 6 pattern classes (T, D, E,
apple, banana, cup) and the results were
qualitatively similar, but there were more
generations (about twice as many) at the
higher layers, and about twice as many
epochs of training were needed for attaining
100% accuracy of recognition.
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Figure 6: Sample images used in the simula-
tion of learning

Pattern | # # #
Set of of of
classes | train- test

ing instances
instances | per
per class
classs

T,D,E | 3 4 3

apple, 3 4 4

cup,

banana

T, D, | 6 4 3

E,

apple,

cup,

banana

Figure 7: Summary of pattern sets used in the experi-
ments: the pattern sets were obtained from instances
provided by 3 volunteers. Training and test instances
for each class were obtained by randomly partitioning
the set of instances for a given class into two subsets,

one for training, and the other for testing.

The performance of networks with
brain-like structure (e.g., local receptive
fields, global convergence) that learn by gen-
eration and reweighting of the sort discussed
here have been compared, using the same
training and test data, with that of networks
that learn by reweighting of links alone that
have the same structure but varying amounts
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Figure 8A: Performance on test set with
pyramid convergence, generation, local recep-
tive fields, without built-in edges

of connectivity; with networks that lack
locality of receptive fields; and with net-
works with varying numbers of hidden units
with complete connectivity between layers
(Honavar, 1988a; Honavar, 1989a).
Although the results are preliminary in
nature, they do suggest that other factors
being equal, generation and local structure
substantially improve learning, both in terms
of the number of training epochs needed as
well as the size of the networks necessary to
attain the desired accuracy of translation-
invariant recognition.

Discussion

This section discusses briefly: the distri-
buted nature of information processing in
brain-like computing structures (local recep-
tive fields, global convergence-divergence);
the role of brain-like structures, generation,



120

3

3

AP ~ 3RO (DT

E\

go——-—-mo«gnx P’OO"!"\§O "0

0 2 0 12

4 6 8 1
Training Epochs of Classes (T, D, E)

-20 -

Figure 8B: Performance on test set with
pyramid convergence, generation, local recep-

tive fields, with built-in edges

and regulatory structures on learning; and
outlines some future directions for research.

Distributed Processing, Memory and Con-
trol in Brain-Like Computing Structures

An information processing system is
typically thought of in terms of three func-
tions, viz., processing, memory, and control,
each of which may be distributed to varying
degrees, in several different ways, over the
system. It is interesting to examine the
nature of this distribution in Recognition
Cones and some of the properties that
emerge as a result.

First, each of the many micro-modular
units computes only a tiny part of the large
and complex function that perceives. Thus,
processing is clearly distributed. Recogni-
tion of a pattern is the result of utilizing
knowledge distributed over several succes-

sively more complex transforms. Each
transform extracts a micro-feature in the
input or an encoding or abstraction of the
input. Such a micro-feature on its own con-
veys very little information about the pattern
to be perceived. Thus processing is distri-
buted over a large number of neuron-like
units. Memory in brain-like computing
structures is distributed over the large
number of units (and each unit’s output func-
tions, thresholds, activation levels, etc.) and
the links (the weights and learning rules
associated with them).

Control, that is, the decision to execute
one instruction (or apply a transform) or
another - in a neuronal system is locally but
collectively exerted by individual units pro-
viding the inputs for other units. This is sup-
plemented by micro-structures (e.g., the
regulatory structures that decide when to
generate new transforms). Thus, control of
the information processing functions per-
formed by the system is the result of the con-
sorted action of a large number of functional
modules. Some control is exerted by the
structure of the system itself, for the connec-
tivity determines the direction and order of
information flow, and this in turn governs
what transforms get applied. Thus the need
for a central controller, analogous to that
used in conventional Von-Neumann comput-
ers is eliminated.

To function effectively in the real world
(as the human visual system clearly does),
connectionist networks must incorporate
sufficient noise immunity as well as redun-
dancy. In Recognition Cones, this is accom-
plished by the fuzzy nature of the
transforms. Also, windows and samplings
are used, with thresholds that accept a
variety of different patterns of firings.
Redundancy and robustness may be
increased by using several transforms that
look the same feature (say long vertical line)
in approximately different edge detectors are
used and all their results combined; to detect




angles, several different detectors, one con-
centrating on properly interrelated edges,
another on the vertex, and others on various
aspects of the interior and exterior regions,
and so on. Thus the different but closely
related processes that serve overlapping pur-
poses provide the redundancy that is needed
to ensure robustness (graceful degradation
under damage - failure of a few random units
or loss of a few random links, analogous to
the death of a few neurons) as well as noise
immunity.

Role of Brain-Like Structures in Learning

Constraints on the network topology
determine the space of transforms that can be
learned, and bias the network so that the
learning of certain relations is favored.
Retinotopic mapping and local receptive
fields exploit spatio-temporal contiguity in
the environment. This favors the discovery
and learning of relations between subpatterns
that are imaged onto neighboring regions of
the retina. For example, if the object imaged
is a chair, its sub-parts (e.g., legs, seat,
back-rest) are projected onto the neighboring
parts of the visual field with all the spatial
relations between them intact. Our results
suggest that the choice of constraints on net-
work connectivity is important: Random
connectivity is unlikely to work in most
practical problems. Similar conclusions were
reached in a study involving the training of a
connectionist network to solve random-dot
stereograms (Qian, 1988). Since each layer
fires into the next, the learning of structure is
a hierarchical, repeated operation (in the
layers as well as over several presentations
of the patterns). Generation, under brain-like
constraints on connectivity, ensures that suc-
cessively more complex non-linear relations
between features in the input encoding of
patterns are discovered at higher layers, to be
assessed by the new transforms that are
added. For example, the lower layers might
learn the associations between several verti-
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cal edges more or less aligned with each
other and thus discover (learn) the concept of
a long vertical line. At higher levels, inter-
secting horizontal and vertical line segments
facilitate the learning of the more complex
concept of a corner, and so on. The effects

of this are two-fold: Learning of simpler

relations preceeds the learning of more com-
plex relations; Successively more global
relations are learned at successively higher
layers. This is confirmed by an examination
of the transforms generated by network
simulations.

Generation, Reweighting, and Discarding
of Transforms

Intuition suggests that good system per-
formance requires a proper match between
the entropy of the source of external stimuli
and the connectivity, both between the
source and the system (Abu-Mostafa, 1988),
as well as within the system itself. Since
generation relies on the environmental
stimuli to develop the connectivity of the
system, the resulting network is likely to
have a better match with the entropy of the
environment, than a network that starts out
with a random subset of the possible con-
nections and is constrained not to change the
initial topology, and whose learning is res-
tricted to reweighting of links alone.

Feedback-guided reweighting of links
by small amounts changes the pattern
descrimination properties of the network gra-
dually. Reweighting tends to minimize the
error between the actual and the desired out-
puts of the network for the various pattern
classes, by effectively performing a gradient
descent on the error function. However,
there is a risk of getting caught in a local
minimum, a shallow trough, or a valley in
the (Rumelhart, 1986b) of the error surface.
Generation and discarding of transforms can
be thought of as providing the network some
means of getting out of such local minima.



Network structures that maintain,
update, and transmit as appropriate, informa-
tion about the network’s performance over
time (e.g., a portion of the learning curve,
used to trigger generation) offer several
interesting mechanisms to influence learning
that may be worth examining. Such struc-
tures may be used to alter learning strategies,
rates of learning, thresholds of firing, each of
which has an impact on the plasticity of the
network. Future work will address some of
these issues.

The extent of generalization i.e., build-
ing of meaningful internal representations by
discarding uninteresting details, is an impor-
tant property of connectionist systems that
learn. More compact representations result
from better generalization. There is reason to
believe that the extent of generalization in
connectionist networks is sensitive to the
number of hidden units as well as the con-
nectivity (Hinton, 1987b; Rumelhart, 1988).
If the hidden units or connections are too
many, the network may generalize rather
poorly; if they are too few, the network may
never learn. Thus, finding the optimal
number of hidden units and/or weights is of
interest. Generation and deletion of links can
be seen in this context as providing mechan-
isms that dynamically determine the number
of hidden units and connections needed in
the network. Thus, such networks may exhi-
bit good generalization properties as well.
Generation makes possible the linking up of
an adequate number of units to solve a given
problem; minimal generation favors the
discovery of the smallest necessary number,
and hence, better generalization. Future work
will examine this conjecture experimentally.

The simulations described here do not
discard bad nodes or place any limit on the
number of nodes generated. Neither capabil-
ity was needed for the test runs reported
here, since these programs learned to recog-
nize the pattern-sets they were tested on in
relatively small number of training epochs.
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But to handle larger sets of more complex
patterns, the ability to discard is almost cer-
tainly necessary; otherwise the network will
get bogged down with many poor or worth-
less links. Evaluation of the performance of
brain-structured networks that learn by gen-

eration, reweighting and discarding of

transforms on more complex pattern sets
(e.g., faces and other real-world objects) is in
progress.

There are a number of promising
improvements to be made, including the
addition of networks that make better assess-
ments of potential generations, that learn t0
improve upon these assessments, that evalu-
ate the generations for their usefulness for
recognition, that discard poor generations to
make room for new ones, that narrow and
broaden the tolerance-threshold for match-
ing, and that generate sets of alternate possi-
ble transforms that are placed in competition
with one another. There are a number of
other issues to be investigated, including the
development of good sub-networks that real-
ize functions for deciding whether to further
re-weight or to generate, the optimal number
of nodes in a node-cluster, and whether it
helps to put nodes within a cluster into direct
competition. It may be informative to
explore generation as part of an unsuper-
vised learning scheme, and/or in combina-
tion with other reweighting rules e.g., some
variant of the Hebbian rule (Hebb, 1949).
Performance of generation learning on prob-
lems other than vision (e.g., speech) is also
under study.

The Role of Reciprocal Connections in
Information Processing and Learning

In a brain-structured network, recipro-
cal connections between layers provide a
means of model-driven, expectation-driven
or top-down processing without the need for
explicit top-down control. Partial evidence
that is passed on to a layer from its predeces-
sor in the bottom-up pathway can activate




processes, that through the reciprocal con-
nections, intiate an iterative relaxation that
would eventually find a globally consistent
solution through an interplay between
several local sources of information. Future
work will examine the role of such recipro-
cal connections in learning in brain-
structured networks.

Conclusions

Connectionist networks built from sim-
ple neuron-like units arranged in brain-like
topologies can be constructed to yield rela-
tively good perceptual recognition of com-
plex real-world objects in large images.

The preliminary results presented in
this paper suggest the possibility of discover-
ing such networks, by realizing significantly
more powerful and potentially more practi-
cal learning than that given by reweighting
alone, through a combination of:

[1] Different learning mechanisms: genera-
tion, reweighting, and (when necessary)
discarding of transforms,

[2] Regulatory mechanisms that alter net-
work plasticity in a controlled fashion,
choose between different learning stra-
tegies e.g., minimal complexity heuris-
tics, and

Brain-like constraints on the network
topology e.g., local receptive fields,
retinotopy, layered converging-
diverging heterarchy.

(3]

Extensive and systematic evaluations of
networks incorporating one or more of these
aspects for perceptual learning of pattern sets
of varying complexity are needed in order to
judge how they perform individually as well
as collectively, toward the dual goals of
understanding information processing in the
brain and of designing artificial systems of
comparable perceptual and cognitive abili-
ties.
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