UPPER BOUNDS ON THE COMPLEXITY OF
SPACE BOUNDED INTERACTIVE PROOFS

by

Anne Condon and Richard J. Lipton

Computer Sciences Technical Report #841

April 1989

Upper Bounds on the Complexity of Space Bounded Interactive

Proofs
Anne Condon * Richard J. Lipton |
Computer Science Department Computer Science Department
University of Wisconsin-Madison Princeton University

April 1989

Abstract

We show that the class IP(2pfa) of languages accepted by interactive proof systems with finite

state verifiers is contained in ATIME(,’ZQO n)). We also show that 2-prover interactive proof systems
with finite state verifiers accept exactly the recursive languages. Our results generalize to other
space bounds. We also obtain some results of independent interest on the rate of convergence of
time-varying Markov chains and of non-Markov chains, called feedback chains, to their halting states.

1 Introduction

We prove new bounds on the class of languages accepted by space bounded interactive proof systems,
in particular those with a 2-way probabilistic finite state verifier (2pfa). Interactive proof systems were
introduced by Goldwasser et al. [8]; those with space bounded verifiers have been studied by Condon
[2], Dwork and Stockmeyer [4] Killian [9] and Lipton [10]. An interactive proof consists of a pair of
interacting computing processes, one called the prover, P and the other called the verifier, V. The pair
shares an input; the more powerful prover wishes to convince the verifier, in this case a 2pfa, that the
input is in some language. The probability that a prover-verifier pair (P, V) accepts an input is the
probability that the prover convinces the verifier that the input is in the language, taken over all the
possible coin-tosses of the verifier.

Two different definitions of language acceptance for space bounded interactive proof systems have
been proposed. Dwork and Stockmeyer [4] defined a prover-verifier pair (P, V) to be an interactive proof
system for a language L with error probability € < 1/2 if

1. for all z € L, (P, V) accepts = with probability at least 1 — ¢ and

2. for all z ¢ L and all provers P*, (P*,V) rejects with probability at least 1 — €.

*Work supported by NSF grant number DCR-8402565
tWork supported by DARPA and ONR contracts N00014-85-C-0456 and N00014-85-K-0465, and by NSF Cooperative
Agreement DCR-8420948

the condition 2 above by the following condition.
2/. For all z ¢ L and all provers P*, (P*,V) accepts = with probability at most e.

Tt is not hard to see that for time bounded verifiers these definitions are equivalent. However, for space
bounded verifiers Lipton [10] showed that the definitions are not equivalent. He proved the surprising
result that the class of languages accepted by interactive proofs that satisfy the weaker condition is
exactly the recursively enumerable languages, even when the verifier is a 2pfa. In fact, the result holds
for one-way interactive proofs, where the verifier never communicates with the prover except to request
another communication symbol. The proof exploits the fact that the weaker interactive proof systems
do not have to halt with high probability on inputs they do not accept. On the other hand, all languages
in the class IP(2pfa) must be recursive. This is a direct consequence of the fact that these must halt
with high probability on all inputs and is proved in Section 5.

In this paper we obtain the first non-trivial upper bound for the class IP(2pfa). We show that any
language in this class is contained in ATIME(22O(n)). The best known lower bound, shown by Dwork
and Stockmeyer [4], is that IP(2pfa) contains any language in DTIME(2°(™). Our result extends to
yield upper bounds on the complexity of languages accepted by interactive proof systems with more
general space bounds. The results on space bounded interactive proof systems are in Section 4.

We also contrast the power of multi-prover interactive proof systems with single prover interactive
proof systems for space bounded verifiers. Multi-prover systems were introduced in Ben-Or et al. [1].
Informally, in a k-prover interactive proof system, the verifier communicates with k provers that coop-
erate with each other to convince the verifier that an input is in some language. The provers cannot
communicate with each other during the execution of the verifier’s protocol. Multi-prover interactive
proof systems generalize the single-prover systems and hence are potentially more powerful; however in
the case of polynomially time bounded verifiers it is an open problem whether they are more powerful or
not. See Fortnow et al. [6] for results on the power of polynomial time bounded multi-prover interactive
systems.

We show that any recursive language has a 2-prover interactive proof with a Zpfa verifier that halts
with probability 1. We also prove the other direction - that any language accepted by a multi-prover
interactive proof system is recursive. Thus we obtain matching upper and lower bounds on the power
of space bounded 2-prover interactive proof systems. These results were proven independently by Feige
and Shamir [5]. As a consequence of these results, we can make the following informal observations
about space bounded interactive proof systems. Two provers are much more powerful than one prover
but three or more provers are no more powerful than two provers. These results are given in Section 5.

In proving our upper bound on single-prover interactive proof systems, we also obtain some results
of independent interest on the rate of convergence of certain classes of discrete time-varying Markov
chains to their halting, or absorbing, states. It turns out that one-way interactive proof systems ~ those
in which all communication between the verifier and the prover is from the prover to the verifier — are
closely related to certain time-varying Markov chains. Recall that in a stationary Markov chain, say
over state space {1,...,n}, the probability p;; of a transition from i to j at the kth step is independent
of k. Thus a single probability transition matrix P is sufficient to describe all the possible transitions
of the chain at all time steps. In contrast, the transition probabilities of a time-varying Markov chain
at the kth time step are a function of k. A time-varying Markov chain can be described by an infinite
sequence of stochastic matrices {P;}, k > 1, one per time step. In this paper, we consider the family of
n-state time-varying Markov chains such that the matrices Py are all from some finite set of stochastic
matrices, say {4, B}. We assume that all the entries of A and B are rational, of the form p/q where p

and ¢ are integers, p< ¢ < on_ When A and B are fixed, we denote the family of such Markov chains
with initial state 1 by M.

A special case of our results on time-varying Markov chains can be stated simply as follows. Suppose
that for all chains M in M, n is a halting state which is eventually reached from the initial state with
probability 1. Then the expected time to reach the halting state n is 220(1»). A well known result for
stationary Markov chains under similar conditions states that the expected time to reach a halting state
n is 2°(") . Our results on time-varying Markov chains are in Section 2.

We also show that this bound is tight in the following sense. Given any n, for some m = O(n) there
exist m x m matrices A and B with rational entries of the form p/q where p< ¢ < 9™ such that (i) for
all chains M in M, M eventually reaches the halting state and (ii) for some such chain, the expected
time to do so is 220(71)" This latter result is easily explained using the intuitive framework of interactive
proof systems. It provides evidence that the model of an interactive proof is a useful paradigm by which
to approach other interesting open problems. As another example of this, Lipton [10] applied his result
on weak interactive proof systems to show that the emptiness problem for 1-way probabilistic finite
automata is undecidable.

From our results on time-varying Markov chains we derive upper bounds on the complexity of space
bounded one-way interactive proof systems, where all communication between the verifier and the prover
is from the prover to the verifier. In order to extend these results to two-way space bounded interactive
proof systems where both the verifier and the prover send information to each other via the communi-
cation tape, we generalize our results on time-varying Markov chains to non-Markov chains, which we
call feedback chains. In a feedback chain, there is a feedback symbol associated with each state. The
probability of a transition from a state i to state j at the kth step depends not only on ¢, j and k but
also on feedback of the states entered at steps 1,...,k—1. We describe feedback chains and our bounds
on their convergence rates to halting states in Section 3. In Section 4 we apply these results to derive
upper bounds on the complexity of space bounded interactive proof systems. Finally in Section 5 we
contrast the power of single prover and multi-prover interactive proof systems for 2pfa verifiers.

2 Time-varying Markov Chains

In this section we prove results on the rate of convergence to absorbing states of time varying Markov
chains. A time-varying Markov chain is a sequence of random variables X, Xa,..., Xk, ... over state
space {1,...,n} with the following property. For all integers 7, j and k there is a real number piji € [0, 1]
such that p;;x is the probability that the kth random variable, X, is j, given that the (k — 1)st random
variable is ¢. That is,

Pl‘Ob[.Xk = j]Xl = ay,..- .,Xk._z = ak,_g,‘Xk_l = 2] = Pijk-

For all k > 0, let P;, be the matrix [pijr) 1 < 4,5 < n. The matrices P, and the value of X3 completely
determine the chain. For any k, if Prob[X}, = j] = p, we say that the chain is in state j with probability
p at time step k.

In this paper, we consider time-varying Markov chains where the matrices P, come from a finite
set of stochastic matrices. We assume that this set is of size two, say {4, B} but our results generalize
to any finite set. We let M denote the family of n-state time-varying Markov chains with initial state
1, where A and B have the following two properties. First, all of the entries of A and B are rational
numbers of the form p/q where p and g are integers such that p < ¢ = 97 Second, the nth row of both A

and B has 0’s everywhere, except at the (n, n)th position, which is 1. Thus n is an absorbing, or halting,
state of M; that is, whenever a chain enters the halting state n it never leaves that state. Let {4, B}*
denote the set of infinite strings over the alphabet {A, B}. Then there is a one-to-one correspondence
between the chains in M and the strings o = ojag .. O .. in {A, B}¥. Mq is the chain corresponding
to « if and only if Py = .

We next define what we mean by the halting probability of a family of time-varying Markov chains.
Throughout, we denote the jth entry of an n-vector & by (2); or Z;. The vector &' denotes the n-vector
where all components are 0 except the ith, which is 1. Let a(F) denote the matrix product Hf__:l ;.
Then (&a(®)); is the probability that the value of the kth random variable in the chain Mq is j given
that the chain is initially in state . Wesay n is reachable in k steps from i on sequence « if(éioz(k))n > 0.
Similarly, we say that n is reachable from i on sequence « if for some k, n is reachable in k steps from
i. Since n is a halting state, for any « and Z € [0,1]", the sequence {(:Z'a(k))n}, k=1,2,..., is non-
decreasing. Also every element of the sequence is bounded above by 1. Hence klirilo (:Ea(k))n exists. We

call this limit the probability that Me halts, that is, reaches n from . When # = &' we call this the
halting probability of Mq and denote it by ps. We call inf p, the halting probability of M.
e 4

The goal of this section is to show that if the halting probability of M is at least p then for any o,
the probability that My halts in k22o(n) steps is at least p— 1 /2F. We first give an overview of the
proof. Consider any string @ as composed of substrings of length 2" and let pe,; be the probability
that M, halts in i2" steps. An important part of the proof is to derive a lower bound on the difference
Pe,it1 — Pa,iy Which 18 the probability that My halts in (i + 1)2" steps but not in i2™ steps. This lower
bound is obtained in two steps. Let S be the set of states in [n — 1] that are reachable from 1 in 2"
steps of a and from which the halting state n is reachable in a further 2™ steps of a. That is, if ' is the
String cgon41, Qiand2s .- o which is the string o with the first 2™ symbols removed, then

S={jen-1]| (6'a(M); > 0 and (& (') ®)n > 0}.

The first step in obtaining a lower bound on pg,i+1 — Pa,i is to show that if the chain M, is in any state
of S at step i2" with probability at least ¢, then the probability that the halting state is reached in a
further 27 steps is > ¢/ (2”)2n. This follows immediately from Lemma 2.1. The second step in obtaining
the lower bound is to show that with probability at least p— pa,i M, is in a state of S at step i2™. This
is proved in Lemma 2.3. Also in Lemma 2.3, the results of these two steps are combined to show that
Paitl = Poji 2 (p— pa‘i)/(,‘ln)?". Finally, this result is used in Lemma 2.4 to get an upper bound on
the rate of convergence of pa; to p and to complete the proof.

For any set S C [n] define the weight of S with respect to an n-vector T as Yjes Ti and denote it by
’ws(:f).

Lemma 2.1 Let S be any subset of [n — 1] and suppose that n is reachable from every j € S in k sieps
on My, where a € {A, B}*. Then for any vector & € [0, 117, (8a®), > B+ ws(@)/(2™M)F.

Proof: Write as @+ Z,€", where 4, = 0. Then (a?cv(k’))n =F,+ (ﬂa(k))n, since n is halting. Also
since all entries in the o; and & are nonnegative, (@a)p > 3 ses & (& a®),,.

Since n is reachable from every j € S in k steps, (& o(k)), > 0 by definition. Since the entries of
the a; are rational numbers of the form p/q where p < ¢ < 97 it follows that every non-zero entry
of a(®), and hence of g a®) is at least 1/(27)F. This can be proved easily by induction on k. Hence
(ea®)), > 1/(2")* and so (@a®™)n > Yjes %;/(2™)F. Therefore, (#aF)), > &n + ws(&)/(2™)F, as
required. 0O

We define a set S C [n—1] to be k-safe for any integer k, if for all sequences & € {A, B}¥, there
exists i € S such that n is reachable from ¢ on « in k steps. Similarly, 2 set SC[n—1]is safe if for all

« there exists i € 5 such that n is reachable from i on «. In Lemma 2.2 we prove that any safe set is
9" -safe.

Lemma 2.2 Let S © [n—1]. If S is safe then S is 2™-safe.

Proof: Suppose S is not 2"-safe, so that n is not reachable from any state of S in 27 steps on some
sequence o. Let S; be the set of states reachable from S in i steps of M,,. Since cach S; is a subset of
[n], by the pigeon hole principle S; = S, for some j, k, 1 <j< k<2 o =ai.. oj(ejtr-- Lan)ts
then the halting state is not reachable from any state of S on o' This contradicts the fact that S is
safe. O

Consider each string o € {A,B}¥ as composed of substrings of length on and let pe,; denote

(éla(i2n))n. Thus Pa,i 18 the probability that M, halts, that is, reaches state m from state 1, in 27

steps. Recall that po denotes the halting probability of My . Therefore, pa = Hm po,i- Recall that
3+ OO

p=inf pa is the halting probability of M.

Lemma 2.3 Let the halting probabilily of M be p and for each o let paii be the probabilily that Mo
halts at step i2". Then for any « and any i >0,

Paitt — Payi = (P = pai)] @2

Proof: Ifp—Pai< 0 the inequality 1s trivially true so we restrict our attention to the case where
p— pa,i > 0,

Let T = éla('ﬂn)q Let o' be the string Qigngt, Xizr42) - ; that is, the string o with the first 12"
symbols removed. Let S be the set of states that are reachable from state 1 in 12" steps of a and which
reach the halting state n in a further 2" steps. Thus,

§={jen-1] | #; >0 and (éj(a')(gn))n > 0}.
Alsolet 5={j€ln— 1] #; > 0 and (éj(a')(zn))n =0}.

We claim that G is not 2"-safe. This is because on sequence o', no state in G reaches the halting
state in 2™ steps, by definition of S. Then from Lemma 2.2, 5 is not safe. Thus there is some sequence
o' € {A, B} such that n is not reachable from any state of S on a”.

We use the fact that § is not safe to argue that the weight of 3 with respect to Z is less than 1 — p;
that is, wg(%) = Zjeﬁ I;<1l-—p Suppose to the contrary that wg(Z) = 1-P Then on the sequence
obtained by concatenating the first ;9n symbols of with o, the probability that the halting state 7
is eventually reached from state 1 is < p, contradicting the fact that p is the halting probability of M.
Hence

w(®) = 1 — winy(8) —ws(®) 2 1 = pai— (1= p) =P~ Pai-

o emma 2. it follows that (5 (@) 2 B ws@/YE NO B (5@
Pa,i = ¥n and ws(Z) = P — Pai: Substituting all of these values into the last inequality, Po,i+1 — Paii >
(p— pa,i)/(2n)2n, as required. O

Lemma 2.4 Let the halting probability of M bep and for every & let the probabilily that My halts at
step 12" be Pa,i- Then P = Pai < (1- 1/p)t, where p= (2")2n.

,

5

Also for any integer k > 0, the probabilily that My halts within k2™ steps of My is at least p— 1/2F
for all .

Proof: We prove the first part by induction on i. The basis, when ¢ = 0, is trivial since then
p—pai=p<l=(1- 1/p)?. Suppose that for some i>0,p—pa;i < (11— 1/p). Then

= (p = Pa,i) — (Pa,i+1 — Pesi)

<(p—Pai)—(P— Pa,i)/ from Lemma 2.3

= (p— P = 1/1)

< (1—1/p)itt (from the induction hypothesis).

P — Pa,itl

This completes the first part of the proof. From this, the probability that My halts within 12" steps is
Pai > p—(1— 1/p). If i = kp for some k then (1—1/p)* < 9-% Hence the probability that M, halts
within k2" steps is at least p — 1/2*%, as required. ©

The bound in Lemma 2.4 is fairly tight, as the next lemma shows.

Lemma 2.5 For any n, there is an integer m = O(n) and a family M of m-state Markov chains such
that the halting probability M is 1. Furthermore, for some chain in M, the ezpected time to reach the
halting state n is 927 n),

The proof of this lemma is postponed until the Section 4 because it is best described by constructing
an interactive proof that runs in expected time 92U™),

The following theorem combines Lemmas 9.4 and 2.5 to obtain our main result on the rate of halting
of time-varying Markov chains.

Theorem 2.1 Suppose M is a family of n-state time-varying Markov chains with halting probability p.
Then for any chain in M, the probability of halling in 22O(n) steps is at least p— o(1). Moreover, this
bound is the best possible.

3 Feedback Chains

In order to obtain our upper bounds on interactive proof systems, we need to generalize the definitions
and results of Section 2 to non-Markov chains which we call feedback chains. The reason for this is that
in an interactive proof, when the verifier communicates with the prover, it gives the prover information
about its current state, and the prover’s response to the verifier can depend on all of the information it
receives from the verifier. To model this, we associate a feedback symbol with each state of a feedback
chain; more than one state may be associated with the same feedback symbol. The value of the kth
random variable of a feedback chain may depend not only on k and the value of the (k — 1)st random
variable, but also on the feedback symbols of the values of random variables 1,...,k — 1. Without loss
of generality we assume that the set of feedback symbols is {0, 1}; the results extend easily to larger sets
of feedback symbols.

Formally, let S be a set of states {1,...,n} and let f be a function from S to {0,1}, called the
feedback function. Then a feedback chain is a sequence of random variables Xy, Xa,..., Xk, ... OVer
state space {1,...,n} such that for all integers ¢, j and states ai,...0k—1 there is a real number

p(i, 5, f(ar), - f(ax-1)) € [0,1] such that

Prob[Xy = j|X1 = a1,..., Xp-2 = Gk-2, Xio1 = i] = p(i, §, f(ar), faz), - . Flag-1))-

6

The number p(%, j, b1, - ., bg_1) is the probability of entering state j at time k given that the chain is
in state i at time k —1 and the feedback symbols at steps 1,...k— 1 are bi,...,br—1, respectively. Let
Py b = [p(3, 4, b1, - - Sl < i,7 < m denote the probability transition matrix at step k when the
feedback is b1, .. - 0k-

As with the time-varying Markov chains, we consider the special case where the transition matrices
come from the set {A, B} where A and B are stochastic matrices whose entries are rational numbers
of the form p/q where p and ¢ are integers such that p < g < 2™ We let M denote the family of all
such feedback chains when X; = 1. Just as there is a one-to-one correspondence between the family of
time-varying Markov chains in M and the strings in {4, B}¥, there is a similar correspondence between
the feedback chains in M and infinite binary trees whose nodes are labeled A or B. We next describe
this correspondence and introduce some useful notation. We illustrate these definitions in Figure 1.

Let T(A, B) be the family of infinite binary trees a where every node of & has two children, each
node is labeled either A or B and the left and right edges from a node are labeled 0 and 1 respectively.
Denote the root of tree o by root(e) and denote the matrix labeling node n by matriz(n). Define the
level of a node n in a tree to be the number of edges on the path from the root to . In particular, the
level of the root is 0. Suppose that 7 is a node at level k of some tree o and that for 1 < i < k, b; is the
label of the ith edge on the path from the root of @ to 7. Denote the string by...by by feedback(n).

Then there is a one-to-one correspondence between the chains in M and the set of infinite binary
trees o € T(A, B), where the chain Mgy corresponds to tree o if and only if for all b1 .. b, € {0,1}%,
Py, 5 = matriz(n), where feedback(n) = b1 ... bk

For each i and each node 7 of tree «, we define a vector #(n, 1) with the following property. Suppose
that 7 is at level k of tree a. Then (2(n,1)); is the probability that the (k + 1)st random variable in the
chain corresponding to & is j and that the feedback from the first k steps is feedback(n), given that the
chain starts in state .

The vector Z(7, 1) is defined inductively as follows. The base case is root(a) and we define z(root(a),?)
— . Let Fy be the matrix such that (5,7) = Lif the feedback symbol F(® associated with state @ is
0 and all other entries of Fy are 0. Let Fy =1~ Fo. Fo and Fy are defined so that for any vector
o, the ith component of 5F is ; if f(i) = 0 and is 0 otherwise. Similarly, (F1): = ¥ if f(i) =1
and is 0 otherwise. Then if 7 is any node with left and right children 7o and n; respectively then
e i), = (5(n, Hmatria(n)Fy); and (2(m,); = (@ln, Jmatriz(IL);

Figure 1 depicts the first four levels of a tree in T(A, B) that corresponds to a feedback chain with
states {1,2,3,4}. The feedback symbol of the first two states is 0 and of the second two is 1. The
initial state is 1 and state 4 is the halting state. The vector adjacent to each node 7 is (0, 1)- Thus
for example, the vector (0,0, '11'6’ ﬁ) adjacent to the rightmost node at level three of the tree indicates
that in the first two steps, the probability that the feedback is 1,1 and that the chain is in state 3 is -11(;
Similarly, the probability that the feedback is 1,1 and the chain is in state 4 is %. Also, if the feedback is
1,1 then the probability of being in either state 1 or 2 is 0 since the feedback symbol of these two states
is 0.

We define o(®) to be the matrix whose (ij)th entry is the probability that Xp41 = J» given that
X; = i. To do this, we let o(® =T and for k > 1, a&f) =), (£(n,1));, where the sum is taken over all
nodes 7 at level k of tree a. If o is any extension of the tree of Figure 1, the vector et () is the sum
of the vectors at level k. Hence for example, e a® = (§} L, 19). Thus the probability of being in
state 1 in three steps of M is 11/64.

(1,0,0,0)

® ®

(&, 2,0,0) (0,0, 2, %) (0,35,0,0) (0,0,0:33)

(0,0,0,0) (0,0,%,0) (%,%,0,0)(0,0,%,0)

0 0 1 0 %%-};1&-
L9 %t 0 L1 100
A=1 2 2 B=1| 2 2
030 3 i
0 0 0 1 0 0 0 1

Figure 1: The first three levels of a iree in T(A, B) that corresponds to a feedback chain with states
{1,2,3,4}. The feedback function f is defined by f(1) = f(2)=0, f(3) = f(4) = 1. Beside each mnode 7
is the vector Z(n, 1)

The definitions of reachability for feedback chains is a natural extension of the definition for time-
varying Markov chains. We say that n is reachable from i at 1, wheren is a node in tree o, if (Z(n,)n > 0.
Similarly, n is reachable from ¢ in k steps on « if (éia("‘))n > 0; equivalently, if n is reachable from i at
some node 7 at level k of tree a. Finally, n is reachable from i on a if n is reachable from ¢ on @ ink
steps, for some k.

As before, assume that n is a halting state of A and B. Then for any tree o and & € [0,1]", the
sequence {(fi:oz(k))n}, E=012,...1s non-decreasing. Also every clement of the sequence is bounded
above by 1. Hence klim (:l':a(k))n exists. We call this limit the probability of reaching n from & on the

S
chain M,. When Z = g we call this the halting probability of M, and denote it by Pa- We call inf pa
o
the halting probability of M.

Our goal is to show that if for all trees a € T(A, B), the halting probability pe of M, is at least p
then for any «, the probability of reaching n, or halting, in kt steps of My is at least p— 1/ 2% where
t= 2”(2”)2". The structure of the proof is just as in Section 2.

Lemma 3.1 Let S C [n~1] and suppose that n s reachable from every j in S in k steps on lree
o € T(A, B). Then for any vector z e€[0,1]%, (o) > Zn+ ws(Z)/(2™)F.

Proof: The proof is identical to Lemma 2.1, except in showing that all the entries of a(*) are
>1/ (2”)" . Again a straightforward proof by induction proves this. O

We define a set S C [n— 1] is said to be k-safe if for all trees o, there is some i € S such that n is
reachable from ¢ on . We say the set S is safe if S is k-safe for some k.

Lemma 3.2 Ifaset S is safe then it is " -safe.

Proof: Fix some safe set S. For each tree o and each node 7 of @ we define the set reachable(n) C [n]
to be {j € [n]|(8(n,7)); > 0 for some i € S}. That is, j is in reachable(n) if and only if j is reachable at
7 from some i € S. Clearly n is reachable from 7 in k steps on if and only if n € reachable(n) for some
n at level k of a.

Now suppose that S is not 2"-safe. Then for some a, for all nodes n of & in levels 0,...,2", n &
reachable(n). We construct an infinite tree o such that for all ¢ € S, n is not contained in any set
labeling a node of o/, proving that S is not safe.

We first prune « to obtain a finite tree that will be used as a template in the construction of .
An example of such a template is given in Figure 2 following this lemma. Let prune(a) be any subtree
of & with the following properties: (i) if n and ' are internal nodes of prune(e) then reachable(n) #
reachable(n’); (ii) if 7 is a leaf of prune(c) then reachable(n) = reachable(n’) for some internal node n"
of prune(a); and (iil) prune(a) is a full tree, that is, each node is either a leaf or has two children. A
tree prune(c) exists whose depth is at most 2". This is because if 7o, . . . N2 are nodes forming a path
of « starting at the root, then for two distinct nodes n;, n; on the path, reachable(n;) = reachable(n;) by
the pigeon-hole principle.

Now define o as follows. Let matriz(root(a’)) be matriz(root(e)). For any node 7’ in o' suppose
that reachable(n’) is the set I. Let n be the unique internal node of prune(a) such that reachable(n) = I
and let no and 7, be the left and right children of 7. Then if nh and 7} are the left and right children
of 7/, define matriz(ng) = matriz(no) and matriz(n}) = matriz(n,). From the definition of reachable(),
reachable(n)) = reachable(m;) for 1 = 0,1. By the construction of prune(w), there are internal nodes n;,
n; in prune(a) such that reachable(n}) = reachable(n;) and reachable(n}) = reachable(n;). From this it
follows that o is well defined.

Also, for all nodes 7' in tree &', ¢reachable(n’). Hence n is not reachable on o from any ¢ € S and
so S is not safe. This contradiction proves the lemma. O

To illustrate the proof of this lemma, we consider the example of Figure 1. Denote by I the left child
of the root of the tree of Figure 1. Note that in the subtree rooted at L, the probability of reaching the
halting state 4 is 0. Also the probability of being in states 1 and 2 at L is > 0. Let S = {1,2}; we show
that S is not safe. The tree of Figure 2 is derived directly from the left subtree of Figure 1 and is a
template for the construction of an infinite tree o’ such that n is never reached from set either state 1
or state 2 on o’. Each node n of the tree is labeled by feedback(n). Note that all internal nodes have a
unique label and all leaves are labeled by a set that also labels an internal node.

Let pe,; denote (éla(ﬂn))n. Thus pa,; is the probability that Me halts, that is, reaches state n
from state 1, in exactly 22" steps. Recall that po denotes the halting probability of My . Therefore,

Do = 1im po i
i—+00

Lemma 3.3 Let the halting probabilily of M be p and for each o let pa,; be the probability that Mq
halls in at most i2™ steps. Lel p= (2”)2n. Then for any o and any i >0,

Pa,i+1 — Pa,i > (P - Pa,i)li-

Proof: Asin Lemma2.3,if p— pa,i < 0 the inequality is trivially true so we restrict our attention
to the case where p — pa,i > 0.

Let 11, ..., 7m be the nodes at level i2” of @. For 1 <i<m let o} be the tree rooted at ;. Also let
St be the set of states that are reachable at n; from state 1 in 72" steps of @ and which reach the halting

9

{1,2}

() {1} (B) {3}

ORI ® 1 @iy ®6

g @O

Figure 2: Template that can be used to consiruct an infinite tree o such that state 4 is not reachable
from either of states 1,2 on o',

state n in a further 27 steps. Thus,

§i={jen~1]|(&mn,1);>0and (& (@h)®)n > 0.

Let & = {j € [n—11| (E(n:,1)); > 0 and (& (a})®))n = 0}. Then &i is not 2"-safe. This is because
on tree o}, no state in 3 reaches the halting state in 2" steps. Then from Lemma 3.2, St is not safe.

Therefore, for each i,1 <@ < m, since §¢ is not safe, there must exist a tree of such that n is not
reachable from any state in 5% on o',

In the rest of this proof, let & denote Z(n;, 1). We claim that S wzi(&") < 1 — p. Suppose to the
contrary that E:’f__l w§;(a?i) > 1 —p. Then on the tree obtained from « by replacing the tree rooted at
i by of, 1 <1 <m, the probability that the halting state n is eventually reached from state 1is < p,
contradicting the fact that p is the halting probability of M. Therefore,

S wsi(E)=1- S wimy(E) - S wa(E) 2 1= pai— (1= P) =P~ Paii:

1<i<m 1<ig<m 1<i<m

From Lemma 3.1, for all 7, CHCA) wei(E)/(27)2" . Hence,

T @)z Y 2 ws @)/

1<i<m 1<i<m 1<i<m

To complete the proof, note that po,i+1 = ZKKm(a’:i(a;)@n))m Pai = Zl<i<m(a—:i)” and as we
have just shown, D, <i<mw5(:7:i) > p— Pai- Substituting all of these values into the last inequality,
Paitt — Paji = (P = Pai)/ 1y S required. O

Lemma 3.4 . Let the halting probabilily of M be p and for every o let the probability that Mo halts in
al most 12" steps be Po,i- Then P — Paji < (1 —1/p)t, where p= (2”)2n.

Also for any inleger k > 0, the probability thal M, halls in at most k2™ steps of My is at least
p—1/2% for all o

Proof: The proof is identical to the proof of Lemma 2.4. O

To complete this section, we state our main result for feedback chains.

10

Theorem 3.1 Suppose M is a family of n-state feedback chains with halling probability p. Then for
any chain in M, the probabilily of halting in 220(n) steps is at least p— o(1). Moreover, this bound is
the best possible.

4 Space Bounded Interactive Proofs

We apply the results of the previous sections to obtain upper bounds on the power of space bounded
interactive proof systems. The following definition of an interactive proof system is similar to that used
by Dwork and Stockmeyer [4]. An interactive proof system consists of a prover P and a verifier V.
The verifier is a probabilistic Turing machine with a 2-way, read-only input tape, a read-write work
tape and a source of random bits (a coin). The states of the verifier are partitioned into reading and
communication states. In addition, the Turing machine is augmented with a special communication cell
that allows the verifier to communicate with the prover.

A transition function describes the one-step transitions of the verifier. Whenever the verifier is in a
reading state, the transition function of the verifier determines the next configuration of the verifier, based
on the symbol under the tape heads, the state and the outcome of an unbiased coin toss. Whenever
the verifier is in a communication state, the next configuration is determined as follows. Associated
with each communication state is a symbol; without loss of generality we assume that the set of such
symbols is {0, 1} When in communication state ¢, the verifier writes the symbol associated with ¢ in
the communication cell and in response, the prover writes a symbol in the cell. Based on the state and
the symbol written by the prover, the verifier’s transition function defines the next state of the verifier.

The prover P is specified by a prover transition function. This function determines what communi-
cation symbol is written by the prover in response to a symbol of the verifier, based on the input and
the sequence of all past communication symbols written by the verifier. Without loss of generality we
assume that all symbols written by the prover in the communication cell are from the set {a,b} and that
the input alphabet is 2. Thus the prover’s transition function is a mapping from ¥ X {0,1}* to {a,b}.
(Unlike the definition of Dwork and Stockmeyer, the prover’s transition function is deterministic, not
probabilistic. This does not weaken the model; see Condon 2.

Fix an input . The probability that (P, V) accepts (rejects) = is the limit as k — oo of the probability,
(taken over all coin tosses of the verifier), that (P, V) reaches the accepting (rejecting) state on & ink
steps.

The prover-verifier pair (P, V) is an interactive proof for L with error probability € < 1 /2 if

e for all z € L, the probability that (P, V) accepts z is>1—c¢,
o for all z ¢ L, and all provers P*, the probability that (P*, V) rejects © is>1—¢
Define an interactive proof system to be one-way if the verifier writes the same symbol in the com-

munication cell for all communication states. Thus in a one-way proof the kth symbol written in the
communication cell by the prover is just a function of k and the input.

An interactive proof system (P,V) is said to be s(n) space bounded if for all provers P*, the number
of work tape cells read or written by the verifier is O(s(n)), on any input of length n. If the number of
work tape cells used by the verifier is O(1), the verifier is a probabilistic 2-way finite state automaton

11

(2pfa). We denote the class of languages accepted by interactive proof systems that are O(s(n)) space
bounded by IP(space(s(n)). To be consistent with the notation of Dwork and Stockmeyer, we denote
IP(space(O(1)) by IP(2pfa).

For convenience we assume that the initial, accept and reject states of the interactive proof are
communication states and that whenever the verifier enters the accept and reject state it never leaves
that state. We also assume that the number of communication states is exactly half the total number
of states. Just as for Turing machines, a configuration of an interactive proof system for a fixed input
is a tuple containing an encoding of the work tape, the positions of the tape heads on the input and
work tapes, the state and the contents of the communication cell. If an interactive proof system (P, V)
is s(n) space bounded the length of any configuration of (P,V) is logn + O(s(n)). This is because
logn 4+ O(1) space is required to write the position of the input tape head, the state and the contents
of the communication cell and O(s(n)) space is required to write the work tape contents. Hence the
number of configurations of (P, V) is logn+0(s(n)),

In the next lemma we describe the relationship between space bounded interactive proof systems and
feedback chains.

Lemma 4.1 Let (P, V) be an s(n) space bounded interactive proof system and let x be an input of length
n. Then for some m = Qlogn+0(s(n)) {here exist m x m matrices A and B, whose entries are rational
numbers of the form p/q where p < q < 2™, such that the family M of feedback chains over {A, B} has
the following properties.

There is a 1-1 correspondence between the set of all pairs (P*,V) and the chains in M, such tha
if (P*, V) corresponds to M*, then the probability that (P*,V) enters a communication state k fimes,
with the kth configuration equal 1o the rejecling configuration, equals the probability that the M* reaches
its halting state in k steps.

Proof: We call a configuration of (P, V) that contains a communication state or reading state
a communication configuration or reading configuration, respectively. Without loss of generality, we
assume that the number of configurations of (P, V) on z is 2(m — 1) for some m = logn+0(s(n)),
where m — 1 are communication configurations and m — 1 are reading configurations. Number the
communication configurations {1,...,m — 1}. Assume that 1 is the initial configuration.

We define a family of feedback chains M with m states, m — 1 of which correspond to the commu-
nication configurations of V. We first define the two m x m matrices A and B. For i, j < m let pijq be
the probability of reaching configuration j from configuration ¢ of V when the symbol a has just been
written by a prover in the communication cell. Note that this probability is completely determined by i,
j, a and the transition function of V.. Also, we define p;mq to be the probability that V' never reaches a
communication configuration from 7, that is, the probability that the verifier loops forever in states that
are not communication states. Thus, for ¢ £ m let pime = 1 — }:k¢m Dika, 1et Pmmae = 1 and for i #m
let pia = 0. Let A = [pijq]. Define B = [pijp] similarly, replacing a everywhere by b.

All entries in A and B can be written as rational numbers of the form p/q where p < ¢ < 2™. This
is because the computation of the verifier between two successive times it enters a communication state
can be modeled by a stationary Markov chain, as follows. We describe this chain as a directed graph
with probabilities labeling the edges. The graph has 2m — 1 vertices, corresponding to the states of the
chain. Of these, 2(mn — 1) correspond to the configurations of V on z. The communication configurations
of V are the halting states of the chain; that is, each has an edge labeled with probability 1 to itself. In
addition there is one extra halting state and all states from which there is no path to a communication
configuration have one edge labeled 1 to this additional halting state. Each other state corresponds to

12

a reading configuration from which a communication configuration is reachable and has two outgoing
edges, to the possible configurations reachable from it in 1 step. The edges of the graph are labeled
from the set {0,1/2,1} and represent transitions. Therefore, the graph has m halting states and m—1
other states. It is well known that for any state in this chain, the probability of eventually reaching any
halting state from any state can be represented as the quotient of two integers p,q where p < ¢ < 2m.
(See Gill [7]) for one explanation of this).

The state of M that corresponds to the rejecting configuration of V' is the halting state. Label this
state of M the reject state. We now describe a 1-1 correspondence between the pairs (P*,V) and the
feedback chains in M. To do this, it is sufficient to relate each pair (P*, V) to a tree o € T(4, B). Let
§* be the transition function of P* and let a* be the infinite binary tree in T(A, B) such that for all
7€ a*,

. A, if 6*(z, feedback(n)) = a,
matriz(n) = { B, if 6*Em, feedbackgngg = b.

Since 6* is deterministic, a* is well defined.

Let M* = Mo» = X5, X5, 0 Xpo oo From the definition of A and B, it 1s straightforward to
show by induction on k that for j < m, the probability that X} = j is the probability that (P, V)
enters k communication configurations and that the kth communication configuration is j. Similarly,
the probability that X} is m is the probability that (P*, V) never enters k communication configurations
on . From this it follows that the probability (P*,V) enters a communication state k times and rejects
z equals the probability that the kth random variable of chain M* is the reject state. O

As a special case of Lemma 4.1, there is a 1-1 correspondence between one-way interactive proof
systems with space bounded verifiers on a fixed input and the family of time-varying Markov chains M
for some matrices A and B. This follows from the fact that in one-way interactive proof systems, the
kth symbol sent by the prover to the verifier is a function only of the input and k.

In the next theorem we use Lemma 4.1 and our results on feedback chains of Section 3 to bound
the running time of a space bounded interactive proof system on inputs it rejects. We prove this and
the other theorems of this section for 2pfa verifiers, but they all generalize immediately to other space
bounded verifiers.

Theorem 4.1 Let (P, V) be an interactive proof for language L with error probability € < 1/2, where v
is a 2pfa verifier. Let = be any string of length n that is not in L. Then for somet = 220(n), for any
prover P* and any k > 0, the probability that (P*, V') rejects in k2t steps is at least (1 —e)—2"F—1/k.

Proof: Fix any input z of length n such that 2 ¢ L. From Lemma 4.1, for some m = 9logn+0(1) —
O(n), there isa 1-1 correspondence between the pairs (P*,V) and a family M of feedback chains, where
A and B are m x m matrices with entries of the form p/q, p < g < 2™.

Moreover, there is a halting state labeled reject of M such that for all provers P*, if (P, V) cor-
responds to M* then the probability that (P*, V) enters a communication state k& times and the kth
communication configuration is rejecting, equals the probability that M* reaches the reject state in &
steps. Define the halting probability of M to be the probability of reaching the reject state. Since for
every P*, (P*,V) rejects © with probability > 1 — ¢, the halting probability of M is at least 1 —¢. We
now apply Lemma 3.4 to M. Let t = 2’”(2"")2m, so that ¢/ = 929(") Then the probability of reaching
the state labeled reject in at most kt’ steps of any M* is at least (1 —¢)— 1/ 2k,

Hence from Lemma 4.1, for any P*, the probability that (P*, V) enters a communication state kt’
times, and the kt' configuration is the rejecting configuration, is at least (1—¢) =27k If(P,V)

13

reaches a communication configuration Cy from communication configuration C, on some computation,
via transitions only through reading configurations, then the expected time for (P*,V) to reach Ca
from C; is at most 90(n) for any pair (Cy,C2). Hence the expected time for (P*,V) to reject z with
probability (1 —¢€) — 1/2% is kt'20(™). Then from Markov’s inequality, in £21'20(") steps of (P*, V), the
rejecting state is reached with probability at least (1—¢)—1/ 9% — 1/k. Choose t = 920" 55 that for
sufficiently large n, t > 4120(n) Then t satisfies the theorem. O

Theorem 4.2 IP(2pfa) C ATIME(22°™).

Proof: Let (P, V) be an interactive proof for language L with error probability € < 1/2. Let
¢ = 92°(" e the constant of Theorem 4.1 and let k be a constant such that (1—¢)— 1/28 —1/k > 1/2.
We describe an interactive proof system (P, V') that accepts L with error probability €+ 1 /2% +1/k and
runs in time k%t. From this the result follows easily, by applying a result of Condon and Ladner [3], that

the class of languages accepted by interactive proof systems that are t(n) time bounded is contained in
the class ATIME(poly(t(n))-

The verifier V' simulates the transitions of V, but in addition it keeps a count of the number of steps
V has taken at each point of the computation. If V takes k2t steps without ever halting, V’ halts the
computation and accepts. Otherwise, if the computation halts within k2t steps, V' halts and accepts if
and only if V' does.

Clearly (P, V') runs in time 92°(" We now show that (P, V') and (P, V) accept the same language.
Fix an input . If z is in L, then the probability (P, V') accepts « is at least the probability that (P, V)
accepts &, since V' always accepts if it halts the computation before V' halts. Hence (P, V') accepts &
with probability at least 1—¢, Ifz isnotin L, then from Theorem 4.1, with probability € — 1 / 2k —1/k
V rejects within L2t steps on all provers P*, and hence so does V'. Hence (P, V') accepts L with error
probability € — 1/2F — 1/k, as required. O

The following theorem states the upper bound for more general space bounded interactive proof
systems. The proof of this is identical to the proof of Theorem 4.2,

Theorem 4.3 For any space constructible function s(n) > logn, IP(space(s(n)) € ATIME(QQS(H)),
where S(n) = 206(M).

We can use the fact that one-way interactive proof systems correspond to time-varying Markov chains
to strengthen Theorem 4.9 for one-way proofs.

Theorem 4.4 One-way-IP(2pfa) C NTIME(22°™).

Proof: We describe a nondeterministic Turing machine M’ that accepts the same language as

(P, V).

Fix an input @ of length n and let A and B be the matrices defined in Lemma 4.1 where m = O(n).
From the transition function of V, M’ first computes Aand B, Lett = 220(n) be the constant of

Theorem 4.1. M’ guesses a string a1, ... &tk where each a; € {4, B}. Then M ! computes the product
a1, If the component of gla(t®) labeled reject is < 1/2, M’ accepts, else it rejects.

We first argue that M’ and M accept the same language. If ¢ is rejected by (P, V) then from Theorem
4.1, for all strings & of length kt, the probability of reaching the reject state in kt steps is > 1/2. Hence,
for all guesses of M', M ! rejects. On the other hand, if ¢ is accepted by (P,V) then on some string

14

@, the reject state is reached with probability < 1/2. If o is the prefix of this string of length kt, M’
accepts when it guesses o’.

It remains to show that M’ runs in time 220(n'). The entries of the matrices A and B can be written
as the quotient of two integers of value < 90(n) and can be constructed in time 90(n) | The time required
by M’ to guess the string o is 22° ™) cince this is the size of the tree. The vector gla(™*) is the product
of kt matrices from the set {4, B}, whose entries can be represented in binary as the quotient of two
numbers of length O(n). Hence the entries of the vector can be represented as the quotient of two binary
numbers of length 220(”), and the vector can be computed in time 220(n). Hence the total running time

13 20(71)
of M'is 2 . o

To complete this section, we show that the bounds of Theorem 4.1 are fairly tight, by constructing
an interactive proof system with a 2pfa verifier (P, V) that accepts the empty set but runs in expected
time 22ﬂ(n) on an input of length n. Moreover, the interactive proof halts with probability 1; that is, on
all inputs z and all provers P* on z, the probability that (P*, V) reaches either the accept or the reject
state is 1. The protocol followed by the prover and verifier which causes the game to run for this time
is a counting protocol. Similar protocols have been used previously by Peterson and Reif [11] and in a
multi-prover setting by Feige and Shamir [5]. The interactive proof we construct is one-way.

Theorem 4.5 There is a one-way interactive proof system with a 2pfa verifier that halts with probability
1 and whose expected running lime on an input of length n is 2 .

Proof: We describe an interactive proof system (P, V) that accepts the empty set. Informally on
an input of length n, the pair (P, V) repeatedly executes a protocol which we call the interactive count
protocol. The idea is that in each iteration of this protocol, the verifier tosses 97 coins and halts in the
reject state at the end of that iteration if all coin tosses are heads. Thus, the expected time for the
interactive proof to halt is double exponential in 7.

In describing the interactive count protocol and other protocols of Section 5, we use the expression “V
requests a symbol” from a prover to mean that V enters a communication state and writes a symbol in
the communication cell. (In the case of one-way proofs, the same symbol is written in the communication
cells every time the verifier enters a communication state.) Similarly we use the expression “V receives
a symbol” from a prover to mean that the prover writes the symbol in the communication cell. Let P
be the prover defined by the string ($N1$N2$.. .$N3.8)*, where N; is the number i in binary, padded
with 0’s on the left to be of length exactly n. That is, the kth symbol V' receives from P is the kth
symbol of this string. (To simplify the description of the protocol, we assume that the prover’s alphabet
has three symbols).

While receiving the prover’s string via the communication cell, the verifier performs some checks that
the prover’s string is of the form ($N18N2$.. .$N3-$)¥. If any of the checks reveal an error, the verifier
halts and rejects. In this way we can prove that for all provers P*, the probability of eventually halting
is 1. The checks performed at random times by the verifier are as follows:

e check-length, which is started just after the prover sends a $ and, using the input as a ruler, checks
that the next $ occurs after exactly n symbols from {0,1} have been sent by the prover. If not,
the verifier halts in a reject state.

e check-bit, which selects a random bit between two $’s, say the jth bit of the binary number after
the 7th $ symbol and checks that the jth bit of the number after the (i + 1)st $ is correct. To
choose a bit randomly, the verifier tosses a coin for every bit sent by the prover from the time the

15

check-bit procedure is called, until the coin-toss is heads at some bit or the prover gends a $. In
the latter case the verifier checks bit n of Niy1. To check the correctness of the bit chosen, the
verifier does the following.

_ V stores the value of the jth bit of N; on its work tape. Call this bit b;.

_ V initializes a binary value B to 0 and changes it to 1 if any bit k < j of N; is 0. This can be
done simply by observing all the bits sent by the prover before the next $, since the bits of lower
order than j are sent after j by the prover.

— Using the input as a ruler, V counts until the prover has sent n + 1 bits and stores the (n + 1)st
bit on its work tape. Let this bit be bg-‘ V also checks that a $ appears during that time. If not,
the verifier halts in a reject state.

_ Otherwise, V checks that if B = 1 then b;— =b; and if B = 0 that b;- equals the complement of
bj. If not, the verifier halts in a reject state.

While executing the interactive count protocol, the verifier tosses a coin each time a $ is sent by the
prover. When the prover sends a string of all 1’s between two $’s, the verifier terminates that iteration
of the interactive count protocol. If all coins tossed during that iteration are heads, the verifier halts
and rejects; otherwise the verifier starts another iteration of the above protocol. Since both checks use
the input as a ruler, only one can be performed at any time. Therefore the verifier initially chooses one
of the two checks at random. Whenever it completes a check successfully, it randomly chooses one of
the two checks again and repeats this until it detects an error or the protocol ends.

We claim that the expected running time of pair (P,V) is at least 92" This is true because the only

way (P, V) can halt is if it tosses 9" heads in one round of the protocol and the chance of this occurring
is 1/22".

Secondly, we need to show that for all provers P, (P*,V) eventually halts with probability 1.
Define a string $z18228 .. $x;$... to be valid if all the z;’s are of length n and Tip1 = Ti+ 1(mod 27).
Similarly, define a string $2,8z5%...82:8 ... to be invalid at ¢ if all the z;’s are of length n and
zip1 # i+ 1(mod 27) for all i.

For any prover P*, the string sent by P* to V must satisfy one of four properties. For each property,
we argue that (P*,V) eventually halts. (i) If a finite prefix is removed, the remaining string is valid. In
this case the verifier will halt in expected time double exponential in n from the time the prover starts to
send the correct part of the string. (ii) If a finite prefix is removed, the remaining string contains no $’s;
in this case, both check-length and check-bil will cause the verifier to halt. (iii) Infinitely many z;’s are
not of length n. In this case, the check-length procedure will cause the verifier to halt. (iv) The string
is invalid at infinitely many ¢. In this case, the check-bil procedure will eventually cause the verifier to
halt. O

5 Multi-Prover Interactive Proof Systems

In this section, we contrast the power of single-prover and multi-prover interactive proof systems. We
show that the class of 2-prover interactive proof systems with 2pfa verifiers accept exactly the set of
recursive languages.

The definition of multi-prover interactive proof systems is a straightforward generalization of single-
prover interactive proof systems. Briefly, a multi-prover interactive proof system consists of a finite

16

number of provers, Pi, Ps,..., P, and a verifier V. The verifier is just as in the single-prover model,
except that it has k communication cells, one per prover. Also the communication states of the verifier
are partitioned into k groups. Whenever the verifier’s state is a communication state in the ith group,
the next configuration is determined by communicating with the ith prover as in the single-prover model.

Each prover P; is specified by a prover transition function that determines what communication
symbol is written by P; in response to a symbol of the verifier. The symbol written by P; at the ith step
is based on the input and the sequence of all past communication symbols written by the verifier in the
sth communication cell. Thus the transition function of each prover is a mapping from T* x {0,1}* to
{a,b}. The probability that a multi-prover interactive proof system reaches the accept or reject state
and the probability that it halts are defined just as for single-prover interactive proof systems.

The system (Py, ..., P, V) is an interactive proof for L with error probability € < 1 /2 if

e for all z € L, the probability that (Py, ..., Pk, V) accepts is > 1 —¢,

o forallz ¢ L and all Pf,..., Py, the probability that (Pf,..., Py, V) rejects z is>1—e

We first show that any language accepted by a multi-prover interactive proof system is recursive.
Theorem 5.1 Any language accepted by a mulli-prover interactive proof system 18 recursive.

Proof: Let I be accepted by a k-prover interactive proof system (Py, . . . Pk, V) with error probability
€ < 1/2. We describe a nondeterministic Turing machine, M, that accepts L and has the property that
for all z ¢ L, all possible computations of M on z are finite. From this it follows that L is recursive.

The construction of M is as follows. On any input z, M nondeterministically simulates some inter-
active proof system (Pf,P3,..., P},V) on . The simulation proceeds in rounds. At the tth round,
M nondeterministically writes down the transition function of each prover on strings of length ¢. Then
M computes the probability that V' reaches the accept and reject states in exactly ¢ steps with these
provers. This probability can be computed just as in the single-prover case. If V reaches the accept
state on z with probability > 1/2 in t steps, then M halts in an accept state. Similarly, if V' reaches
the reject state on & with probability > 1/2, then M halts in a reject state. Otherwise M continues to
round ¢ + 1.

We first show that if z € L then on some computation of M on z, the accept state is reached. By
definition, if z € L then the limit as t — co of the probability that (Py, ... P, V) reaches an accept state
on z in f steps is > 1/2. Hence for some ?, with probability > 1/2 (P, ... P, V) reaches an accept state
on & in t steps. Furthermore, since V' never leaves a reject state once it reaches it, there cannot exist a
' such that the probability that (Pr,-.. Pk, V) reaches a reject state on z in t/ steps is > 1/2. Hence on
the computation of M that simulates (P1,... P, V) onz, M halts in an accept state at the ¢{th round
and so M accepts .

Next suppose that = ¢ L and let Py, ..., Py be any provers. Then the limit as ¢ — oo of the
probability that (Pf,... Py, V) reaches a reject state on z in ¢ steps is > 1/2. Hence there is some
¢ such that with probability > 1/2 (Pf,... P, V) reaches a reject state on z in ¢ steps. Since in all
computations of M, M simulates some provers Pr,..., Py, M haltsin a reject state in a finite number
of steps on all computations. O

In Theorem 5.2, we prove that any recursive language is accepted by some multi-prover interactive
proof system. We use the following lemma, due to Feige and Shamir [5]. Our proof of this is modified
slightly from theirs.

17

Lemma 5.1 For any recursive language L, there is a 2-prover interactive proof with a 2pfa verifier
(Py, P3, V) with the following properiies.

(i) For allz € L, (P1, P, V) accepts x with probability 1.

(i) For allz ¢ L, all (P, P35, V) reject & with probability > 1/2.

Proof: Let L be a recursive language and let M be a 1-tape deterministic Turing machine accepting
L. For any input z of M, we represent the computation of M on z by a string $C18C58$...8Cn$. Each
C; represents a configuration of M and is of the form v;q;w; where ¢; 1s the state of M at the ith step
on , viw; is the contents of the work tape and the head is positioned on the leftmost symbol of w;. We
also assume that the initial configuration is of length || + 1 and that the ith configuration is of length
|z|+i+1, by padding the right end of the configuration with blanks if necessary. Thus C = goz, where
qo is the initial state of M. We write C — C" if there is a transition of M from C to C".

We describe a 2-prover interactive proof system (Pi, P2, V) that accepts L. The proof system we
define is one-way; thus for a fixed input z each prover can be fully specified by a string. On input x, we
define provers P; and P to correspond to the string $C18C,8 . . .$C,,$ representing the computation of
M on z. In the rest of the proof we equate a prover with the string corresponding to it.

Next we describe the protocol of the verifier V. Tix an input 2. The verifier performs one of two
checks, to verify that both provers’ strings on z equal the computation of M on z. Initially V tosses a
coin to decide which check to perform; thus each check is equally likely. The first check is simply that
the strings of both provers are equal. A finite state verifier can easily check this by simply requesting
symbols from the provers in lock step and comparing the symbols. If both strings are equal, V halts in
an accept state; otherwise V' halts in a reject state.

In the second check performed by the verifier on input z, if $C18C> .. .$C,$ is the computation of
M on z then V checks the following conditions.

1. The string of the first prover starts with the string $C18.
9. The last state of the string of the first prover is an accept state.

3. For all ¢, if Cz@) is the string after the ith § of the second prover’s string and before the (7 + L)st
$ (if any) and Cgi)l is the string after the (i + 1)st § of the first prover’s string and before the
(i + 2)nd $ (if any) then C; and Ciy1 are of the form vgw where ¢ is a state of M and v,w € &*.
Also, C* — Cf}r)l and }Cﬁ)ll =M+ 1.

Using the input tape, the verifier can easily check condition (1) — that the string sent by the first
prover starts with the string $C1$ = qoz, where qo is the initial state of M. Also a 2pfa verifier can
easily check that condition (2) holds while receiving the symbols from the provers. To check condition
(3), V requests symbols from the provers in the following order. V first requests the string $C1$ from
the first prover. Then V iterates the following. It requests a symbol from the second prover and verifies
that it is the $ symbol. Next, V repeatedly requests one symbol from the first prover and one from the
second prover until it receives a ¢ from the second prover. Finally it requests a symbol from the first
prover and checks that it is the $ symbol. In this way, V receives the ith configuration of the second
prover while it receives the (i + 1)st configuration of the first prover and can perform check (3).

We now argue that (Pr, Pe, V) satisfies the lemma. Fix an input z and let $0C18C5$.. .8Cn$ be the
computation of M on z. First, suppose that ¢ € L. Then P, and P, both send the computation of M

18

on z to V. On either check, V reaches an accept state after a finite number of steps and so V accepts
with probability 1.

Next suppose that z ¢ L and let Py, P} be any pair of provers. We must show that (P, Ps,V)
reaches a rejecting state with probability at least 1/2 on z. If the strings corresponding to P{ and Py
are not equal then this is surely true, since with probability 1/2, V checks that the provers’ strings
are equal. Also if Py’s string is $C1$C-$.. .$C,$ then V halts in a rejecting state when performing
the second check, condition (2). Again V performs this check with probability 1/2 and so rejects with
probability 1/2. Finally we consider the case when the strings of P; and Py are equal but do not
equal the computation of M on z. Let the first symbol of P}’s string that differs from the string
$C1$C8 .. .Cm be after the ith $ symbol and before the (i + 1)st $ (if any). If ¢ = 1 then when V
performs check (1), it halts in reject state. Ifi > 1 then the string after the (i— 1)st $ of P»’s string must
start with C;_18, since Py’s string equals Py’s string and P,’s string is consistent with $C1$...$C .8, up
to the ith $ symbol. Thus when V receives the (i — 1)st configuration of P, it halts in a rejecting state
when executing the second check, condition (3). Since the second check is performed with probability
1/2, again V halts in a reject state with probability 1/2. O

We now show that 2-prover interactive proof systems accept the recursive languages.

Theorem 5.2 Let L be any recursive language. Then there is a 2-prover interactive proof sysiem with
a 2pfa verifier that accepts L and halts with probability 1.

Proof: Informally, we construct an interactive proof (P, P2, V), that repeatedly simulates the
protocol of Lemma 5.1, in order to reduce the error probability, and dovetails this with a simple procedure
of to guarantee that the interactive proof eventually halts.

On any input z, the verifier V repeatedly simulates some or all of the protocol of Lemma 5.1, which
is called the simulation protocol in this proof. V' maintains a count, num-accepts, of the number of times
the simulation protocol reaches the accept state. Initially, num-accepts is set to 0. If this count ever
reaches k, a constant that depends on the desired error probability, V halts in an accept state. If on
any iteration of the simulation protocol, a reject state is reached, V halts in a reject state. We assume
that V writes the symbol ‘0’ in the communication cell when executing the simulation protocol, when it
requests another symbol from a prover.

To ensure that the protocol eventually halts, V' does the following. Each time V requests a symbol
from the first prover, it flips a coin. If the outcome of the coin toss is heads, then the verifier restarts the
simulation protocol. To do this, V' writes the symbol ‘1’ in the communication cell indicating that the
simulation protocol is to be restarted. Otherwise the outcome of the coin toss it tails and V continues
the execution of the simulation protocol by writing a ‘0’ in the communication cell.

Next we define the provers P; and P,. Both provers are identical, and map the pair (z, v10¥) to the
kth symbol of $C1$...Crn$. Thus, each time the verifier restarts the simulation protocol, by writing
a 1 on the communication tape, the provers send the symbols of string $C1$...Cn$ until they receive
another ‘1’ symbol from the verifier.

Let = be any input. We show that for any provers P} and P3, (Py, P53, V) halts with probability
1 on z. We call any part of the computation of (Pf, Pg, V) between two steps where V writes the ‘1’
symbol in a communication cell a round of the computation. We say that V' makes progress in a round
if the simulation protocol either reaches the accept or the reject state in that round. The length of a
round is the number of symbols V requests from the first prover in that round. When the input is & we

19

say a prover’s string is invalid if it is not equal to the string $C1$...Cn8. Let the length of this string
be t.

Clearly the expected length of any round is finite — in fact the expected length is at most 2 steps.
Also the probability that a round has length at least ¢ is 2t=1 On a round of length at least ¢, the
probability that V makes progress is > 1/2 since the string V receives from the provers on such a round
must either be invalid or end in an accept or a reject state and in all of these cases, V reaches the accept
or reject state with probability at least 1/2. If V' makes progress at most k times it always halts. From
these observations it follows that V halts with probability 1 on any input.

When z € L, (Py, P2, V) never reaches a reject state since the strings of both provers are valid;
therefore (Py, P2, V) must reach the accept state with probability 1. Finally, we show that when z ¢ L,
for any P} and Pj, the probability that (Py, Py, V) accepts @ is at most 1 /2F. This follows from the
fact that on any round, if P* sends to V a string that contains an accept state, then the string must be
invalid, since z ¢ L. Each time P; sends such a string to V, with probability at least 1 /2V haltsina
reject state. Hence the probability that P; sends k such strings to V without V detecting an error is at
most 1/2F. O

Conclusions and Open Problems

We considered interactive proof systems with a 2pfa verifier and obtained new upper bounds on the
power of single-prover interactive proof systems. We have completely characterized the class of languages
accepted by multi-prover systems and have shown them to be much more powerful than the single-prover
systems. Our results extend to other types of space bounded verifiers. In proving these results, we also
obtained bounds on the rate of halting of time-varying Markov chains and feedback chains.

Some interesting questions remain unresolved. For example, there is a large gap between the best
known upper and lower bounds for IP(2pfa); the best known lower bound being deterministic exponential
time and the best known upper bound being alternating double exponential time. How can either of these
bounds be improved? Also, we do not know the power of one-way multi-prover interactive proofs with
a 2pfa verifier. In our proof of Theorem 5.2, which shows that multi-prover systems accept exactly the
recursive languages, the multi-prover system we construct is not one-way since the verifier communicates
with the prover to tell it when to restart the simulation protocol. Are one-way multi-prover systems
less powerful than two-way systems? In another direction, we would like to examine the rate of halting
of special types of time-varying Markov chains. We are currently investigating chains that can be
represented by an undirected graph; we conjecture that the rate of halting of such chains is at least an
exponential faster than in the general case.

References

[1] M. Ben-Or, S. Goldwasser, J. Killian and A. Wigderson, Multi-Prover Interactive Proofs: How to
Remove Intractability, Proceedings of the 20th Symposium on the Theory of Computing (STOC),
May, 1988, pp 113-131.

[2] A. Condon, Computational models of games, MIT Press, July 1989.

20

[3] A. Condon and R. Ladner, Probabilistic Game Automata, J ournal of Computer and System Sciences,
Volume 36, No. 3, June, 1988, pp 452-489.

[4] C. Dwork and L. Stockmeyer, Interactive Proof Systems with Finite State Verifiers, Tech. Report
RJ 6262, IBM Research Division, Almaden Research Center, San Jose, CA, 1988.

[5] U. Feige and A. Shamir, Multi-Oracle Interactive Protocols with Space Bounded Verifiers. Proceed-
ings of the conference on Structure in Complexity Theory, June 1989, pp 158-164.

[6] L. Fortnow, J. Rompel and M. Sipser, On the Power of Multi-Prover Interactive Protocols, Proceed-
ings of the conference on Structure in Complexity Theory, 1988, pp 156-161.

[7] J. Gill, Computational Complexity of Probabilistic Turing Machines, STAM Journal on Computing,
Vol. 6, No. 4, 1977, pps 675-695.

[8] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive protocols, Pro-
ceedings of 17th Symposium of the Theory of Computing (STOC), 1985, pp 291-304.

[9] J. Killian, Zero Knowledge with Log-Space Verifiers, Proceedings of 29th Symposium on Foundations
of Computer Science (FOCS), 1988, pp 25-35.

[10] R. J. Lipton, Recursively Enumerable Languages have Finite State Interactive Proofs, Technical
Report Number CS-TR-213-89, Princeton University, 1989.

[11] G. L. Peterson and J. H. Reif, Multiple-Person Alternation, Proceedings of 20th Symposium on
Foundations of Computer Science (FOCS), 1979, pp 348-363.

21

