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The execution behavior of a program component is defined as the sequence of values produced at the component during
program execution. This paper presents an efficient algorithm for detecting program components — in one or more pro-
grams — that exhibit identical execution behaviors. The algorithm operates on a new graph representation for programs
that combines features of static-single-assignment forms and program dependence graphs. The result provides insight
into the relationship between execution behaviors and (control and flow) dependences in the program. The algorithm,
called the Sequence-Congruence Algorithm, is applicable to programs written in a language that includes scalar vari-
ables and constants, assignment statements, conditional statements, and while-loops. The Sequence-Congruence Algo-
rithm can be used as the basis for an algorithm for integrating program variants.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors — compilers, interpreters, optimiza-
tion; E.1 [Data Structures] graphs

General Terms: Algorithms, Theory

Additional Key Words and Phrases: coarsest partition, control dependence, data congruence, data dependence, data-
flow analysis, execution behavior, program dependence graph, program representation graph, sequence congruence,
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1. INTRODUCTION

This paper defines a graph structure for representing programs and presents an efficient algorithm for
detecting program components (assignment statements and predicates) — in one or more programs — that
exhibit identical execution behaviors. By the execution behavior of a program component, we mean the
sequence of values produced at the component during program execution. For an assignment statement,
this means the sequence of values assigned to the target variable; for a predicate, this means the sequence
of boolean values produced by the successive evaluations of the predicate.

Although the problem of deciding whether two components have the same execution behaviors is, in
general, undecidable, a safe approximation can be achieved with reasonable effort. An algorithm for
deciding whether two components have the same behaviors is safe if the equivalence classes of com-
ponents determined by the algorithm are a refinement of the actual equivalence classes of components with
the same behavior. For example, in [Reps88, Reps89), it has been shown that two components must have
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the same execution behavior if the program slices! taken with respect to the two components are iso-
morphic. Even if the two components happen to be in different programs, the result still holds, as long as
the programs are run on identical — or actually just sufficiently similar — initial states.

This paper presents a new algorithm, called the Sequence-Congruence Algorithm, for detecting program
components that exhibit identical execution behaviors. As with the equivalence-detection algorithm based
on comparing slices, the Sequence-Congruence Algorithm can detect components with identical execution
behaviors even if the components are in different programs. Two such components that are in the same
equivalence class have identical execution behaviors whenever the two programs are run on identical - or
sufficiently similar — initial states. The Sequence-Congruence Algorithm is strictly stronger than the
method based on comparing slices in that all pairs of components with isomorphic slices are found by the
Sequence-Congruence Algorithm as well, but not vice versa.

The Sequence-Congruence Algorithm operates on a graph representation of programs. These graphs are
called program representation graphs in this paper to distinguish them from other related representations.
As explained in Section 3, program representation graphs combine features of static-single-assignment
forms [Shapiro70, Alpern88, Cytron89, Rosen88] and program dependence graphs
[(Kuck81, Ferrante87, Horwitz88].

The Sequence-Congruence Algorithm is based on an idea of [Alpern88] for finding equivalence classes
of program components by first optimistically grouping possibly equivalent components in an initial parti-
tion and then finding the coarsest partition consistent with the initial partition. However, in refining the ini-
tial partition, the algorithm of [Alpern88] considers only flow dependences among program components. It
is shown in [Alpern88] that components in the same partition produce the same values at certain moments
during execution. In contrast, the Sequence-Congruence Algorithm given in this paper considers control
dependences as well as flow dependences and can detect components whose execution behaviors are ident-
ical.

A further point of contrast between our work and that of [Alpern88] concerns the idea of applying parti-
tioning to more than one program simultaneously. This idea was not studied in [Alpern88], and the seman-
tic property proved there concerning congruent vertices does not characterize the result of applying the
algorithm to multiple programs simultaneously. The algorithm from [Alpern88] is essentially the first
phase of our Sequence-Cengruence Algorithm, and our first result (the Data-Congruence Lemma) estab-
lishes a semantic property of vertices in the same equivalence class when the algorithm is applied to multi-
ple programs. We then go on to show that with an additional partitioning phase, it is possible to detect pro-
gram components that have identical execution behaviors even though they occur in different programs.

The reason for our interest in detecting components of different programs that have identical execution
behaviors is that such information is fundamental to our algorithm for automatic program integration
[Horwitz88]. Given a program Base and two variants A and B » éach created by editing separate copies of
Base , our program integration algorithm determines whether the changes made to Base to produce A and
B interfere; if there is no interference, the algorithm produces a merged program M that incorporates the
changed behavior of A with respect to Base, the changed behavior of B with respect to Base, and the
unchanged behavior common to Base, A, and B .

One of the key issues in program integration is how to determine whether a component of a variant has
the same execution behavior as the corresponding component of Base. The integration algorithm of

"The slice of a program with respect to a program component ¢ is (roughly) all the statements and predicates in the program that can
potentially affect the values produced at ¢ during program execution.
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[Horwitz88] compares program slices as a safe way of determining whether two program components have
identical execution behaviors. The Sequence-Congruence Algorithm provides an alternative method for
determining whether two components have the same execution behaviors. It can be shown that the
Sequence-Congruence Algorithm finds larger equivalence classes than the method based on comparing
program slices. A new algorithm for automatic program integration that makes use of the Sequence-
Congruence Algorithm is described in [Yang89].

The remainder of this paper is organized into four sections, as follows: Section 2 describes the program-
ming language under consideration in this paper. Section 3 defines program representation graphs. Section
4 presents the Sequence-Congruence Algorithm and justifies the algorithm. Section 5 discusses how the
work reported here relates to previous work.

2. THE PROGRAMMING LANGUAGE UNDER CONSIDERATION

We are concerned with a programming language with the following characteristics: expressions contain
only scalar variables and constants; statements are either assignment statements, conditional statements,
while-loops, or end statements. An end statement, which can only appear at the end of a program, names
zero or more of the variables used in the program. An example program is shown in the upper left-hand
corner of Figure 1.

Our discussion of the language’s semantics is in terms of the following informal model of execution.
We assume a standard operational semantics for sequential execution; the statements and predicates of a
program are executed in the order specified by the program’s control flow graph; at any moment there is a
single locus of control; the execution of each assignment statement or predicate passes control to a single
successor; the execution of each assignment statement changes a global execution state. An execution of
the program on an initial state yields a (possibly infinite) sequence of values for each predicate and assign-
ment statement in the program; the it element in the sequence for program component ¢ consists of the
value computed when ¢ is executed for the i** time. The variables named in the end statement arc those
whose final values are of interest to the programmer; when execution terminates, the final state is defined
on only those variables in the end statement.

3. PROGRAM REPRESENTATION GRAPH

Program representation graphs (PRGS) combine features of static-single-assignment forms (ssa forms)
[Shapiro70, Alpern88, Cytron89, Rosen88] and program dependence graphs
[Kuck81,Ferrante87,Horwit288]. In the ssA form of a program, special assignment statements (¢ assign-
ments) are inserted so that exactly one assignment to a variable x, either an assignment from the original
program or a ¢ assignment, can reach a use of x from the original program. The ¢ statements assign the
value of a variable to itself; at most two assignments to a variable x can reach the use of x in a ¢ statement.
For instance, consider the following example program fragments:

Ly =1 Ly x:=1
if p then if p then
Lo x =2 Lo x:=2
fi fi
Lq =x+3 Lj x = by(x)
Ls y=x+3

In the source program (on the left), both assignments to x at L and L can reach the use of x at L3; after
the insertion of “x = ¢;{x)” at L3 (on the right), only the ¢ assignment to x can reach the use of x at La.
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Both assignments to x at L and L can reach the use of x atL,.

Different definitions of program dependence graphs have been given, depending on the intended applica-
tion; nevertheless, they are all variations on a theme introduced in [(Kuck72], and share the common feature
of having an explicit representation of data dependences. The program dependence graph defined in [Fer-
rante87] introduced the additional feature of an explicit representation for control dependences. The pro-
gram representation graph, defined below, has edges that represent control dependences and one kind of
data dependence, called flow dependence,

The program representation graph of a program P, denoted by Rp, is constructed in two steps. First an
augmented control flow graph is built and then the program representation graph is constructed from the
augmented control flow graph. An example program, its augmented control flow graph, and its program
representation graph are shown in Figure 1.

program Main
sum =0
x =1

while x <11 do

SUm = sum +x
x:=x+1
od
result :=result + sum
end(result )

D,

result = Initialize,epy

Figure 1. An example program is shown on the top left. This example sums the integers 1 to 10 and adds the sum to
the variable result

graph for the program. Note that there is a control dependence edge from the while predicate x < 11 to itself. The
boldface arrows represent control dependence edges; thin arrows represent flow dependence edges. The label on each
control dependence edge — true or Jalse - has been omitted.




Step It

The control flow graph? of program P is augmented by adding Initialize, FinalUse , ¢, Qenter » a4 et
vertices, as follows:

(1) A vertex labeled “x := Initialize,” is added at the beginning of the control flow graph for each vari-
able x that may be used before being defined in the program. If there are many Initialize vertices for
a program, their relative order is not important as long as they come immediately after the Entry ver-
tex.

(2) Avertex labeled “FinalUse (x)” is added at the end of the control flow graph for each variable x that
appears in the end statement of the program. If there are many FinalUse vertices for a program,
their relative order is not important as long as they come immediately before the Exit vertex.

(3) For every variable x that is defined within an if statement, and that may be used before being
redefined after the if statement, a vertex labeled “x := dy(x)” is added immediately after the if state-
ment. If there are many ¢; vertices for an if statement, their relative order is not important as long as
they come immediately after the if statement.

~ (4) Forevery variable x that is defined inside a loop, and that may be used before being redefined inside
the loop or may be used before being redefined after the loop, a vertex labeled “x = Qenter ()7 18
added immediately before the predicate of the loop. If there are many dencer vertices for a loop, their
relative order is not important as long as they come immediately before the loop predicate. After the
insertion Of §ener vertices, the first Genser VErtex of a loop becomes the entry point of the loop.

(5) Forevery variable x that is defined inside a loop, and that may be used before being redefined after
the loop, a vertex labeled “X = Qexit (x)” is added immediately after the loop. If there are many Qexis
vertices for a loop, their relative order is not important as long as they come immediately after the
loop.

Note that Q.ner vertices are placed inside of loops, but ¢, vertices are placed outside of loops.

Step 2:

Next, the program representation graph is constructed from the augmented control flow graph. The ver-
tices of the program representation graph are those in the augmented control flow graph (except the Exit
vertex). Edges are of two kinds: control dependence edges and flow dependence edges.

A control dependence edge from a vertex u to a vertex v, denoted by u —> . v, means that, during exe-
cution, whenever the predicate represented by u is evaluated and its value maiches the label — true or false
— on the edge to v, then the program component represented by v will eventually be executed if the pro-
gram terminates. The source of a control dependence edge is the Entry vertex or a predicate vertex.

. There is a control dependence edge from Eniry 1o a vertex v if v occurs on every path from Entry to
Exit in the augmented control flow graph. This control dependence edge is labeled true.

] There is a control dependence edge from a predicate vertex u 10 a vertex v if, in the augmented con-
trol flow graph, v occurs on every path from u to Exit along one branch out of u but not the other.
This control dependence edge is labeled by the truth value of the branch in which v always occurs.

I control flow graphs, vertices represent the program'’s assignment statements and predicates; in addition, there are two additional
vertices, Entry and Exit , which represent the beginning and the end of the program.



Note that there is a control dependence edge from a while predicate to itself.> Methods for determining
control dependence edges for programs with unrestricted flow of control are given in
[Ferrante87, Cytron891; however, for our restricted language, control dependence edges can be determined
in a simpler fashion: Except for the extra control dependence edge incident on a Dener vertex, the control
dependence edges merely reflect the nesting structure of the program (see [Horwitz88].)

A flow dependence edge from a vertex  to a vertex v, denoted by u —>; v, means that the value pro-
duced at 4 may be used at v. There is a flow dependence edge u —y v if there is a variable x that is
assigned a value at u and used at v, and there is an x-definition-free path from u to v in the augmented
control flow graph. The flow dependence edges of a program representation graph are computed using
data-flow analysis. For the restricted language considered in this paper, the necessary computations can be
defined in a syntax-directed manner (see [Horwitz87]).

The imported variables of a program P, denoted by Impp, are the variables that might be used before
being defined in P, i.e., the variables for which there are Initialize vertices in the PRG of P .

Textually different programs may have isomorphic program representation graphs. However, we have
shown that if two programs have isomorphic program representation graphs, then the programs are semant-
ically equivalent [Yang89a]:

THEOREM. (EQUIVALENCE THEOREM FOR PROGRAM REPRESENTATION GRAPHS). Suppose P and Q are
programs for which Rp is isomorphic to Rg. If 6 is a state on which P halts, then for any state & that
agrees with & on the imported variables of P,(1)Q haltson &, (2) P and Q compute the same sequence
of values at each corresponding program component, and (3 ) the final states of P and Q agree on all vari-
ables for which there are final-use vertices in Rp and Ry

4. THE SEQUENCE-CONGRUENCE ALGORITHM AND THE SEQUENCE-CONGRUENCE
THEOREM

In this section we present the Sequence-Congruence Algorithm and a theorem about the equivalence
classes of vertices it produces. The Sequence-Congruence Algorithm divides vertices of one or more pro-
gram representation graphs into disjoint equivalence classes. The theorem states that program co:muponents
designated by vertices in the same class produce the same sequence of values when the programs are run
on sufficiently similar initial states.

This section is divided into three subsections: Section 4.1 presents the Sequence-Congruence Algorithm.
Section 4.2 proves the Sequence-Congruence Theorem. Section 4.3 describes three simple enhancements
to the Sequence-Congruence Algorithm.

4.1. The Sequence-Congruence Algorithm

The execution behavior of a program component is, by definition, the sequence of values produced at the
component during program execution. A component’s execution behavior depends on three factors: the
operator in the component, the operands available when the operator is applied, and the predicates that con-
trol the execution of the operation. It is not unreasonable to expect that vertices with the same operators,
equivalent operands, and equivalent controlling predicates will have the same execution behaviors. This
expectation is confirmed by the Sequence-Congruence Theorem, which is proved in Section 4.2.

*In the program dependence graphs of [Horwitz88], the control dependence edge from a while predicate to itself is omitted. However,
such edges are needed for the Sequence-Congruence Algorithm, so they are included in program representation graphs.



The Sequence-Congruence Algorithm consists of two passes. The initial partition puts vertices with the
same operators into the same classes. Flow dependence edges (and some additional edges) are used in the
first pass to refine the initial partition; in the second pass, control dependence edges are used to further
refine the partition obtained from the first pass. Both passes make use of the same partitioning algorithm to
refine the partition of the graph’s vertices; only the starting partition and the edges considered in the two
passes are different.

The operator in a statement or a predicate vertex is determined from the expression part of the vertex.
For instance, a statement like “x :=a + b * ¢ has the same operator as a statement like “y :=d +e * 7
but a different operator than a statement like “z =g * h”; that is, the structure of the expression in the
vertex defines the operator. An expression like “a +b * ¢” is viewed as an operator that takes three argu-
ments a, b, and ¢, and retumns the valueof “a +b * c”.

A predicate is simple if it consists of a single boolean variable; an assignment statement is simple if its
right-hand-side expression consists of a single variable. Both vertices that represent simple predicates and
vertices that represent simple assignments are referred to as simple vertices. The operator in a simple ver-
tex is the identity operator, that is, an operator that takes one argument and returns the value of the argu-
ment. An assignment or a predicate vertex is a constant vertex if its expression consists of a single con-
stant. The operator in a constant vertex is the constant operator that takes no argument and always returns
the value of the constant.

Two vertices that are the same kind of ¢ vertex (i.e., Qenter » Dexit » OF Biy) OF that have the same operators
must have the same number of incoming control and flow dependence edges in the PRGs. Thus, we can
speak of the “corresponding” flow (or control) predecessors of the two vertices. To be more specific, we
assign rypes to edges in the PRGs; the notion of corresponding flow (or control) predecessors of two vertices
is then defined in terms of the types of edges. (Note that the numbers for the edge types, specified below,
are chosen arbitrarily; these numbers are used only to distinguish different types of edges.)

Due to the presence of ¢ vertices in PRGs, each use of a variable in a non-¢ vertex is reached by exactly
one definition (either one of the original assignment statements Or One of the ¢ assignments). Therefore, if
the operator in a non-¢ vertex is an n -ary operator, there are exactly n incoming flow dependence edges
for this vertex. These flow dependence edges are assigned types 1,2,...,n,one for each operand. Edge-
type numbers for other kinds of edges in a PRG startatm + 1, where m is the greatest number of flow edges
incident on some non-¢ vertex. In what follows, we will assume that m = 3, and start numbering other
edges at 4.

A vertex u labeled “x = ¢y(x)” has two incoming flow dependence edges: one represents the value that
flows to u from or around the true branch of the associated if statement; the other represents the value that
flows to u from or around the false branch. The flow dependence edges incident on a ¢y vertex are
assigned types 4 and 5, respectively. For instance, consider the following program fragment:

Ly x =1
if p then
Lz X = 2
else
skip
fi
La x = ¢ylx)

The definition at L, reaches L3 around the false branch of the if statement, so the flow dependence edge
from L, to L3 has type 5. The definition at L reaches L3 from the true branch, so the flow dependence



edge from L, to L4 has type 4.

A vertex u labeled “x = §p,, (x)” has two incoming flow dependence edges: one represents the value
that flows to u from outside the associated loop (due to an assignment to x before the loop); the other
represents the value that flows to  from inside the loop. These flow dependence edges are assigned types
6 and 7, respectively.

A vertex u labeled “x = ¢,y (*)” has one incoming flow dependence edge; the source of this flow
dependence edge is the associated Qenser vertex. The flow dependence edge incident on a Ouri vertex is
assigned type 8.

All vertices except §on., and while predicate vertices have exactly one incoming control dependence
edge. The control dependence edges that form self-loops on while predicates are assigned type 9. The
incoming control dependence edge of a ¢.mer vertex u whose source is not the associated while predicate
for u is assigned type 10 or 11 depending on whether the label on the control dependence edge is true or
false. All other control dependence edges are assigned type 12 or 13 depending on whether the label on the
control dependence edge is frue or false.

The corresponding flow (or control) predecessors of two vertices uy and u; are two vertices v, and v,
such that the flow (or control, respectively) dependence edges u; — vy and u2 —> v, have the same type.

The partitioning algorithm in Figure 2 is adapted from [Alpern88, Aho74], which is based on an algo-
rithm of [Hopcroft71] for minimizing a finite state machine. The m -successors of a vertex u are the ver-
tices v such that there is an edge u —> v of type m. The partitioning algorithm finds the coarsest partition
of a graph that is consistent with a given initial partition of the graph’s vertices; it guarantees that two ver-
tices v and v’ are in the same class after partitioning if and only if they are in the same class before parti-
tioning and for any predecessor u of v there is a corresponding predecessor u’ of v* such that & and 1’ are
in the same class after partitioning,

Figure 3 presents the Sequence-Congruence Algorithm, which operates on one or more program
representation graphs. When the algorithm operates on more than one program’s PRG, the multiple PRGs
are treated as one graph; thus, when we refer below to “the graph,” we mean the collection of PRGs,

Pass I1:

For the first pass, some additional edges are added to the graph: an edge from every if predicate to each
associated ¢y vertex and an edge from every while predicate to each associated ¢.; vertex are added to the
PRGs. These added edges are assigned types 14 and 15, respectively. The initial partition is based on the
operators in the vertices. Initially, there is a class for all the non-¢ vertices that have the same operators.
There is a class for all the Entry vertices; for each variable x there is a class for all the Initialize, vertices;
for each nesting level of while loops, there is a class for all the Geneer vertices at this nesting level; there is a
class for all the ¢, vertices; there is a class for all the ¢y vertices. The initial partition is refined by the
partitioning algorithm; however, all control dependence edges are ignored in the first pass. (The edges
added in the beginning of the first pass — those of types 14 and 15 - are discarded at the end of the first
pass.)

Pass 2:

The second pass considers only control dependence edges, and applies the partitioning algorithm again to
refine the partition obtained from the first pass.

Definition.* Vertices are data-congruent if they are in the same class after the first pass of partitioning.




The initial partition is B{1], B[2], ..., Bp]
WAITING = { 1, 2, P }

q:=p
while WAITING # & do
select and delete an integer i from WAITING
for each type m of edge do
FOLLOWER := &
for each vertex u in B[i] do
FOLLOWER := FOLLOWER w m -successor(u)
od
for each j such that B[j] N FOLLOWER # & and Blj] & FOLLOWER do
q:=q+1
create a new class B[q]
B[q] := B[j] N FOLLOWER
B[j] :=B[j]-Bldl
if j € WAITING
then add q to WAITING
else if size(B[j]) < size(8lql)
then add j to WAITING
else add q to WAITING
fi
fi
od
od
od

Figure 2. The partitioning algorithm. This algorithm, which is adapted from [Alpern88, Aho74], finds the coarsest
partition of a graph that is consistent with a given initial partition of the graph’s vertices. The algorithm guarantees that
two vertices v and v’ are in the same class after partitioning if and only if they are in the same class before partitioning
and for any predecessor 4 of v there is a corresponding predecessor u” of v* such that u and 4’ are in the same class
after partitioning.

Vertices are sequence-congruent if they are in the same class after the second pass of partitioning.

In the worst case, the data-congruence classes can be determined in O (E, log E1) where E, is the
number of flow dependence edges plus the number of ¢y and ¢ vertices. The sequence-congruence
classes can be determined in O (E1 log E1 + Ezlog E ,) where E is as above and E» is the number of con-
trol dependence edges in the graph.

Example. Figure 4 shows an example of partitioning. The initial partition is <A0,B0>, <A1,B1>,
<A2,B2>, <A3,B3>, and <A4, B4>. This partition remains unchanged after the first pass of partition-
ing. After the second pass of partitioning, the final partition is <AQ, BO>, <Al>, <B1>, <A2, B2>, <A3,
B3>, and <A4, B4>. Note that Al and Bl are no longer in the same class; thus, A1 and B1 are data-
congruent but not sequence-congruent. Note also that vertices A4 and B4 are sequence-congruent even

“Our terminology differs from that of [Alpemn88]: our concept of data-congruence is similar to that of congruence in [Alpemn88]; our
concept of sequence-congruence is a new concept that does not appear in {Alpem88].
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Pass 1: Add an if-edge from every if predicate to each associated Oy vertex.
Add a while-edge from every while predicate to each associated Qexir Vertex.
The starting partition is based on the operators in the vertices as stated in the text.
Apply the partitioning algorithm to refine the initial partition, ignoring all control dependence edges.

Pass 2:  The starting partition is the partition obtained from the first pass.
Apply the partitioning algorithm, using only control dependence edges, to further refine the partition.

Figure 3. The Sequence-Congruence Algorithm. The Sequence-Congruence Algorithm consists of two passes. Both
passes make use of the partitioning algorithm presented in Figure 2; only the starting partition and the edges considered
in the two passes are different.

though their slices are not isomorphic (in this example, the slices with respect to A4 and B4 consist of the
respective program fragments in their entirety).

4.2. The Sequence-Congruence Theorem

The Sequence-Congruence Algorithm operates on program representation graphs; the Sequence-
Congruence Theorem relates the partitioning operation to the execution behaviors of program components.
The Theorem asserts that components designated by sequence-congruent vertices produce the same
sequences of values when the programs are run on sufficiently similar initial states. (Since a vertex in a
PRG designates a statement or a predicate in the program, in what follows, “a vertex” is used as a synonym
for “a statement or a predicate.”)

THEOREM. (SEQUENCE-CONGRUENCE THEOREM). Let Py and P, be two (not necessarily distinct) pro-
grams with imported variables Imp and Imp,, respectively. Let 61 and o3 be two states that agree on
(ImpiImp2). Let x1 and x, be two vertices in P\ and P, respectively, that are sequence-congruent.
Then
(1)If Py and P halt on &, and o, respectively, then the sequences of values produced at x, and x,,
respectively, are the same.

(2)If P1 halts on o1 but P does not halt on o,, then the sequence of values produced at x> is an initial seg-
ment of the sequence of values produced at x.

(3) If P1 does not halt on o, but P, halts on 6, then the sequence of values produced at x1 is an initial seg-
ment of the sequence of values produced at x,.

(4) If neither P nor P, halts on o, and o,, respectively, then either (a) the sequences of values produced
at xy and x,, respectively, are identical infinite sequences, or (b) the sequence of values produced at x, is
finite and is an initial segment of the sequence of values produced at x,, or vice versa.

Since the theorem concerns execution behaviors of program components, we define explicitly the notion
of a moment immediately before (or after) an execution step. Statements and predicates of a program P
are executed in the order specified by the augmented control flow graph of P. ¢ assignments are con-
sidered as statements during program execution. A moment immediately before (or after) the execution of
a vertex u denotes the time when u is about to start executing (or, respectively, has just finished). There is
a subtle distinction between a moment immediately after the execution of a vertex and a moment immedi-
ately before the execution of the following one. For instance, consider the following program fragment:
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Al: x=1

A0 ifp

A2: thenx =2
fi

A3: x = 0ix)

Ad: y=x+3

BO: ifp

B2: then u =2

B1i: elseu =1
fi

B3: u = lu)

Ba: w=u+3

Figure 4. R, and R are two fragments of program representation graphs. The incoming flow dependence edges of the
two if predicates are omitted. The labels on the vertices are included for ease of reference only. The initial partition is
<A0,B0>, <A1,B1>, <A2,B2>, <A3,B3>, and <A4, B4>. This partition remains unchanged after the first pass
of partitioning. After the second pass of partitioning, the final partition is <A0, BO>, <Al>, <Bl>, <A2, B2>, <A3,
B3>, and <A4, B4>. Note that Al and B1 are no longer in the same class; thus, A1 and B 1 are data-congruent but not
sequence-congruent.

Ly x =0
Lo while p do

od

Suppose there are N0 dener Vertices for the while loop. The locus of control is outside the loop at the
moment immediately after the execution of L,, whereas the locus of control moves inside the loop at the
moment immediately before the execution of L,. Note also that the locus of control moves outside the loop
at the moment immediately after the while predicate L2 evaluates to false.

It is important to identify the loops that are executing at a moment during program execution. A loop L
is executing at a moment ¢ if the locus of control at ¢ is inside L. The current loop predicate at a moment
¢, written as CLP(t), is the predicate of the innermost loop that is executing at ¢. If there is no such loop,
CLP(¢) is the Entry vertex. In particular, if ¢ is the moment immediately before (or after) executing a Oenter
statement, the locus of control is inside the loop of the Qenter statement at ¢ ; hence CLP(t) is the predicate of
the associated loop.

A vertex u is an ancestor of another vertex v if there is a control-dependence path from u to v in the
PRG; thus, while predicates are ancestors of the associated dener vertices. A loop encloses a vertex v (or,
equivalently, v is enclosed in the loop) if the predicate of the loop is an ancestor of v.
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Since loops may be executed repeatedly, we distinguish executions and iterations of a loop. During pro-
gram execution, there may be several executions of a loop; during each execution, there may be one or
more iterations. There is at least one iteration during an execution of a 100p:® the §eneer vertices and the
loop predicate must be executed at least once during an execution of the loop.

Since a vertex enclosed in a loop may be executed repeatedly, a vertex is active at a moment ¢ (defined
below) if the “appropriate” value produced at the vertex is available for use at t [Alpern88].

Definition. A vertex u in a program representation graph is active at a moment ¢ during program execu-
tion if (1) u is not enclosed in a loop and has already been executed at ¢, or (2) the innermost loop that
encloses u is executing at ¢ and 4 has been executed during the current iteration.

According to the definition, ¢, vertices and while predicates are active only when the locus of control is
inside their loops.

In order to compare execution behaviors of components that may belong to different programs, it is
necessary to relate two moments, £, and ¢, during the respective executions of the two programs. We say
t1 and ¢ are concurrent (defined below) if the executions of P, and P, at t1 and ¢5 are synchronized in the
sense defined below.

Definition. Let Py and P, be two (not necessarily distinct) programs. Let ¢; and ¢, be two moments dur-
ing the executions of P; and P, respectively. ¢; and ¢, are concurrent if (1) CLP(t 1) and CLP(t,) are at the
same loop nesting level, (2) corresponding while predicates on the control-dependence paths from Entry to
CLP(t1) and CLP(t2), respectively, in the program representation graphs of P; and P are data-congruent,
and (3) corresponding while predicates have executed the same number of iterations during the current exe-
cutions of the loops at ¢ and ¢,, respectively.

Note that if predicates are ignored in the above definition. For instance, in Figure 4, if ¢, is the moment
immediately after A1 executes and t2 is the moment immediately after B 1 executes, ¢; and ¢, are con-
current.

Since sequence-congruence is a refinement of data-congruence, the Sequence-Congruence Theorem (for
sequet -congruence classes) is founded on the Data-Congruence Lemma (for data-congruence classes),

which states that active, data-congruent vertices have the same valuesS at concurrent moments when the
programs run on sufficiently similar initial states.

LEMMA. (DATA-CONGRUENCE LEMMA). Let Py and P, be two (not necessarily distinct) programs with
imported variables Imp 1 and Imp, respectively. Let 6\ and G be two states that agree on (Imp1nImp,).
Let ty and t3 be two moments during the executions of Py and P, on initial states 6, and G2, respectively.
Let x and x, be two vertices in P, and P, respectively. If (1) t, and t5 are concurrent, (2) x, is active at
t1, (3) x2 is active at t,, and (4) x1 and X2 are data-congruent, then x| and x, have the same values at t
and t,, respectively.

PROOF. We prove this lemma by contradiction. Suppose the lemma is not correct. Then there exist X1,
X2, t1, and ¢ that satisfy (1), (2), (3), and (4) above but x; and x, have different values at t1 and ¢, respec-
tively. Let t; be the earliest moment during the execution of Py on initial state oy such that there is a

*The number of iterations during an execution of a loop defined here differs from the traditional point of view: With our definition, the
iteration count is one greater than normal. This convention makes the statement of the proof easier; it does not carry any semantic
significance.

“The value of a vertex at a moment is the most recent value produced at the vertex before that moment,
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moment ¢ during the execution of P2 on initial state o2 and there are two vertices x; and x5 of P and P,
respectively, such that (1), (2), (3), and (4) hold but x, and x, have different values at f; and 2, respec-
tively. It is possible that, for a given ¢,, there are many 2, X1, and x1 that fit the above conditions. In this
case, the ones with the earliest ¢z are chosen. It is also possible that, given ¢; and ¢3, there are many x; and
x5 that fit the above conditions. In this case, the earliest x; (in terms of appearance in the augmented con-
trol flow graph of Py) in Py is chosen. It is also possible that, given t1, £2, X1, there are many x that fit the
above conditions. In this case, the earliest x2 in P, is chosen.

Since x; and x are data-congruent, they must either be ¢ statements of the same kind or they must have
the same operators. Hence, they have the same incoming control and flow dependence edges. There are
five cases depending on the type of vertex xi. We will derive a contradiction in each case.

Case 1. Vertex x is a FinalUse vertex, a non-¢ assignment statement vertex, or a predicate vertex. If
x; is a constant vertex (that is, the expression in x is a constant), so is x2 and they must be the same con-
stant. In this case, x; and x, always have same values whenever they are active. So assume x1 and x, are
not constant vertices.

Since x; and x2 have the same number of incoming flow dependence edges, let y; and y2 be any
corresponding flow predecessors of x; and x», respectively. Since x; and x, are data-congruent, y1 and y2
are also data-congruent. Because there is a flow edge y;—>s x1 and x; is not a exe vertex, any loop
enclosirig y; must also enclose x; (due to the ¢, vertices in the graph, y; cannot be nested more deeply
than x). Because x; is active at £, the innermost loop enclosing y 1, if any, must be executing at 1 and x;
must have been executed during the current iteration of that loop.

Note that flow dependence edges incident on any NON-Oenzer Vertex run from left to right. Because x; has
been executed, y; must have already been executed during the current iteration of the innermost loop
enclosing y, (if any); therefore, y1 is active at £;. Similarly, yo is active at £2.

Note that y; and y» come before x1 and x2 in P, and P, respectively. Thus, ¥y and y, must have the
same values at ¢; and ¢, respectively, for otherwise we would have chosen y, and y2 instead of x; and x».
Because corresponding operands of x; and x2 have the same values at t; and ¢, respectively, x and x»
must have the same values at {1 and ¢, respectively, which contradicts the previous assumption that x1, X2,
t1, and ¢ violate the lemma.

Case 2. Vertex x, is a ¢ vertex. Letz; and z2 be the if predicates for x; and x2, respectively. Since xy
and x are data-congruent, z; and z, are also data-congruent. Because x is active at ¢y, z; is also active at
t1. Similarly, z2 is active at f2. Note that z; and z; come before x1 and x» in P and P, respectively.
Thus, z; and z, must have the same values at t; and ¢, respectively, for otherwise we would have chosen
z, and z instead of x; and x2. Without loss of generality, assume the values of z; and z; at £, and f2,
respectively, are true.

Lety; —>s x1 and y2—>f xa2 be the incoming flow dependence edges of x; and x, from (or around) the
true branches of z; and z2, respectively. Because there is a flow edge y1 —>f x1 and x, is active at £y, by
the same arguments as in Case 1, y1 is active at ;. Similarly, y2 is active at f2. Because x; and x are
data-congruent, y, and y, are also data-congruent. Thus, y; and y, must have the same values at £; and f2,
respectively, for otherwise we would have chosen y; and y2 instead of x; and x2. Since y; and y2 have the
same values at {1 and ¢, x1 and x must have the same values at ¢; and ¢, respectively, which contradicts
the previous assumption that x1, X2, f1, and ¢4 violate the lemma.

Case 3. Vertex x1 is @ Qeneer vertex. Let z3 and z be the while predicates associated with x; and x2,
respectively. Note that @ Qeneer VEItex is active only when the locus of control is inside the associated loop.
Because ¢; and ¢, are concurrent, corresponding while predicates on the control-dependence paths from
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Entry to CLP(t,) and CLP(¢,) are data-congruent and have executed the same number of iterations during
the current executions of the loops at moments t1 and £, respectively. Since z; and z5 are at the same nest-
ing level, z; and z, are corresponding while predicates on the control-dependence paths from Entry to
CLP(t1) and CLP(t2). Hence z, and z, are data-congruent and have executed the same number of iterations
during the current executions of the loops, at moments ¢ and ¢,, respectively.

(1)  Suppose, at ¢1, it is the first iteration of the loop of z, during the current execution of the loop. Itis
also the first iteration of the loop of z, during the current execution of the loop at t;. Therefore, the
values of x; and x; at ¢; and 5 come from outside the loops of z; and z5, respectively.

Let y; and y, be the flow predecessors of x; and x, from outside the loops of z; and z3, respectively.
Since x; and x, are data-congruent, ¥1 and y; are also data-congruent. Since x; and X7 are active at
t1 and ¢, respectively, y; and y, are also active at t; and ¢, respectively. Thus, y; and y, must have
the same values at ¢; and 15, respectively, for otherwise we would have chosen y1 and y, instead of
X1 and x2. Since y; and y, have the same values at ¢y and ¢, x1 and x, must have the same values at
¢y and ¢,, respectively, which contradicts the previous assumption that x,, x5, ¢, and t, violate the
lemma,

(2) Suppose, at ¢, it is the k* iteration of the loop of z; during the current execution of the loop, for
some k > 1. It is also the k* iteration of the loop of z; during the current execution of the loop at t5.
Therefore, the values of x; and x, at ¢; and t2 come from inside the loops of z; and z,, respectively
(i.e., the values are produced during the k — 1 iterations).

Let y; and y; be the flow predecessors of x; and x, from inside the loops of z; and z,, respectively.
Since x1 and x; are data-congruent, ¥1 and y; are also data-congruent. Let ¢;’ be the moment
immediately before the end of the k—1+ iteration of the loop of z; and ¢’ be the moment immedi-
ately before the end of the k—15 iteration of the loop of z,. Note that ¥1and y, are active at ¢,” and
t7, respectively. Note also that £,” and t7’ are earlier than ¢; and ¢,, respectively, and ¢,” and ¢, are
concurrent. Thus, y; and y, must have the same values at t1” and t9’, respectively, for otherwise we
would have chosen ¢,’, t’, y,, and ¥z instead of ¢, t5, xy, and x,. Since the value of x; at ¢, is the
value of y, at ¢;" and the value of X2 at 17 is the value of y, at ¢2’, x; and x, must have the same
values at ¢1 and ¢,, resp-«tively, which contradicts the previous assumption that x,, x, ¢1, and ¢,
violate the lemma.

Case 4. Vertex x; is a ¢oq vertex. Let z1 and z; be the while predicates associated with x; and X2,
respectively. Let y; and y; be the ¢..., vertices associated with x and x», respectively. Since x; and x5
are data-congruent, z, and z, are data-congruent and y; and y are data-congruent. Because y; and y, are
data-congruent, the respective loops of z; and z; are at the same nesting level.

Because x; is a ¢, vertex of the loop of z; and it is active at ¢, the most recent execution of the loop of
z) must have finished. Similarly, since x, is active at t2, the most recent execution of the loop of z, must
have finished. Let n, be the number of iterations the most recent execution of the loop of z; iterated. Let
n2 be the number of iterations the most recent execution of the loop of z; iterated.

We first show that n; = n,. Suppose ny # n,. First assume ny <ny. Lets; be the moment immediately
before the n* evaluation of zy during the most recent execution of the loop of z;. Let 52 be the moment
immediately before the n,* evaluation of z3 during the most recent execution of the loop of z,. Note that
the loops of z; and z, are executing the n;* iteration during the most recent executions at sy and s,
respectively. Therefore, s; and s are concurrent. Since the n1™ value produced at z; is false but the n,*
value produced at z; is true, at least one pair of corresponding operands of z; and z, must have different
values at the two moments s, and 82, respectively.
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However, because s, and s are concurrent and corresponding operands of z; and z; are data-congruent
and are active at s; and s2, respectively, corresponding operands must have the same values at 51 and s2,
respectively, for otherwise we would have chosen 51 and s instead of ¢; and f2. Because corresponding
operands of z; and z2 have the same values at s, and s, respectively, the n 1** values produced at z; and z,
respectively, must be the same, which contradicts the assumption that ny < np. Hence ny2n3. By the
same argument we know na2n;. Therefore, ny = n2. (Letn be ny or, equivalently, na.)

Recall that y; and y2 are the Q.- vertices associated with x; and x», respectively. Let 71 be the
moment immediately before the n* evaluation of z; during the most recent execution of the loop of zi.
Let r2 be the moment immediately before the n evaluation of z, during the most recent execution of the
loop of z,. Note that the loops of z; and z, are executing the n* iteration during the most recent execu-
tions at r; and r,, respectively. Therefore, ry and r are concurrent. Since y; and y, are data-congruent,
yp is active at ry, y2 is active at 7, and r and r are concurrent, y; and y2 must have the same values at ry
and r,, respectively, for otherwise we would have chosen 71, r2, y1, and y» instead of 1, 2, X1, and xa.
Because the value of x; at ¢, is the same as that of y, at r; and the value of x at £, is the same as that of y,
at ry, x; and x must have the same values at ¢; and to, respectively, which contradicts the previous
assumption that x1, X2, 1, and ¢ violate the lemma.

Case 5. Vertex x; is an Initialize vertex. Since x; and x are data-congruent, they must be the Initialize
vertices for the same variable. Since x; and xz are not in any loops, they are executed exactly once.
Because o and G, agree on Imp~Imp3, X and x must have the same values whenever they are active.
This contradicts the previous assumption that x1, x2, t1, and £2 violate the lemma.

We have shown that each of the five cases leads to a contradiction. Therefore, it is impossible to find #1,
t2, x1, and x2 such that (1), (2), (3), and (4) are satisfied but x; and x2 have different values at ¢; and t2. O3

The Sequence-Congruence Theorem states that sequence-congruent vertices produce the same sequence
of values when their programs are run on sufficiently similar initial states.

THEOREM. (SEQUENCE-CONGRUENCE THEOREM). Let Py and P2 be two (not necessarily distinct) pro-
grams with imported variables Impy and Imp>, respectively. Let oy and G be two states that agree on
(Imp1n\Imp2). Let x1 and x2 be two vertices in P, and P, respectively, that are sequence-congruent.
Then
(1)If Py and P halt on 6y and G, respectively, then the sequences of values produced at x, and X2,
respectively, are the same.

(2) If P halts on Gy but P 3 does not halt on G, then the sequence of values produced at x2 is an initial seg-
ment of the sequence of values produced at x,.

(3) If P, does not halt on ©y but P halts on G2, then the sequence of values produced at x1 is an initial seg-
ment of the sequence of values produced at x».

(4) If neither Py nor P2 halts on &y and G2, respectively, then either (a) the sequences of values produced
at x, and x, respectively, are identical infinite sequences, or (b) the sequence of values produced at xy is
finite and is an initial segment of the sequence of values produced at x2, or vice versa.

PROOF. We prove the theorem by contradiction. We first show that if the theorem is not correct, then
the following Proposition must hold:

Proposition. There are two sequence-congruent vertices x; and x, in P, and P, respectively, and a con-
stant k such that the k* value produced at x, is different from the k'™ value produced at x3.

(The Proposition implies that if the Sequence-Congruence Theorem is not correct, then a counterexam-
ple occurs in a finite number of steps.) There are four cases to consider; each case corresponds to a clause
in the Theorem. In each case, we will show that if the theorem is not correct, then the Proposition holds.
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Case 1. Suppose P and P, halt on 6; and o,, respectively. If the theorem is not correct, then the
sequences of values produced at x; and x,, respectively, are different. There are two ways in which the
sequences of values produced at x; and x, could be different.

(1) There is a constant k such that the k* value produced at x, is different from the k% value produced
at x2. Thus, the Proposition holds.

(2) The sequences of values produced at x, and x, respectively, are of different lengths and the shorter
sequence is an initial segment of the longer one. We may examine the sequences of values produced
at corresponding control ancestors of x; and x,. Since the sequences of values produced at x; and x,
are of different lengths and the shorter sequence is an initial segment of the longer one, it is impossi-
ble that each pair of corresponding control ancestors of x; and x, have produced the same sequence
of values. Thus, there must be two corresponding control ancestors, x” and x,’, of x; and X3, €SpeC-
tively, and a constant k such that the k* value produced at x;’ differs from the £* value produced at
x2’. Thus, the Proposition holds.

Case 2. Suppose P halts on &) but P, does not halt on o,. If the theorem is not correct, then the
sequence of values produced at x; is not an initial segment of the sequence of values produced at x,. There
are two ways in which the sequence of values produced at x, might not be an initial segment of the
sequence of values produced at x;.

(1) There is a constant k£ such that the k* value produced at x; is different from the k% value produced
at xo. Thus, the Proposition holds.

(2)  The sequence of values produced at x; is a proper initial segment of the sequence of values produced
at x2. We may examine the sequences of values produced at corresponding control ancestors of x;
and x,. Since the sequence of values produced at x, is a proper initial segment of the sequence of
values produced at x», it is impossible that each pair of corresponding control ancestors of x; and x»
have produced the same sequence of values. Thus, there must be two corresponding control ances-
tors, x1” and x7’, of x1 and x5, respectively, and a constant k such that the k* value produced at x,’
differs from the k* value produced at x,’. Thus, the Proposition holds.

Case 3. Suppose P does not halt on &, but P, halts on o,. This case is similar to Case 2.

Case 4. Suppose neither P, nor and P halts on 6, and 65, respectively. There are two cases to consider
depending on whether the sequences of values produced at x; and x; are infinite.

(1)  Suppose the sequences of values produced at x; and x,, respectively, are infinite. If the theorem is
not correct, the two infinite sequences are not identical. Thus, there must be a constant & such that
the k* value produced at x; differs from the k% value produced at x,. Thus, the Proposition holds.

(2)  Suppose at least one of the sequences of values produced at x; and x, is finite. If the theorem is not
correct, the sequence of values produced at x; is not an initial segment of the sequence produced at
x2, or vice versa. Thus, there must be a constant &k such that the k* value produced at x; differs
from the k% value produced at x,. Thus, the Proposition holds.

We have shown that if the theorem is not correct, then the Proposition holds. Thus, to prove the
theorem, it is sufficient to show that the Proposition leads to a contradiction.

Suppose the theorem is not correct. Then, by the argument given above, the Proposition holds. We can
find two sequence-congruent vertices, x; and x,, in P, and P, respectively, and a constant k& such that the
k value produced at x, is different from the k* value produced at x3. Let ¢; be the moment immediately
after the k* value of x, is produced and ¢, be the moment immediately after the k% value of x, is pro-
duced. There may be many x,, x5, and & that satisfy the Proposition. In this case, the ones with the earliest




-17 -

t; and ¢, are chosen.

Because x; and x; are sequence-congruent, either both x; and x; are while predicates or neither is a
while predicate. (Due to the control dependence edges that form self-loops on while predicate vertices, a
while predicate can only be sequence-congruent to other while predicates.) There are two cases to con-
sider. We will derive a contradiction in each case.

Case 1. Suppose neither x; nor x» is a while predicate. Because x; and x; are sequence-congruent,
CLP(t;) and CLP(t,) are at the same loop nesting levels. Because x; and x are sequence-congruent, CLP(1)
and CLP(t,) and each pair of corresponding control ancestors of CLP(¢1) and CLP(¢7) are sequence-congruent
and hence data-congruent. Because ¢; and ¢ are the earliest moments when the theorem fails, CLP(t;) and
CLP(t) and each pair of corresponding control ancestors of CLP(¢;) and CLP(t;) must have produced the
same sequences of values during the executions of Py and P, from the beginning to ¢ and 2, respectively.
In particular, all corresponding while predicates have executed the same number of iterations during their
current executions. Therefore, ¢, and ¢, are concurrent.

Because x; and x; are sequence-congruent, they are also data-congruent. Because x; and x are not
while predicates, x1 and x, are always active immediately after they are executed. That is, x; is active at £
and x, is active at t5. Thus, from the Data-Congruence Lemma, x; and x have the same value at ¢, and 2,
respectively, which contradicts the assumption that x; and x, have different values at ¢, and ¢, respec-
tively.

Case 2. Suppose x; and x, are while predicates. Let t,” and t2 be the moments immediately before the
k*h evaluations of x, and x5, respectively. That is, £;" and ¢’ are the moments just one step earlier than £,
and ¢,, respectively. Note that CLP(t;") is x, and CLP(t5) is x2. Because x; and x are sequence-congruent,
x and x5 must be at the same loop nesting levels. Because x; and x, are sequence-congruent, each pair of
corresponding control ancestors of x; and x, are sequence-congruent and hence data-congruent. Because
the theorem does not fail until moments ¢; and ¢,, and because moments ¢,” and ¢, are earlier than ¢, and
t2, respectively, we know that x; and x and each pair of their corresponding control ancestors must have
produced the same sequence of values from the beginning to ¢;" and ¢5', respectively. In particular, all
corresponding while predicates have executed the same number of iterations during their current execu-
tions. Therefore, t;" and ¢,” are concurrent.

Let y; and y, be any corresponding flow predecessors of x; and x,, respectively. Since x; and x, are
sequence-congruent, y; and y, are data-congruent. Furthermore, y, is active at ¢,” and y is active at t.
From the Data-Congruence Lemma, y; and y, have the same value at ¢,” and 2/, respectively. Because
corresponding flow predecessors of x; and x, have the same values at ¢, and ¢,’, respectively, x; and x
must evaluate to the same values at ¢; and ¢,, respectively, which contradicts the assumption that x; and x»
have different values at ¢, and ¢,, respectively.

In both cases we have shown a contradiction. Because the Proposition leads to a contradiction, the
theorem is proved. (J

4.3. Enhancements to the Sequence-Congruence Algorithm

In this subsection we consider three simple enhancements to the Sequence-Congruence Algorithm. The
first is concerned with simple assignment statements and simple predicates. Due to the property of the
identity operator in a simple vertex, a simple vertex is, in fact, always data-congruent to its (sole) flow
predecessor although this would not be discovered by the Sequence-Congruence Algorithm as defined
above. To permit the computation of larger classes of data-congruent vertices, we can merge a simple ver-
tex v with its flow predecessor u before performing the first pass of partitioning. By “merging a vertex v
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with another vertex ¥ ” we mean “replace every edge v —> x with an edge u —> x, remove edge u —>v,
and remove vertex v.” This merge operation is undone before the second pass, but vertices u and v are
left in the same partition. Vertices u and v may or may not be put in different partitions during the second
pass. For instance, consider the following example:

L, a:=1 L, c:=1
Lo b=a+2 La d=c¢
Ls e =d+2

If we merge the simple assignment statement L4 with its flow predecessor L3 before performing the first
pass of partitioning, we can discover that L and L are both data-congruent and sequence-congruent. The
proofs in the previous section can be directly adapted to account for this change by extending the notion of
“corresponding” flow predecessors of two vertices to take simple vertices into account.

In the Sequence-Congruence Algorithm, we assume that a statement like “x :=a + b * ¢” has the same
operator as a statement like “y :=d + e * f” but a different operator than a statement like “z :==g * h”;
that is, the structure of the right-hand-side expression defines the operator. An expression like “a +b * ¢”
is viewed as an operator that takes three arguments a, b, and ¢, and returns the value of “a +b * ¢”.
Thus, in the following program fragment, L; and L, are not sequence-congruent because they have dif-
ferent operators.

L, x=a+b*c
z=b*¢
L, y=a+z

We can detect more sequence-congruent components if the program is transformed to three-address code
before partitioning. For the above example, the assignment to x is replaced by two statements when the
program fragment is transformed to three-address code; L4 and L4 are found to be sequence-congruent by
the Sequence-Congruence Algorithm.

temp :=b * ¢

L4 X =a +temp
zw=b*c¢
L4 y=a+z

Similarly, a constant inside an expression is tightly coupled with the operator. An expression like
“a + 1" is viewed as a unary operator that takes an argument g and returns the value of “a + 1”. There-
fore, in the following program fragment, Ls and L are not sequence-congruent because they have different
operators (and different number of incoming flow dependence edges).

Ls x:=a+1
z:=1
Lg y=a+z

As before, a simple transformation can improve the result of partitioning: (1) for each constant ¢ that
appears in the program, a new variable Const_c is created, (2) an assignment statement “Const_c¢ :=c” is
added at the very beginning of the program, and (3) all references to ¢ in the program are changed to refer-
ences to Const_c. This transformation does not change the execution behavior of a program; however,
larger sequence-congruence classes will result from partitioning.
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We close this section with an observation about how some additional enhancements to the Sequence-
Congruence Algorithm can be made. Although the Sequence-Congruence Algorithm presented above uses
the same partitioning algorithm—the one given in Figure 2—for both Pass 1 and Pass 2, this is not strictly
necessary. The proof of the Sequence-Congruence Theorem depends only on the condition that the
equivalence classes used at the start of Pass 2 have the properties listed in the Data-Congruence Lemma.
Thus, any techniques applied during Pass 1 that result in larger equivalence classes with these properties
will not affect the arguments we have given to establish the properties of the equivalence classes computed
by Pass 2; the equivalence classes computed by Pass 2 will still have the properties listed in the Sequence-
Congruence Theorem.

One kind of enhancement that may be worthwhile incorporating into Pass 1 is one that takes into account
the mathematical properties of an expression’s operator. For instance, consider the following example:

L, a=1 Ls c:=2
L, b=2 L¢ d=1
L, x:=a+b Lq u:=c-+d
Ly y=x*3 Lg vi=u*3

With the present algorithm for Pass 1, L3 and L are eventually placed in separate data-congruence classes,
and hence L4 and Ly are also placed in separate data-congruence classes. However, because addition is
commutative, L3 and L7 could be placed in a single equivalence class, which then also makes it possible
for L4 and Lg to be members of a single equivalence class. The benefits of finding larger equivalence
classes during Pass 1 carry over to Pass 2; in this example, L3 and Ly would be members of one sequence-
congruence class, and L, and L g would be members of another.

5. RELATION TO PREVIOUS WORK

Program representation graphs combine features of both program dependence  graphs
[Kuck81, Ferrante87, Horwitz88) and static-single-assignment forms [Alpern88, Rosen88, Cytron89] (espe-
cially the value graph associated with an SSA form [Alpern88]). Although program dependence graphs
contain no ¢ vertices they do contain additional data-dependence edges not found in program representa-
tion graphs. For example, the program dependence graphs used in [Horwitz88] contain def-order depen-
dence edges. We have shown elsewhere that PRGs and the program dependence graphs of [Horwitz88] are
equivalent program representations in the sense that two programs have isomorphic PRGS if and only if
their program dependence graphs are isomorphic [Yang8a]. In essence, the ¢ vertices of program
representation graphs introduce extra flow dependence edges that substitute for def-order dependence
edges.

There are two main differences between our PRGs and (the value graphs of) SSA forms:

(1) PRGs contain control dependence edges, whereas SSA forms do not. Control dependence edges were
added so that the Sequence-Congruence Algorithm could take control dependences into account dur-
ing partitioning.

(2) The ¢ statements in PRGs are slightly different from those in SSA forms. In the SsA forms defined in
[Alpern88, Rosen88, Cytron89] a ¢ operator in a ¢ statement is a binary operator; that is, a ¢ state-
ment is of the form “x; := ¢(x2,x3).” Variable occurrences are renamed (by adding subscripts, for
example) so that each variable is assigned to exactly once in the program text (whence the name
“static-single-assignment form”). Because variable renaming is not necessary for our purposes, we
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chose a simpler form of ¢ statement.”

Another difference between the ¢ statements in PRGs and those in SSA forms is that PRGs include only ¢
statements whose left-hand side variable is live (i.e. every ¢ statement has a flow successor). For instance,
consider the following program fragment (which is augmented with ¢ statements for the ¢ vertices of its
PRG):

a:=0
L1 x =1
if p then
x =2
a:=x
fi
a = ¢y a)
L, x=3+a

If the PRG were to include non-live ¢ statements, there would be a ¢ statement “x := ¢(x)” immediately
after the if statement; however, this ¢y statement is not included in the PRG for this program because the
variable x is defined before being used after the if statement. The reasons why we excluded these extra ¢
~ statements from PRGs are not directly relevant to the questions addressed in this paper; however, to sum-
marize briefly, our decisions were motivated by the following concerns:

(1)  The exclusion of non-live ¢ statements permits larger sets of semantically equivalent programs to
have the same PRG. For example, the same PRG represents not only the program shown above, but
also a version of the program in which L comes after the if statement (but before L,). As shown
elsewhere [Yang89a], PRGs and the program dependence graphs of {Horwitz88] are equivalent pro-
gram representations in the sense that two programs have isomorphic PRGs if and only if their pro-
gram dependence graphs are isomorphic. The two representations would not be equivalent in this
way if PRGs were to contain the additional ¢ statements of previous definitions.

(2) A useful operation on PRGs is that of slicing: The slice of a PRG R with respect to a set of non-¢ ver-
tices § is the subgraph of R induced by all vertices from which there is a path to an element of § via
control and/or flow dependence edges in R. We wished to have the property that any slice of a PRG
would be (isomorphic to) the PRG of some program. (This corresponds to a similar property that
holds for slices of program dependence graphs — the Feasibility Lemma of [Reps88].) For instance,
if non-live ¢ vertices were required in PRGs, the example given above would be

=0
Ly X =
if p then
x:=2
a:=x
fi
x = y(x)
a = oyla)
Loy x:=3+a

Its slice with respect to L, would correspond to the fragment

"It has been recognized by others that variable renaming is not necessary for all uses of SSA forms [Alpem88a].
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=0
if p then
x:=2
a=x
fi
a = ¢ a)
Lo x:=3+a

However, the slice of the PRG does not correspond to any program; the fragment shown above is not
annotated properly with ¢ statements so as to correspond to any program. In particular, because it
lacks a (non-live) ¢ vertex x := ¢;(x ) just after the if statement, it does not correspond to the program

a=0
if p then
x =2
a:=x
fi
L, x:=3+a

By excluding non-live ¢ statements from PRGs, infeasible slices do not arise; every slice of a PRG is
(isomorphic to) the PRG of some program [Yang89a).

The Sequence-Congruence Algorithm is based on an idea of [Alpern88] for finding equivalence classes
of program components by first optimistically grouping possibly equivalent components in an initial parti-
tion (of an SsA form’s value graph) and then finding the coarsest partition of the graph’s vertices that is
congistent with the initial partition. The algorithm of [Alpem88] considers only flow dependences among
program components. The property established in [Alpern88] shows that components of a single program
in the same partition produce the same values at certain moments during execution. Stated using our termi-
nology: “If two data-congruent components are both active at some moment, they have produced the same
values.”

In contrast to [Alpern88], our Sequence-Congruence Algorithm has two important properties: (1) By
considering control dependences as well as data dependences, it is able to detect components with
equivalent execution behaviors, and (2) it is able to do so even if the components are in different programs.

The algorithm of [Alpern88] is essentially the first pass of our Sequence-Congruence Algorithm. An
important difference is that our algorithm can be applied to one or more programs. Our Data-Congruence
Lemma establishes a semantic property for components that are in the same partition after the first pass: “If
two data-congruent components are active at concurrent moments when the programs are run on
sufficiently similar initial states, they have produced the same values.” It is the concept of concurrent
moments that makes it possible to compare the executions of more than one program.

The second pass of our Sequence-Congruence Algorithm uses control dependences to refine the parti-
tioning produced by the first pass. Our Sequence-Congruence Theorem establishes a semantic property
about the overall execution behaviors of congruent components (rather than about their behaviors at certain
moments): “If two components are sequence-congruent, they have identical execution behaviors whenever
the programs they are in are run on sufficiently similar initial states.”

Our work on program representation graphs and the Sequence-Congruence Algorithm has been
motivated by the desire to improve our techniques for automatic program integration [Horwitz88]. The
goal of such work is to create a tool that can automatically determine whether changes that have been made
in several variants of a base program interfere; if there is no interference, the tool should produce a new
program that combines the changed behaviors of the variants as well as the behaviors common to the base
program and all variants. A program integration tool is needed, for example, when a number of collabora-



-22-

tors are collectively producing updates in a large programming project.

One of the key issues of program integration is to determine whether the execution behavior of a pro-
gram component in one of the variants differs from that of the corresponding component in the base pro-
gram. In the integration algorithm of [Horwitz88], this is done by finding corresponding program com-
ponents whose slices are not isomorphic. The justification for this approach is found in [Reps88] where
(for the same language considered in this paper) it is shown that program components with isomorphic
slices have identical execution behaviors.

The Sequence-Congruence Algorithm given in this paper provides a different method for determining
whether program components in two programs have different execution behaviors. Rather than comparing
slices, the Sequence-Congruence Algorithm starts from an optimistic assumption about which program
components may exhibit identical execution behaviors and then refines this assumption by considering flow
and control dependences. The justification for this approach is provided by the Sequence-Congruence
Theorem, which shows that sequence-congruent components have identical execution behaviors. It is easy
to see that the equivalence classes found by the Sequence-Congruence Algorithm are strictly larger than
those found by comparing slices.

We have devised a new algorithm for program integration, described in [Yang89], that makes use of the
Sequence-Congruence Algorithm. This algorithm has several advantages when compared with the integra-
tion algorithm described in [Horwitz88]. One advantage concerns the ability of users to rename variables:
because the algorithm from [Horwitz88] detects changed execution behavior by comparing program slices,
all program elements that depend on a variable whose name has been changed will be considered to have
different execution behavior. This increases the likelihood that the integration algorithm will report that
two users’ modifications are in conflict. In contrast, the Sequence-Congruence Algorithm will determine
that such program elements will not have different execution behaviors. Thus, the integration algorithm
that uses the Sequence-Congruence Algorithm is able to avoid reporting some of the spurious conflicts that
arise when a variable’s name is changed.

Variable renaming is an example of one kind of meaning-preserving modification — one that does not
introduce any structural changes to a program. In addition to being able to detect that two components
have the same execution behavior in spite of variable renaming, the Sequence-Congruence Algorithm is
also able to detect that two components have the same execution behavior for a limited class of meaning-
preserving structural changes. Thus, a second advantage of the new integration algorithm is that it can
accommodate a limited class of meaning-preserving structural changes and not report some of the spurious
conflicts that would be reported by the algorithm from [Horwitz88].
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