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ABSTRACT — While several distributed (or ‘shared nothing’)
database machines exist in the form of prototypes or commercial
products, and a number of distributed concurrency control algo-
rithms are available, the effect of parallelism on concurrency con-
trol performance has received little attention. This paper exam-
ines the interplay between parallelism and transaction perfor-
mance in a distributed database machine context. Four alterna-
tive concurrency control algorithms are considered, including
two-phase locking, wound-wait, basic timestamp ordering, and
optimistic concurrency control. Issues addressed include how
performance scales as a function of machine size and the degree
to which partitioning the database for intra-transaction parallel-
ism improves performance for the different algorithms. We
examine performance from several perspectives, including
response time, throughput, and speedup, and we do so over a
fairly wide range of system loads. We also examine the perfor-
mance impact of certain important overhead factors (e.g., com-
munication and process initiation costs) on the four alternative
concurrency control algorithms.

1. INTRODUCTION

During the past five years, it has become clear that multipro-
cessor database machines represent a viable solution to the prob-
lem of providing many users with access to large volumes of
data. Distributed (or ‘shared nothing') database machines appear
especially attractive from the standpoint of scalability and relia-
bility [Ston86, Bora88]. Commercially available systems of this
type include Non-Stop SQL from Tandem [Borr88] and the
DBC/1012 database machine from Teradata [Tera85); working,
high-performance research prototypes include Gamma at the
University of Wisconsin [DeWi86] and Bubba at MCC [Alex88].
These systems differ in the eaieni io which paraiielism is
exploited to improve performance. Non-Stop SQL employs
inter-transaction parallelism, allowing many transactions to exe-
cute simultaneously, but it does not employ intra-transaction
parallelism (except in its parallel sort utility [Borr88]). In

This research was partially supported by the National Science
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contrast, the Teradata, Gamma, and Bubba machines all employ
intra-transaction parallelism (in addition to inter-transaction
parallelism) in order to provide response time improvements for
individual transactions. A recent performance evaluation of
Non-Stop SQL for a standard multi-user Debit Credit workload
showed linear throughput gains as the system size was increased
from 2 to 32 processors [Tand88], demonstrating that inter-
transaction parallelism can be very effective in a distributed data-
base machine architecture. Recent measurements of Gamma
showed that intra-transaction parallelism can be highly effective
as well, as impressive single-user speedups were obtained for a
variety of queries [DeWi88].

An issue that has only recently received attention is that of
concurrency control algorithms and their performance in distri-
buted database machines. Quite a large number of concurrency
control algorithms have been proposed for use in distributed data-
base systems, and they are all applicable for use in a database
machine environment. The algorithms generally fall into one of
three basic classes: locking algorithms [Mena78, Rose78,
Gray79, Ston79, Trai82], timestamp algorithms, [Thom79,
Bern80, Reed83], and optimistic (or certification) algorithms
[Bada79, Schi8l, Ceri82, Sinh85].! Concurrency control in the
Non-Stop SQL, Teradata, Gamma, and Bubba systems is based
on two-phase locking, but others have used or proposed optimis-
tic algorithms in a database machine context (e.g. {Khos88,
Lai88]). In the performance area, there have been a number of
studies of distributed concurrency control algorithm performance.
Relevant studies include [Garc79, Ries79, Bali82, Bhar82,
Gall82, Kohl85, Oszu85, Lin83, Kohi85, Li87, Noe87, Care88];
we briefly review and critique them in {Care88]. These studies,
however, did not focus on parallel transactions, so interesting
questions remain open regarding the interplay between parallel-
ism and concurrency control performance. For example:

(1) How does performance scale as a function of machine size

and system load when intra-transaction parallelism is employed
and data contention exists?

(2) How do the different concurrency control algorithm classes
react to data partitioning and intra-transaction parallelism?

(3) How do key system overheads, such as communications and
process startup costs, affect the different algorithm classes?

! Bemstein and Goodman provide an excellent survey of many of
the algorithms in (Bem81].



We are aware of only two studies that have addressed issues
related to these questions. The first such study is [Bhid88],
where the objective was to compare the performance of distri-
buted versus shared memory based approaches to multiprocessor
database machines in the context of transaction processing; the
performance of these two alternative architectures was compared
assuming the use of two-phase locking. This was a nice first step
towards a better understanding of how parallelism affects locking
under different communications costs and system loads. How-
ever, it did not address scaling issues or other concurrency con-
rol algorithms. The second relevant study is [Jenq89), which
looked at how the performance of locking might scale in a
Bubba-like database machine. This study focused on a specific
workload (based on analyzing an actual order entry application)
and looked at a wide range of machine sizes; for this workload
they found that locking was a crucial factor in determining the
performance of such a system. Their results also indicated that a
larger machine can lead to better performance, which is expected
since they increased the database size (thus reducing data conten-
tion) along with the machine size. Both of these studies used
timeouts to avoid deadlocks, which can cause performance prob-

lems if data contention is significant [Agra87b].2

In this paper, we report on a study aimed at addressing the
questions raised above. The study employs a performance model
based on the distributed DBMS simulator developed for
[Care88]. The model is reasonably detailed, capturing the main
elements of a distributed database machine, including physical
resources (disks, CPUs, and the interconnection network), paral-
lel transaction execution, and the placement of data (i.e., data par-
titioning). The design of the model was guided by previous
results on the importance of realistic concurrency control model-
ing assumptions, particularly regarding system resources
{Agra87a]. Using this model, we investigate the performance
impact of changes in the size of the database machine, the degree
of data partitioning, the system load, and system-related over-
heads. Four concurrency control algorithms are examined in this
study, including two variants of two-phase locking, a timestamp-
based algorithm, and an optimistic algorithm; the algorithms
span a wide range of characteristics in terms of how conflicts are
detected and resolved.

The remainder of the paper is organized as follows: Section 2
describes our choice of concurrency control algorithms. The
structure and characteristics of our performance model and its
implementation are reviewed in Section 3. Section 4 presents our
performance experiments and the associated results. Finally,
Section 5 summarizes the main conclusions of this study.

2. CONCURRENCY CONTROL ALGORITHMS

In this study we examine four algorithms that span the basic
design space of available concurrency control mechanisms. We
briefly review the main features of each of the aigorithms in this
section. Before doing so, however, we need to describe the tran-
saction structure assumed in the study. Since replicated data is
not considered in this paper, we ignore replication-related con-
siderations throughout this section.

2 In fact, (Jenq89) noted that the timeout interval was a critical and
sensitive performance factor in their experiments.

2.1. The Structure of a Parallel Transaction

Each transaction has a master or coordinator process that runs
at its node of origination. The coordinator process, in tum, sets
up a collection of cohort processes that are responsible for per-
forming the actual processing involved in running the transaction.
In particular, there is one such cohort at each node where data is
accessed by the twansaction.’ Transaction completion is con-
wolled through a centralized two-phase commit protocol
[Gray79], with the coordinator process running the protocol.
This same protocol is used for all of the concurrency conwol
algorithms studied. Finally, whether the cohorts of a transaction
execute sequentially or in parallel depends on the query execu-
tion model of interest. We will discuss cohort placement and
query executon further in Section 3 when we describe the details
of our workload model.

2.2. Distributed Two-Phase Locking (2PL)

The first algorithm is the distributed two-phase locking algo-
rithm described in [Gray79]. Cohorts set read locks on items that
they read, converting their read locks to write locks on items that
need to be updated. As usual, read locks can be shared but write
locks cannot. Locks are set dynamically, as the cohort executes,

* with the cohort blocking until the next item to be accessed has

been successfully locked. Locks are held until the ransaction has
successfully committed or aborted. Of course, deadlocks are pos-
sible. Local deadlock detection occurs whenever a cohort blocks.
Global deadlocks are handled through a "Snoop” scheme similar
to that of Distributed INGRES [Ston79]: A "Snoop" process
periodically gathers up waits-for information from all nodes,
checking for global deadlocks. Each node takes a tum being the
"Snoop" node, and then passes the job on to the next node, so the
"“Snoop" responsibility rotates among the nodes in a round-robin
fashion. Deadlocks are resolved by aborting the transaction with
the most recent initial startup time among those involved in the
deadlock.

2.3. Wound-Wait (WW)

The second algorithm is the distributed wound-wait locking
algorithm of (Rose78]. It differs from 2PL in its handling of the
deadlock problem, as deadlocks are prevented through the use of
timestamps. Each transaction is numbered according to its initial
startup time, and younger transactions are prevented from making
older ones wait. If a cohort of an older transaction requests a
lock, and if the request would lead to the cohort waiting for a
cohort of a younger transaction, then the younger transaction is
"wounded” — it is aborted unless it is already in the second
phase of its commit protocol (in which case the "wound” is not
fatal, and is simply ignored). Younger transactions are permitted
to wait for older transactions, however.

2.4. Basic Timestamp Ordering (BTO)

The third algorithm is the basic timestamp ordering algorithm
of [Bern80b, Bern81]. Like wound-wait, it employs transaction
startup timestamps, but it uses them differently. BTO associates

3 The full model that we suppon is somewhat more general than
this {Care88], but one cohort per transaction per node will suffice here.




read and write timestamps with all recently accessed data items
and requires that conflicting data accesses be performed in times-
tamp order. Transactions that attempt out-of-order accesses are
aborted (except in the case of write-write conflicts, where the
Thomas write rule applies [Bern81}). The BTO algorithm
interacts with the two-phase commit protocol as follows
[Bem81): Writers keep their updates in a private workspace until
commit time. Granted writes for a given data item are queued in
timestamp order without blocking the writers, and they are pro-
cessed as the writers commit. Accepted read requests for pend-
ing writes must also be queued, blocking the readers, in order to
ensure that readers do not read uncommitted data. Effectively, a
write request locks out subsequent reads with later timestamps
until the write actually becomes visible at commit time.

2.5. Distributed Certification (OPT)

The fourth algorithm is the distributed. timestamp-based,
optimistic concurrency control algorithm of [Sinh85], which
operates by exchanging certification information during the com-
mit protocol.* For each data item, a read timestamp and a write
timestamp are maintained. Cohorts may read and update data
itemns freely, storing any updates into a local workspace until
commit time. For each read, the cohort must remember the ver-
sion identifier (i.e., write timestamp) associated with the item
when it was read. Then, when all of the cohorts of the ransac-
tion have completed their work, and have reported back o the
coordinator, the transaction is given a globally unique timestamp.
This timestamp is sent to each cohort in the "prepare to commit"
message, and it is used to locally certify all of its reads and writes
as follows: A read request is certified if (i) the version that was
read is still the current version of the item, and (ii) no write with
a newer timestamp has already been locally certified. A write
request is certified if (i) no later reads have been certified and
subsequently committed, and (ii) no later reads have been locally
certified already. The term "later” refers to timestamp time here,
so these conditions are checked using the timestamp given to the
transaction when it started the commit protocol. These local
certification computations are performed in a critical section.

2.6. Some Observations

The four algorithms that we have selected span the three
major algorithm classes, and they represent a fairly wide range of
conflict detection and resolution methods and times. 2PL
prevents conflicts as they occur using locking, resolving global
deadlocks via a centralized deadlock detection scheme. WW is
similar to 2PL, except that it uses timestamps and aborts to
prevent deadlocks. BTO uses timestamps to order transactions a
priori, aborting transactions when conflicting, out-of-order
accesses occur; read requests must occasionally block when they
request data from pending, uncommitted updates. OPT only
checks for conflicts when a transaction is ready to commit, and it
uses aborts to resolve them.

* Actually, two such algorithms are proposed in [Sinh85]. We use
their first aigorithm here, as it is the simpler of the two.

3. MODELING A DISTRIBUTED DBMS

As mentioned in Section 1, we developed a distributed DBMS
model for studying concurrency control algorithms and perfor-
mance tradeoffs in {Care88]. The model is equally applicable to
a distributed database machine, so we use it here as well. While
a complete description of the model is given in [Care88], we
summarize it here (with a database machine orientation) for com-
pleteness and to aid the reader in interpreting the results. Figure
1 shows the general structure of the model. There are two types
of nodes, host nodes and processing nodes. Each host node has
four components: a source, which generates transactions and
also maintains transaction-level performance information for the
node, a transaction manager, which models the execution
behavior of transactions, a concurrency control manager, which
implements the details of a particular concurrency control algo-
rithm; and a resource manager, which models the CPU and [/O
resources of the node. The processing nodes are similar, but they
lack the source component; thus, they do not contribute transac-
tions to the workload. In addition to these four per-node com-
ponents, the model also has a network manager, which models
the behavior of the communications network. The interfaces
between components were designed to support modularity, mak-
ing it easy to replace one component (e.g., the concurrency con-
trol manager) without affecting the others. We describe each
component in turn in this section, preceded by a discussion of
how the database itself is modeled. We omit details related to
how replicated data is modeled [Care88], as they are not relevant
to this study.

3.1. The Database Model

We model a distributed database machine as containing a col-
lection of files. A file can be used to represent an entire relation,
or it can represent a partition of a relation when relations are hor-
izontally partitioned [Ries78] as is common in distributed data-
base machines. Table 1 summarizes the parameters of the data-
base model, which include the number of host and processing
nodes, the number of files in the database, and the size of each
file. As indicated in the table, files are modeled at the page level.
The mapping of files to nodes is specified via the parameter

Resource Manager

Network
Manager

{Processing Nodes)
o L.

Figure 1: Distributed DB Machine Model.




FileLocations . a boolean array in which FileLocations;; is true if
file i resides at node j. In general, files can reside at either host
or processing nodes, although we place them only at processing
nodes throughout this study.

3.2. The Source

The source is the component responsible for generating the
workload for a host node. The workload model used by the
source characterizes transactions in terms of the files that they
access and the number of pages that they access and update in
each file. Table 2 summarizes the key parameters of the work-
load model for a node; each host node has its own set of values
for these parameters. The NumTerminals parameter specifies the
number of terminals attached to the node, and the ThinkTime
parameter is the mean of an exponentially distributed think time
between the completion of one transaction and the submission of
the next one at a terminal. NumClasses gives the number of tran-
saction classes for the node.

The ClassFrac parameter specifies the fraction of the node’s
terminals that generate transactions of a given class. The remain-
ing per-class parameters characterize transactions of the class as
follows: ExecPattern specifies the execution pattern, either
sequential or parallel, for ransactions. (More will be said about
this shortly.) FileCount is the number of files accessed, and
FileProb; gives the probability distribution for choosing the
acwal files that the transaction will access. The next two parame-
ters determine the file-dependent access characteristics for tran-
sactions of the class, including the average number of pages read
and the probability that an accessed page will be updated. The
last parameter specifies the mean number of instructions required
for transactions of the class to process a page of data when read-
ing or writing it. The actual number of pages accessed ranges
uniformly between half and twice the average, and the per-page
instruction count is exponentially distributed.

Parameter Meaning

NumtostNodes | Number of host nodes
NumProcNodes | Number of processing nodes
NumFiles Number of files in the database
FileSize; Numnber of pages in file i
FileLocations;; Placement of files at nodes

Table 1: Database Model Parameters.

Parameter | Meaning

Per-Host-Node Parameters
NumTerminals | Number of terminals attached to node
ThinkTime Think time for the terminals
NumClasses Number of transaction classes

Per-Class Parameters

ClassFrac Fraction of terminals of this class
ExecPattern Sequental or parallel cohort execution
FileCount Number of files accessed
FileProb; Access probability for file i
NumPages; Average number of file i pages read
WriteProb; Write probability for file i pages
InstPerPage Instruction count for page processing |

Table 2: Workload Model Parameters for a Host Node.

3.3. The Transaction Manager

Each wansaction in the workload has the general structure
described in Section 2.1. The coordinator resides at the host node
where the transaction originated. A transaction has one cohort at
each node where it needs to access data, so each cohort makes a
sequence of read and write requests to one or more files that are
stored locally. A transaction can execute in either a sequential or
parailel fashion, depending on the execution panern of the wan-
saction class. Cohorts in a sequential ransaction execute one
after another, whereas cohorts in a parallel transaction are started
together and execute independently until commit time. A
sequential transaction can be thought of as representing a series
of remote procedure cails, which is how Non-Stop SQL executes
most multi-node ransactions {Borr88], while a parallel transac-
tion can be thought of as modeling the kind of paraliel query exe-
cution employed in the Gamma [DeWi86], Bubba [Alex88], and
Teradata [Tera85] database machines.

To understand how transaction execution is modeled, let us
follow a typical parallel transacton from begimning to end.
When a transaction is initiated, the set of files and data items that
it will access are chosen by the source. The coordinator is then
loaded at the originating host node, and it sends "load cohort”
messages to initiate cohorts at the appropriate processing nodes.
Each cohort makes a series of read and write accesses. A read
access involves a concurrency control request to get access per-
mission, followed by a disk I/O to read the page, followed by a
period of CPU usage for processing the page. Write requests are
the same except for the disk I/O; the I/O activity for writes takes
places asynchronously after the transaction has commirted.’ A
concurrency control request for a read or write access is always
granted in the case of the OPT algorithm, but this is not the case
for the other algorithms. When a concurrency control request
carmot be granted immediately due to a conflict, the cohort will
wait until the request is granted by the concurrency control
manager. If the cohort must be aborted, the concurrency control
manager notifies the transaction manager, which then invokes the
abort protocol. Once the transaction manager has finished abort-
ing the transaction, it delays the coordinator for a period of time
before letting it attempt to rerun the transaction; as in [Agra87a],
we use one average transaction response time (as observed at the
coordinator node) for the length of this period.

3.4. The Resource Manager
The resource manager can be viewed as a model of the node’s
operating system. It manages the physical resources of the node,

including its CPU and its disks.’ The resource manager provides
CPU and I/O service to the transaction manager and concurrency

$ We assume sufficient buffer space to allow the retention of up-
dates until commit time, and we also assume the use of a log-based
recovery scheme where only log pages must be forced prior 10 commit.
We do not model logging, as we assume it is not the bottleneck.

6 Note: The resource manager employed in this stdy does not cap-
ture details related to managing the buffer resources of a node. While
modeling buffering in detail would certainly lead to different absolute
results, we do not expect that doing so would significantly affect the gen-
eral conclusions of this smdy. (If anything, we suspect that the conclu-
sions would be even stronger; we plan to verify this conjecture in the fu-
ture.)




control manager, and it also provides message-sending services
(which involve using the CPU resource). The transaction
manager uses CPU and 1/O resources for reading and writing disk
pages, and it also sends messages. The concurrency control
manager uses the CPU resource for processing requests, and it
100 sends messages.

The parameters of the resource manager are summarized in
Table 3. Each node has one CPU, which executes instructions at
the rate given by CPURate,, plus NumDisks disks. The CPU ser-
vice discipline is first-come, first-served (FIFO) for message ser-
vice and processor sharing for all other services, with message
processing being higher priority. Each of the disks has its own
queue, which it serves in a FIFO manner; the resource manager
assigns a disk to serve a new request randomly, with all disks
being equaily probable, so our [/O model assumes that the files
stored at a node are evenly balanced across its disks. Disk access
times for the disks are uniform over the range [MinDiskTime,
MaxDiskTime]. Disk writes are given priority over disk reads (to
ensure that the system keeps up with the demand for asynchro-
nously writing updated pages back to disk after the transaction
has committed). The parameter /nstPerUpdate models the CPU
overhead associated with initiating a disk write for an updated
page. The parameter /nstPerStartup captures the CPU overhead
associated with starting up a new process (e.g., a new cohort 10
operate on behalf of some transaction). Finally, InstPerMsg cap-
tures the CPU cost of protocol processing for sending or receiv-
ing a message. ’

3.5. The Network Manager

The network manager encapsulates the model of the intercon-
nection network. Our network model is currently quite simplis-
tic, acting just as a switch for routing messages from node to
node. This is because our experiments assume a fast network,
where the actual wire time for messages is neglible, although we
do take the CPU overhead for message processing into account at
both the sending and receiving nodes. This cost assumption has
become common in the analysis of locally distributed systems, as
it has been found to provide reasonably accurate performance
resulis despite its simplicity [[.azo86].

3.6. The Concurrency Control Manager

The concurrency control manager captures the semantics of a
given concurrency control algorithim, and ii is the vndy moduie
that must change from algorithm to algorithm. It handles con-
currency control requests made by the transaction manager,
including read and write access requests, requests (o get

Parameter Meaning

CPURate CPU instruction rate for node

NumDisks Number of disks attached to node
MinDiskTime Minimum disk access time

MaxDiskTime | Maximum disk access time

InstPerUpdate | Instruction count to start a disk write
InstPerStartup | Instruction count to start a process
InstPerMsg Instruction count to send/receive a message |

Table 3: Resource Manager Parameters.

permission 10 commit a fransaction, and certain management
requests (e.g., o initialize and terminate coordinator and cohort
processes). This study employs four different concurrency con-
trol managers, one for each of the concurrency control algorithms
described in Section 2.

The concurrency control manager has a variable number of
parameters. One parameter, /nstPerCCReq, specifies the CPU
overhead for processing a read or write access request; this
parameter is present in all of our algorithms. Each algorithm then
has zero or more additional parameters. Of the algorithms sw-
died in this paper, only 2PL uses another parameter. Its second
parameter is Detectioninterval , which determines the amount of
time that a node should wait, after becoming the next "Snoop”
node, before gathering global waits-for information and perform-
ing global deadlock detection.

4. EXPERIMENTS AND RESULTS

In this section, we present performance resuits for the four
concurrency control algorithms of Section 2 under various
assumptions about the size of the system, the partitioning of the
database, the system load, and the CPU costs for sending and
receiving messages and initiating processes. The simulator used
to obtain the results was written in the Modula-2-based DeNet
simulation language [Livn88]. We describe the performance
experiments and results after a brief discussion of the perfor-
mance metrics and parameter settings used.

4.1. Metrics and Parameter Settings

We consider four main performance metrics in this paper.
The first metric is the transaction response time, measured from
the time when a transaction originates at a node until it finally
completes successfully. The second metric used is the
throughput (or transaction completion rate) of the system. The
third and fourth metrics of interest are the response time and
throughput speedups obtained by adding resources and/or paral-
lelism 1o the system. The speedup metrics will be more carefully
explained when we present the results. We also employ several
additional metrics to aid in interpreting the results. CPU and disk
utilizations will be presented in some places. Other metrics of
interest include the average blocking time (for 2PL) and a metric
that we call the abort ratio. This last metric gives the average
number of times that a ransaction has to abort per commit, and is
computed by dividing the number of transaction aborts by the
number of transaction commits.

Table 4 gives the values of the key simulation parameters in
our experiments. We describe them briefly here; those that vary
are mentioned again in the appropriate experiment descriptions.
We consider machine configurations with one host node and 1, 2,
4, and 8 processing nodes in this study, using the 8-node
configuration in those experiments where the machine size is held
constant.” The database itself consists of 8 relations with 8 parti-
tions apiece, modeled by 64 files, and all partitions are the same
size. The partition size is set at 300 or 1200 pages in our

? In addition 10 an 8-node configuration, we also ran several experi-
ments with 16-node and 32-node configurations (with larger update tran-
sactions). Since the trends there were similar, and we have limited space
here, we present only the 8-node resuits.



experiments, so the database size is either 19,200 or 76,800 pages
of data depending on the experiment in question. The mapping
of relations' partitions to nodes is varied in order to control the
amount of parallelism assumed; we will describe this mapping
shortly. There are 128 terminals, which are attached to the host
node in order to keep the structure of the system’s workload uni-
form over the various machine sizes. The mean terminal think
time is varied over the range from 0 to 120 seconds in order to
vary the load on the system.

In terms of the workload, a transaction accesses data from
each partition of one of the 8 relations. Each transaction reads an
average of 8 pages from each of the relation’s partitions, and each
page is updated with a probability of 1/4. Transactions thus
involve an average of 64 reads, and they do an average of 8
writes.® This ransaction size was chosen as being small enough
to retain somewhat of a “ransaction processing flavor” without

being so small as to make parallel execution seem ridiculous.’
The corresponding file sizes were selected so as to provide
interesting levels of data contention. Finally, it takes a transac-
tion an average of 8K CPU instructions to process each page that
it reads or writes. In all experiments, the choice of the particular
file to be accessed by a transaction is determined by its terminal
of origin. The 128 terminals attached to the host node are
divided into groups of 16, with terminals in each group generat-
ing transactions that access a common relation.

Continuing through the parameters in Table 4, the host CPU
is 10 MIPS, which is ten times as fast as the 1 MIPS processing

Parameter Value(s)

NumHostNodes 1 host

NumProcNodes 1, 2, 4, 8 nodes (8 when fixed)
NumFiles 64 files (8 relations, 8 partitions each)
FileSize; 300, 1200 pages/file

NumTerminals 128 terminals (attached to host)
ThinkTime 0-120 seconds

FileCount 8 files

FileProb; 1.0

NumPages; 8 pages

WriteProb; 1/4

InstPerPage 8K instructions

CPURate host — 10 MIPS, nodes — 1 MIPS
NumDisks 2 disks/node

MinDiskTime 10 ms

MaxDiskTime 30ms

InstPerUpdate "2K instructions

InstPerStartup 0, 2K, 20K instructions (2K when fixed)
InstPerMsg 0, 1K, 4K instructions (1K when fixed)
InstPerCCReq negligible (0)

Detectionlnterval 1 second

Table 4: Simulation Parameter Settings.

! Note that with this workload model, the nature of transaction ac-
cess streams is independent of data placement and machine size, unlike
[Bhid88, Jenq89].

% We also ran experiments with other transaction sizes (e.g., 32
reads). The basic trends were similar, so we present only the 64-read
results in order to limit the number of graphs needed.

nodes so that the host won't limit system performance. Each
node has two disks, and each disk has an average access time of
20 miiliseconds. Initiating a disk write for an updated page takes
2K instructions. The mean number of instructions for starting up
a new process is set to 0, 2K, or 20K, so we consider the effects
of both lightweight and heavyweight processes. The mean
instruction path length for message protocol processing on each
end is set to 0, 1K, or 4K instructions. The concurrency control
CPU overhead is assumed to be negligible, for all algorithms,

compared to the 8K instruction count for page processing.'®
Finally, the global deadlock detection interval for 2PL and O2PL
is 1 second.

The [/O and CPU cost parameter values for the experiments
reported here were chosen so that, messages aside, the processing
nodes operate in an [/O-bound region. In particular, when the
disks are fully utilized, 80-90% of the CPU capacity of the pro-
cessing nodes is utilized; this makes the system slightly [/O-
bound.

In the remainder of this section, we report on the results of
our experiments. The presentation of the results is divided into
three main sections. In the first section, we examine the potential
gains offered by the combination of increasing the number of
nodes in the system together with partitioning the data for paral-
lelism. Here, we will see the extent to which the various con-
currency control algorithms are able to take advantage of the
opportunities available in a distributed database machine archi-
tecture. In the second section, we fix the size of the system at
eight nodes, and we look more closely at how partitioning (i.e.,
parallelism) alone impacts performance under different system
loads. In the third section, we look at how certain system over-
heads affect the gains due to partitioning and parallelism.

4.2. The Impact of Machine Size and Parallelism

In this section, we vary the size of the database machine while
keeping the workload constant. We do so in order to study the
performance gains provided by scaling up a database machine
and the way that concurrency control influences these gains. As
we vary the number of nodes in the machine, we also partition
the data across the nodes in order to enable inwra-transaction
parallelism to be employed. Specificaily, three different system
configurations are considered here:

1-Node System: In this case, there is a single database
machine node, and consequently no partitioning is used. Each of
the relations R;, 1<i<8, has all of its partitions F;;, 15j <8, stored
at the single node S, and all transactions execute on this node.

4-Node System: In this case, the machine has four nodes.
Each relation R; has partitions F;, and F;, stored at node S, F;;
and Fi; at S, Fis and Fi5 at S5, and F;5 and FigatS,. Here, ran-
sactions consist of four cohorts running in parallel on all four
nodes.

8-Node System: In this case, the machine has eight nodes.
Each relation R; has partition F;; stored at node S; in this case, so
transactions consist of eight cohorts running in parallel on all
eight nodes.

1 Alternatively, the concurrency control overhead can simply be
viewed as part of the 8K per-page instruction count.




We examine the performance gains due to scaling by compar-
ing the 4-node and 8-node throughput and response time results
with those obtained in the 1-node case. In order 1o push the sys-
tem into a region of operation where data contention is
significant, we set the FileSize; parameter to 300 pages per file.
As a result, the overall size of the database is 19,200 pages (or
153 MB, assuming a page size of 8K bytes), with the average
transaction reading 64 of them. As described earlier, we assume
128 terminals with their think time varying from 0 to 120
seconds. Finally, for this experiment we assume a value of 2K
instructions for /nstPerStartup , the CPU overhead for starting up
a cohort; 1K instructions is assumed for /nstPerMsg, the CPU
overhead on each end for sending and receiving a message.

Figures 2 and 3 present the performance results for the 1-node
and 8-node cases. Figure 2 shows the throughputs obtained with
the four different concurrency control algorithms in these cases,
and Figure 3 shows the associated response time results. In addi-
tion to the results for the four algorithms, we also show results
that we refer to as the NO_DC (no data contention) results. The
NO_DC resuits, which can be viewed as results for 2PL with an
infinitely large database, show the performance that would be
obtained if data contention were not a factor. Examining the rela-
tive ordering of the algorithms, we see that 2PL outperforms
BTO, which outperforms WW, which in tm outperforms OPT.
These differences are evident only in the lower think time range,
where the system load is sufficient to generate a significant
amount of data contention. The NO_DC curve displays the best
performance, of course, with the distance between this curve and
the various algorithm curves showing the extent to which each
algorithm suffers due to data contention. In particular, we see
that all four of the algorithms thrash due to data contention under
high loads. (This is consistent with the results of our previous
centralized and distributed concurrency control performance stu-
dies [Agra87a, Care88].)

Figures 4 and 5 present the 8-node speedups resulting from
the throughput and response time data of Figures 2 and 3. These
speedups were computed as ratios of the 8-node and 1-node per-
formance metrics for each algorithm. In Figure 4, we see the
throughput speedups for NO_DC behaving as one would expect.
When the think time is small, the system is heavily loaded, so
increasing the number of nodes in the system by a factor of eight
enables the system to deliver very close to eight times the
throughput. As the think time is increased, reducing the load, the
throughput speedup decreases. This happens when there are not
enough transactions running simultaneously to keep all of the
nodes fully utilized; the speedup drops towards one since the
think time will eventally reach a point where there is usually
just one transaction running in the system. The throughput
speedups for the various concurrency control algorithms follow
the same general trend, but two differences should be noted.
First, the various algorithms actually have somewhat better
throughput speedups than NO_DC; they even exceed eight in
some cases. This is because going from sequential execution in a
1-node system to parallel execution in an 8-node system also
leads to a reduction in data contention, reducing the number of
aborts and increasing the degree to which the system resources
can be utilized usefully. Second, 2PL has the smallest additional
speedup, and OPT generally has the greatest additional speedup,
with the other algorithms falling between these two. The reason
for this is evident from the results in Figure 2: The worse an

algorithm performs due (o data contention in the 1-node case, the
more room it has for improvement due to reduced contention in
the 8-node case.

Looking at Figure 5. we see how the response time speedup
varies with think time for the various concurrency control algo-
rithms and for NO_DC. The values at the lowest and highest
think times are quite intitive. When the think time is low, and
the system is heavily loaded. the 8-node system provides a
response time reduction of about 7.5. Note that this reduction is
not due to parailelism, as intra-transaction parallelism does not
improve response time under high loads.!! Rather, it is due to the
fact that the 8-node system is eight times as powerful as the I-
node system. When the think time is large, the improvement in
response time ends up in a similar range. It will actually end up
dropping to about 5.3 due 1o variations in the size of the cohorts;
since all cohorts must complete before a transaction can commit,
its response time is determined by the length of its longest
cohort.’? The speedup at this end of the think time spectrum is
indeed due to parallel execution. Under light loads, a transaction
experiences little competition for the disks or the CPU at any of
the nodes, so splitting it into parallel cohorts leads to a significant
speedup.

Turning our attention to the intermediate think time range in
Figure 5, we find that the response time speedups for the four
algorithms, and also for NO_DC, are quite remarkable. The
NO_DC speedup exceeds 100 (i.e., a factor of 100 improvement)
in this range, and the speedups for the various concurrency con-
trol algorithms are even better. While this surprised us at first,
there is in fact a sensible explanation: At intermediate loads, the
systemn gains both from having multiple nodes (like at high loads)
and from parallellism (like at low loads). In this range, the
system's behavior becomes similar to that of a moderately to
heavily loaded open queuing system — with its familiar, non-
linear relationship between utilization and response time. Figures
6 and 7 present the disk and CPU utilizations underlying these
results. Note how rapidly the utilizations drop in the 8-node case
as compared o the 1-node case, leading to the large response
time speedups seen here. Finally, the way that the 1-node and 8-
node response time curves decrease relative to one another in
Figure 3 also indicates why the speedups are so large in this
range.

We repeated this experiment with the 4-node configuration,
again comparing the results to the 1-node case via speedups.
While space limitations prevent us from including the figures, the
results can be summarized as follows:  Qualitatively, the
throughput and response time speedup curves for the 4-node case
were very similar to the 8-node curves of Figures 4 and 5. Quan-
titatively, the maximum throughput speedup for the various con-
currency control algorithms was slightly greater than four, and

1 Splitting a transaction into eight pieces indeed makes each piece
one-cighth as long, but under high loads each node becomes eight times
as loaded (thus nullifying any gain due to parallelism).

12 Recall from Section 3 that actual cohort sizes vary around their
mean size; they actually access between 4 and 12 pages per partition.
With 8 cohorts per transaction, there is a good chance of a transaction
having a cohort of size 12, limiting the expected speedup 10 64/12 (rather
than 64/8), or 5.33.
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the response time speedup was also limited at the extremes by 4-
way rather than 8-way parallelism. Under medium loads, the
response time speedup for NO_DC in the 4-way case reached
almost 60, with the various concurrency control algorithms
enjoying even larger speedups in this region.

4.3. The Impact of Parallelism

In this section, we examine the performance of the system as
a function of data partitioning and intra-transaction parallelism
while holding the size of the system constant. Since a transaction
accesses data from every partition of one relation, we control the
level of parallelism here by varying the placement of partitions.
We consider two alternatives for placing the partiions Fj;,
1< <8, of the eight relations R;, 1<i <8, on nodes §;, 1<i<8:

1-Way Partitioning: In this case, no partitioning is used. All
eight partitions F;; of relation R; reside at node S;, so a transac-
tion that accesses R; runs sequentially at node ;.

8-Way Partitioning: In this alternative, each relation R; is
split across all eight nodes, so transactions that access R; have
eight cohorts that run in parallel. Here, R;'s partitions Fy;,
1<) <8, are stored at nodes S; through S mad 8y7-

Most of the other parameter values used in this section are the
same as those in the previous experiment; the only difference is
that here we use both the smaller and larger database sizes.

Figures 8 and 9 show the response lime improvements
obtained with 8-way partitioning (and thus 8-way parallelism) as
a function of the mean terminal think time. Figure 8 presents the
results for the larger database size, and Figure 9 is for the smaller
database. At low think times, there is no improvement in either
figure due to the high load; parallelism simply doesn’t help here,
as would be expected. Once the load is lessened by increasing
the think time, we indeed see a significant response time
improvement for all of the algorithms. For large think times, we
see speedups due to parallelism of about five (as discussed in the
previous experiment). Again, we also see that all of the con-
currency control algorithms actually have better speedups than in
the NO_DC case due to the fact that moving to parallelism
relieves data contention. 2PL has the largest speedup among the
algorithms at low think times (under heavy loads), whereas OPT
has the largest speedup at the highest think times. These effects
are subtle in the case of the larger database, but they are clear in
the smaller case, where data contention is more significant.

Figures 10 and 11 show the percentage response time degra-
dations for the various algorithms (computed relative to the
NO_DC response times) for the smaller database size. These
figures illustrate the extent to which data contention leads to a
response time loss for each algorithm. Figure 10 shows the
results for 8-way partitioning, while Figure 11 shows the results
without partitioning. In both cases, the ordering of the algorithms
is the same as in the first experiment, with 2PL providing the best
performance (i.e., the smallest loss relative to NO_DC), followed
by BTO, and then WW, with OPT providing the worst perfor-
marce (i.e. the biggest relative loss). Figures 12 and 13 show
the associated abort ratios. It is clear from these figures that the
relative performance of the algorithms is consistent with their
abort ratios (modulo the fact that WW aborts are cheaper than
OPT aborts because they occur earlier). The corresponding
results that we obtained using the larger database size displayed

similar trends, with approximately the same relative algorithm
differences but smaller absolute degradation values.

Comparing Figures 10 and 11, we see that the differences in
degradation among the aigorithms are more pronounced in the 8-
way case. A comparison of the 8-way and 1-way results reveals
that 2PL actally benefits from 8-way parallelism under fairly
high loads, i.e., the gap between 2PL and NO_DC is less in the
8-way case than in the 1-way case. This is due to the fact that
locks are held for shorter periods, reducing data contention there.
For example, at & think time of 12 seconds, the average blocking
time for 2PL in the 1-way case turns out to be 60% higher than
that of the 8-way case. In contrast, OPT cannot take full advan-
tage of paralielism because of its reliance on aborts as the sole
conflict resolution mechanism. In fact, unlike 2PL, the gap
between OPT and NO_DC is larger in the 8-way case than in the
1-way case, particularly for the smaller database size. This is
because, by letting all conflicting transactions execute simultane-
ously rather than blocking some of them, OPT cannot benefit
from the shorter blocking times that the 8-way case implies for
2PL; in addition, aborts are quite expensive in the 8-way case.
The degradation behavior of the other algorithms relative to
NO_DC is in between that of 2PL and OPT. The degradation of
BTO shrinks somewhat in moving to the 8-way case, like 2PL
(but less so), whereas the degradation for WW moves in the
opposite direction, like OPT (but less so). This behavior is in
agreement with the extent to which BTO and WW rely on aborts
to handle conflicts: since WW relies more heavily on aborts, it is
the more OPT-like of the two.

4.4. The Effect of System Overheads

This section studies how varying the CPU costs for sending
messages and for starting cohort processes impacts the perfor-
mance gains seen in the second experiment; we thus use the
same parameters here, but we restrict our attention to the smaller
database size. Performance is examined as a function of the
degree of partitioning and parallelism here, so we consider two
additional partitioning alternatives (together with the 1-way and
8-way cases from the previous experiment):

2-Way Partitioning: In this case, each relation R; is split
across two nodes, and transactions that access R; consist of two
parallel cohorts, one at each of the nodes. More specifically, R;
is partitioned by storing F;;, 15/ <4, at node S;, while Fy;, 55/ <8,
are stored at node S(; mad B)+1

4-Way Partitioning: In this case, each relation R; is split
across four nodes, so transactions that access R; consist of four
parallel cohorts. Partitions F;; and Fi; reside at node S;, Fi3 and
F;‘ reside at node S(,‘ mod B)+1s F,'s and F,‘G reside at node
S(;mg),.z. anan andF;g reside atnodeS(;,.d;)‘.;.

Figure 14 presents the response time speedups for the dif-
ferent algorithms in the no overhead case, with both InstPer-
Startup and InstPerMsg set to zero, for a think time of zero
(where the load is the heaviest). Since the load is heavy, NO_DC
gains almost nothing due to data partitioning here. However, we
see that the various concurrency control algorithms do show
some degree of response time speedup. 2PL speeds up the most
under these extremely heavy loading conditions, and OPT speeds
up the least. 2PL has the advantage that, by reducing the number
of active transactions via blocking, it allows transactions that are
not blocked to benefit more from parallel execution (since they
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compete with fewer other ransactions); this in turn benefits the
blocked transactions since the locks that they are waiting for will
be released earlier. Figure 15 presents the corresponding resuits
for a think time of 8 seconds, where the load is not quite as
heavy, and we see that the algorithms benefit more here (since
there is at least some chance that parallel cohorts will nn faster).
Again, 2PL benefits the most, and OPT benefits the least. (This
order of speedups was actually the same at very high loads in the
earlier experiments; we just didn’t focus on the high load regions
there.) We also obtained results very similar to those of Figures
14 and 15 with settings of 2K instructions for /nstPerStartup and
1K instructions for /nstPerMsg, which are the values that we
used in the earlier experiments in the paper.

Figures 16 and 17 present the zero and 8 second think time
results once again, with InstPerStartup still being zero but Inst-
PerMsg increased to 4K instructions. At both think times we
observe a drop in speedup relative to Figures 14 and 15. In fact,
several of the concurrency control algorithms (especially OPT)
actually do worse with 8-way parallelism than with 4-way paral-
lism in this case. This is because aborts are very expensive in the
8-way case; the four-fold message cost increase makes it expen-
sive 1o start and restart distributed wansactions. Even the
NO_DC curve shows little gain in moving from 4-way 1o 8-way
parallelism here due to the message overhead involved in mult-
site transaction coordination. We also repeated this experiment
with InstPerMsg set to zero but with InstPerStartup set 1w 20K
instructions. The results in that case were very close 10 those of
Figures 16 and 17, but the factor limiting speedup with these
parameter seitings was the process initiation cost involved in set-
ting up a transaction.

5. CONCLUSIONS

In this paper, we have examined the interaction between
parallelism as found in distributed (or ‘shared nothing’) database
machines and data contention. Four alternative concurrency con-
trol algorithms were considered in this study, including two-
phase locking, wound-wait, basic timestamp ordering, and
optimistic concurrency control. We looked at how performance
scales as a function of machine size, and at how the degree to
which partitioning the database for intra-transaction parallelism
changes performance under the different concurrency control
algorithms. We examined performance from several perspec-
tives, including response time, throughput, and speedups, over a
range of system loads. We also examined the performance
impact of the CPU overhead associated with communications and
process initiation.

In an earlier study, we examined the performance of the same
set of algorithms in a setting with replicated data and non-
distributed transactions {Care88]. The work described here is
complementary, the objective being to understand how distri-
buted transactions and intra-transaction parallelism change things
(and by how much). In terms of absolute performance, the
results obtained here are basically conmsistent with those in
[Care88): Two-phase locking provided the best performance,
followed by basic timestamp ordering, followed by wound-wait,
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followed by the optimistic algorithm.!> The ordering of the algo-
rithms was due to the degree 1o which they tend to rely on abons
for resolving conflicts. The differences in absolute performance
were quite pronounced under 8-way parallelism due to the high
cost of aborts in this case and the fact that blocking a subset of
the conflicting transactions can enable the other ransactions to
complete more quickly, thus reducing waiting times. Transaction
distribution and parallelism therefore do not aiter the fact that

‘two-phase locking appears to have superior performance charac-

teristics, contrary to what one might (mistakenly) interpret the
many-resource results of [Agra87a} to mean.

In terms of relative performance, we found that concurrency
control effects due to data contention can lead to somewhat dif-
ferent speedup behavior than that obtained in the absence of con-
currency control. Thus, even when the load is high, where paral-
lelism would not usually be expected to help, our results indicate
that parallelism can be beneficial. This was especially true in the
case of two-phase locking, which was seen to benefit the most
from parallelism under high loads.
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