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main result shows that each ¢ can be expressed as ¢ = p(V)7 * M, where p(V) is a finite difference
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Factorization Theorems for Univariate Splines on Regular Grids

Amos Ron

1. Introduction

The theory of multivariate splines on regular grids has been rapidly devolped in the recent years,
primarily due to the introduction of box splines by de Boor, DeVore and Héllig [BD], [BH]. A
remarkable variety of techniques has been used to investigate the various aspects of these splines;
starting with Fourier analysis methods (e.g., Poisson summation formula) through partial differ-
ential and difference operators, spectral analysis, ideals of polynomials, disrtibution theory and
more.

In this note we revisit the univariate case. Expoiting some of the techniques known in
the multivariate situation together with some new ones, we obtain here factorization results for
univariate splines which illuminate the crucial role played here by polynomial and exponential
B-splines. We then use these results to analyze the question of splines of minimal support and
singular exponential B-splines. It should be emphasized that analogous results are (unfortunately)
non-valid in the multivariate situation; yet the fact that the multivariate box splines are expressed
as convolution of measures supported on lines makes it possible to apply some of the observations
here to that important case. A typical example of that sort of applications has been given in
[Ry; §6].

Some of the results here might have been known to others (see e.g., [SF; p.825]), yet, it seems
that this is the first systematic analysis of the possible factorizations of univariate splines. In this
analysis, as happened in the analysis of the multivariate exponential box splines [BR], we found
it often more efficient (as well as more explicit) to apply appropriate differential and difference
operators rather than the alternative (and more standard) techniques of the Fourier tranform.

Several observations from multivariate splines on regular grids had guided us here. Neverthe-
less, considering the fact that a potential reader of this note may be unfamiliar with the theory of

multivariate splines, proofs are provided for most of these results, thus making the paper essentially

self-contained.

2. The model

The model we investigate here can be presented as follows: let ¢ be a compactly supported mea-

surable function (or even a distribution from D'(IR)). Each function gives rise to the semi-discrete

1



convolution operator ¢+ which assigns to each ¢ in the space
(2.1) C:={c|lec:7%Z— C}
of all complex-valued sequences, a function (or distribution) ¢ * ¢ defined by

(2.2) prci= Y c(a)E%,

o€

with F the shift operator
E:fw f(--1).

The range and the kernel of ¢+ are denoted here by S(¢) and K4 respectively. Another important
space in our discussion is the space H(¢) of all exponentials in S(¢); here and hereafter “an

exponential” is a function of the form

(2.3) ZBA).])]',
i=1

where, for j = 1,...,n, p; € 7 :=the space of all polynomials, A; € C and e, is the exponential

ey 1z e’

The spaces Ky, H(¢) and the preimage H, (in C) of H(¢) are of use in the evaluation of the
approximation properties of S(¢) and approporiate scaled-versions of it and hence for a given
¢ it is important to identify these spaces. In this paper we also reverse the question and seck a
characterization of ¢ in terms of H(¢) and K,. These issues will be examined later on in this
paper. Here, as a preparation, we discuss some basics concerning the above model.

In the following 7 denotes the space of all polynomials of degree < k. Difference operators are
applied either to functions and distributions or to sequences; yet, the kernel of a difference operator

is always regarded in the sequence space C.

We first note that the spaces S(¢), H(¢), Ky and Hy are shift-invariant i.e, invariant under
integer translates. (For the two latter spaces these are the only admissible translates, as being
sequence spaces). Moreover, since ¢ is of compact support and H(¢) consists of entire functions,

H(¢) is finite-dimensional. Although being less evident, the finite-dimensionality holds also for (.



(2.4) Proposition[R,;Cor.2.4]. Let ¢ be a compactly supported distribution. Then the space

Ky constitutes the kernel of a finite difference operator p(V), hence admits a representation
m

(2.5) Ky = @(ekj Tk o
i=1

where (k;)7, are some non-negative integers and for 1 <j <l <m
1/3=1 8 8

/\j - )\1 ¢ 2mwill.
Furthermore,
(2.6) dim K4 < diam supp ¢.

Proof: We first treat the case when ¢ is a function: Assume that diamsupp ¢ < n. Then one
easily checks that the only sequence ¢ in Ky with ¢(0) = ¢(1) = ... = ¢(n~1) = 0 is the trivial one,
and hence (2.6) holds. Thus, K is finite-dimensional and shift-invariant, hence is annihilated by
p(V) := q(E), q being the characteristic polynomial of E|K¢, and dim K4 = deg ¢. Since deg ¢ also
coincides with the dimension of ker p(V) (in C), we conclude that kerp(V) = K4. The rest of the
proposition is merely a standard way of writing the kernel of a difference operator.

For a general ¢, we convolve ¢ with an infinitely differentiable molifier o to obtain an infinitely
differentiable function ¢ % 0. By the first part of the proof, K., is finite-dimensional, hence
so is Ky, since Ky C Kyyo. Also, o can be chosen to be of an arbitrary small support, hence
diam supp ¢ * 0 < diam supp ¢ + €, and thus (2.6) follows. The rest of the proof is identical with
that of the first part. [ )

We now use the above proposition to derive similar results on the preimage H, of H(4).

(2.7) Corollary. The space Hy is also the kernel of a finite difference operator, hence admits a

representation similar to (2.5). Furthermore,

dim Hy < diam supp ¢.

Proof: Let p(D) be a differential operator with constant coefficients which annihilates I ().
Define 9 := p(D)¢. Then for every ¢ € Hy, p(D)(¢* c) = 0, therefore Hy C Ky. Application of
(2.4)Proposition thus yields that Hy is finite-dimensional. Using the fact that supp i C supp ¢,
the rest of the proof follows that of (2.4)Proposition. o
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Occasionally, we generate sequences in C by restricting functions to 7ZZ, and then apply the

operation ¢#* to these sequences. In this case it is convenient to use the notations

(2.8) fi = fizs  O¥ fri=8%(f))

The following simple observation is one of the most useful results in the theory of multivariate

splines on regular grids:
(2.9) Proposition[B; §1]. Assume ¢ is a compactly supported function, and let F' be a shift-

invariant subspace of S(¢). Then F is an invariant subspace of ¢+', i.e., ¢ +' ' C F.

Proof: Let f € F. Note that the operator f+' is well-defined on the domain of all compactly

supported functions. Also, since f € S(¢), f = ¢ * ¢ for some sequence c. Therefore
¢ =+ (pxc)=(d+ $)xc=cx (¢ §)=(pxc)x' ¢=f+¢.

Now, the claim follows from the fact that f ' ¢ € F, by the shift-invariance of F. [

This last proposition yields significant results about Hg:

(2.10) Corollary. Every shift-invariant subspace of H(¢) is an invariant subspace of ¢+'. In
particular H(¢), C Hy. o

In the rest of this preliminary section we discuss a special type of compactly supported func-
tions: the exponential B-splines. Let H be a finite-dimensional exponential space which is also
D-invariant, i.e., closed under differentiation. Such a space H forms the kernel of the differential
operator py(D), with pg being the characteristic polynomial of D|,, and D being the usual dif-
ferentiation. The differential operator py(D) admits a discrete analog, i.e., a difference operator

pu(V): if g is a polynomial of the form ¢ = [];(- — A;), then
(2.11) ¢(V):=[J(1-eME).
J

The exponential B-spline associated with H, By, is now defined as the (unique) compactly sup-

ported function which satisfies the equation

(2.12) pu(D)Br = pu(V).
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Application of Fourier transform to both sides of (2.12) yields the Fourier transform B g of By:
N degp .1 )
(2.13) By(z) = H / =it gy
j=170

where (Aq, ..., Agegp) are the roots of py (counting multiplicities).

(2.12) is somewhat a.non-standard .way-to.define.a B-spline. As a matter of fact, one of our
goals in this note is to demonstrate the fundamental importance of this identity, and therefore used
it to define By. Dedicated to this goal, we will make no use of (2.13) in the sequel, and derive all

the relevent properties of By directly from (2.12).

First, (with n := dim H), note that since pg(V) is supported on {0,...,n}, (2.12) proves the
fact that By is locally in ker py(D) = H, with knots {0, ...,n} and support [0, n]. With somewhat
more effort, one checks that By € C"~2\C™"! in a neighbourhood of each of the knots.

We also note that in case H = Hy €D H; for some D-invariant exponential spaces Hy and Ho,

By is factored to
(214) BHZBH1 *BHQ.

Indeed, since py, (D)pa,(D) annihilates H, we must have py(D) = py,(D)pm,(D), and therefore
also pu, (V)pw,(V) = pg(V). Thus, by (2.12)

pu(D)( B, * Bu,) = pu, (D)pr,(D)(Br, * Br,) = pr,(V)pu,(V) = pu(V),
and (2.14) follows from (2.12).

For an exponential B-spline By, the following improvement of (2.10)Corollary is available

(2.15) Proposition. The operator By maps ker pg(V) onto H(By). Moreover,
kerpy(V) = Hp,, .
Proof: Let ¢ € ker py(V). Then by (2.12)
pu(D)(Bu * ¢) = pa(V)* ¢ = pu(V)e =0,
thus ¢+ carries ker py (V) into H, hence by the definition of H(Bg), into H(Bg). This means that

kerpH(V) C HBH .
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Since dimker py(V) = dim H and, by (2.7)Corollary, dim Hg, < diamsupp By = dim H, the

claim follows. '

For the choice ¢ = By, the last corollary identifies the difference operator mentioned in

(2.7)Corollary.
3. Factorization theorems for univariate splines

In this section we show that a compactly supported function ¢ is characterized, up to convolution

by a compactly supported distribution, by its kernel Ky and the space of exponentials H(¢).

For later reference, we first record the following simple lemma:

(3.1) Lemma. Let ¢ be a compactly supported distribution and p a polynomial. Then
(a) S(p(D)¢) = p(D)S(¢), H(p(D)$)=p(D)H(4).
(b) S(p(V)g) = 5(8), H(p(V)$)=H(8), p(V)Kpw)= K.

Proof: (a) Since the summation in the semi-discrete convolution ¢+c is locally finite, it commutes

with the differential operator p(D), and therefore S(p(D)¢) = p(D)S(¢). Now, for an exponential

f, the only solutions for the equation p(D)? = f are exponentials, whence H(p(D)¢) = p(D)H (¢).
(b) Since p(V) maps C onto itself

S(p(V)$) =p(V)¢+C = ¢xp(V)C = 5(¢),
and therefore also H(p(V)¢) = H($). As for the last equality

PV)E oy = {p(V)el H(V)g 5 ¢ = 0} = {(V)e| 5 p(V)e =0} = Ky. &

The following proposition provides the main tool for the analysis made in this paper.

(8.2) Proposition. Let ¢ be a distribution with support [a,b]. Set n := dim K 4. Then there exist
a difference operator p(V) and a compactly supported distribution 7 such that kerp(V) = K,
supp7 C [a,b~ n], K, = {0} and

(3.3) ¢ =p(V)r.

Moreover, H(¢) = H(t), and if ¢ is a function so is T.
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Proof: By (2.4)Proposition, there exists a difference operator p(V) satisfying ker p(V) = K.
Since p(V) is a finite difference operator, it can be factored into linear factors: p(V) = H?:I V.
We may assume that p(V) and each of his linear factors are normalized in such a way that each

V; can be written in the form
(3.4) Vi=1-eME.

To prove the proposition we proceed by induction on n: define
o0
-~
T = Z M EY;
a=0

then clearly Vim = ¢, and 7 is a function in case ¢ is a function. We contend that also supp ry C
[a,b— 1]. To prove that latter claim, note first that, by the definition of 71, supp ; C [a,0). Now,
let f be a test function with supp f C (b~ 1,00). Then for a < —1

supp f Nsupp E¢ C (b—1,0)N[a+ a,b+ a] = 0,

hence E%¢(f) = 0. Therefore,

n(f) = eME)f)=( ), eMEY)(f) =0,
a=0

a=—00
proving that suppm C [a,b— 1], as claimed.
Proceeding in this manner we obtain 7 supported in [a,b— n] such that ¢ = p(V)r. Then, by

(3.1)Lemma, H(¢) = H(p(V)7) = H(r) and K, = p(V)K vy, = p(V)K, = {0}. A

An analogous result can be obtained with respect to the space H(¢), provided that this space

is regular in the following sense.

(8.5) Definition. A finite-dimensional exponential space H is termed regular (with respect to 7Z)

if it is D-invariant and satisfies

H| = kerpy (V).
A non-regular finite-dimensional D-invariant exponential space is termed “singular”.

We will elaborate on the regularity concept in the next section, revealing its various mean-
ings. As an immediate illustration for the usefulness of this notion, note that for a regular [

(2.15)Proposition implies that H | = Hpy,. The regularity notion also plays an significant role in

the following



(3.6) Proposition. Let ¢ be a function supported in [a,b] and H an n-dimensional regular expo-
nential space satisfying H C H(¢). Then there exists a compactly supported distribution r such
that supp 7 C [a,b — n], H(7) = puy(D)H(¢) and ¢ = By * r.

Proof: Since H is D-invariant, it is also shift-invariant (even translation-invariant, as the kernel

of p(D)). Therefore, an application of (2.10)Corollary yields that ¢ +' H C H. It {ollows that
(pr(D)¢) +' H = pu(D)(¢+' H) C pu(D)H = {0},

and hence H| C K, (p)¢- Since H is regular, we conclude that kerpy(V) C K, (p)y. Thus,
(3.2)Proposition ensures the existence of a distribution 7 with support in [a,b — n] such that

pr(D)¢ = pr(V)T. Convolving both sides of this last equation with By and using (2.12) we get
pu(V)(T* By) = pu(V)r * By = pu(D)¢+ Bu = ¢ * pu(D)Br = pu(V)é.

Since no compactly supported distribution can be annihilated by a finite difference operator, we

conclude ¢ = 7 % By. The identity H(7) = pg(D)H (¢) follows from (3.1)Lemma. é
We combine the two last propositions in the following
(8.7) Theorem. Let ¢ be a function supported in [a,b], and assume that H := H(¢) is regular.

Then there exists a difference operator p(V) and a compactly supported distribution r satislying

(a) ¢ = p(V)7 * Byr;

(b) H(r)={0};
(C) kerp(V) = I(dh K, = {0},
(d) supp T C [a,b—n — m],

with n and m the dimensions of H(¢) and K, resp.

Proof: By (3.2)Proposition there exists a difference operator p(V) and a compactly supported
function 71 such that kerp(V) = Ky , ¢ = p(V)r1, H(¢) = H(m1), K, = {0} and suppry C
[a,b — m]. Application of (3.6)Proposition to m; implies the existence of a distribution 7 with
suppT C [a,b — m — n] such that H(r) = {0} and r; = 7 % By. Consequently ¢ = p(V)7 * By.
Since trivially K, C K, , the condition K, = {0} implies K, = {0}. [

4. Regularity

We examine here the notion of “regularity” as defined in (3.5), showing among other things that it

was an essential condition in (3.6)Proposition and (3.7)Theorem.
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To analyze the regularity concept, we first define the spectrum of a (finite-dimensional)
exponential space. For this purpose, let clp(H) denote the smallest D-invariant exponential space

containing H. Then

(4.1) spec H :=specclp(H ) := {A| ex € cIp(H)} = the roots of pi, ().

The charaterization of the regularity condition is done in the following

(4.2) Proposition. Let H be an n-dimensional exponential space. Then the following conditions

are equivalent

(a) H is regular.

(b) H is D-invariant, and restriction to {0,1,...,n — 1} is a 1-1 operation on H.
(c) H is D-invariant, and restriction to 7Z is a 1-1 operation on H.

(d) H is shift-invariant and satisfies

(4.3) A —p & 2miZZ\0, VA, pu € spec H.

Proof: To prove the implication (a) = (b), we claim that restricting elements from ker pg (V)

to the pointset {0,1,...,n — 1} is injective, i.e., no sequence ¢ € ker p(V)\0 satisfies
(4.4) c0)=c(l)=...=¢(n-1)=0,

and prove this statement by induction on n. The claim is trivial for n = 1, since in this case

kerpr (V) is spanned by one exponential ey. Assume therefore that n > 1, and write py = q1¢2
where deggq; = 1. Suppose that ¢ € kerpy(V) satisfies (4.4), and define ¢; = ¢(V)e. Since
q1(V)er = 0 and ¢y(n — 1) = 0, the proof for the case n = 1 implies that ¢; = 0. Hence ¢2(V)c = 0,
and by the induction hypothesis ¢ = 0.

The implication (b) == (c) is trivial, while the implication (¢) = (d) is simple: First, the
shift-invariance is obvious. Second, if (4.3) is violated by some A, p then the difference ey — e,
vanishes identically on 7Z, and (c) is thus violated as well.

We complete the proof by showing that (d) = (¢) = (a). Assuming (d), we first prove
that H is D-invariant. Let f = Z;-n:l ex;pj € H. Yor j =1,...,m, define ¢; := - — A;. Note that
q;(V)(er,pk) = ex, P, with

(4.5) deg ), < deg py,
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where, in case k = j, degpr = degpr — 1. Due to (4.3), the numbers (e T, are pairwise
different, hence it follows that equality holds in (4.5) if (and only if) k # j. Fixing 1 < j < m and

0 <1 < degpj, we define

V i= gi(V)Resni = T qu(vytes 7,

k=1
k#5

and conclude that V f =-ey;q;with degq =I: Since H-is shift-invariant, Vf € H hence
€x;Tdeg p; C H,

and since j was arbitrary

m
@e*i”deg p; C H,

i=1
proving that H is D-invariant.
To obtain (c), it remains to prove that no f € H\0 vanishes identically on 7Z. For this purpose,
let f € H\0. Then, one can use the previous part of the proof to construct a difference operator V
such that Vf = e, for some X € spec H. Since e) does not vanish identically on 7Z, so does f.
Finally, to establish that (c) = (a), assume that H is D-invariant. We then use (2.12) to

conclude that for every function f

pa(D)f + By = pu(V)f.

Also, for a continuous function f, pg(V)f = 0 only if par(V)(f)) = 0. We thus conclude that
H) C kerpy(V). Since both H and ker py (V) are n-dimensional, then H| = ker pg(V) if and only

if restriction to 7Z is 1-1 on H, i.e., (a) and (c) are equivalent. [ )

Needless to say, a D-invariant exponential space H is not necessarily regular (take H =

span{l, ear;}). Nevertheless we have
(4.6) Proposition. Let ¢ be a compactly supported function. Then H(¢) is regular if (and only

if) it is D-invariant.

Proof: The “only if” statement is trivial. Suppose therefore that H(¢)is D-invariant, and assume
to the contrary that (4.3) is violated. Then, there exist ey,, e, € H(¢) with A\; — Ay € 27772\0. By
(3.2)Proposition there exists a compactly supported 7 with H(7) = H(¢) and K, = {0}. Now, the
spaces H; := span{ey;}, j = 1,2, are shift-invariant subspaces of H(7), hence by (2.10)Corollary

T*’I{j C Hj, j=12.
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On the other hand, Hy| = Hy| and thus
T*’Hl :T*lHQ CHiNH; = {O}

It follows therefore that ey, € K, contradicting the fact that K, = {0}. [

The last proposition should be regarded as a “negative” result: no singular D-invariant ex-
ponential space is H(¢) for a compactly supported ¢. This striking result is in full contrast to
the multivariate situation: there, every finite-dimensional D-invariant exponential space is H(¢)
for some compactly supported ¢. (cf. the example in [BR; Ex.7.1]). The difference between the
univariate and multivariate situations is primarily due to the non-existence of a multivariate analog

of (3.2)Proposition.
Note that in view of (4.6)Proposition the regularity assumption which was imposed on H(¢)

in (3.6)Proposition and (3.7)Theorem can be replaced by D-invariance.
Application of (4.6)Proposition to exponential B-splines yields:

(4.7) Corollary. Assume H is a singular finite-dimensional D-invariant exponential space. Then

H(Bpg) is a proper subspace of H. [ )

A slightly stronger version of the above corollary was obtained (by other means) in [BR] (see
there Corollary 7.4). Characterizing the structure of all spaces of the form H(¢), we provide in the

last section a farmost extension of (4.6)Proposition and (4.7)Corollary.
5. Splines of minimal support: the regular case

Let H be an n-dimensional shift-invariant exponential space. We seek a function ¢ of minimal

support among all these satisfying

HC H($).

Such a spline will be referred to as “a minimal support spline”. Throughout this section, we assume

the regularity condition
(5.1) A= p & 2miZZ\0, VY, u € spec H.

This assumption greatly simplifies the analysis of the minimal support question, as may be expected
from the results of the previous sections.

We start the discussion here with the following existence result:
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(5.2) Proposition. Let H be an n-dimensional regular exponential space. Then there exists a

unique function ¢ supported on [0, n] that satisfies
(5.3) b+ f=f VfeH.

Proof: The proof is obtained by specializing [R3; Thm.2.1] to the present situation, and is only
sketched here. For details we refer to [Rs].

Since H is regular, then, by (4.2)Proposition, there exists a basis { f]-};?:g for H satisfying
fi(k) =654, 0< G,k <mn— 1.

Define ¢ = Z;:(} E“j(fj![n_l,n)). Then ¢+’ f; = f; and hence (5.3) holds. If 1 is a distribution that
satisfies (5.3) as well, then H| C Ky4_y. Since H| is n-dimensional, then (3.2)Proposition implies

that
ql) - "b - p(V)T,

for some difference operator p(V), and with suppr C {0}. Hence, if 7 # 0, ¢ is not a function.

o

(5.4) Theorem. Let H be a regular n-dimensional exponential space. Then ¢ is a spline of

minimal support with respect to H if and only if
(5.5) ¢ = p(D)E*By,

where a € IR, degp < dim H and p vanishes nowhere on spec H.

Proof: Setn:=dimH.

First, assume that ¢ is of minimal support with respect to H. Since, by (5.2)Proposition, there

exists a spline of minimal support [0, n], we conclude that
supp ¢ = [a,a + n],
for some @ € IR. By appealing to (3.7)Theorem, we obtain that
¢=Bp *T,
where supp 7 = {a}, i.e., 7 = p(D)E* for some polynomial p. Writing

p=paq+t+r,
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with degr < degpy = dim H = n, we see that
(5.6) ¢ = q(D)pu(D)E*By + 'I‘(.D)EaBH.

From (2.12) we conclude that the first term in the right hand of (5.6) is a distribution with support
C {a,a+1,...,a+n}, while, since degr < n—1, the second term is a well-defined function. Thus the
fact that ¢ is assumed to be a function implies that ¢ = 0. Hence ¢ = p(D)E*By, with degp < n.

Finally, invoking (3.1)Lemma we obtain
(5.7) H = H($)=p(D)H(By) C p(D)H C H.

Therefore, p(D) is 1-1 on H, which is equivalent to p vanishes nowhere on spec H.

For the converse, we first deduce from (5.7) that
(5.8) H(Bp)=H.

Now, assume that ¢ has the representation (5.5). Since By € C"~2(IR), and its restriction to each
[a,a + 1] (with a € 7Z) lies in H, then ¢ is a well-defined function with (possible) discontinuities
at {a,a+ 1,...,a+ n}. To prove that ¢ is of minimal support with respect to H, we only need
to show that H C H(¢). Now, p(D)E® induces an endomorphism on H, and since p vanishes
nowhere on spec H, this endomorphism is injective, i.e., an automorphism. Consequently, by (5.8)
and (3.1)Lemma, H = p(D)E*H = p(D)E*H(Bg) = H(¢), and ¢ is indeed of minimal support
with respect to H. )

(5.8) together with (4.7)Corollary can be summerized as follows

(5.9) Corollary. Let H be a finite-dimensional D-invariant exponential space. Then H = H(By)
if and only if H is regular. h

The exponential B-spline By is well-known to be the unique piecewise- H function in C#™ -2
with support [0, dim H]. The following is a closely related uniqueness property of By:

(5.10) Corollary. Let H be a regular n-dimensional exponential space. Let ¢ € C*2(IR) be of

minimal support with respect to H. Then
¢ = CEaBH7
for some a € IR and ¢ € C\0.

Proof: By (5.4)Theorem, ¢ = p(D)E*Bg. Since the smoothness of By at each j = 0,1,...,n
is exactly n — 2, it follows that p(D)E*By € Cn"~9e9P-2(IR)\C"~%¢9»~1(IR). The assumption
# € C"%(IR) thus implies degp = 0. »
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(5.11) Corollary. Let H be a regular n-dimensional exponential space. Then the unique function

¢ of support [0, n] that satisfies

(512) qs*,f:fa erHv
has the form ¢ = p(D)Bp, with p the unique polynomial of degree < n satisfying

(513) By *’p(D)f: f, VfeH.

Proof: We first note that for an arbitrary compactly supported function % and an exponential
exp € H(¥), (2.10)Corollary implies that (exp); € Hy. Application of the observations made in
[B; §2] allows us to conclude that for every differential operator p(D)

(5.14) p(D)[% ' (exp)] = 9 ' [p(D)(exp)].

The corollary now easily follows from (5.4)Theorem. Indeed, this result implies that ¢ =
p(D)Bg for some (and clearly unique) polynomial of degree < n. Then for every f = e\p € H we
have by (5.14) (with ¢ = By)

(5.15) f=¢+ f=p(D)By+ fl=Bu+ p(D)f.

(5.13) now follows from (5.15) and the fact that functions of the form ey\p span H. #

The above corollary is essentially well-known. It is the proof provided (that avoids completely

the standard Fourier analysis arguements) that is new here.
6. The singular case

In this section we generalize the factorization and minimal support results of the previous sections
to singular exponential spaces. Quite surprisingly, most of the results obtained in the regular
situation remains valid in the singular case as well, with By being replaced by a factor of it. In
particular, we obtain a characterization of all spaces of the form H (#), and determine completely
Hy in terms of H(¢) and Ky. Throughout this section we assume that H is a fixed n-dimensional
D-invariant exponential space.

To simplify the analysis we induce on spec H the equivalence relation

(6.1) Anp = A—p € 2miZl.
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From each equivalence class [], we choose a representer A which has maximal multiplicity as a root
of py (in comparison with the other elements in the same equivalence class). This gives rise to
the set spec, H of all representers just chosen, and its complement spec s H. Since H has the form
H = @/\GSPECH €\Tg, , we may decompose H into
(6.2) H, = @ exTk,

XNespeé, H

and

(6.3) Hy:= P eam,.

A€specs H
Then H = H. P H,.

We make use of this decomposition in the following

(6.4)Theorem. Let ¢ be a compactly supported distribution, Ky = {0}, clp(H(¢)) = H. Then
(a) H¢ = HT‘ .
(b) Forexp € H,

(6.5) ¢ (exp) = D eupp,

wE[MNNspecH

where p,, is a polynomial of degree degp — m + m, (unless this number is negative, which means

Pu = 0). Here my and m, are the multiplicities of the roots \ and i in the polynomial pyy.

Proof: We divide the proof into two claims.

Claim 1. For A € € and p € 7, (exp)| € Hy only if [\]Nspec H # § and degp < m,, 1 being the
representer of [A] in spec H; i.e., Hy C H,.

Proof of Claim 1. If, for some A € C and p € T, (exp)| € Hy then

(6.6) ¢+ (exp) = > euty,

u€spec H

where deg g, < m,. Defining V := 1 —e*E, we observe that, with ¢ := degp+1, Vi(eyp) = 0, and
therefore by applying V? to both sides of (6.6), and using the fact that exponentials of different
frequencies are always linearly independent, we obtain Vi(e,q,) = 0 for all € spec H. Since
V is degree-preserving on the polynomial part of euqy unless p € [A], we conclude that ¢, = 0
for € spec H\[A]. Assuming [A] N spec H = §, we are led to ¢ ' (exp) = 0, contradicting the
assumption Ky = {0}; therefore [A\] N spec H # @, and since Hy is a sequence space, we can always

choose A to satisfy A\ € spec H,.
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Now, with A € spec H,, the above argument shows that

(6.7) ¢+ (exp)= D eupu

p€[XNspec H
If degp > my, then also degp > m,, for all 4 € [\]Nspec H, and hence V?~! annihilates the right
hand side of (6.7). On the other hand, V*~1(e,p) = ce,, for some non-vanishing constant ¢, hence
ex| € Ky, which again contradicts the assumption K4 = {0}. Therefore, we must have deg p < m,
and hence exp € H,. Since, by (2.7)Corollary, H, is spanned by sequences of the form (exp)), the
claim has been established.

Claim 2. Hy = H.|. Moreover, for every A € spec H,,

(6.8) g™ = N euq,

pE[NNspec H
with deggq, = m, — 1, i.e., the highest degree possible.
Proof of Claim 2. Fix A € spec H,, and let m := my — 1. Then, for each 0 < j < m there exists
an exponential f; in H(¢) of the form eyp; + Zl#A e.qu, with degp; = 7. By the proof of Claim
1, one may choose f; to be of the form exp; + Zue[,\]\A euqu, and in this case ()71 f; € (eamn)|.
Since fo, ..., frm are linearly independent, then {(¢%)~! fi}Tto are linearly independent as well, and
therefore span (exm,)]. We conclude that H, C Hyg, which together with Claim 1, shows that
H, = Hy.

Finally, note that the shifts, hence the derivatives, of ¢ %' ex()™ span ¢ *' (exm); thus, if in
(6.8) for some p € [A], degq, < m, — 1, then one concludes that e, ()™~ ¢ clp(¢ *' (ex7m)). In
addition, for v € spec H,\A, (6.7) shows that again e,()™ ' & clp(¢ *' (e,7m, —1)), and therelore,
since Hy = Hy, e,()™ ! ¢ clp(H(¢)) = H, in contradiction to the multiplicity of p in pg. This
completes the proof of Claim 2.

For the proof of the theorem, it remains to verify (6.5). Here, we apply V™ /=1 to (6.8)
(with V = 1 — e*E), to obtain

, ~
@ * ErP; = Z €nu,
pE[NNspecH

where degp; = j and deg@, = m, — (myx—j — 1)~ 1=j — my + m,. Now, (6.5) readily follows.
A

The restriction Ky = {0}, although was useful in the proof of the above theorem, can be easily

removed:
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(6.9) Corollary. Let ¢ be a compactly supported distribution. Let p(V) be the difference operator
whose kernel coincides with K4. Then (with H = clp(H(¢)))

(a) My =ker(p(V)pm, (V).

(b) dim H(¢) = dim H,. Moreover, the projector of H on H, with kernel H, induces isomor-
phism between H(¢) and H,.

Proof: By (3.2)Proposition, there exists a compactly supported o such that ¢ = p(Vo, K, = {0}
and H(¢) = H(o). By (6.4)Theorem, H, = H;|, and since H, is regular, then H, = kerpy (V)
and (a) readily follows. (b) follows from (6.4)Theorem(b) when applied to o, and the fact that
Hio)=H(#). 4

b

We now apply the above results in the analysis of singular exponential B-splines:

(6.10) Theorem. Let H be an n-dimensional singular exponential space. Set n, := dim H,. Then
there exists a function My € C™~%(IR) with support [0, n,] satisfying

(a) By =pn,(V)My;

(b)  H(My)= H(Bg), K, = {0};

(c) Huy = H)= H,;

(d) dim H(Mpy)=n,, and clpH(My) = H.

Proof: Let us first prove that clp(H (Bg)) = H. For this purpose, we write
H= @ (ertm,y-1),
AespecH
my being the multiplicity of A in py. For a fixed ) € spec H, let Hy := exmp, 1 and Hy :=
@#especH\A(eﬂ”mu*l)‘ Then H; and H, are D-invariant and H = H; @ H,, and thus, by (2.14)
By = By, * Bg,. Applying (2.12), we obtain pg,(D)By = pr,(V)Bg,. Moreover, H; is regular,
and therefore (by (5.9)Corollary) H(Bpg,) = Hi, and thus by (3.1)Lemma

py(D)H(By) = H(pr,(V)Bu,) = H(Bm,) = Hy.

Consequently, Hy C clp(H(Bpg)), and since A € spec H was arbitrary, H C cp(H(Bg)). Combin-
ing this with the fact that By is locally in H, we get H = clp(H(Bg)).

We now turn to the rest of the proof: Since H = H, @ H,, then pa(V) = pu, (Vpy, (V).
On the other hand, denoting by p(V) the difference operator whose kernel coincides with Kp,, we

have by (6.9)Corollary Hp,, = kerp(V)pg, (V). We now invoke (2.15)Proposition to conclude that

ker p(V)pw, (V) = ker py,(V)pa, (V),
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and consequently p(V) = pg, (V). Application of (3.2)Proposition thus yields the existence of a
function My supported in [0,n — dim H,] = [0,n,] and satisfying By = pg,(V)My, H(By) =
H(Mpg) and K, = {0}. By appealing to (6.4)Theorem we conclude that Hps, = H,|, which
together with Kps, = {0} implies dim H(Mp) = n,. Finally, the fact that My € C*2(IR) easily
follows from the fact By € C™~2(IR) when combined with (a). o

The results obtained so far will be used subsequently in the derivation of a generalization
of (3.7)Theorem. For this purpose we first need to extend that theorem from a function ¢ to a
distribution ¢:
(6.11) Lemma. (3.7)Theorem holds for a distribution ¢.

Proof: To extend (3.7)Theorem to distributions, we need to extend (3.6)Proposition to distri-
butions. This will be achieved the moment the regular case of (2.10)Corollary is extended to
distributions. So let ¢ be a compactly supported distribution, and assume that H (¢) is regu-
lar. To show that H(¢)) C Hyg, let {o4}n be an infinitely differentiable approximate identity (cf.
[Ru; p.157]. Define 9, := ¢ + o4, Since H(4) is D-invariant, it follows that oy, * H(¢) C H(¢),
while equality holds if and only if 3, does not vanish on —ispec H (¢). Being an approximate
identity, oy, W 6, hence 7y, Vo 1 and therefore, for small enough h, o), * H(¢) = H(¢). Thus,
H(¢) C H(%n), and application of (2.10)Corollary yields that ty, ' H(¢) C H(¢) for all small
enough h. Since ¢ +' H(¢) = limp_.o ¢y ' H(¢), then ¢+’ H(¢) C H(4), as desired. é&

We are now ready to state and prove the main result of this paper:
(6.12) Theorem. (The Factorization Theorem For Univariate Splines). Let ¢ be a distribution
supported in [a,b]. Define H := clp(H(4)), and set n := dim H,, m := dim K 4. Then there exists a
compactly supported distribution 7 and a difference operator p(V) satisfying supp 7 C [a,b—n—m],
K, = {0}, H(r) = {0} and kerp(V) = K4 such that
¢ = p(V)r* My,
where My is the function defined in (6.10)Theorem.
Proof: Define ¢ = py,(D)é. By (3.1)Lemma, H() = py,(D)H(¢). Since pa, (D) annihilates
H and is 1-1 on H,, we conlcude from (6.9)Corollary(b) that H(1) = H,. By the previous lemma,

(3.7)Theorem holds also for distributions, hence there exists 7 supported in [a,b—n —m], satisfying

K, = {0}, H(r) = {0} and 9 = p(V)7 * By, . Convolving % with By, , we then obtain by (2.12)
and (2.14)

pa, (V)¢ = py, (D) * By, = ¢+ By, = p(V)T* By, * By, = p(V)7 % By.
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Now, we may invoke (6.10)Theorem to deduce that

pr, (V)¢ = pu,(V)p(V)7r + My,
which implies
p=p(V)rxMyg. &
Finally, we discuss the notion of minimal support in the singular context:

(6.13) Definition. Let H be a singular n-dimensional space. We say that ¢ is a spline of minimal
support with respect to H if

(a) diamsupp ¢ = dim H,;

(b)  cp(H($)) = H.

We have

(6.14) Theorem. Let H be a singular exponential space. Then ¢ has a minimal support with

respect to H if and only if
¢ =p(D)E* Mg,

where deg p < dim H and p vanishes nowhere on spec H.

Proof: By (6.10)Theorem, My is a spline of minimal support with respect to H. Hence if ¢ is

also a spline of minimal support, then diam supp ¢ = dim H r- Also, for every polynomial p,
])(D)H = ])(D)CID(.H(]MH)) = ClD(])(D)If(]WH)) = CID(H(p(D)]V[H)).

The proof now follows that of (5.4)Theorem, with (3.7)Theorem replaced by (6.11)Theorem. )

19



REFRENCES

[B] C. de Boor, The polynomials in the linear span of integer translates of a compactly supported

function, Constructive Approx. 3(1987),199-208.

[BD] C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Trans. AMS
276(1983),775-788.

[BH] C. de Boor and K. Héllig, B-splines from parallelepipeds, J. d’Anal. Math. 42(1982/3),99-115.

[BR] A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces, Trans.

AMS 309(1988),683-710.

[R1] A. Ron, Linear independence of the integer translates of an exponential box spline, Rocky

Mount. J. Math., to appear.

[Rz] A. Ron, A necessary and sufficient condition for the linear independence of the integer trans-

lates of a compactly supported distribution, Constructive Approx., to appear.

[Ra] A. Ron, Relations between the support of a compactly supported function and the exponential-

polynomials spanned by its integer translates, Constructive Approx., to appear.
[Ru] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[SF] G. Strang and G. Fix, A Fourier analysis of the finite element variational method. C.I.M.E.
II Cilo 1971, Constructive Aspects of Functional Anlaysis ed. G. Geymonet 1973, 793-840.

20



