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Because of the infeasibility or expense of large fully-associative caches, cache memories are often
designed to be set-associative or direct-mapped. This paper presents (1) new and efficient algorithms
for simulating alternative direct-mapped and set-associative caches, and (2) uses those algorithms to
quantify the effect of limited associativity on the cache miss ratio.

We introduce a new algorithm, forest simulation, for simulating alternative direct-mapped caches and
generalize one, which we call all-associativity simulation, for simulating alternative direct-mapped,
set-associative and fully-associative caches. We find that while all-associativity simulation is theoret-
ically less efficient than forest simulation or stack simulation (a commonly-used simulation algo-
rithm), in practice, it is not much slower and allows the simulation of many more caches with a single
pass through an address trace.

We also provide data and insight into how varying associativity affects the miss ratio. We show: ¢))
how to use the simulations of alternative caches to isolate the cause of misses; (2) that the principal
reason why set-associative miss ratios are larger than fully-associative ones is (as one might expect)
that too many active blocks map to a fraction of the sets even when blocks map to sets in a uniform
random manner; and (3) that reducing associativity from eight-way to four-way, from four-way to
two-way, and from two-way to direct-mapped causes relative miss ratio increases in our data of about
5, 10 and 30 percent respectively, regardless cache size.

* The material presented here is based on research supported in part by the Defense Advanced Research Projects Agency
monitored by Naval Electronics Systems Command under Contract No. N00039-85-C-0269, the National Science Founda-
tion under grants CCR-8202591 and MIP-8713274, by the State of California under the MICRO program, the graduate
school at the University of Wisconsin-Madison, and by IBM Corporation, Digital Equipment Corporation, Hewlett Packard
Corporation, and Signetics Corporation.



1. Introduction

Three important CPU cache parameters are cache size, block (line) size and associativity [Smit82]. Cache
size (buffer size, capacity) is so important that it is a part of almost all cache studies (for a partial bibliography see
[Smit86]). Block size (line size) has recently been examined in detail in [Smit87]. Here we concentrate on asso-
ciativity (degree of associativity, set size), which is the number of places in a cache where a block can reside.

Figure 1 illustrates associativity and defines some terms.
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Figure 1. Set-Associative Mapping.

A set-associative cache uses a set-mapping function f to partition all blocks (data in an aligned, fixed-sized regions
of memory) into a number of equivalence classes. Some number of block frames in the cache are assigned to hold
recently-referenced blocks from each equivalence class. Each group of block frames is called a set. The number of
such groups, equal to the number of equivalence classes, is called the number of sets (s). The number of block
frames in each set is called the associativity (degree of associativity, set size, #). The number of block frames in
the cache (c) always equals the associativity times the number of sets (¢ = n-s). A cache is fully-associative if it
contains only one set (r =c, s =1), is direct-mapped if each set contains one block frame (n=1,s =¢ ), and is n-
way set-associative otherwise (where n is the associativity, s =c/n).

On a reference to block x, the set-mapping function f feeds the **Set Decoder’ with f (x) to select one set (one
row), and then each block frame in the set is searched until x is found (a cache hit) or the set is exhausted (a cache
miss). On a cache miss, one block in set f (x) is replaced with the block x obtained from memory. Finally, the
word requested from block x is returned to the processor. Here for conceptual simplicity we show the word within
the block selected last (in box ‘‘Compare Block Number with Tags and Select Data Word'’). Many implementa-
tions, however, select the word within the block while selecting the set to reduce the number of bits that must be
read.

The most-commonly-used set-mapping function is the block number modulo the number of sets, where the number
of sets is a power of two. This set-mapping function is called bit selection since it equals several low-order bits of

the block number. For 256 sets, for example, f (x)=x mod 256 or f (x) =x AND Oxff, where mod is remainder
and AND is bitwise-and.

Determining optimal associativity is important, because changing associativity has a significant impact on
cache performance and cost. Increasing associativity improves the likelihood that a block is resident by decreas-

ing the probability that too many recently-referenced blocks map to the same set and by allowing more blocks to




be considered for replacement. The effect of associativity on cache miss ratio has never been isolated and
quantified, and that is one of the major goals of this paper. On the other hand, increasing associativity often
increases cache cost and access time, since more blocks (frames) must be searched in parallel to find a reference

[Hill88].

The method we use for examining associativity in CPU caches is trace-driven simulation. It uses one or
more (address) traces and a (cache) simulator. A trace is the log of a dynamic series of memory references,
recorded during the execution of a program or workload. The information recorded for each reference must
include the address of the reference and may include the reference’s type (instruction fetch, data read or data
write), length and other information. A simulator is a program that accepts a trace and parameters that describe
one or more caches, mimics the behavior of those caches in response to the trace, and computes performance

metrics (e.g., miss ratio) for each cache.

We analyze associativity in caches with trace-driven simulation for the same reasons as are discussed in
[Smit85b]. The principal advantage of trace-driven simulation over random number driven simulation or analyti-
cal modeling is that there exists no generally-accepted model for program behavior (at the cache level) with
demonstrated validity and predictive power. The major disadvantage is that workload samples must be relatively

short, due to disk space and simulation time limits.

The CPU time required to simulate many alternative caches with many traces can be enormous. Mattson et
al. [Matt70] addressed a similar problem for virtual memory simulation by developing a technique we call stack
simulation, which allows miss ratios for all memory sizes to be computed simultaneously, during one pass through
the address trace, subject to several constraints including a fixed page size. While stack simulation can be applied
to caches, each cache configuration with a different number of sets requires a separate simulation. For this reason,
this paper first examines better algorithms for simulating alternative direct-mapped and set-associative caches, and

then uses those algorithms to study associativity in caches.

The rest of this paper is organized as follows. Section 2 reviews previous work on cache simulation algo-
rithms and associativity in caches. In section 3, we explain our methods in more detail and describe our traces.
Section 4 discusses cache simulation algorithms, including properties that facilitate rapid simulation, a new algo-
rithm for simulating alternative direct-mapped caches, and an extension to an algorithm for simulating alternative
caches with arbitrary set-mapping functions. Section 5 examines the effect of associativity on miss ratio, includ-
ing categorizing the cause of misses in set-associative caches, relating set-associative miss ratios to fully-
associative ones, comparing miss ratios from similar set-associative caches, and extending the design target miss

ratios from [Smit85b] and [Smit87] to caches with reduced associativity.



Readers interested in the effect of associativity on miss ratio but not in cache simulation algorithms, may

skip Section 4, as Section 5 is written to stand alone.

2. Related Work

2.1. Simulation Algorithms

The original paper on memory hierarchy simulation is by Mattson et al. [Matt70]. They introduce inclusion,
show when inclusion holds and develop stack simulation, which uses inclusion to rapidly simulate alternative
caches. Inclusion is the property that after any series of references, larger altemative caches always contain a
superset of the blocks in smaller alternative caches’. Mattson et al. show inclusion holds between alternative
caches that have the same block size, do no prefetching and use the same set-mapping function (and therefore
have the same number of sets) for replacement algorithms that before each reference induce a total priority order-
ing on all previously referenced blocks (that map to each set) and use only this priority ordering to make the next
replacement decision. Replacement algorithms which meet the above condition, called stack algorithms, include
LRU, OPTIMUM, and (if properly defined) RANDOM. [Bela66]. FIFO does not qualify since cache capacity
affects a block’s replacement priority. In Section 4.1, we will prove when inclusion holds for caches that use arbi-

trary set-mapping functions and LRU replacement.

Mattson et al. develop stack simulation to simulate alternative caches that have the same block size, do no
prefetching, use the same set-mapping function, and use a stack replacement algorithm. Since inclusion holds, a
single list per set, called a stack, can be used to represent caches of all associativities, with the first n elements of
each stack representing the blocks in an n-way set-associative cache. For each reference, stack simulation per-
forms three operations: (1) locate the reference in the stack, (2) update one or more metrics to indicate which
caches contained the reference, and (3) update the stack to reflect the contents of the caches after the reference.
We call these three operations FIND, METRIC and UPDATE, and will show that the algorithms discussed in later

in Sections 4.2 and 4.3 use the same steps.

The most straight-forward implementation of stack simulation is to implement each stack with a linked list

and record hits to position n by incrementing a counter distance[n]. After N references have been processed, the

n
miss ratio of an n-way set-associative cache is simply 1 - Y distance [i]/N. Since performance with a linked list

i=1

will be poor if many elements of a stack must for searched on each reference, other researchers have developed

¥ Inclusion is different from multi-level inclusion defined by Baer and Wang [Baer88]. While inclusion is a property relat-
ing alternative caches, multi-level inclusion relates caches in the same cache hierarchy.




more complex implementations of stack simulation, using hash tables, m-ary wees and AVL trees
[Benn75,Olke81, Thom87]. While these algorithms are useful for some memory hierarchy simulations, Thomp-
son [Thom87] concludes that linked list stack simulation is near optimal for most CPU cache simulations. Linked
list stack simulation is fast when few links are traversed to find a reference. On average this is the case in CPU
cache simulations since (1) CPU references exhibit a high degree of locality, and (2) CPU caches usually have a
large number of sets and limited associativity, dividing active blocks among many stacks and bounding maximum
stack size; different results are found for file system and database traces. For this reason, we consider only linked

list stack simulation further, and use stack simulation to refer to linked list stack simulation.

Mattson et al. also briefly mention a way of simulating caches with different numbers of sets (and therefore
different set-mapping functions). In two technical reports, Traiger and Slutz extend the algorithms to simulate
alternative caches with different numbers of sets and block sizes [Trai71], and with different numbers of sets,
block sizes and sub-block sizes (sector and block sizes, address and transfer block sizes) [Slut72]. They require
that all alternative caches use LRU replacement, bit-selection for set mapping, and have block and sub-block sizes
that are powers of two. (Bit selection uses some of the bits of the block address as a binary number to specify the
set.) In Section 4.3, we generalize to arbitrary set-mapping functions their algorithm for simulating alternative

caches that use bit-selection.

The speed of stack simulation can also be improved by deleting references (trace entries) that will hit and
not affect replacement decisions in the caches to be simulated [Smit77]. Puzak [Puza85] shows that if all caches
simulated use bit-selection and LRU replacement, references that hit in a direct-mapped cache having the fewest
number of sets can be deleted without affecting the total number of misses. We will show that this result trivially
follows from properties we define in Section 4.1, allowing such references to be deleted from traces before using
any of our simulation algorithms. (The total number of memory references in the original trace must be retained,

in order to compute the miss ratio.)

2.2, Associativity

Previous work on associativity can be broken into the following three categories: (1) papers that discuss
associativity as part of a more general analysis of 32K-byte and smaller caches, among the more notable of which
are: ([Lipt68], [Kapl73], [Bell74], [Stre76], [Smit82],Jr [Clar83] and [Haik84]); (2) papers that discuss associa-
tivity and other aspects of cache design for larger caches ([Alex86], [Agar88] and [Przy88]); and (3) those that
discuss only associativity ([Smit78] and [Hill88]). Since caches have been getting larger, papers in category (1)

can also be characterized as older, while those in category (2) are more recent.

! This survey includes results for some large caches with wide associativity (e.g., 32-way set-associative 64K-byte caches).



Papers in category (1) provide varying quantities of data regarding the effect of changing associativity in
small caches. The qualitative trend they support is that changing associativity from direct-mapped to two-way
set-assoéiative improves miss ratio, doubling associativity to four-way produces a smaller improvement, doubling
again to eight-way yields an even smaller improvement, and subsequent doublings yield no significant improve-
ment. Our quantitative results are consistent with results in these papers. We extend their results by examining
relative miss ratio changes to isolate the effect of associativity from other cache aspects, and by examining larger

caches.

Alexander et al. use trace-driven simulation to study small and large caches [Alex86]. Unfortunately, the
miss ratios they give are much lower than those that have been measured with hardware monitors and real work-

loads; see [Smit85b] for reports of real measurements.

Agarwal et al. use traces gathered by modifying the microcode of the VAX 8200 to study large caches and
to try to separate operating system and multiprogramming effects [Agar88]. They briefly examine associativity,
where they find that associativity in large caches impacts multiprogramming workloads more strongly than
uniprocessor workloads. They find for one workload that decreasing associativity from two-way to direct-mapped
increases the multiprogramming miss ratio by 100 percent and the uniprogramming miss ratio by 43 percent.

These numbers are much larger than the average miss ratio change we find (25 percent).

Przybylski et al. [Przy88] examine cache implementation tradeoffs. They find that reducing associativity
from two-way to direct-mapped increases miss ratio 25 percent, regardless of cache size, which is consistent with
our results. One contribution of that paper is a method of translating the architectural impact of a proposed design
change into time by computing the cache hit time increase that will exactly offset the benefit of the proposed
change. A change improves performance only if the additional delay required to implement the change is less
than the above increase. Przybylski et al. find that the architectural impact times for increasing associativity are

often small, especially for large caches, calling into question the benefit of wide associativity.

The first paper to concentrate exclusively on associativity is [Smit78]. That paper presents a model that
allows miss ratios for set associative caches to be accurately derived from the fully associative miss ratio. In sec-
tion 5.2, we further validate those results by showing that the model accurately relates the miss ratios of many

caches, including large direct-mapped caches, to LRU distance probabilities.

The second paper to concentrate on associativity is [Hill88], based on parts of [Hill87]. It shows that many
large single-level caches in uniprocessors should be direct-mapped, since the drawbacks of direct-mapped caches
(e.g., worse miss ratios and more-common worst-case behavior) have small significance for large caches with
small miss ratios, while the benefits of direct-mapped caches (lower cost and faster access time) do not diminish

with increasing cache size. Here we examine miss ratio in more detail, but do not discuss implementation




considerations.

‘

3. Methods and Traces

In this section, we discuss the use of the miss ratio as a suitable metric (among others), describe the traces
that we use, show how we estimate average steady-state miss ratios, and show that our traces yield resulis con-

sistent with those observed from running systems.

Ignoring write-backs, the effective access time of a cache can be modeled as t..p, + MiSS_Tratio “tmemory -
The miss ratio is the number of cache misses divided by the number of memory references, fmemory iS the time for
a cache miss, and ¢, is the time to access the cache on a hit. The two latter parameters are implementation
dependent, and in [Hill87] there is a discussion of their effect on cache performance. As noted earlier, increases
in associativity, while generally improving the miss ratio, can increase access time, and thus degrade overall per-
formance. Here, we concentrate on miss ratio because it is easy to define, interpret, compute and is implementa-
tion independent. This independence facilitates cache performance comparisons between caches not yet imple-

mented and those implemented with different technologies and in different kinds of systems.

Results in this paper are based on two partially-overlapping groups of traces (see Table 1). The first group
consists of the second 500,000 references from five traces, three DEC VAX multiprogrammed workloads from
ATUM [Agar86] and two samples of IBM 370 code from a trace of IBM’s MVS [Smit82]. The second group is
made up of 23 traces gathered with ATUM [Agar86]. We refer these workloads as the five-trace and 23-trace
groups, respectively. Trace samples that exhibit atypical behavior (e.g., a particular doubling of cache size or

associativity alters the miss ratio observed by many factors of two) have been excluded from both groups.

We estimat: the steady-state miss ratios for a trace sample using the miss ratio for a trace after the cache is
warm (the warm-start miss ratio). A cache is warm if its future miss ratio is not significantly affected by the
cache recently being empty [Agar88]. We compute warm-start miss ratios using the second 250K references of
each 500K-reference trace sample. We found that most caches with our traces are warm by 250K references by
locating the knee in the graph of the cumulative misses to empty block frames versus references, a method of
determining when caches are warm proposed in Agarwal et al. [Agar88]. Nevertheless, results for these mul-

tiprogrammed traces properly includes cold-start effects whenever a process resumes execution.

We calculate overall miss ratios using the arithmetic average of trace sample miss ratios. The arithmetic
mean is reasonable for this task, because it represents the miss ratio of a workload consisting of an equal number
of references from each of the traces. Previous experiments (as were done for [Smit87] and [Hili87]) showed that

little difference was observed when other averaging methods were used.



Five-Trace Group
Trace Sample Instruction Length (1000’s Dynamic Size

Name References (%) of references) (K-bytes)
mul2_2nd500K 53 500 218
mul8_2nd5S00K 51 500 292
ue_2nd500K 55 500 277
mvsl_2ndS00K 52 500 163
mvs?2_2nd500K 55 500 201

23-Trace Group
Trace Instruction Length (1000’s Dynamic Size

Name References (%) of references) (K-bytes)
decO 50 362 120
50 353 125
fora 52 388 144
forf 52 401 128
53 387 152
53 414 105
52 368 205
fsxzz 51 239 104
ivex 60 342 210
macr 55 343 199
memxx 49 445 139
mul2 52 386 204
53 383 169
56 367 165
mul8 51 408 218
54 390 196
46 429 194
null 58 170 55
savec 50 432 94
61 228 54
ue 56 358 205
57 372 191
55 364 221

Table 1. Data on Traces.

These tables present data on the address traces in a five-trace group (top) and a 23-trace group (bottom). The first
column gives the name of each trace sample. The second gives the fraction of all references that are instruction
references. In these simulations we do not distinguish between data reads and writes. The third column gives the
length of the address traces in 1000’s of references. The final column gives the number of distinct bytes referenced
by the trace, where any reference in an aligned 32-byte block is considered to have touched each byte in the block.

Each of the trace samples in the five-trace group comes from the second 500,000 references of a longer trace. The
first three samples are user and system VAX-11 traces gathered with ATUM [Agar86]. Trace mul2_2nd500k con-
tains a circuit simulator and a microcode address allocator running concurrently under VMS. Trace mul8_2nd500k
is an eight-job multiprogrammed workload under VMS: spice, alloc, a Fortran compile, a Pascal compile, an as-
sembler, a string search in a file, jacobi (a numerical benchmark) and an octal dump. Trace ue_2nd500k consists of
several copies of a program that simulates interactive users running under Ultrix. The other two samples in the
trace group, mvsl_2ndS00k and mvs2_2ndS00k, are collections of IBM 370 references from system calls invoked
in two Amdahl standard MVS workloads [Smit85b].

The second trace group contains 23 samples of various workloads gathered on a VAX-11 with ATUM [Agar86].
We use this larger trace group selectively to reduce overall simulation time.
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Figure 2. Miss Ratios for Five Traces.

This figure examines unified caches (mixed, i.e., cache data and instructions together) with 32-byte blocks. Solid
lines show the average warm-start miss ratios with different associativities (1, 2, 4 and 8). The average warm-start
miss ratio is the arithmetic average of warm-start miss ratios for each of the five traces in the five-trace group.
Caches are considered warm after 250K references.

The dashed line, (labeled **inf’") gives the warm-start miss ratio of an infinite cache, a cache so large that it never
replaces any blocks.

Figures 2 and 3 show our miss ratios for various caches and compare some them with other published

results. For brevity, only results of the five-trace group are shown here.

4. Simulation Techniques for Alternative Direct-Mapped and Set-Associative Caches

In this section we first discuss two properties, set-refinement and inclusion, that facilitate the rapid simula-
tion of alternative caches. We then develop a new algorithm that uses both set-refinement and inclusion to rapidly
simulate alternative direct-mapped caches. Next we generalize an algorithm that simulates alternative set-
associative caches using bit-selection [Trai71] to one that allows arbitrary set-mapping functions. Finally we

compare implementations of the algorithms.
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igure 3. A Comparison to Other Miss Ratio Data.

This figure compares miss ratios for the five-trace group in eight-way set-associative unified caches, having 16-
byte (left) and 32-byte (right) blocks, to miss ratios from other sources. Line *‘cold”” measures miss ratios form an
empty cache, while line ‘‘warm’” does not count miss until after 250K references. Since the trace samples include
multiprogramming effect, both contain some cold-start missed [East78].

Lines labeled *‘[Smit85b]’* (left) and *‘[Smit87]" (right) show the design target miss ratios from those papers for
fully-associative caches. The line labeled “[Agar88]’" (left) shows four-way set-associative miss ratio results from
Figure 17 in that paper. Finally, the line labeled *‘[Smit82]"" (also left) shows four- , six- and eight-way set-
associative miss ratios taken from hardware monitor measurements on an Amdahl 470 (figure 33 of that paper).

This figure demonstrates that the miss ratios of the five-trace group are consistent with those measured and/or pro-
posed for actual operating environments.

4.1. Properties that Facilitate Rapid Simulation

Two properties useful for simulating alternative direct-mapped and set-associative caches are sef-
refmementT (introduced below) and inclusion (introduced in Mattson et al. [Matt70]). Here we discuss these pro-
perties with respect to caches that have the same block size, do no prefetching, use LRU replacement, have arbi-
trary associativities and can use arbitrary set-mapping functions. Let C(A=ny,F =f,) and Co(A=n,,F=f,) be

two such caches, where cache C; has associativity »; and set-mapping function f;,i=1,2.

t Set-refinement s called set-hierarchy in [Hill87].
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Definition 1

Set-refinement. Set-mapping function f, refines set-mapping function f, if f2(x)=fo(y) implies

f1(x)=f1(y), forall blocks x and y.

Furthermore, cache C,(A=n,, F=f,) is said to refine an alternative cache C (A =ny,F =f) if set-mapping
function f, refines set-mapping function f,. Refines is so named becauses f , refines f implies set-mapping
function £, induces a finer partition on all blocks than does f,. Since set-refinement is clearly transitive, if f;4
refines f; for each i = 1,L-1 then f; refines f; for all j >, implying a hierarchy of sets. We will use set-
refinement to facilitate the rapid simulation of alternative direct-mapped caches (Section 4.2) and set-associative

caches (Section 4.3).

Definition 2

Inclusion. Cache C(A=n,,F=f,) includes an alternative cache C,(A=ny,F=f,) if, for any block x after

any series of references, x is resident in C, implies x is resident in C».

Thus, when cache C includes cache C, C, always contains a superset of the blocks in C,. Inclusion facil-
itates rapid simulation of alternative caches by allowing hits in larger caches to be inferred from hits detected in
smaller ones. Mattson et al. [Matt70] show when inclusion holds for alternative caches that use the same set-
mapping function (and hence same number of sets). Next we show when it holds with LRU replacement and arbi-

trary set-mapping functions.

Theorem 1

Given the same block size, no prefetching and LRU replacement, cache Cy(A=n, F=f) includes cache
C(A=n,F=f,) if and only if set-mapping function f , refines f , (set-refinement) and associativity n,=n,

(non-decreasing associativity).

Proof

==>. Suppose cache C, includes cache C. Suppose further that a large number of blocks map to each set
in both caches, as is trivially true for practical set-mapping functions (e.g., bit-selection). To demonstrate that
inclusion implies both set-refinement and non-decreasing associativity, we show that a block can be replaced in
cache C, and still remain in cache C,, violating inclusion, if either (1) set-refinement does not hold or (2) set-

refinement holds but the larger cache has the smaller associativity.

-11-



(1) If cache C, does not refine cache C, then there exists at least one pair of blocks x and y such that
fax)=foy)and fi(x) #f,(y). Since we assume many blocks map to each set, there exist many blocks z; for
which fo(z;)=f2(x)=f2(). Since fy(x)#f1(y), either f1(z;) #f1(x) or fi(z:) #f1(y) (or both), implying
set-refinement is violated many times. Without loss of generality, assume that many z;’s map to different f, sets
than x (otherwise, many map to a different f , sets than y). Let n, of these be denoted by wy, ..., w,,,T. Consider
references to x, w1, ... , W,,. Inclusion is now violated since x is in cache C, but not in cache C,. It is in cache
C,, because blocks w, ... , w,, mapped to other sets than x and could not force its replacement; x is replaced in
n,-way set-associative cache C,, since LRU replacement is used and the n other blocks map to its set are more

recently referenced.

(2) Let xg, ... , X4, be a collection of blocks that map to the same f, set. Since we are assuming f » refines
f 1, they also map the same f; set. Consider references to xg, X1, ... , X,,. Inclusion is now violated since x is in
n,-way set-associative cache C,, but not in n,-way set-associative cache C, (n1>n, implies ny2ny+1).

<==, Suppose cache C, refines cache C; and n,2n;. Initially both caches are empty and inclusion holds,
because everything (nothing) in cache C is also in cache C,. Consider the first time inclusion is violated, i.e.,
some block is in cache C, that is not in cache C,. This can only occur when some block x, is replaced from
cache C,, but not from cache C;. A block x, can only be replaced from cache C, if n, blocks, x; through x,,, all
mapping to f o(xo), are referenced after it. By set-refinement, f1(xo)=f 1(x1)=" - - =f 1(xn,). Since ny2n,, xo must

also be replaced in cache C,. [.

Several corollaries, used to develop the cache simulation algorithms in the next two sections, follow directly

from the above definitions and theorem.

(1) If cache C, refines cache C, and their set-mapping functions f  and f  are different (partition blocks dif-
ferently), then cache C, has more sets than cache C;. The number of sets in a cache is equal to the number
of classes in the partition induced by its set-mapping function. If f, has fewer classes than f and at least
one block maps to every f; class, set-refinement is violated since some pair of those blocks must map to the
same f, class. If f, has the same number of classes as f; and at least one block maps to every f class,
then there exists a one-to-one correspondence between f, classes and f; classes, implying both functions

induce the same partition.

(2) If bit-selection is used, a cache with 2¢ sets refines one with 2/ ones, for all i =j. That is, set-mapping

function x mod 2 refines x mod2/, i >j. For all blocks x and y, (x mod2' =y mod2') implies

¥ Blocks w 1s = » Wy, eXist if at least 2n, blocks map to set f 5(x).
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(x mod2/ =y mod 2/), because 2’ can be factored into positive integers 2°7 and 2/, and

{x mod ab =y mod ab) implies (x mod b =y mod b), for all positive integers a and b.

Cache C, must be strictly larger than a different cache C to include it. Two caches are different if they can
contain different blocks (after some series of references). If cache C, is smaller than cache C, inclusion is
violated whenever C is full. If C, and C, are the same size, different, and both full, then inclusion will be

violated whenever they hold different blocks.

Set refinement implies inclusion in direct-mapped caches. By Theorem 1, inclusion requires set-refinement
and non-decreasing associativity. Since all direct-mapped caches have associativity one, only set-

refinement is necessary.
Inclusion holds between direct-mapped caches using bit-selection. Implied by corollaries (2) and (4).

Inclusion does not hold between many pairs of different set-associative caches. It does not hold (a) between
two different set-associative caches of the same size (by corollary (3)), (b) if the larger cache has smaller
associativity (Theorem 1), and (c) if set-refinement is violated (also Theorem 1). Set-refinement can be
violated even when bit-selection is used (e.g., the larger cache is twice as big but has four times the associa-

tivity of the smaller cache).

The includes relation is a partial ordering of the set of caches. The proof of this, omitted here, need only

show that includes is reflexive, antisymmetric and transitive; see [Hill87].
Similarly, the refines relation is a partial ordering of the set of caches.

The refines relation can speed the simulation of alternative caches that use LRU replacement. Let these
caches be denoted by C;, i=1,2,---. Construct a direct-mapped cache Cy(A=1,F=f;) such that all
caches C; refine C,. For arbitrary set-mapping functions, fo(x)= 0 can be used; if all caches C; use bit
selection and have 2™ or more sets, f o(x) = x mod 2™ should be used. In any case, simulation speed can be
improved by deleting all references (trace entries) that hit in cache C and recording the deleted references
as hits in all caches simulated. Such deletion is possible when caches C; include cache Cy and the deleted
references would not have affected any replacement decisions [Smit77]. Since each cache C; refines cache
Cy and Cy is direct-mapped, all caches C; include cache C by Theorem 1. All deleted references do not
affect LRU replacement decisions since they are all to the most-recently-referenced (MRU) block in each
set. To see why this is true for a cache C; (A =n;,F=f;), consider the direct-mapped cache C’;(A=1,F=f;)
that always contains the MRU blocks from cache C;. Cache C’; refines cache Cy, since cache C’; has the
same set-mapping function as cache C; and cache C; refines cache Cy. Since refines implies includes in
direct-mapped caches, all deleted references are in cache C”; (and therefore to cache C;’s MRU blocks) .

Puzak shows this result for bit-selection [Puza85].
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4.2, Simulating Direct-Mapped Caches

This section develops a new algorithm, called forest simulation, for simulating alternative direct-mapped
caches. Forest simulation requires that the set-mapping functions of all caches obey set-refinement. Since typical
alternative designs for direct-mapped caches use numbers of sets which are powers of two, with the set selected

via bit selection, this algorithm is useful.

In the last section we showed set-refinement implies inclusion in direct-mapped caches. Forest simulation
takes advantage of inclusion, as does stack simulation, by searching for a block from the smallest to largest cache.

When a block is found, a hit is implicitly recorded for all larger caches.

The data structure used by forest simulation to store cache blocks is a forest (a set of disjoint trees) where
the number of levels equals the number of caches simulated, and the number of nodes in level i equals the number
of blocks frames in the i -th smallest cache (see Figure 4a). If bit-selection is used by all caches, the forest can be
stored in an array that contains twice as many elements as the largest cache, since the i —1-st smallest cache is at

most half the size of the i -th smallest cache.

Figure 4bc presents an example of forest simulation, while Figure 5 shows pseudo-code for the algorithm.
For each reference, the key idea is to begin at level 1 and proceed downward in the forest until the reference is
found or the forest exhausted. At each level, the location of the search is guided by the set-mapping function for
that level. At each level traversed, the node examined is changed to contain the reference. If the node is found at

level i, distance[i] is incremented. After N references have been processed, the miss ratio of the i-th smallest

i
direct-mapped cache is 1~ Y. distance [jIIN. We will analyze the performance of forest simulation in Section
j=

4.4,

The principal limitation of forest simulation is that it only works for direct-mapped caches. Extending the
algorithm to set-associative caches introduces is possible, but complex, since a forest gives only a partial ordering
of recently-referenced blocks and set-refinement does not imply inclusion in set-associative caches. Consider
using the forest of Figure 4b to simulate a two-block fully-associative cache that uses LRU replacement. It is not
possible to tell whether the reference to block 4 hits in such a cache, since any of blocks 2, 4 or 5 could be

second-most-recently referenced.

Forest simulation can be extended to simulate N-way set associativity by replacing each node in the forest
by an N-element LRU stack. At each reference, rather than just replacing the element at a node with the newest
reference, the stack at that node is updated in the normal LRU manner; the descent in the tree stops as soon as the
target block is found at level one in the stack at the current node. This is because, by reasoning similar to that
used to show corollary (9), the reference will also be at distance one in all further levels. As should be evident,

forest simulation (for direct mapped caches) is a special case of this general algorithm, with the "N-element" stack
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Figure 4. Forest Simulation Example.

The top tree displays a forest for direct-mapped caches of size 1, 2, 4, and 8 block frames. The forest contains only
one tree, because the smallest cache has only one block frame, and is binary, because each cache in this example is
twice as large as the next smaller cache. We assume here that blocks are mapped to block frames with bit selec-
tion. Each node holds the information for one block frame in a direct-mapped cache. Nodes are labeled with the
tag values could could contain if bit-selection is used for all caches. The node at the root of the tree has no block
number bits constrained, because a one-block direct-mapped cache can hold any block. This is illustrated with a ¢
representing arbitrary high-order bits of the block number and three x’s Tepresenting don't-cares for the three low-
order bits. The tags oox0) and £xx! in the nodes of level two indicate that the blocks that can reside in these nodes
are constrained to have even and odd block numbers, respectively. Similar rules with more bits constrained apply
to the rest of the levels.

The middle tree (b) depicts the forest after a series of references. Information in the tree tells us that block6isina
cache of size one block frame; blocks 6 and 5 are in a direct-mapped cache of size two; blocks 4,6,5and3 areina
direct-mapped cache of size four; and blocks 0 through 7 are in a direct-mapped cache of size eight.

Let the next reference be to block 4. A path from the root to a leaf is determined using the set-mapping function
for each cache. A search begins at the root and stops when block 4 is found. All nodes encountered in the search
that do not contain block 4 are modified to do so. The nodes in bold are examined to find block 4. Since block 4 is
located at level 3, caches 1 and 2 miss and caches 3 and 4 hit.

The bottom tree (c) shows the tree after this reference as been processed. The nodes in bold now contain the refer-
enced block.

consisting of only one element. We do not develop this algorithm further, because the discussion of the next sec-
tion presents two forms of an algorithm for simulating alternative set-associative caches that is more general (set-

refinement is not required) or faster,
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integer L /* number of direct-mapped caches */

/* set-mapping functions that obey set-refinement */
/*ie., f;, refines f; fori=1, ..., L-1. %/

function fy(x), ..., f.(x)

integer Cy, ..., ¢, [* cache sizes (in blocks); let Cibe Yc; and Co=0%/
i
integer N /* counts the number of references */

/* distance counts so that miss_ratio(A=1, F=f;) = 1- Zdlstance[l]/N */
=
integer distance{1:L]

integer forest[1:Cy] /* the forest */
define map(x, i} = (f;(x)+C;.1) /* maps the forest into an array */

For each reference x {
read(var x)
N+

/* FIND */
found = FALSE
for i=1 to L or found {
y = forest[map(x, i)]

if (x==y)
found = TRUE
/* METRIC */
distance[i]++
else
J* UPDATE */

forest[map(x, )] = x

Figure 5. Forest Simulation.

4.3. Simulating Set-Associative Caches

This section develops an algorithm, called all-associativity simulation, for simulating alternative direct-
mapped and set-associative caches that have the same block size, do no prefetching and use LRU replacement.
All-associativity works for caches with arbitrary set-mapping functions, but works more efficiently if set-
refinement holds. All-associativity simulation does not try to take advantage of inclusion, since inclusion does not
hold between many pairs of set-associative caches (see Section 4.1). This work generalizes to arbitrary set-
mapping functions an algorithm developed for caches using bit-selection only [Matt70, Trai71]. The algorithms

discussed in this section can also be extended to handle multiple block sizes and sector sizes [Slut72, Trai71].

In theory, the storage required for all-associativity simulation is OWonique )» Where Nunigue is the number of
unique blocks referenced in an address trace. The storage required in practice, however, is usually much smaller
than the size of modern main memories. Simulation of a one-million-address trace having an infinite cache miss

ratio of one percent, for example, requires storage for 10,000 blocks. Since blocks can be stored in two words (a
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tag plus a pointer), less than 100K bytes are needed.

Figures 9 through 11 at the end of this section present pseudocode for all-associativity simulation not using
and using set-refinement. The rest of this section provides insight into how all-associativity simulation works by
developing it from stack simulation. A reader who understands the operation of the algorithms from Figures 9

through 11, may skip to the next section.

If we wish to simulate caches that have one, two and four sets selected by bit-selection (set-mapping func-
tions x mod 1, x mod 2 and x mod 4) we can run three concurrent stack simulations (one with one stack, another
with two and a third with four). The left-hand side of Figure 6 illustrates the first two stack simulations, Due to
locality, blocks that reside in one alternative cache will tend to reside in the other caches. Thus, as illustrated in
the right-hand side of Figure 6, we can save storage by allocating storage for a block once and using multiple links
to insert it into the multiple stacks. For LRU replacement, however, the order of two blocks in all stacks is always
the same (the more-recently-referenced one is nearer the top) and is unaffected by what other blocks are members

of a particular stack’. This implies that all links must point down, and therefore can be inferred instead of stored.

Instead of following the links of each stack and counting the blocks traversed, a block’s stack distance for
each set-mapping function can be calculated by traversing the fully-associative stack until the reference is found
or the stack exhausted. For each stack node y before the reference x is found or the stack exhausted, we deter-
mine whether f;(y)=f;(x) with each set-mapping function f;. Whenever the equality holds, we increment
stack_count [i]. If the reference is found, all stack_count[i]’s are incremented. After the reference is found or the
stack exhausted, each distance[i,stack_count[i]] is incremented to indicate a hit to distance stack_count[i] with

set-mapping function f;. Figure 7 illustrates that this method, which we call all-associativity simulation.

The above method works for arbitrary set-mapping functions. A faster algorithm is possible if f;,(x)
refines f;(x), for i =1 to L—-1. All-associativity simulation can take advantage of set-refinement two ways. First,
if f| implies multiple sets (not fully-associative), the algorithm can operate on the number of stacks induced by f,
instead of simulating with one long fully-associative stack. The information lost by not maintaining one stack is
the relative order of blocks in different £ sets. This information is not needed since the contrapositive of the
implication used to define refines is: f;(x)#f;(y) implies f;,1(x)#f;41(y). Thus, two blocks in different f; sets
will never be compared. Simulating with multiple stacks is faster than simulating with one, because the average

number of active blocks the algorithm must look through to find a block is smaller, since active blocks are spread

f In RANDOM replacement, on the other hand, two blocks can be reordered in one group of stacks and not another if the
current reference maps below them in one set of stacks and to another stack in another group of stacks. Consider block 0, 1
and 2 and a fully-associative stack and a pair of stacks for even and odd blocks. Reference 1, 0 and 2. The fully-
associative stack holds (2 0 1), while the even and odd stacks hold (2 0) and (1). Now re-reference block 1. RANDOM re-
placement requires that there is a 50-percent chance that the fully-associative stack changes to (1 0 2). Since the even stack
is unaffected by a reference to an odd block, it remains as (2 0) and block 0 and 2 are now in a different order in different
stacks.
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Figure 6. Concurrent Stack Simulation.

The three singly-linked stacks on the left-hand side of this figure display how the stacks for caches with one set
(fully-associative) or two sets using bit selection (f1(x)=0 and f(x }=x mod 2) could look during a simulation.
The stack for one set contains a list of all the block numbers recently referenced, listed from most-recently-
referenced to least-recently-referenced. We call this stack a fully-associative stack, because it models fully-
associative caches. The stacks for two sets contain similar lists for the even and odd block numbers. 2L stacks are
required to simulate with bit selection for 2L sets. A block resides in a cache of ¢ block frames with one set if and
only if the block is in the fully-associative stack at a distance of less than or equal to c. A block resides in a cache
of ¢ block frames with two sets if and only if it is in the appropriate stack at a distance of less than or equal to ¢/2.
A block resides in a cache of ¢ block frames with 2& sets if and only if it is in the appropriate stack at a distance of
less than or equal to ¢/2%.

The multiply-linked stack on the right-hand side illustrates how a single set of nodes can be used to represent the
stacks for caches using bit selection with one and two sets. A second next pointer field must be added to each node
so that it can be linked into a second stack. The stacks for stack simulations with L different set-mapping functions
can share one group of nodes if each node contains storage for L different next pointers. This reduces the expected
storage requirements with respect to using separate stacks, but does not reduce simulation time.

across many stacks (e.g., 512 stacks for simulating the VAX-11/780’s cache [Clar83]).

Second, the examination of *‘f;(x)=f;(y) for i =L down to 1’’ can be terminated the first time f;(x)
equals f;(y), since the set-refinement forces the equality to hold for all smaller i. Furthermore, instead of incre-
menting stack_count[i] for each i where the equality holds, we need only increment stack_partial_count[i] for the

maximum i for which it holds. When the processing for a reference terminates, we can compute stack_count[i] as

L
3. stack_partial_count([j] and increment distance[i, stack_count(i]], for i=1,L. Thus, using set-refinement

Jj=i
reduces the inner loop of all-associativity simulation with L set-mapping functions from L compares and 0 to L
increments, to 1 to L compares and 0 or 1 increments. Since the expected number of compares in the improved

algorithm can be as small as twoi, this can result in non-trivial savings if L is large (see Figure 8).

¥ Assume sets are selected with bit-selection and the least-significant address bits of nodes in a stack are uniformly distri-
buted. The probability that exactly i least-significant bits match is 12"+, The number of iterations given an i -bit match is
i+1, with the final iteration used to detect the first mismatch. The expected number of iterations does not exceed two, since

3G+ 12 =2,
i=0

-18 -




Fully-Assoc Two Sets Four Sets

f(x)=0 f(x)=xmod 2 f(x)=xmod 4
Stack Block 2 Same stack_ Same stack_ Same stack_
fully-assoc found? set? count{1] set? count[2] set? count{3}
no yes 1 yes 1 yes 1
no yes 2 no 1 no 1
no yes 3 no 1 no 1
no yes 4 yes 2 no 1
no yes 5 yes 3 no 1
no yes 6 no 3 no 1
yes yes 7 yes 4 yes 2
Stack =" =4 =2

Distance:

Figure 7. All-Associativity Simulation Example.

This figure illustrates how all-associativity simulation processes a reference to block 2 for caches with set-mapping
functions f1(x)=0, f2(x)=x mod 2, and f3(x)=x mod 4. Counter stack_count[i] always contains the number
of blocks encountered so far in stack f;(2). Each row of the figure shows that stack_count{i] is incremented in
response to block y in the stack if and only if f;(y) = f;(2).

Processing stops when the reference is found (block 2). The stack distance of block 2 in a cache with set-mapping
function f; is stack_count[i]. The stack distances found for block 2 are 7, 4, and 2, respectively.
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Number of stack_partial stack_partial stack_partial

LSB matched _count{0] _count{1] _count{2]
2 0 0 1
0 1 0 1
0 2 0 1
1 2 1 1
1 2 2 1
0 3 2 1
found 3 2 2
— =]
Stack 3+2+2 242 2
Distance: =7 =4 =2

Figure 8. All-Associativity Simulation with Set-Refinement Example.

This figure illustrates how all-associativity simulation with set-refinement processes a reference to block 2 by scan-
ning the stack until block 2 is found (or the stack is exhausted). For each block before the reference is found, the
algorithm calculates the largest i for which the reference and the stack node are in the same fi set, and increments
stack_partial_count[i]. For bit selection, finding this set-mapping function reduces 1o determining the number of
least-significant bits that match between the block numbers of the reference and the stack node. Once the reference
iz found, stack_partial_count[L] is incremented, the reference’s stack distance with set-mapping function f; is
Y, stack_partial_count|j].

J=i
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integer L /* number of set-mapping functions */

function f;(x), ..., fz (X) /* arbitrary set-mapping functions */
integer N /* counter for the number of references */

integer max_assoc /* maximum associativity for metrics */

k

[* distance counts so that miss_ratio(A=k, F=f;) = 1- Y distance[i,j/N */
j=1

integer distance[1:L, 1:max_assoc] !

integer stack_count[1:L] /*stack distance counters; reset for each reference. */

define stacknode_type {
integer block_number
stacknode_! *next

}

stacknode_| *stack /* top of stack pointer */

/* Let Nynigu. be the number of unique blocks referenced. */
stacknode_type stacknodes[1:0(Nunigw )] /* dynamically allocated pool of stacknodes. */

For each reference x {
for i=1 to L { stack_count[i] =0 }
read(var x)
N+
/* FIND */
found = FALSE
previous_node_pointer = NULL
node_pointer = stack
while ((NOT found) AND (node_pointer!=NULL)) {

y = node_pointer->block_number

if (x==y) {
found = TRUE
for i=1 to L { stack_count[i]++ }
}
else {
fori=1toL {
if (£; (x)==f; (y)) stack_count[i}++
)
previous_node_pointer = node_pointer
node_pointer = node_pointer->next
}
)
/* METRIC */
if (found) {
fori=1to L {

[*Record hits to distances < max_assoc. */
if (stack_countfi] < max_assoc) distance[i, stack_count[i]}++
}
)

[* If found, move the stack node of x to the top of the stack. */
/* Otherwise, store X in a new stacknode and move it to the top of the stack. */

UPDATE(x, found, previous_node_pointer, node_pointer)

Figure 9. All-Associativity Simulation.
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integer L. /* number of set-mapping functions */

/¥ set-mapping functions that obey set-refinement, */
/* ie., fi,q refines f; fori=1, ..., L-1. */

function fi(x), ..., f (x)

integer number_of_stacks /* number of sets induced by fi(x) ¥/

integer N /* number of references */

integer max_assoc (* maximum associativity for metrics */k

/* distance counts so that miss_ratio(C(A=k, F=f;)) = 1 - ¥ distance[ij}/N */

j=
integer distancef1:L, 1:max_assoc]

integer stack_partial_count{1:L] /* stack distance counters; reset for each reference. */

define stacknode_type {
integer block_number
stacknode_type *next
)
stacknode_type *stack[0:number of stacks-1] /* top of stack pointers */

* Let Nypigu, be the number of unique blocks referenced. */
stacknode_type stacknodes[1:0(Nunigue )] /* dynamically allocated pool of stacknodes. */

Figure 10. All-Associativity with Set-Refinement (Storage).
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For each reference x {
for i=1 to L { stack_partial_count{i] =0 }
read(var x)
N+
stack_number = f(x)
/* FIND */
found = FALSE
previous_node_pointer = NULL
node_pointer = stack[stack_number]
while (NOT found) AND (node_pointer!=NULL)) {
y = node_pointer->block_number

if (x=y) {
found = TRUE
stack_partial_count{L]++
else {
match = FALSE
for i=L. down to 1 OR match {
if (£ ()==f;(y)) (
match = TRUE
stack_partial _count{ij++
}
)
previous_node_pointer = node_pointer
node_pointer = node_pointer->next
}
}
* METRIC */
if (found) {

stack_count = 0
fori=L downto 1 {
stack_count = stack_count + stack_partial_count{i]
/* Record hits to distances < max_assoc. */
if (stack_count € max_assoc) distancel[j, stack_count]++
}
)

/* If found, move the stack node of x to the top of its stack. */
[* Otherwise, store X in a new stacknode and move it to the top of the stack. */

UPDATE(x, stack_number, found, previous_node_pointer, node_pointer)

Figure 11. All-Associativity with Set-Refinement (Key Procedure).
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4.4. Implementation and Comparison of Simulation Algorithms

To study the performance of stack, forest and all-associativity simulation and to study CPU caches per se,
we implemented these algorithms in C under UNIX 4.3 BSD. Stack and forest simulation were added to a general
cache simulator that originally contained 1250 C statements* [Hill85]. Adding stack simulation increased total
code size by 150 statements, adding forest simulation, 220 statements. Stack simulation is implemented using
linked lists. The forest simulation implementation restricts the set-mapping functions to be the block number
modulo the cache size in block frames, a slight generalization of bit selection. We implemented all-associativity
simulation in a separate program containing 800 C statements and having far fewer options than the simulator

above, and with the set-mapping function restricted to bit selection.

Cache Run-time in sec/1M-references (normalized)
Size Associativity

(bytes) Stack Forest All-Associativity
<trivial trace> 3043 (0.984) | 304.7 (0.985) | 2946 (0.952)
16K 1-way 309.3 (1.000) | 307.6 (0.994) | 3008 (0.972)
16K 4-way 3125 (1.010) - -- 309.2  (1.000)
1K to 8K 1-way 123447 (4.0 326.1 (1.054) | 4029  (1.303)
16K to 128K 1-way 1234.47 4.0) 321.0 (1.038) | 3323 (1.074)
16K to 128K 1-,2- & 4-way 63086' (6.0 - -- 366.6  (1.185)

Table 2. Simulation Times.

This table shows simulation times for C language implementations of stack, forest and all-associativity simulation.
All caches simulated have 32-byte blocks, do no prefetching, use LRU replacement, are unified (data and instruc-
tions cached together) and use bit selection. Results in the first row are for a trace consisting of one million copies
of the same address, yielding one miss and 999,999 hits. All other results presented here are for a trace of one mil-
lion memory references from system calls generated by an Amdahl standard MVS workload [Smit85b]. We also
examined traces from three other architectures [Hill87]. We omit these results here, since they are qualitatively
similar to those with the MVS trace.

Results not in parentheses are the elapsed virtual times in seconds for simulation runs on an otherwise unloaded
Sun-3/75 with 8M of memory, no local disk, and trace data read from a file server via an ethernet. Results in
parentheses are normalized to the time for stack simulation to simulate a single 16K-byte direct-mapped (1-way)
cache with the MVS trace. Readers interested in simulation performance times for fully-associative caches, driven
by traces of memory and disk references should consuit {Thom87].

¥ Instead of determining the time for each stack simulation, we optimistically approximate the time required as the
time for a fast stack simulation (128K-byte direct-mapped cache) times the number of runs required.

We performed experiments, described in Table 2, to answer the following three questions regarding how
these implementations perform for CPU cache simulations. Performance simulating other caching systems, e.g.,

disk caches, will differ [Thom87].

¥ Measured by the number of source lines containing a semicolon or closing brace.
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(1)  Are the implementations comparable?

Yes. We determine that implementations are comparable by simulating single caches, which, in theory,
require the same simulation time. For a synthetic trace and a real trace and for two associativities, we found the
virtual times (CPU times) for implementations of stack and forest simulation differed by less than 0.5 percent,
while the implementation of all-associativity simulation is 1-3 percent faster (see*Table 2). That all-associative
simulation is slightly faster is not surprising, since it was implemented in a separate program, while stack and

forest simulation are part of a more powerful cache simulator.
(2)  What algorithm is fastest for simulating a collection of direct-mapped caches of similar size?

Forest simulation. However, forest simulation is not significantly faster than all-associativity simulation if
caches are large. Both forest and all-associativity simulation are much faster than stack simulation since they

require only one run, whereas stack simulation needs one run per cache size.

(3) What algorithm is fastest for simulating a collection of direct-mapped and set-associative caches of similar
size?

All-associativity simulation. All-associativity simulation requires only one run, which is not much slower
than a single, simple simulation run. Forest simulation is not able to simulate non-direct-mapped caches. Stack
simulation requires one run per unique number of sets. Simulating caches of ¢, 2¢c, 4¢ through 2°¢ block frames
with associativities 1, 2, 4 through 2° requires s +a — 1 stack simulations. One with ¢ /2% sets, a second with
c/2%71 sets, ..., another with ¢ sets, another with 2¢ sets, ..., and finally one with 2°¢ sets. The simulation in the

final row of Table 2, for example, required six stack simulations, using 128, 256, ... and 4K stacks, respectively.

5. The Relationship Between Associativity and Miss Ratio

In this section we analyze how changes in associativity alter cache miss ratio. We find empirically that
some simple relationships exist between the miss ratios of direct-mapped, set-associative and fully-associative
caches, largely independently of cache size. We assume throughout that caches have a fixed block size, use LRU

replacement, do no prefetching and pick the set of a reference with bit-selection.
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5.1. Categorizing Set-Associative Misses

The simulation algorithms described earlier facilitate computing the miss ratios for many alternative cache
sizes and associativities. This data can be used to increase our understanding of a single cache’s miss ratio. We
do this by subdividing the observed misses into three categories: (set-)conflict misses (due to too many active
blocks mapping to a fraction of the sets), capacity misses (due to fixed cache size) and compulsory misses {(neces-

sary in any casef).

The size of these components can be calculated as follows. First, the conflict miss ratio is the cache’s miss
ratio less the miss ratio for a fully-associative cache of the same size. Second, the capacity miss ratio is the fully-
associative cache’s miss ratio less the miss ratio for an infinite cache (one so large it never replaces a block).
Finally, the compulsory miss ratio is the infinite cache’s miss ratio, which is not zero since initial references to
blocks still miss. This categorization is easy to compute, since it can be derived from average miss ratios and does

not require a detailed manipulation of simulation programs (as does the model in [Agar89]).

Table 3 illustrates this miss ratio categorization for a trace of VAX-11 interactive users under Ultrix. For
this trace, we see (1) the absolute size of the conflict miss ratios for set-associative caches (not direct-mapped) are
small, making further increases in associativity of limited benefit, (2) the absolute (relative) size of conflict miss
ratios for direct-mapped caches gets smaller (larger) with increasing cache size, making increasing associativity
absolutely less (relatively more) important, and (3) the compulsory miss ratio is fixed but gets relatively more
important with increasing cache size, limiting the potential benefit of further cache size increases. One deficiency
of this categorization is that the magnitude of the capacity miss ratio does not bound the miss ratio reduction that
increasing cache size can yield. This is because increasing cache size also increases the number of sets, reducing

the conflict miss ratio.

5.2. How Set-Associative Miss Ratios Relate to Fully-Associative Ones

It has been previously shown by one of the authors [Smit78] that set-associative miss ratios can be closely
estimated from fully associative ones; this observation was validated for several traces for 16 and 64 sets. We
review that calculation in this section, and validate the results over a larger range of cache sizes and number of

sets.

The model derives LRU distance probabilities with s sets, p; (s), from fully-associative LRU distance pro-

babilities, q;. p;(s) is the probability a reference is made to the i -th most-recently-referenced block in one of s

T That is, necessary without violating our assumptions of a ﬁxed block size, LRU replacement, no prefetching and bit-
selection. The compulsory miss ratio is equivalent the “scold start’® miss ratio, as defined in [East78), for an arbitrary large
cache.
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Three Miss Ratio Components
+| Cache Size Degree of Miss || Miss Ratic Components (Relative Percent)

(bytes) Associativity Ratio Conflict Capacity | Compulsory
1K 1-way 0.1913 0.0419 22% 0.1405 73% 0.0090 5%
1K 2-way 0.1609 0.0115 7% 0.1405 87% 0.0090 6%
1K 4-way 0.1523 0.0029 2% 0.1405 92% 0.0090 6%
1K 8-way 0.1488 -0.0006 -0% 0.1405 94% 0.0090 6%
2K 1-way 0.1482 0.0361 24% 0.1032 70% 0.0090 6%
2K 2-way 0.1223 0.0102 8% 0.1032 84% 0.0090 7%
2K 4-way 0.1148 0.0027 2% 0.1032 90% 0.0090 8%
2K 8-way 0.1128 0.0006 1% 0.1032 91% 0.0090 8%
4K 1-way 0.1089 0.0270 25% 0.0730 67% 0.0090 8%
4K 2-way 0.0948 0.0129 14% 0.0730 77% 0.0090 9%
4K 4-way 0.0868 0.0049 6% 0.0730 84% 0.0090 10%
4K 8-way 0.0842 0.0022 3% 0.0730 87% 0.0090 11%
8K 1-way 0.0868 0.0257 30% 0.0521 60% 0.0090 10%
8K 2-way 0.0693 0.0082 12% 0.0521 75% 0.0090 13%
8K 4-way 0.0650 0.0040 6% 0.0521 80% 0.0090 14%
8K 8-way 0.0629 0.0018 3% 0.0521 83% 0.0090 14%

16K 1-way 0.0658 0.0194 29% 0.0375 57% 0.0090 14%
16K 2-way 0.0535 0.0070 13% 0.0375 70% 0.0090 17%
16K 4-way 0.0494 0.0029 6% 0.0375 76% 0.0090 18%
16K 8-way 0.0478 0.0014 3% 0.0375 78% 0.0090 19%
32K l-way 0.0503 0.0134 27% 0.0279 55% 0.0090 18%
32K 2-way 0.0412 0.0043 11% 0.0279 68% 0.0090 22%
32K 4-way 0.0383 0.0014 4% 0.0279 3% 0.0090 23%
32K 8-way 0.0377 0.0008 2% 0.0279 74% 0.0090 24%
64K 1-way 0.0386 0.0105 27% 0.0192 50% 0.0090 23%
64K 2-way 0.0296 0.0015 5% 0.0192 65% 0.0090 30%
64K 4-way 0.0279 -0.0002 -1% 0.0192 69% 0.0090 32%
64K 8-way 0.0275 -0.0006 2% 0.0192 70% 0.0090 33%

128K 1-way 0.0261 0.0130 50% 0.0041 16% 0.0090 34%

128K 2-way 0.0195 0.0064 33% 0.0041 21% 0.0090 46%

128K 4-way 0.0164 0.0033 20% 0.0041 25% 0.0090 55%

128K 8-way 0.0151 0.0021 14% 0.0041 27% 0.0090 59%

Table 3. Three Miss Ratio Components.

This table illustrates the effect of dividing the miss ratios for three samples of ‘‘ue’’ (see Table 1) into (set-)conflict
misses (due to too many active blocks mapping to a fraction of the sets), capacity misses (due to fixed cache size)
and compulsory misses (necessary in any case). For an n-way set-associative cache with s sets, having miss ratio
m(A=n,S=s), the conflict miss ratio is m (A=n,S=s) - m(A=n-s,S=1), the capacity miss ratio is m (A=n"s,5=1)
- m (A =c0,§ =1) and the compulsory miss ratio is m (A =0, S=1). Direct-mapped caches are denoted by **1-way”".

All miss ratios are warm-start and for a unified cache with 32-byte blocks. Under each miss ratio component, the
first number is the component’s absolute size, while the second is its relative contribution to the overall miss ratio.
Results for large caches are unstable, since small miss ratio variations can cause a large perturbation in a
component’s relative size.

That several conflict miss ratios for eight-way set-associative caches are negative is unimportant, since (1) the mag-
nitudes are small (-0.0006), indicating eight-way set-associative caches and fully-associative cache have approxi-
mately the same miss ratio, and (2) the behavior is possible. A ¢ -block fully-associative cache misses on all refer-
ences to blocks not among the ¢ most-tecently referenced blocks, while a set-associative cache can hit on some of
these blocks. If such references are common, for example, due to a loop spanning c+1 blocks, a set-associative or
direct-mapped cache can perform better [Smit85a].
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sets, while ¢; is the probability a reference is made to the i -th most-recently-referenced block in any set. Conse-

quently, ¢; = p;(1). LRU distance probabilities are equivalent to the miss ratios of caches using LRU replace-

n
ment. The miss ratio for an n-way set-associative cache with s sets is 1 - 3, p;(s), while the miss ratio for an n-

i=l

block fully-associative cacheis 1 - Y, ¢;.

i=1

Bayes Rule’ allows us to express a set-associative LRU distance probability in terms of fully-associative

LRU distance probabilities:
pi(s) = ilProb(LRU distance n with s sets | LRU distance i with 1set)-q;.

The above equation can be used to estimate set-associative LRU distance probabilities from fully-
associative LRU distance probabilities, or equivalently set-associative miss ratios from fully-associative miss
ratios, using a simple approximation for Prob(LRU distance n with s sets | LRU distance i with 1 set). The
approximation is based on the assumption that the probability that two blocks map the same set is 1/s and
independent of where other blocks map. A reference to set-associative distance n occurs if exactly n—1 more-
recently-referenced blocks map to the reference’s set, while a reference to fully-associative distance i implies i-1
blocks are more-recently-referenced. By the above assumption, the probability that exactly n-1 of the i-1 more-

recently-referenced blocks map to the set of the reference is O for n>i and approximately

. 1 n-1 1 i-n
[::_11} [-;] {-s—?-] , forn <i.

Substitution yields:

pi(s) = E‘, (,’,:11} ["ﬂ " {%‘L} M'qz-

t=n
Figure 12 shows actual direct-mapped and set-associative miss ratios and miss ratios predicted with the
above equation. Results here and for several other traces [Hill87] yield three conclusions:

(1) The predictions are quite accurate. In most cases the relative error is less than five percent; only rarely is it

greater than ten percent.

(2) Predictions are usually more pessimistic than the actual miss ratios. The cause of this phenomenon is that

blocks selected with bit-selection collide slightly less often than blocks whose set is selected at random (as

' For some event A and a set of muwally exclusive and exhaustive events B;, Bayes Rule states that:
Prob(A) = ¥, Prob(A|B;)Prob(B;).
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Figure 12. Predicted and Actual Miss Ratios for ‘‘mul2’’.

This figure compares set-associative miss ratio predictions using a model from [Smit78] (dashed lines) with actual
miss ratios (solid lines) for various associativities. The data are for unified caches with 32-byte blocks, using trace
mul2

the above approximation assumes), due to spatial locatity [Smit78].

(3) The relative error gets smaller with increasing associativity, which is expected since many-way set-

associative caches have miss ratios nearly identical to fully-associative caches.

That this method is accurate is not important for deriving set-associative miss ratios, since all-associativity
simulation allows exact values to be calculated efficiently. Rather it is important because it illuminates the cause
of (set-)conflict misses, showing that the actual rate of conflict misses is nearly identical to the rate of conflict

misses resulting from assuming that active blocks map to sets with independent and equal probability.

5.3. How Set-Associative Miss Ratios Relate to Each Other

Empirically we see that miss ratio is affected by changes in cache size, block size and associativity. We
would like to find some simple rules that can be used to quantify changes in associativity on cache miss ratios; we

do that in this section.

We find that by examining relative miss ratio differences rather than absolute miss ratio differences one can
almost eliminate the effect of cache size. Consider an n-way set-associative cache and a 2n-way set-associative
cache, having the same capacity, the same block size, and miss ratios m (A=n) and m (A=2n). Let the miss ratio

spread be the ratio of the miss ratios, less one:
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Figure 13. Unified Cache Miss Ratio Spreads.

This figure shows average miss ratio spreads for unified caches using 32-byte blocks and LRU replacement with
the five- (left) and 23-trace (right) groups. The miss ratio spread is the relative increase incurred by halving the as-
sociativity of a cache. The average miss ratio spread is computed using the ratio of the average miss ratios. Table
4 shows similar results from an alternate computation, taking the average of the miss ratio spreads of individual
traces. Dashed lines present raw data, while solid lines are smoothed using a weighted average of adjacent spreads
(recommended in [Cham83]). We selected the weights to reduce variation between adjacent spreads, without
suppressing larger trends. We assigned a weight of 0.20 to both adjacent spreads and 0.15 to spreads two sizes
away, leaving a weight of 0.30 for the spread being smoothed.

For the most part, miss ratio spreads vary little with changing cache size. The only major exception to this rule is
the miss ratio spread between direct-mapped and two-way set-associative 128K-byte caches with the five-trace
group. We believe that the cause of this aberration lies in the particular traces and trace lengths used, not in some
property of 128K.-byte caches.

m(A=n) 1= m({A=n)-m(A=2n)
m@A=2n) m(A=2n)

Figures 13 and 14 and Table 4 present data from trace-driven simulation. Figure 13 shows some miss ratio
spreads of unified caches with 32-byte blocks for the five- and 23-trace groups. Figure 14 examines miss ratio
spreads for instruction and data cache with the five-trace group. Table 4 shows miss ratios spreads, calculated in a
different way, for many caches with the 23-trace groups. These results together with more data in [Hill87] exhibit

the following trends:

(1) Miss ratio spreads for caches with more restricted associativity are larger, implying, for example, that
direct-mapped and two-way set-associative miss ratios are further apart than two-way and four-way set-

associative miss ratios. This result corroborates the previous work of many others.

(2)  Except for small instruction caches, miss ratio spreads do not vary rapidly with changing cache size, even

though the miss ratios in their numerators and denominators vary by over an order of magnitude. The miss
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Figure 14. Instruction and Data Cache Miss Ratio Spreads.

This figure shows miss ratio spreads for instruction (left) and data (right) caches using 32-byte blocks and LRU re-
placement with the five-trace group. The miss ratio spread is the relative increase incurred by halving the associa-
tivity of a cache. Dashed lines present raw data, while solid lines are smoothed using a weighted average of adja-
cent spreads.

Most spreads show little systematic variation with changes in cache size. The spread between two-way set-
associative and direct-mapped instruction caches, however, is strongly correlated with cache size. We expect that
this is due to looping behavior, which diminishes the miss ratio spreads for small instruction caches [Smit85a].

€)

@)

ratio spreads between small direct-mapped and two-way set-associative instruction caches are smaller than
many other spreads due to the looping behavior of instruction reference streams, which minimizes the use-

fulness of increasing associativity in small instruction caches [Smit85a].

Miss ratio spreads are positively correlated with block size. While the difference is not important with wide
associativity, the miss ratio spread between direct-mapped and two-way set-associative unified caches with
the 23-trace group increases from 25 to 31 to 39 percent as block size goes from 16 to 32 to 64 bytes. The
reason for this is that for a given cache size, as the blocks become larger, the number of sets decreases, and

the probability that two active blocks map into the same set increases.

Miss ratio spreads between unified and data caches are similar. Instruction cache spreads are similar or
smaller (see also [Cho86]). Miss ratio spreads between direct-mapped and two-way set-associative instruc-

tion caches are significantly smaller than other spreads, as has been observed elsewhere [Smit85a].

Since the miss ratio spreads do not vary greatly with cache size, we can provide insight into the relationship

between miss ratio and associativity by computing miss ratio spreads averaged over many cache sizes, as is done

in Table 4. To one significant figure, halving associativity with these traces from eight-way to four-way to two-
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Smoothed Miss Ratio Spreads for Unified Caches

Cache Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes
Size 8-t04 | 4-t0-2 | 2-to-1 || 8-to4 | 4-to-2 | 2-to-1 || 8-to-4 | 4-to-2 | 2-to-1
1K 4% 9% 20% 5% 10% 30% 5% 12% 41%
2K 5% 10% 22% 5% 12% 29% 6% 13% 38%
4K 5% 11% 23% 6% 12% 29% 7% 14% 38%
8K 5% 10% 25% 6% 12% 29% 7% 14% 37%
16K 5% 10% 26% 5% 12% 3% 7% 13% 38%
32K 5% 10% 28% 5% 11% 32% 6% 13% 38%
64K 4% 10% 28% 5% 11% 33% 5% 12% 39%
128K 5% 10% 28% 5% 11% 33% 5% 12% 40%
256K 4% 10% 28% 5% 12% 34% 6% 13% 40%
AVG 5% 10% 25% 5% 11% 31% 6% 13% 39%

Smoothed Miss Ratio Spreads for Instruction Caches

Cache Block Size 16 Bytes || Block Size 32 Bytes Block Size 64 Bytes
Size || 8-to-4 | 4-to-2 | 2-to-1 || 8-to-4 | 4-t0-2 | 2-to-1 || 8-to4 | 4-to-2 | 2-to-1
1K 5% 11% 16% 4% 11% 16% 6% 10% 16%
2K 6% 13% 18% 5% 14% 17% 6% 13% 18%
4K 6% 13% 20% 6% 15% 20% 7% 15% 20%
8K 7% 13% 22% 7% 15% 23% 7% 15% 24%
16K 7% 13% 26% 7% 14% 28% 7% 15% 29%
32K 6% 12% 28% 7% 14% 30% 7% 15% 32%
64K 5% 11% 30% 6% 12% 32% 6% 13% 35%
128K 4% 11% 29% 5% 12% 32% 5% 14% 35%
256K 3% 8% 28% 4% 10% 31% 4% 12% 36%
AVG 6% 12% 24% 6% 13% 25% 6% 14% 27%

Smoothed Miss Ratio Spreads for Data Caches

Cache Block Size 16 Bytes || Block Size 32 Bytes Block Size 64 Bytes
Size 8-t0-4 | 4-10-2 | 2-to-1 || 8-to4 | 4-t0-2 | 2-to-1 || 8-to-4 | 4-to-2 | 2-to-1
1K 6% 13% 27% 6% 14% 30% 7% 14% 33%
2K 6% 12% 28% 7% 13% 31% 8% 14% 35%
4K 6% 11% 26% 7% 13% 29% 8% 14% 34%
8K 5% 10% 26% 6% 11% 30% 7% 13% 36%
16K 4% 9% 24% 5% 10% 28% 6% 12% 35%
32K 3% 8% 24% 4% 9% 29% 5% 11% 36%
64K 3% 8% 23% 3% 9% 28% 4% 11% 35%
128K 3% 7% 22% 4% 9% 29% 4% 11% 36%
256K 3% 7% 20% 4% 9% 27% 5% 12% 35%
AVG 4% 9% 24% 5% 11% 29% 6% 12% 35%

Table 4. Smoothed Miss Ratio Spreads.

This table displays smoothed miss ratio spreads for caches with the 23-trace group. The miss ratio spread is the re-
lative increase incurred by halving the associativity of a cache. Spreads are smoothed using the method described
by Figure 13. These spreads are calculated by using the geometric average of the ratio of miss ratios for individual
traces. This method yields slightly larger spreads than those calculated using the ratio of average miss ratios (as in
Figure 13). Miss ratio spreads in rows labeled ‘*AVG’’ are calculated by taking the geometric mean of the ratio of
miss ratios for cache sizes from 1K to 256K bytes.
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Relative Miss Ratio Change for the Five-Trace Group
Cache Block || From Direct-Mapped To From Eight-Way To

Type Size 8-way | 4-way | 2-way || 4-way | 2-way | 1l-way
16 31% -27% -20% 5% 17% 47%
Unified 32 -33% -30% 22% 5% 18% 52%
64 -38% -34% -26% 6% 21% 63%
16 -31% 27% -20% 5% 17% 48%
Instruction 32 32% -28% 21% 6% 18% 51%
64 -33% -30% -22% 6% 18% 54%
16 -32% -29% 21% 5% 16% 48%
Data 32 -34% -31% -23% 5% 17% 52%
64 -39% -35% -26% 6% 20% 64%

Relative Miss Ratio Change for the 23-Trace Group

Cache Block || From Direct-Mapped To From Eight-Way To
Type Size 8-way | 4-way | 2-way || 4-way | 2-way | 1-way
16 -30% 27% -20% 5% ° 15% 44%
Unified 32 -35% -32% -24% 5% 17% 54%
64 40% -36% -28% 6% 20% 67%
16 31% -27% -19% 6% 17% 45%
Instruction 32 -32% -28% -20% 6% 19% 49%
64 -34% -30% 21% 6% 20% 53%
16 -29% -26% -19% 4% 14% 42%
Data 32 -33% -30% -22% 5% 16% 50%
64 -38% -34% -26% 6% 19% 61%

Table 5. Relative Miss Ratio Change.

This table displays the average relative miss ratio changes with the five-trace (top) and the 23-trace group (bottom).
The relative miss ratio change from direct-mapped to n-way set-associative is [m (A =n)}-m(A =1)Ym (A=1) where
m(A=i) is the miss ratio of an i -way set-associative cache. Since most m(A=n)’s are less than m (A=1)’s, these
changes are negative. Similarly, the change from eight-way set-associative is [m (A =n)-m (A =8)}/m (A=8). Since
eight-way set-associative miss ratios are near fully-associative miss ratios, these changes give the relative size of
the (set-)conflict miss ratio component. All average changes are calculated by using the geometric average of the
ratio of miss ratios for each trace at each cache size from 1K to 256K bytes. Except for round-off error, the
numbers for the 23-trace group are equivalent to the average miss ratio spreads of Table 4.

way to direct-mapped causes miss ratio spreads of 5, 10 and 30 percent regardless of cache size, cache type or
block size. Equivalently, one can look at set-associative miss ratios relative to direct-mapped or fully-associative
ones, as depicted in Table 5. Relative to direct-mapped, the miss ratios for eight-, four- and two-way set-
associative are respectively about 34%, 30% and 22% lower. Assuming that eight-way set-associative is effec-
tively fully-associative, the miss ratio increases by 5% for four-way, 17% for two-way and 52% for direct-
mapped.

Our examination of miss ratios for caches with different associativities has shown that the miss ratio spread
does not change dramatically as caches get larger. Consequently the absolute miss ratio difference decreases as
cache gets larger, since absolute miss ratios get smaller. When the absolute miss ratio difference becomes

sufficiently small, an interesting change occurs: the effective access time of a direct-mapped cache can be smaller
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than that of a set-associative cache of the same size, even though the direct-mapped cache has the larger miss ratio
This change occurs when implementation differences, that have previously been ignored, become more important

than absolute miss ratio differences. This topic is considered in some detail in [Hill88, Przy88].

5.4. Extending Design Target Miss Ratios

In [Smit85b], it was noted that absolute miss ratios computed from trace driven simulations were often
optimistic. That paper then presented design target miss ratios which were miss ratios derived from hardware
monitor measurements, personal experience, and trace driven simulations using realistic workloads; those miss
ratios were intended to represent realistic figures for real systems under real workloads. The data in [Smit85b]
presented miss ratios for fully associative caches with 16-byte blocks, broken down into figures for unified,
instruction and data caches. In another paper [Smit87], the design target miss ratios were extended to block sizes
ranging from 4 to 128 bytes. This was done by finding the relative change in miss ratio as the block size changed
(by taking "ratios of miss ratios" for a variety of traces), and propagating the design target miss ratios for 16-byte

block to other block sizes.

We use the same method here to extend the design target miss ratios to caches of limited associativity (see
Table 6). We assume that eight-way set-associative miss ratios are equal to the fully-associative design target
miss ratios, and compute other set-associative miss ratios using the smoothed ratios of miss ratios shown in Table

4.

6. Conclusions

We have examined properties and algorithms for simulating alternative caches and have examined the rela-
tionship between associativity and miss ratio. We find that both inclusion (that larger caches contain a superset of
the blocks in smaller caches [Matt70]) and set-refinement (that blocks mapping to the same set in larger caches
map to the same set in smaller caches) can be used by forest simulation, a new algorithm for rapidly simulating
alternative direct-mapped caches. We show that inclusion is not useful, but set-refinement can be useful for all-
associativity simulation, an algorithm for rapidly simulating alternative direct-mapped, set-associative and fully-
associative caches. Our algorithms is a generalization of an earlier algorithm [Matt70, Trai71]. We find all-
associativity simulation is tremendously effective, allowing dozens of caches to be evaluated in time that is within

a small constant factor of the time needed to simulate one cache with wide associativity.

Our empirical examination of associativity and miss ratio provides data and insight into how miss ratio is

affected by changes in associativity. In particular:
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Design Target Miss Ratios for Unified Caches

Cache Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes

Size 8.way | 4-way | 2-way | l-way || 8-way | 4-way | 2-way | l-way || 8-way | 4-way | 2-way | l-way
1K 0210 | 0219 | 0239 | 0288 || 0.162 | 0.170 | 0.188 | 0.244 || 0.137 | 0.144 | 0.162 | 0.229
2K 0.170 | 0179 | 0.197 | 0240 || 0.124 | 0.130 | 0.146 | 0.188 || 0.098 | 0.104 | 0.118 | 0.163
4K 0.120 | 0.126 | 0.140 | 0.172 |} 0.082 | 0.087 | 0.097 | 0.126 || 0.059 | 0.063 | 0.072 | 0.099
8K 0.080 | 0.084 | 0.093 | 0.116 || 0.050 | 0.053 | 0.059 | 0.077 || 0.033 | 0.035 | 0.040 | 0.055

16K 0.060 | 0.063 | 0.069 | 0.088 || 0.036 | 0.038 | 0.042 | 0.055 || 0.023 | 0.025 | 0.028 | 0.038

32K 0.040 | 0.042 | 0.046 | 0.059 || 0.024 | 0.025 | 0.028 | 0.037 || 0014 | 0.015 | 0.017 | 0.023

Design Target Miss Ratios for Instruction Caches
Cache Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes

Size 8-way | 4-way | 2-way | l-way || 8-way | 4-way | 2-way | 1-way || 8-way | 4-way | 2-way | l-way
1K 0.200 | 0.211 | 0.234 | 0.271 || 0.134 | 0.140 | 0155 | 0.179 || 0.098 | 0.104 | 0.115 | 0.133
2K 0.150 | 0.159 | 0.179 | 0210 || 0098 | 0.103 | 0.117 | 0.138 || 0.068 | 0.072 | 0.082 | 0.097
4K 0.100 | 0.106 | 0.120 | 0.143 || 0.063 | 0.067 | 0.076 | 0.091 || 0.043 | 0.046 | 0.053 | 0.063
8K 0.060 | 0.064 | 0072 | 0089 || 0.037 | 0.039 | 0.045 | 0.056 || 0.023 | 0025 | 0.028 | 0.035

16K 0.050 | 0.053 | 0.060 | 0.076 || 0.020 | 0.031 | 0.035 | 0.045 || 0.018 | 0.019 | 0.022 | 0.029

32K 0.030 | 0.032 | 0.036 | 0.046 || 0.017 | 0.018 | 0.021 | 0.027 || 0.010 | 0.011 | 0.012 | 0.016

Design Target Miss Ratios for Data Caches
Cache Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes

Size 8-way | 4-way | 2-way | l-way || 8-way | 4-way | 2-way | l-way }| 8-way | 4-way | 2-way | l-way
1K 0.160 | 0.170 | 0.192 | 0.244 || 0.138 | 0.146 | 0.166 | 0.216 || 0.140 | 0.150 | 0.170 | 0.227
2K 0.120 | 0.127 | 0.143 | 0.183 || 0.094 | 0.101 | 0.114 | 0.149 |} 0.083 | 0.089 | 0.102 | 0.138
4K 0.100 | 0.106 | 0.117 | 0.148 || 0.070 | 0.075 | 0.084 | 0.109 || 0.054 | 0.058 | 0.067 | 0.090
8K 0.080 | 0.084 | 0.092 | 0.116 || 0.053 | 0.056 | 0.062 | 0.081 | 0.039 | 0.042 | 0.047 | 0.064

16K 0.060 | 0.062 | 0.068 | 0.084 || 0039 | 0.041 | 0.045 | 0.058 || 0.026 | 0.028 | 0.031 0.042

32K 0.040 | 0.041 | 0.045 | 0.055 || 0.025 | 0.026 | 0.028 | 0.037 || 0.017 | 0.018 | 0.020 | 0.027

Table 6. Design Target Miss Ratios.

In this table we extend the design target miss ratios from [Smit85b] and to caches of varying associativity by mul-
tiplying those numbers by the smoothed miss ratio spreads of Table 4. These miss ratios may serve as *“‘rules of
thumb’’ for cache designers working with *‘a 32-bit architecture running fairly large programs and mature (i.e.,
large) operating system.

We do not extend the design target miss ratios to caches larger than 32K bytes, because the original design target
miss ratios in [Smit85b] and [Smit87) are limited to caches of 32K-bytes or less, and the methodology for extend-
ing them to larger cache sizes is beyond the scope of this paper.

We show how to divide cache misses into conflict, capacity and compulsory misses, using only average

miss ratios from alternative caches. Increasing associativity but not cache size can only reduce conflict

misses. Increasing cache size but not associativity increases the number of sets, and therefore may decrease

conflict and capacity misses. Compulsory misses cannot be reduced without increasing block size or pre-

fetching.

By applying a model from [Smit78] to a wide variety of caches, we show that the rate of conflict misses (i.e,

why set-associative miss ratios are larger than fully-associative ones) can be predicted by assuming blocks

map to sets uniformly and independently, resulting in too many active blocks map to a fraction of the sets.
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° Finally, we find empirically that miss ratio spread, the relative change in miss ratio caused by reducing

associativity, is relatively invariant for caches of significantly different size and miss ratio. Our data show

that reducing associativity from eight-way to four-way, from four-way to two-way, and from two-way to

direct-mapped causes relative miss ratio increases of about 5, 10 and 30 percent, respectively. We also use

miss ratio spreads to provide design target miss ratios for caches with limited associativity.
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