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Abstract A class of spaces of multivariate polynomials, closed under differentiation, is
studied and corresponding classes of well posed Hermite-type interpolation problems are

presented. All Hermite-type problems are limits of well posed Lagrange problems.

The results are based on a duality between certain spaces of multivariate exponential-
polynomials H and corresponding spaces of multivariate polynomials P, used by Dyn and
Ron (1988) to establish the approximation order of the span of translates of exponential
box splines. In the interpolation theory P is the space of interpolating polynomials and
H characterizes the interpolation points and the interpolation conditions, both spaces

being defined in terms of a set of hyperplanes in IR’.

This geometric approach extends the work of Chung and Yao (1977) on Lagrange
interpolation, and also a subset of the Hermite-type problems considered via the Newton
scheme, by several authors (see Gasca and Maetzu (1982) and references therein). For a

different approach to the interpolation problem see Chui and Lai (1988).

It is the systematic and unified analysis of a wide class of interpolation problems
which is the main contribution of this paper to the study of multivariate polynomial
interpolation.

Keywords: Multivariate interpolation, multivariate polynomials, Hermite-type interpo-

lation.



1. The Interpolating Polynomial Spaces

The spaces of interpolating polynomials we consider here are more general than the total
degree polynomials 7,, (polynomials of degree < m), but as the latter are closed under
differentiation.

Given a set of directions A = {al,...,a"} C IR®, with the property span 4 = IR’,

consider the space of polynomials

Ie S(A)} (1)

p(4) = span{ []a* )

i€l

where S(A) consists of index sets corresponding to “small enough” subsets of A, namely
S(A)={I c{1,...,n} |span{a’|i ¢ I} = IR"} . (2)

By choosing I € S(A) such that {1,...,n}\I is a basis of IR’, we conclude that
P(A) CTpy - (3)

To see that P(A) is closed under differentiation, observe that

B%H(a* )= a ] ), @)

: [1:94
iel el i&

and that if I € S(A) then any subset of [ is in' S(A).
A more involved analysis is required in order to show the following two properties
of P(A), demonstrated in Dyn and Ron (1988):
(a) Let d = d(A) = min {|I| | T c {1,...,n}, [ ¢ S(A)}. Then rg.1 C P(A).
(b) The dimension of P(A) equals the number of bases that can be formed from A.
Combining (a) and (3) we conclude that

Ta_1 C P(A) C Mooy - (5)

If al,...,a™ are in “general position”, namely any s vectors among al,...,a™ form a
basis of IR’, then it is easy to see that d = n — s 4 1. Hence P(A) = Tn_y.

To introduce a basis of P(4), consider n hyperplanes
Hi={ze R |a' -x=17}, i=1,...,n, (6)
determined by T = (71,...,7n) € IR". For each v € IR’® define

Ivz{iE{l,...,n}IVEHi}. (7)



and consider the set of intersection points of Iy,..., Hy,
V(AD) ={ve R ||| 2s}, (8)

where |I,| denotes the cardinality of I,. Choosing I' so that |I,| = s for v € V(A,T), we
conclude from (b) that

dim P(A) = |V(A,T)| . (9)

Furthermore, the following polynomials

wo= [[ S228, veviarn), (10)
igl, ‘

are linearly independent, since

0 u#v

py(u) = { v,ue V(A,T), (11)
1 u=v,

and hence constitute a basis of P(A).

The pair (4,T) is termed “simple” (for simple intersection points as opposed to
multiple ones) if |I| = s for all v € V(4,T).

Remark 1 It is shown by Ron (1988) that for fixed A the set of all I' € IR" such that
(A,T) is simple, is dense in IR™.

The explicit form (10) of a basis of P(A) indicates that the following result holds.

Proposition 1 P(A) consists of polynomials of degree < n — s, which are of degree
<n—-s§— |{z €{1,...,n}|a‘€ span{y}}| +1 along hyperplanes of the form y - x = A,
y € A, A € IR. Furthermore, let Y = {y!,... ,¥¥}, be k < s pairwise distinct directions
in A. Then the degree of any p € P(A) along the intersection of k hyperplanes of the

form

yj'x—:‘“j ’ j=17"'7k’ [L1,-..,/Lk€R, (12)

is at most

n—-s—-l{ié{l,...,n}]a‘E(Y)}!+dim(Y), (13)

where (Y) = spanY.



Proof Since for (4,T) simple, and v € V(4,T), {a* | i € I, } is a basis of I’, each py in
(10) consists of at least |{i € {1,...,n} |a’ € span{y}}| — 1 factors which are constant
along y -x = A, A € IR. Similarly, one can count the constant factors in py of (10) along
the intersection of the hyperplanes (12), to conclude (13).

Remark 2 The space P(A) consists of all polynomials over IR* with the properties stated

in Proposition 1. This will be shown elsewhere.

2. The Interpolation Problems

In this section we present a class of interpolation problems which are unisolvent in P(A)
for fixed A. The interpolation points and the data at each point, which is of Hermite
type, are determined by the choice of I' = (71,...,7s) € IR". The set of interpolation
points consists of all points of intersection of at least s of the hyperplanes (6), namely, it
is the set denoted by V(4,T). To define the interpolation conditions at cach v € V(4,T),

we consider the set of directions related to v
Ay ={a'lie L}, (14)

and a corresponding polynomial space defined by

k(4 ={per|[[[ D)]p=0, I¢S(A)}, (15)
iel
where D = (—.ﬁ—x, ey 52—:). Since each I in (15) satisfies |I| > dy = d(Ay), it is clear that

Ta, -1 C K(Ay). The space K(Ay) is closed under differentiation since D™ commutes

with any polynomial in D. In terms of K(Ay) the interpolation conditions at v are

[¢(D)p](v) = [¢(D)f](v),  a€K(4v), (16)

where f is smooth enough, and ¢(D) is obtained from the polynomial ¢(x) by replacing
the vector x by the vector D. With these definitions we can introduce the interpolation
problem determined by A and T

Find p € P(A) satisfying (16) for all v € V(A4,T). (17)

The solvability of (17) is due to the following result from Dyn and Ron (1988):



Theorem 1 The spaces P(A) and the space

HAT) = P {e ex)|aeK(4)}, (18)

veV(ATl)

are dual to each other under the pairing

[p(D)R](0) = [¢(D)p](v), peP(A), h(x)=e"qx)eH(AT). (19)

Corollary 1 There exists a unique p € P(A) solving the interpolation problem (17).

It follows from Theorem 1 that K(Ay) is dual to P(Ay) in the sense of (19), and by
(b) dim K(Ay) = # of bases in Ay. Furthermore, since P(Ay) C m4,|-, We conclude
that £(Ay) C 74, |-, Hence

Td, ~1 C K(Av) C TIA, =8 o (20)

in analogy to (5). Moreover, if the directions in Ay are in general position then K(Ay) =

7T|Av|_,.

Corollary 2 Let T be such that for each v € V(A,T') the directions in A, are in general

position. Then the interpolation conditions in (16) are pure Hermite of the form

D™p(v)=D™f(v), Im|=) mi<|Ay-s,mi20 ,i=1...,5. (21)

i=1

In case A consists of directions in general position, then so does each Ay, v €
V(A,T), and the interpolation problem becomes: Find p € 75—, satisfying (21) for each
v € V(A,T). In R? the conditions on I' in Corollary 2 are satisfied if i # Ay; whenever
at =Xai, \e R,i# j, 4,7 € {1,...,n}, namely if the hyperplanes II;,..., H, in (6)
are pairwise disjoint.

An especially interesting interpolation problem is the Lagrange interpolation, ob-
tained when (A,T) is simple. In this case |[Ay| = s, K(A4y) = mo, and p satisfies
p(v) = f(v), v € V(A,T). The solution is given explicitly, in terms of the basis (10), as

p(z)= Y. f(v)p(z). (22)

vEV(A,T)



This together with Remark 1 implies that the interpolation problem (17) is a limit of a
sequence of Lagrange interpolation problems.

For general (A,T) the interpolation conditions (16) at v € V(A,T') are determined
by the structure of a chosen basis of K(Ay). The construction of such bases is discussed
by Dahmen (this volume) and by deBoor and Ron (1988).

3. Examples

The first two examples are in R? and can be displayed graphically. We consider
two Lagrange interpolation problems, for the same set of directions A, and then two

Hermite-type problems, obtained as limits of the Lagrange problems.

Example 1 Let A = {al,...,a%} with a! = a* = (1,0), a’> = a° = (0,1), a* = a° =

(1,1), and let T = (0,0,1,% +e,5+ 6,%) for ¢ > 0. The space P(A) is of dimension
12 and consists of quartic polynomials which reduce to cubics along hyperplanes of the
form a'-x = const. The hyperplanes a*-x = v;, i = 1,...,6 are depicted in Figure 1,
together with the twelve interpolation points. Since each interpolation point belongs to
exactly two hyperplanes, (A4,T) is simple, and the data at each point is just the function
value.

For ¢ = 0 the three interpolation points v* = (1,0), vZ = (0,1), v® = (0,0) remain
unchanged together with the corresponding Ay:. Hence also in this problem only function
values are required at v?, i = 1,2,3. Each of the other three interpolation points vi=
(-;—,0), v o= (0,%), vé = (%,%) is the limit of three interpolation points in the case
e > 0, with Ay: = {al,a%,a%}, i = 4,5,6. Thus K(Ayi) = m, i = 4,5,6, and the

Hermite conditions are of the form

(F=p)=0 , (=P =0 (/=P =0 | i=45,6.

Example 2 Let A be as in Example 1 and let T' = (0,0,1,6,6,1 —¢) for € > 0. The
space P(A) is as in Example 1. The hyperplanes at-x=17,1=1,...,6 are depicted in
Figure 2. These hyperplanes have twelve intersection points, each belonging to exactly
two hyperplanes. Thus for ¢ > 0, (A4,T) is simple and the interpolation is of Lagrange
type. ‘

In the limit ¢ — 0, there are only three interpolation points: v* = (1,0), vZ = (0,1),

v® = (0,0), each being the limit of four interpolation points in the case ¢ > 0. The
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interpolation conditions at v* are determined by K(Ay:) where

Avi={ad,a? |j#4,j=1,23}.

By (15) ‘
K(Av)={per|(@-D)Y’p=0,j#i, =123}
3
L= Span{lvml7$27 H(n] X)} ’
2

where n* - a* =0, i = 1,2,3. Hence the interpolation conditions are

(f’“p)(vi) =0 ’ }Ti";(f - p)(vi) =0 ’ 'a"g';(f_p)(vi) =0 ’ 1= 17273

ik o? 52 §*
(%g‘m)(f——p)(vl)zo ) (M—m)(f—p)(vz)zﬂ,

9? 3
m(f -p)(v’)=0.
This interpolation problem is a special case of the one solved by Gregory (1985),
where the interpolation points are the vertices of a simplex in IR*, and A consists of s +1
directions in general position cach repeated N > 2 times. The next example deals with

an extended version of this case in terms of our analysis.

Example 3 Let B = {b',...,b**'} C IR’ be in general position and let (B,A) be
simple, with A = (61,...,6,41) € IR**!. Given s+ 1 positive integers my,...,m,41,

n = Zf:ll m;, consider A = {al,...,a"} consisting of b* repeated m; times, and T =



(71,--+,7n) consisting of 6; repeated m; times, ¢ =1,...,s+ 1. The hyperplanes H; =
{x|b*-x = &},i=1,...,s + 1, intersect at s + 1 points vi,...,v**T! forming the
vertices of a simplex. Let v’ denote the intersection of the s hyperplanes Hj;, j # 1,
j=1,...,8+ 1. Then A,: consists of b7 repeated m; times j #1, 5 =1,...,s+ 1, and
by (15)

K(Ay)={per | (b . DY™Mp=0,j#i, )= 13...,5+1} .

The dimension of K(Ay:) is the number of bases in Ay: given by M; = H;:i’#i m;.

Now the edge of the simplex connecting vertices v* and v¢ belongs to the intersection
of the hyperplanes Hj, j # 4,4, j = 1,...,s + 1. Hence (vi —=v%)-b? =0, j # i,¢,
j=1,...,58+ 1, from which we conclude that any polynomial of the form

a+1
[(vi—v‘)~x]a‘, 0<ar<me, l=1,...,s+1,
i
is annihilated by (b’ D)™, j # ¢, and therefore belongs to K(Ay:). The number of these
polynomials is M; and they are linearly independent, thus forming a basis of £(Ay). In
terms of this basis the Hermite type conditions at v* are

a+1

[(vi-vj)-D]a’(f—p)(vi)zo, 0<a;<my,j#t,j=1,...,s+1.

=
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