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This paper illustrates a sample session with a preliminary implementation of a program-integration tool. The tool has
been embedded in a program editor created using the Synthesizer Generator, a meta-system for creating interactive,
language-based program development systems. Data-flow analysis of programs is carried out according to the editor’s
defining attribute grammar and used to construct dependence graphs. An integration command added to the editor
invokes the integration algorithm on the dependence graphs, reports whether the variant programs interfere, and, if
there is no interference, builds the integrated program.

It should be noted that the integration capabilities of the tool are severely limited; in particular, the tool can only
handle programs written in a simple language in which expressions contain scalar variables and constants, and the only
statements are assignment statements, conditional statements, and while-loops.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques — programmer work-
bench, user interfaces; D.2.3 [Software Engineering]: Coding — program editors; D.2.6 [Software Engineering]:
Programming Environments; D.2.7 [Software Engineering]: Distribution and Maintenance — enhancement, restructur-
ing, version control; D29 [Software Engineering]: Management — programming teams, software configuration
management; K.6.3 [Management of Computing and Information Systems]: Software Management — software
development, software maintenance

General Terms: Design

Additional Key Words and Phrases: illustrating interference, program slice, program integration, separating consecu-
tive program modifications

1. INTRODUCTION

Our concern is the design and implementation of interactive environments for computer programming; our
current goal is the development of a language-based tool for integrating program variants. By this, we
mean a tool for automatically combining several related, but different variants of a base program, or deter-
mining that they incorporate interfering changes.

2

The need to integrate several versions of a program into a common one arises frequently, but it is a tedi-
ous and time consuming task to integrate programs by hand. One of the ways in which this situation arises
is when a base version of a system is enhanced along different lines, either by users or maintainers, thereby
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creating several related versions with slightly different features. If one wishes to create a new version that
incorporates several of the enhancements simultaneously, one has to check for conflicts in the implementa-
tions of the different versions and then merge them to create an integrated version that combines their
separate features.

Recently, in collaboration with S. Horwitz and J. Prins, we developed a radically different approach to
building an automatic program-integration tool. The cornerstone of the approach is a new algorithm that
takes-as input three programs A ; B ;-and Base;-where-A and B -are two variants of Base: whenever the
changes made to Base to create A and B do not “interfere” in a certain sense, the algorithm produces a
program M that integrates A and B. The method is based on the assumption that any change in the
behavior, rather than the text, of Base s variants is significant and must be preserved in M. Although it is
undecidable to determine whether a program modification actually leads to such a difference, it is possible
to determine a safe approximation by comparing each of the variants with Base. To determine this infor-
mation, the integration algorithm employs a program representation that is similar (although not identical)
to the dependence graphs that have been used previously in vectorizing and parallelizing compilers. The
algorithm also make use of the notion of a program slice to find just those statements of a program that
determine the values of potentially affected variables. (For details of the integration algorithm, see [1,4].)

A preliminary implementation of a program-integration tool that uses this technique has been embedded
in a program editor created using the Synthesizer Generator, a meta-system for creating interactive,
language-based program development systems [5,6]. Data-flow analysis of programs is carried out accord-
ing to the editor’s defining attribute grammar and used to construct dependence graphs. An integration
command added to the editor invokes the integration algorithm on the dependence graphs, reports whether
the variant programs interfere, and, if there is no interference, builds the integrated program. (It should be
noted, however, that the integration capabilities of the tool are severely limited; in particular, the tool can
only handle programs written in a simple language in which expressions contain scalar variables and con-
stants, and the only statements are assignment statements, conditional statements, and while-loops.)

This paper demonstrates the capabilities of the prototype program-integration tool by presenting a sam-
ple session with it. The session demonstrates how dependences between program elements may be illus-
trated by program slicing, how new programs may be created through program integration, and how
conflicts that arise in an interfering integration may be illustrated.

2. PROGRAM SLICING AND PROGRAM INTEGRATION

This section illustrates the program-integration tool’s operations of program slicing and program integra-
tion. We begin the session by invoking the editor on buffer demoBase, which contains a program to sum
the integers from 1 to 10, as shown below:



[demoBase

[program demo;]
(begin]

sum = 0;

[while (i <= 10) do G{
sum := (sum +i);]
i=(i+1)]

[od]
end.]

Positioned at program

To illustrate slicing, we first select statement i := (i + 1) by pointing the locator (indicated by (?) at any of
the characters of i := (i + 1) and invoking the select command by clicking the left mouse button.

[demoBase |

program demo;
begin
sum :=0;
i=1,
while (i <= 10) do
sum := (sum + ij;
od !
end.

Positioned at stmtList

The highlighted region changes to indicate the extent of the new selection, and the help pane is updated to
provide information about the currently selected component. The new selection is a stmtList, a list of
statements that, for the moment, consists of the single statement i := (i + 1).

We now invoke the slice command (by selecting it from a menu of commands) to display all program
elements—statements or predicates—that can affect the values of variables defined or used within the
current selection. The slice command changes the display to indicate which program elements can affect

the value of variable i at i := (i + 1); these elements are indicated by enclosing them in double angle brack-
ets (i.e., << and >>).



[demoBase

program demo;
begin
sum := 0;
<<i = 1>>;
while <<(i <= 10)>> do
sum = (sum + i);
[<<ii=(i + 1)>>]
od
end.

Positioned at stmtList

‘We now introduce buffer demoA, which contains a version of the program in buffer demoBase. This
program, created by editing a copy of demoBase, is just like demoBase except for the additional state-
ment at the end of the program, amean := (sum/ (i — 1)), which computes the arithmetic mean.

[demoA

program demo;
[begin]

sum := 0;]

i=1]

while (i <= 10) do

[sum = (sum +i);]
i=(G+1)]
lod;]

amean := (sum/ (i— 1))]

end.]

Positioned at program

When the program in buffer demoA is sliced with respect to statement i := (i + 1), the slice consists of the
same components that appeared in the slice of the program in buffer demoBase.




[demoA | Il 1| [demoBase
program demo; program demo;
begin begin
sum = 0; sum ;= 0;
<<i = 15>; <<i = 1>>;
while <<(i <= 10)>> do while <<(i <= 10)>> do
sum = (sum + i); sum = (sum +i);
[<<ii=(i+ 1)>> [<<i = (i + 1)>>]
od; od
amean = (sum/ (i— 1)) end.
end.
Positioned at stmtList Positioned at stmtlList

Because the two slices are equal, we know that the two programs have the same execution behavior with

respect to statement i := (i + 1); that is, variable i takes on the same sequence of values in both programs
[7,8].

Now consider the slice of demoA with respect to statement amean = (sum/ (i — 1)).

[demoA

program demo;
begin
<<sum = 0>>;
<<i = 1>>;
while <<(i <= 10)>> do
<<8UM = (SUM + i)>>;
<<i=(i+ 1)>>
od;
[<<amean := (sum/(i— 1)}>>]
end.

Positioned at stmtList

This slice contains the additional elements amean := (sum / (i — 1)) (the point with respect to which the
slice is taken), sum := (sum + i} (because of the flow dependence from sum := (sum + i) to amean =
(sum/ (i — 1))), and sum := 0 (because of the flow dependence from sum = 0 to sum := (sum + i).

We now introduce buffer demoB, which contains a second version of the program in bulfer

demoBase. The program in demoB incorporates the computation of the geometric mean (but not the
arithmetic mean, which was introduced solely in demoA).




[demoB

program demo;]

begin]
[sum := 03]
prod = 1;]
=1
while (i <= 10) do|
sum = (sum + i);
[prod := (prod * i);
i=(@{+1)
[od]
_lamean := (prod** (1 /(i = 1)))]
[end.]

Positioned at program

The geometric-mean computation introduces three new assignment statements: prod = 1 (to initialize the
running product), prod = (prod * i} (to compute the running product), and gmean := {prod ** (1 / (i —
1))) (to compute the geometric mean as a function of prod and i).

Let us now slice the program in buffer demoB with respect to statement gmean = (prod ** (1 / (i -

-

[demoB |

program demo;
begin
sum = 0;
<<prod = 1>>;
<<i = 15>
while <<(i <= 10)>> do
sum := (sum + i);
<<prod := (prod * i)>>;
<<i= (i +1)>>
od;
[<<gmean := (prod ** (1 /(i - 1)))>>|
end.

Positioned at stmiList

Note that the slice includes neither sum := 0 nor sum ;= (sum + i) because neither can affect the values of
variables prod, i, or gmean at gmean := (prod ** (1/ (i — 1))).

Let us now integrate buffers demoA and demoB with respect to buffer demoBase by invoking the
integrate command. It is necessary to supply parameters to this command to specify the buffer that con-
tains the base program, the buffers that contain the two variants, and the buffer in which the integrated pro-
gram is to be placed. Thus, the integrate command calls up a parameter form as soon as the command is
invoked.



[Integration Form

Base program:
Variant A: <buffer-name>
Variant B: <buffer-name>
Integrated program: INTEGRATED

A parameter form is a structured object, and parameters are entered by editing the form like any other
buffer. By default, the field of the integration form specifying the name of the buffer into which the
integrated program is to be placed is filled in with INTEGRATED.

[Integration Form |

Base program: demoBase

Variant A: demoA

Variant B: demoB

Integrated program: INTEGRATED

Once the form is filled in with appropriate parameters—in this case demoBase as the base program,

demoA and demoB as the two variants—the rest of the command is processed by invoking the command
start-command.

The integration of demoBase, demoA, and demoB succeeds and the program that results is placed in
buffer INTEGRATED.

INTEGRATED

rogram demo;
begin

sum = 0;

prod := 1;

=1
while (i <= 10) do
sum := (sum + i);
lprod := (prod *
i=(i+1)
lod;]
amean := (sum / (i — 1)};]
lgmean := (prod ™* (1 /(i - 1)))
end.

Positioned at program

S—

The execution behavior of the program in buffer INTEGRATED combines the behaviors of the programs
in demoBase, demoA, and demoB. For example, because the slice of the program in INTEGRATED
with respect to statement gmean := (prod ** (1/ (i — 1))) is the same as the corresponding slice of the pro-

gram in demoB, the final value computed for variable gmean by INTEGRATED is the same as that com-
puted by demoB.




[INTEGRATED I || ([demoB
program demo; program demo;
begin begin
sum := 0; sum = 0;
<<prod = 1>>; <<prod = 1>>;
<<i = 1>>; <<i = 15>
while <<(i <= 10)>> do while <<{i <= 10)>>do
sum = (sum + ij; sum = (sum + i);
<<prod = (prod * i)>>; <<prod = (prod * i})>>;
<<i = (i + 1)>> <<i = (i + 1)>>
od; od;
amean = (sum/ (i - 1)); [<<gmean := (prod ** (1 /(i = 1)))>>]
[<<gmean := (prod ** (1/(i— 1)))>>] end.
end.
Positioned at stmtL.ist Positioned at stmiList

Note that not only are statements sum := 0 and sum = (sum + i) left out of the slice of INTEGRATED
(as is also the case in the slice of demoB), but statement amean := (sum / (i — 1)) is left out as well.

3. SEPARATING CONSECUTIVE PROGRAM MODIFICATIONS

Another application of program integration permits separating consecutive edits on the same program into
individual edits on the original base program. For example, consider the case of two consecutive edits to a
base program O; let O+A be the result of the first modification to O and let O +A+B be the result of the
modification to O+A. Now suppose we want to create a program O+B that includes the second
modification but not the first. This is represented by situation (a) in the following diagram:

0 O+A
N
A Y
N
/ N / \
O+A O+B O+A+B 0
\ 4 ‘ N AN 7/ ‘
/ Y 4
¥ N/
O+A+B O+B
() (b)

Under certain circumstances, the development-history tree can be re-rooted so that Q+A is the root; the
diagram is turned on its side and becomes a program-integration problem (situation (b)). The base program
is now O+A, and the two variants of O+A are O and O+A+B. Instead of treating the differences
between O and O+A as changes that were made to O to create O+A, they are now treated as changes
made to O+A 1o create Q. For example, when O is the base program, a statement s that occurs in O +A
but not in O is a “new” statement arising from an insertion; when O +A is the base program, we treat the
missing s in O as if a user had deleted s from O+4 to create 0. Version O-+A+B is still treated as being

a program version derived from O+A. O+B is created by integrating O and O+A +B with respect (o base
program O+A .



We can illustrate this ability by pretending that after we created the program in buffer demoA (by edit-
ing a copy of the program in demoBase) we then created the program in INTEGRATED by editing a
copy of demoA. We can now recreate the program in buffer demoB by integrating demoBase and
INTEGRATED with respect to demoA. When we invoke the integrate command, we again get an empty
parameter form, but this time we fill in demoA as the base program, demoBase and INTEGRATED as
the two variants, and newB as the buffer into which the integrated program is to be placed.

[Integration Form

Base program: demoA
Variant A: demoBase
Variant B: INTEGRATED
Integrated program:

We then invoke start-command. The integration of demoBase and INTEGRATED with respect to
demoA succeeds, and the resulting program, placed in buffer newB, is identical to the one in demoB.

[newB [l || [demoB |
program demo]
beqin begin
sum :=0; sum = 0;
rod = 1; prod = 1;]
i=1] i=1;
while (i <= 10) do while (i <= 10) do
sum = (sum + i); sum ;= (sum + i);
prod := {prod * i; [prod := (prod * i);
i=(+1) i=(+1)
[od] od]
[gmean := (prod = (1/ (i— 1)))] [gmean := (prod ** (1 /(i = 1)))]
end.] end.
Positioned at program Positioned at program

4. ILLUSTRATING INTERFERENCE IN INTERFERING VERSIONS OF PROGRAMS

Some rudimentary diagnostic facilities for illustrating the conflicts that arise in an interfering integration
have been incorporated in the prototype program-integration tool. If interference is reported, it is possible
for the user to examine sites of potential conflicts. (Roughly speaking, the sites reported are those at which
slices of the two variants become “intertwined” in the underlying merged dependence graph.) The slice
command can be invoked to provide further information about potential integration conflicts.

To illustrate these facilities, consider what happens if we try to integrate the programs in buffers demoA
and demoB with respect to demoBase when the initialization statement i = 1 in demoA has been
changed to i := 5, as shown below:
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[demoA

program demo;
begin
sum = 0;
[i:=5];
while (i <= 10) do
sum = (sum + i);

i=(+1)
od;
amean = (sum/ (i - 1))
end.

Positioned at stmiList

With this modified version of demoA, the integrate command fails to produce an integrated program.

(The buffer to which the integrated program has been directed receives the empty program.)

We can now examine sites of potential conflicts—sites that may or may not represent actual conflicts—
using the commands show-first-interference-vertex, show-next-interference-vertex, and show-
previous-interference-vertex. These commands move the selections of both demoA and demoB to com-
mon elements whose slices conflict (interference vertices). For example, show-first-interference-vertex

causes the two selections to be moved to the while-predicate (i <= 10):

[demoA |

[demoB

program demo;

program demo;

begin begin
sum = 0; sum = 0;
i=5; prod := 1;
while do i=1;
sum := (sum + i); while do
i={+1) sum := (sum + i);
od; prod = (prod * i);
amean = {sum/ (i— 1)) i=(+1)
end. od;

gmean = (prod ** (1/(i— 1))

end.

Positioned at stmtList

Positioned at stmtList

Predicate (i <= 10) is an interference vertex because the

predicate itself is computed in a different fashion
in demoA than in demoBase, yet the slice of demoA with respect to (i <= 10) is not a compatible
subslice of the slice of demoB with respect to statement gmean := (prod ** (1/ (i — 1)), which is a newly

introduced statement of demoB. These two slices are shown below:
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[demoA

[demoB

program demo;

begin
sum := 0;
<<i = 55>,

while [<<(i <= 10)>>] do
sum := (sum + i);

<<i= (i + 1)>>

od;
amean = (sum/ (i — 1))

end.

program demo;
begin
sum = 0;
<<prod = 1>>;
<<i = 1>>;
while <<(i <= 10)>> do
sum = (sum +i);
<<prod = (prod * i}>>;
<<i = (i +1)>>
od;
[<<gmean := (prod ™ (17 (i— 1)))>>]
end.

Positioned at stmtList

Positioned at stmtList

There is also a second interference vertex that arises from the failed integration; command show-next-

interference-vertex causes the two selections to be moved to the statement i := (i + 1):

sum = (sum +i);
od;
amean = (sum/ (i— 1))
end.

[demoA [l || [demoB
program demo; program demo;
begin begin
sum = 0; sum ;= 0;
i=5; prod := 1;
while (i <= 10) do i=1;

while (i <= 10) do
sum := (sum +ij;

rod := (prod * i);
=0+ 1%]
od;
gmean = (prod** (1/(i— 1))
end.

Positioned at stmtList

Positioned at stmtList

Statement i := (i + 1) is an interference vertex because the statement is computed in a different fashion in
demoA than in demoBase, yet the slice of demoA with respect to i := (i + 1) is not a compatible subslice
of the slice of demoB with respect to the (new) statement gmean := (prod ** (1/ (i~ 1))):
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[demoA [l |l [demoB
program demo; program demo;
begin begin
sum = 0; sum = 0;
<<i = 55> <<prod = 1>>;
while <<(i <= 10)>> do <<i = 1>>;
sum = (sum + i); while <<(i <= 10)>> do
[<<i=(i + 1)>>] sum = (sum + i);
od; <<prod = (prod * i)>>;
amean = (sum/(i—1)) <<i= (i + 1)>>
end. od;
[<<gmean := (prod ** (1/ (i — 1)))>>]
end.
Positioned at stmtList Positioned at stmiList

5. FINAL REMARKS

Among the obvious deficiencies of the present system are the absence of numerous programming con-
structs and data types found in languages used for writing “real” programs. Certainly one area for further
work is to extend the integration method to handle additional programming language constructs. We have
recently made progress towards handling languages with procedure calls [2] and pointer-valued variables
{3]. Other language constructs, such as declarations, break statements, and I/O statements, as well as other
data types, such as records and arrays, will be addressed in the future.

It remains to be seen how often integrations of real changes to programs of substantial size can be
automatically accommodated by the integration techniques developed in [1,4]. Due to fundamental limita-
tions on determining information about programs via data-flow analysis and on testing equivalence of pro-
grams, both the procedure for identifying changed computations and the test for interference must be safe
rather than exact. Consequently, the integration algorithm will report interference in some cases where no
real conflict exists.

A successful integration tool will certainly have to provide facilities for programmers to cope with
reported interference-—facilities that would enable diagnosing spurious interference of the kind described
above, as well as aids for resolving true conflicts. For these-situations it is not enough merely to detect and
report interference; one needs a tool for semi-automatic, interactive integration so that the user can guide
the integration process to a successful completion.

Thus, future work on the prototype program-integration tool will aim to provide (1) better facilities for
illustrating slices and the conflicts that arise in an interfering integration, and (2) additional capabilities for
the user to resolve conflicts and create a satisfactory merged program. For example, renaming program
variables and suppressing dependences between program components would be two ways a user might
interact with the tool. Conflict-resolution facilities could also operate directly on the merged dependence
graph, which is built by the integration algorithm whether or not the variants interfere [1,4].
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