POLYNOMIAL ISOMORPHISMS
AND NEAR-TESTABLE SETS

by

Judy Goldsmith

Computer Sciences Technical Report #816

January 1989



POLYNOMIAL ISOMORPHISMS
AND NEAR-TESTABLE SETS

Judy Goldsmith

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the
UNIVERSITY OF WISCONSIN-MADISON
1988




il
ABSTRACT

POLYNOMIAL ISOMORPHISMS
AND NEAR-TESTABLE SETS

Judy Goldsmith

Under the supervision of Associate Professor

Deborah Joseph

This thesis investigates two areas in structural complexity, as listed below.

e The Berman-Hartmanis Conjecture

The Berman-Hartmanis conjecture states that all <P -complete sets for NP are polyno-
mially isomorphic. We construct an oracle A such that all <P _complete sets for N P4 are
pA-isomorphic, and an oracle B such that there are <{,;-complete sets for N PB that are

not pB-isomorphic.

e Near-Testable Sets

Near-testability is a form of self-reducibility based on the lexicographic order. In terms of
complexity, the near-testable sets lie somewhere between P and EN PS PACE. We show
that the existence of one-way functions implies that there are near-testable sets that are
not in P. In [GJY-87], (2 for 1) p-cheatable sets were suggested as a possible generalization
of near-testable sets. Here, we demonstrate that P can be characterized as the intersection

of the near-testable sets with the (2 for 1) p-cheatable sets.



iii

I wish to thank my advisor, Debby Joseph, and my coauthors, Paul Young and Lane
Hemachandra for their encouragement and support. Without that, this thesis work would
not have been completed. And I want to thank all the people who made Madison a
wonderful place for me, without whom I might have tried to graduate a long time ago. In
particular, the Oak Apple Morris Team, especially Greg Winz; the women of the Women’s
Minyan, and the Rape Crisis Center; all those groups are made up of wonderful people,
and have provided space for me to be more than my theorems. My friends, Evelyn Hart,
Carolyn Briggs, Arden Rice, Wendy McCanless, Jamie Cowles, and many others have
provided the hugs that are only implicit in this thesis. Many people around the CS
Department have listened, advised, hugged, and even sometimes proofread. Special thanks
are due to Darrah Chavey (who hacked the only figure in this thesis), Anne Condon, Ken
Kunen, Bart Miller, Victor Shoup, Meera Sitharam, Igor Steinberg, and Will Winsborough.

There have been many other wonderful people and groups here in Madison. When I
arrived here, the members of the math department welcomed me immediately as a colleague
and a friend. I hope I will always work in such a comfortable department.

My friends in other places have managed to stay in touch, through email, phone,
letters, visits, and telepathy. I am very glad they have. Thank you, Ann J acobs, Lori
Bechtold, Rob Gross.... My family gave up, years ago, asking when I was going to finish
up and come home. Well, one out of two. I am grateful to them for the support they
have given me over the years. Finally, I owe many thanks to Mordecai Mac Low, who has
consistently reminded me of the rewards of ambition, kept me going through the worst of
it, and been part of some of the best of it. May there be more!

Finally, there is the future. Many people in the theoretical computer science commu-
nity have supported and encouraged me. I joined this community because of the research,
and because it was a community I wanted to be part of. I feel welcomed by both the

computer scientists and the mathematicians at Dartmouth. I look forward to it all.




iv

CONTENTS

ABSTRACT . . . o o i o e e e e e e e e e e e e e e e e e e e e e ii
ACKNOWLEDGEMENTS . . . . . . . . . . v 0 v v i i e e e e e iii
TABLE OF CONTENTS . . . . . . . .« .« v v v it e e e e e e iv
Chapter 1

INTRODUCTION . . . . . o o ot e e e e e e e e e e e e e e e e 1
Chapter 2

THE BERMAN-HARTMANIS CONJECTURE

2.1 Introduction . . . . . . . . . L Lo e e e e e e e e e e 2

2.2  The Construction of an Oracle A

for which all <P -Complete Sets

for NPA are PA-Isomorphic . . . . .« v . o v e o e e e e 10
2.3 The Construction of an Oracle C' such that

there are Non-PC-Isomorphic <f;,-Complete

Sets for NPC . . . . . e e e e e e e e e e e 24

Chapter 3
NEAR-TESTABLE SETS

3.1 Introduction . . . . . . . . . o o e e e e e e e e e e e e e 38
3.2 Definitions . . . . . . . 0 . . v e e e e e e e e e e e e e 40
3.3 One-Way Functions . . . . . . . . . . . . . . . oo 44
3.4 Characterizing P . . . . . . . . . ..o o000 o 48
Appendix 1

NOTATION AND TERMINOLOGY . . . . . . . . . . . . ... 52
Appendix 2

RELATIVIZING COOK’S THEOREM . . . . . . . . . . . . . . . .. 55

BIBLIOGRAPHY . . . . . . . . o oo e e e e e e 63



CHAPTER 1. INTRODUCTION

In this thesis, we consider two separate areas. The first is the open question of whether
all sets that are <P -complete for NP are polynomially isomorphic. Although we cannot
answer this question, we do provide evidence for both sides, and a discussion of various
common techniques for this area, along with their limitations. The ‘evidence’ that we
present is in the form of oracles for which all many-one, polynomially complete sets for
NP are (or are not) polynomially isomorphic.

The second area we consider is the classification of near-testable sets. Near-testability
is a self-reducibility property, based on the lexicographic ordering of a set. We consider
the effect this structure has on the time and space complexity of a near-testable set. While
all sets in P are near-testable, it is not clear whether all near-testable sets are in P. We
show that the existence of one-way functions implies that there are near-testable sets that
are not in P. This theorem leads to the Sf’ inp-€quivalence of the near-testable sets with
the class Parity-P, as presented in [GHJY-87).

The investigation of near-testable sets was motivated by a research program of finding
an underlying theory of the effect of internal structure on the complexity of a set. We show
that, in certain cases, information about the internal structure gives us full information
about the complexity of a set, although in other cases it does not. Our final section will
show that P can be characterized by a combination of self-reducible properties. However,
we cannot necessarily replace “near-testable” by “Parity-P” in that theorem, indicating
that, in spite of the Sf: ;-equivalence, the two classes have significant differences. We
also show that out characterizations cannot be extended, giving some combinations of

self-reducible properties that do not characterize P.




CHAPTER 2. THE BERMAN-HARTMANIS CONJECTURE

2.1 Introduction

The field of structural complexity has grown out of the interplay between computational
complexity and recursive function theory. Those who study the classes of deterministic
and nondeterministic polynomial time definable sets (P and NP), while motivated by
real computational questions, have often tried to establish analogies of theorems about
recursive and recursively enumerable sets (REC and RE, respectively). For instance, the
polynomial time hierarchy, introduced by Meyer and Stockmeyer [MS-72], is modeled on
the arithmetic hierarchy. Just as recursion theorists study sets that are complete for RE
and other levels of the arithmetic hierarchy, structuralists study sets that are complete for
NP and other classes in the polynomial hierarchy.?

In [Myh-55], Myhill showed that all of the sets that are <, -complete for RE are
<i-complete for RE, and in fact are all recursively isomorphic. He further characterized
the <,,-complete sets for RE as being the creative sets. (A set A is creative if it is r.e.
and A is productive, i.e., there is a total recursive function 1 such that, if the i*® r.e. set,
Wi, is contained in A, then (i) € 4 — W;.)

In [Ber-77], Leonard Berman proved a strong analogue of Myhill’s Theorem, namely
that all <Z -complete sets for E are <{;-interreducible. This was also proved by Dowd
[Dow-78]. The same year, Berman and Hartmanis [BH-77)] considered even stronger ana-
logues of Myhill’s work. Myhill showed that, because the <,,-complete sets for RE are

creative, they have padding functions. That is, for each <P-complete set C, there is a

! The following survey of research on the Berman-Hartmanis conjecture owes a debt
to the excellent surveys of the area included in Young’s retrospective paper [You-88],

and in [KMR-87].



3

recursive function p(z,n) such that for any z and n, p(z,n) € C if and only if z € C'. This
is equivalent to showing that each creative set C is a cylinder, that is, C = C' x N. The
padding functions are used to construct isomorphisms between complete sets; any set that
is recursively isomorphic to a cylinder also has padding functions. Berman and Hartmanis
showed that SAT and all of the familiar <P -complete sets for NP have polynomial time
padding functions. Furthermore, a set C that is <% -complete for NP is p-isomorphic to
SAT if and only if it has a polynomial time computable padding function. Berman and
Hartmanis then conjectured that all < _-complete sets for NP are p-isomorphic to SAT.
This conjecture forms a major open problem in the field today.

We should note here that the Berman-Hartmanis conjecture implies that P # NP,
since P = NP means that all nontrivial sets in P are <% -complete for N P. However, sev-
eral researchers have considered the possibility that P # NP, but the Berman-Hartmanis
conjecture is false. In particular, Mahaney and Young [MY-85] showed that, if P # N P and
not all <P -complete sets for NP are p-isomorphic, then the collection of p-isomorphism de-
grees of <P -complete sets for NP is infinite. Furthermore, if we order these p-isomorphism
degrees by sz ;i-reductions, then any countable partial order can be embedded into this
ordering. In other words, if the Berman-Hartmanis conjecture fails, it fails badly. They
also showed that a set A has a polynomial padding function if and only if it is a p-cylinder,
i.e., A =P A x N. This paper extended earlier work by both authors: [You-66], [You-83],
and [Mah-81].

There are two major difficulties in extending Myhill’s work to polynomial isomor-
phisms. The first is that, in order for two sets to be p-isomorphic, they must have the

same density? up to polynomial factors. Berman and Hartmanis conjectured that, (given

2 We say that a set A has f(n) density if the number of strings in A of length < n
is < f(n). For instance, sparse sets have polynomial density.




4

P # NP) there are no sparse sets that are < -complete for NP. Piotr Berman gave a
partial solution to this conjecture, by showing that the existence of a <I -complete tally
set for NP implies that P = NP. Fortune [F-78] extended Berman’s result to show that
the existence of a sparse <Z-complete set for coN P implies P = NP. Finally, Mahaney

[Mah-82] showed that the existence of a sparse, <% -complete set for NP implies P = NP.

The second problem in extending Myhill’s work is that we do not necessarily know
how to invert polynomially computable functions quickly, even if they are length-increasing.
Berman’s theorem shows that, if there are no one-way functions, then all the <P -complete
sets for E are p-isomorphic. Joseph and Young [JY-85], in a careful study of the degree
to which Myhill’s isomorphism results might carry over to polynomial reducibilities on
NP, conjectured that the existence of one-way functions would imply the failure of the
Berman-Hartmanis conjecture; Kurtz, Mahaney, and Royer [KMR-86] further conjectured
that the Berman-Hartmanis conjecture fails if and only if there are one-way functions.?
However, recent work by Hartmanis and Hemachandra [HHem-87] gives an oracle A such
that P4 # UP4, yet there are <I»4-complete sets for NP4 that are not p%-isomorphic

to SATA.

Research on the Berman-Hartmanis conjecture has taken three principal directions:
work on NP, usually concentrating on oracle constructions, or on the possible density of
<P _complete sets for N P; consideration of other complexity classes, such as Berman’s

theorem for F; and consideration of the p-isomorphism question for sets complete under

3 Grollman and Selman [GS-85] have shown that the existence of one-way functions
is equivalent to the separation result P £ UP (where UP is the subclass, unique-P, of
NP of sets whose elements have unique accepting computations). We will use this form
of the hypothesis when discussing oracle results, since it is easier that way to specify
that we are discussing the existence of one-way functions with respect to the oracle.

Note also that P 3 UP implies P # NP.



5

weaker reductions. We use these categories to provide a rough framework for the rest of

our survey.

Weaker Reductions

Soon after the publication of [BH-77], Hartmanis published [Har-78], in which he
applied the same ideas to the study of Logspace-complete (or L-complete) sets. He proved
that a set is L-isomorphic to SAT if and only if it has a L-computable and L-invertible
padding function; that the known L-complete problems for N L (nondeterministic L), CSL
(context sensitive languages), P, NP, and PSPACE are all respectively, L-isomorphic,
and that no L-complete set for CSL, PSPACE, E, or ESPACE can be sparse. He also
conjectured that neither NL nor P has sparse, L-complete sets. Kurtz, Mahaney, and
Royer [KMR-87] showed that there is a set, C, that is complete for PSPACE under <},,-
reductions, such that any set that is <% -equivalent to C is L-isomorphic to it. Hartmanis,
Immerman and Mahaney [HIM-78] considered p-isomorphisms of sets that are complete
under reductions computed by Logspace Turing machines with one-way read heads (known
as 1-L-reductions) for different classes. Hartmanis and Mahaney [HM-81] then showed
that there are no sparse I-L-complete sets for VL, partially answering one of Hartmanis’s
conjectures. In [A-86], Allender showed that all I-L-complete sets for PSPACE are p-
isomorphic.

Recently, the most commonly studied complete sets are the <F,-complete sets. Sev-
eral of the constructions in this chapter use </ ,-complete sets instead of <P _complete
sets, because this allows us to sidestep conflicts between coding requirements and diago-
nalization requirements. We will discuss this at greater length later in the chapter. One
of the first examples of this use of <J,,-completeness is the set constructed by Ko, Long,
and Du in [KLD-86]. Their construction answered questions posed by Watanabe in [Wat-

86]. In that paper, Watanabe explored Joseph and Young’s conjecture that the existence




6

of one-way functions implies the failure of the Berman-Hartmanis conjecture. Watanabe
asked whether the existence of one-way functions would imply that there are sets that
are Sf, ji-equivalent, yet not p-isomorphic. He also asked whether such sets could be <.
complete for NP. Ko, Long, and Du answered the first question in the affirmative, and
gave a partial answer to the second. Namely, they used a one-way function to describe two
sets in F that are Sfi ;i-equivalent, not p-isomorphic, and are < ,-complete for E.

In [KMR-86], Kurtz, Mahaney, and Royer constructed sets A and B that are <L
complete for E, such that any set that is <2 -equivalent to A is p-isomorphic to A (in
their idiom, “the m-degree of A collapses”), but not every set that is <P _equivalent to
B is p-isomorphic to B. By considering the <I-degree of B, rather than the smaller
Sf, ;i~degree, they were able to do this construction without assuming the existence of a
one-way function. Independently, the author and D. Joseph [GJ-86] constructed a time
function T'(n), such that there are <P _equivalent, non-p-isomorphic <Z;,-complete sets
for DTIME[T(n)]. Theorem 2.3.1 and the rest of the constructions in §2.3 are based
on the construction in [GJ-86]. These constructions are simpler than Kurtz, Mahaney,
and Royer’s, and they produce non-p-isomorphic sets that are <{,;-complete for E. The
constructions in [KMR-86] explicitly consider p-cylinders. In the collapsing construction,
they guarantee that every set that is <[P -equivalent to B is also a p-cylinder; in the
non-collapsing construction, they diagonalize away from p-cylinders. Our constructions
are simpler because they diagonalize directly against p-isomorphisms on finite intervals,
rather than infinite “splinters.”

In [KMR-87], Kurtz, Mahaney and Royer announced that they have constructed a
sparse oracle A for which all ng -complete sets for NP4 are p“-isomorphic, and another
for which they are not. They also constructed a sparse oracle for which all <D4-complete
sets for NP4 are Sf: ;i-equivalent. They speculated that a sparse oracle that resolved the

Berman-Hartmanis conjecture in either direction would be strong evidence that that result



7

held in the unrelativized world. Long [Lon-88] also constructed a sparse oracle for which
EALN PA, a one-way function f4 exists, and there is a Sft’tA -complete set for NP4 such
that C4 =B4 fA(C4), but C4 %P4 fA(CA). In Theorem 2.3.1 we show that there is a
sparse oracle A such that there are Sft’f -complete sets for NP4 that are <F -equivalent,
yet not p“-isomorphic. This work was done independently of the others, and once again

is a slight simplification of Kurtz, Mahaney, and Royer’s.

Other Classes

We have already mentioned some of the results for other classes, in particular for
sets that are <F,-complete for E. The study of p-isomorphisms of E-complete sets goes
back to Berman’s thesis [Ber-77], where he showed that all <P _complete sets for E are
Sf, ;-equivalent. This was also shown by Dowd [Dow-78], Watanabe [Wat-86], and most
recently by Ganesan and Homer [GH-88]. Ganesan and Homer have simplified the proof,
and have extended it to <E-complete sets for NE. (Watanabe [Wat-83] has also extended
this to DSPACE[L(n)], for any super-polynomial function L(n).) In addition to these
theorems, other constructions also showed that all <P -complete sets for E are of similar
densities. Berman and Hartmanis exhibited a set A € E that is not sparse, and such
that all <P _reductions from A are one-one almost everywhere, using a construction they
attributed to Meyer. Thus, any <% -complete set for E contains a polynomial image of A,
so cannot be sparse. Balcdzar and Schéning [BS-85] call such a set strongly bi-immune.
Ko and Moore [KM-81] showed that the set given in [BH-77] is p-immune (has no infinite,
polynomial time computable subsets). They also showed that a <P _complete set for E
cannot be p-immune, although they constructed a p-immune set that is <f-complete for
E.

Instead of increasing the time complexity of the class from P to E, some researchers

have considered £7, the existential class above N P in the polynomial hierarchy. In [KMR-




8

87], Kurtz, Mahaney, and Royer considered <P _degrees of N P-hard sets in ©£. More re-
cently, Homer and Selman [HS-88] constructed an oracle 4, for which PA =UPA £ NP4,
and )35 A — EXPA. Since Berman’s theorem relativizes, this describes a world in which
all <P _complete sets for 25 A are Si’,‘?-equivalent, and there are no one-way functions. In
other words, the Berman-Hartmanis conjecture holds for Ef "4 Unfortunately, Homer and

Selman have shown that their technique cannot be extended to show that N PA = F4,

Relativizing the Berman-Hartmanis Conjecture

In contrast to Homer and Selman’s construction, Theorem 2.2.3 gives an oracle A such
that all <P -complete sets for N P4 are pA-isomorphic. In Theorem 2.2.4, we show that the
techniques in this construction are not sufficient to guarantee that all of the <PA_complete
sets for NP4 are pA-isomorphic. There are three principal techniques in the construction
in Theorem 2.2.3: creating a dense subset of SAT# that is strongly bi-immune, forcing all
<P _complete sets for N P4 to be similarly dense, and coding the pA-isomorphisms into 4,
and keeping P4 # UP# by diagonalizing. Kurtz [Kur-86] has extended the first technique,
to construct an oracle A for which there is a set in NP4 that is strongly bi-immune with
respect to <D4-reductions, forcing all <PA_complete sets for N P4 to be similarly dense.
However, this construction interferes with all PA-recoverable encodings, so it cannot be
combined with the coding techniques of Theorem 2.2.3.

In [JY-85], Joseph and Young defined the k-creative sets, and showed that every k-
creative set is <P -complete for NP. Joseph and Young’s study of the k-creative sets led to
their conjecture that the existence of one-way functions implies the failure of the Berman-
Hartmanis conjecture. Joseph and Young’s work inspired Homer [Hom-86)’s discussion
of natural creative sets, in the context of natural Gédel numberings. Others have also

considered the structure of creative sets, including Watanabe [Wat-83&86a]. The one-

way function conjecture has also stimulated research; we have already mentioned several



constructions that were done in response to this conjecture.

One oracle construction we mentioned in relation to the Joseph-Young conjecture
was Hartmanis and Hemachandra’s oracle A for which P4 = UP4 # NP4, but there
is a set C that is <B4-complete for NPT, and not p-isomorphic to SAT# [HHem-87].
The technique used to construct C is one that goes back to the earliest oracle result that
explicitly addressed the Berman-Hartmanis conjecture, by Kurtz [Kur-83]. To guarantee
that ¢ %P4 SAT4, Hartmanis and Hemachandra, like Kurtz, code super-polynomial
length intervals of S AT4 into the oracle, so that C consists of the remaining, uncoded
intervals. Thus, C' cannot be mapped to SAT4 by any <P4-reduction. Other oracle
results have concentrated on the fine structure of the complete sets and the oracle, rather
than relying on simple density arguments.

The most recent oracle result is that of Kurtz, Mahaney, and Royer [KMR-88], showing
that the Berman-Hartmanis conjecture fails relative to a random oracle. The theorem
proved is that, relative to a random oracle, A4, there is a so-called “scrambling” function, a
very strong form of a one-way function. This function, f 4. has the property that there is
no polynomially computable, one-one reduction from f4(S AT4) to SATA. Therefore, the
<B4 complete set f4(SAT4) is not p#-isomorphic to SATA. This is the first instance of
a relativization for a full version of either side of the Berman-Hartmanis conjecture.

The isomorphism problem for NP is one of the few major problems in structural
complexity for which there are not relativizations for both sides of the question. This fact,
plus recent work, including [KMR-88], leads us to believe that Berman and Hartmanis’

conjecture is false.




10

2.2 The Construction of an Oracle A for which All <P -Complete Sets for NP4

are P-Isomorphic

A necessary condition for two sets to be p-isomorphic is that they have the same densities,
up to a polynomial factor. Since we will be comparing sets to S AT#, we need language to
talk about the density of SAT4. We will show that the following condition describes the

density of SAT# for any A.

Definition 2.2.1. A set A C {0,1}* is thick if there is a polynomial, p(n), and a one-one

reduction, r(z), from {0,1}* to A such that |r(z)| < p(|z]).

In the definition of thickness, we do not require that the reduction r be polynomially
computable; we do require that it have a polynomial bound on the size of the gaps (i.e.,

the number of contiguous intervals) in its codomain.

There are two approaches that one might take to constructing an oracle for which
all N P-complete sets are p-isomorphic: either one might diagonalize away from those
sets that are not p-isomorphic to SAT4, to somehow make those sets incomplete, or
one might simply to encode p-isomorphisms between SAT# and all <[ -complete sets
for NP4 into the oracle. We use a combination of these two approaches. We use a
diagonalization argument to ensure that sets that do not have the same density as SAT4,
up to a polynomial factor, are not complete. Then, to make a complete set, T4, p-
isomorphic to SAT4, we code the p-isomorphism g : T4 « SAT4 into the oracle. Given
A, for each = and each g we can compute g(z) with only 2 * |g(z)| polynomial size (in |z|)

1

queries to A, and similarly, for ¢™'. Before showing how to construct the oracle A, we

need to discuss the density of SATA and the way we code relativized Boolean formulas

over the alphabet {0,1}*.

Lemma 2.2.2. There is a polynomial encoding of SAT# into {0,1}* such that SAT#4 is
both thick and co-thick.



11

Proof When we consider SAT as the set of satisfiable Boolean formulas in conjunctive
normal form over the finite alphabet ¥ of logical symbols and variables, it is easy to see
that the subset of ©* consisting of tautologies is thick.* Since SAT C SATA, SAT is
also thick over X. However, for the purposes of our proof, it is useful to think of S ATA
as a subset of {0,1}* rather than X*; that is, we code relativized Boolean formulas over
the standard alphabet ¥ into {0,1}*. Doing this allows us to identify certain subsets of
SAT# quickly. It also allows us to identify particular relativized Boolean formulas with
particular elements of A, also strings over {0,1}".

We could define a mapping from £* to {0,1}* simply by using the change of base
formula. This would give us an encoding of SAT# in {0, 1}* of the same density, modulo a
constant, as the original. Furthermore, it would furnish us with a deterministic linear-time
reduction from SAT4 over &* to SAT4 over {0,1}*. However, later details of the proof
are cleaner if we use a simple variant of this coding.

We wish to be able to recognize certain types of relativized formulas. Therefore, we
code all purely Boolean formulas (those that do not refer to the oracle), as strings beginning
with “1.” We code all formulas that make reference to the oracle as strings beginning with
a “0.” Those that consist of a single oracle query will begin with “00,” and more complex
formulas that involve oracle queries will begin “01.” With this coding technique, half the

strings in I(n) represent Boolean formulas without oracle references. Of these, a thick

subset are satisfiable. Thus, SAT C SAT# implies that SAT# is thick with respect to

4 We define the following function f from the set of Boolean formulas into the set
TAUT of tautologies. Let b be a Boolean formula in conjunctive normal form. Then
f(b) = bV =b. If b is the conjunction of k clauses of length < s, then f(b) will have k?
clauses of length < 2s, so f is polynomially bounded. If we interpret each element of
{0,1}* as a unique Boolean formula, this shows that TAUT is thick. A similar argument
shows that coTAUT C coSAT is also thick. Note that any set that is pA-isomorphic to
SAT4 is also thick.




12
this coding scheme, for any oracle A. A similar argument shows that coSAT4 is also thick

forany A. g

We are now ready to prove our first major result.

Theorem 2.2.3. There is an oracle A such that PA # UP4, and all sets that are <] -

complete for NP4 are pA-isomorphic. Furthermore, the oracle A is in E.

Proof. There are three sets of requirements in this construction. In order that PA £

UPA, we define the set
LA-_‘{OnI HZEA, |z|=n andz:()lw},

and we require that for each P2 € PA pPA <L LA We construct A so that LA€UPA In
order that all of the <E-complete sets for NP4 are p#-isomorphic, we require that they
are all thick. Finally, we code p“-isomorphisms between these sets and SAT# into the
oracle A, so that each isomorphism can be computed in polynomial time, using the oracle
as a table. We refer to these three types of requirements as diagonalization, thickening,
and coding.

The construction will proceed in stages. At stage s, we decide A on all strings from
length n, up to ney1. At stage s, we will consider the sets {T4,...TA} recognized by the
first s + 1 nondeterministic polynomial time oracle Turing machines in our enumeration,
and the first s+ 1 polynomially computable functions, { fo,...fs}. If some f; is a reduction
from SAT# to T# (where defined on strings of length < n,), we say that T# is active,
and that f; is active for T/

In the construction, we begin stage s by meeting one diagonalization requirement
(PA(0™) # LA(0™) for some n). However, the diagonalization depends on the details of

the other parts of the construction, so we begin by describing those.

Thickening



13

At stage s, suppose T4 is active, so some f; (j < s) is a reduction from SAT4 to
TA where it is defined. If f; were one-one, we would be done, since the one-one image of
a thick, co-thick set is itself thick and co-thick. We can force f;j to be one-one on a thick
subset of formulas, namely the formulas of the form “z¢ € A,” for strings zo beginning
with 00. Notice that such formulas are easily recognizable, and that exactly one quarter
of the formulas of any length are of that form. (In fact, the codes for such formulas also
begin 00. This is simple coincidence.) This part of the construction relies on the fact that
the reductions f; do not consult the oracle.

For each active T4, in turn, and each active reduction f from SAT4 to T4, we
guarantee that f is one-one on these formulas, or that f is not a reduction from SAT#.
If there are formulas b; = “z¢ € A”, and by = “yg € A” for some zo of length between
ns and ney1, and yo of length less than nsy1, both beginning with 00, and furthermore,
F(by) = f(by), then we spoil f as a reduction from S ATA, by deciding A(zo) = SATA(b1)
so that SATA(by) # SATA(b2) = A(yo). Notice that f(b1) and f(b2) do not change when
we change A. That is necessary for this part of the construction.

At stage s, we may decide A(zo) for up to (s + 1)? strings beginning 00. Once this is
done, we can assume that each active f is one-one on all but (s + 1)? formulas of lengths
n, up to n.41 beginning with 00. Of the remaining strings of these lengths beginning
with 00, we include half in A, and restrain half (for each length). Thus, each active set is
thick. Notice that any T4 that is < -complete for N P4 will have some reduction f that
is consistent after some stage s', so T4 will remain thick. Furthermore, the polynomial

bound on |f(z)| will give us an approximate bound on the density of both T4 and co—T4.

Coding

The pA-isomorphisms we define are influenced periodically by the diagonalization part

of each stage. However, we use lexical mappings between the active sets and SAT# as




14

the default computations. As we observed above, each T4 that is <P -complete for N p4
is thick and co-thick, so the lexical isomorphism between TA and SAT# is polynomially
bounded.5 Suppose T is active, and there is no ongoing coding of an isomorphism between
TA and SATA. Then we begin by assigning a key to the isomorphism, that specifies the
isomorphism. We assign a key to each new encoding of an isomorphism at stage s, so that
each ¢ assigned is the least ¢ > s such that ¢ has not already been assigned.

Next, we assign a padding function p(n). We choose p so that p(n) is at least the
polynomial bound on the run-time of SAT4, the polynomial bound on the run-time of
T4, and the bound on the lexical isomorphism that we can derive from the bound of the
least-numbered active f that is a reduction from SAT4 to TA.

Each coding string that we insert into the oracle begins with a 1, so as not to interfere
with the thickening (or diagonalizing) strings. Each string answers a question of the form,
“s the m® bit of h(z) a 1,” or, “is there a m + 1°* bit of h(z)?” Thus, each string is a
tuple that specifies the isomorphism key, the direction (to or from SAT#), z, the type of
question, and m. The implementation of this is not important, as long as it is consistent,
and as long as each coding string begins with a 1.

Notice that we may drop and add sets from the active list, and we may discover
that the padding function we have assigned is not sufficient, if we spoil the corresponding
reduction and find a new one. In such cases, we say that the coding is injured, and we

begin coding the isomorphism from the beginning, with a new key and padding function.®

5 The lexical mapping is the simplest isomorphism between two sets, sending the nth
clement of the first set to the nt* element of the second set, and the n'" element of the
complement of the first set to the ntt element of the complement of the second set.

6 This technique is similar to the one used by Kurtz [K-85] to encode sparse sets into
an oracle A, such that P4 # NPA. In that construction, the codings are iteratively
defined, based on approximations to the census function for the given set. The basis
of each iteration is a polynomial large enough that the computation cannot query its



15

Diagonalizing

At stage s, we guarantee that P#(0") # LA(0™), where P# is the s** P4 machine.
Remember that L4 = {z : Jy |z| = |y| and Olzy € A}. LA is in UP# because we include
at most one string of the form 0lzy in A, for each z. We assume, without loss of generality,
that PA(0™) queries fewer than 2n—5 gtrings. Suppose PA(0™) queries a string w of length
> n. If w is of the form “Ostring,” then we restrain w from A. This may mean that we
restrain up to 275 thickening strings of some length. However, that still leaves enough
strings to adequately thicken S AT4 and coSAT#. Furthermore, we guarantee that each
length is affected by at most one diagonalization. However, if w is of the form “lstring,”
and codes part of g(z), for some pA-isomorphism g : TA « SATA, we need to be more
careful.

Case 1. Part of g(z) or g(y) = = has already been encoded. We fix A(w) to be
consistent with this encoding.

Case 2. g : T4 — SAT4, and none of g(z) has been encoded yet. We fix g(z) to
be a relativized Boolean formula b({z, k),0,7) specifying the condition that there is some
string of length r in A of the form 001(z, k)0y, for k the key to the isomorphism g, and
some 1 > n+ |k| + |z|. (Notice that such a string is in the thickening region of the oracle.)

Formally,

b((z, k),0,7) = ~z1 & —x2 & w3 & (the next |(z, k)| bits represent (z, k)

(g k)1 & [T1T2 -0 2r € Al.

own encoding. In Kurtz’s proof, if a set is indeed sparse, it eventually becomes fully
encoded. Here, if the set T4 is truly <P -complete, we eventually 1) find a reduction
f: SATA — T4, and 2) a padding function that bounds the run-times of both T4 and

g.




16
For example,

1101

” .

5(1101,12) = —z; & ~z2 & o3 & x4 & z5 & —we & T7

-zg & [.’1113,'2 s Ty €& A].

We choose r greater than n + |k| + |z|, so that PA(0™) cannot query every string of the
form 001zky of length r; we also require that r > pr(|z|), where pr is a strictly increasing
polynomial bound on the run-time of Ta(), so that TA(z) cannot query strings of length
r. We add the 0 on the end so that subsequent b’s in this diagonalization cannot restrain
all of the oracle strings that this b discusses—this query generates a unique (z, k), and the
0 guarantees that only half the possible extensions can be restrained by another 5. We
choose the least such r such that none of g(b({z,k),0,r)) or g~*(b({z, k),0,r)) has been
coded yet.

Since T4 appears to be complete at stage s, there is some f : SATA — T4 in
{fo,..., fs}. Let f be such a reduction with the least number. Then the polynomial bound
on |f(z)| gives us an estimate of the density of T, Thus, we can guess a polynomial
bound, pgy, on the lexical isomorphism g; : SAT4A « T4, and on g;!. Then for any
z with |z| > py(n), |gi(2)| and |g;!(2)| are greater than n, so none of g(z) or g~!(2)
has been coded yet. Thus, we can always find an r > py(n). In fact, we can choose
r < py(n) + pr(|z]) + |k| + 2. Notice that n is polynomially bounded in |z, since g(z)
has not yet been coded. This bound is also determined by g¢;. Since |b({z,k),0,7)| is
polynomially bounded in r (remember, |z| < r), g remains polynomially bounded, with a
new bound depending on the run-time of T4 and the encoding of g : SAT# < T4. Notice

that, as long as f remains a reduction from SATA to T4, this bound remains fixed.

Case 8. g : SAT4 — T4, and none of g(z) or g7 1(y) = = has been encoded yet. Let

f be as before. This time, we consider b(zy,r), for some y with |y| = pg(n) + 1.



17

Let psaz(|z|) be a strictly increasing polynomial bound on the run-time of S ATO(2),

and ps(|z|) a strictly increasing polynomial bound on |f (2)|. If there is an r such that

r < |z| 4+ pg(n) + n + psar(lz]) + 2,

and a b(zy,r) such that none of g(f(b(zy,r)) or g1 (f(b(zy,r))) has been coded, then we
choose the least such

r > |z] + py(n) +n + psar(lz)),

and the least corresponding y.

If no such b(zy,r) exists, then f maps all such formulas to strings w such that some of
g(w) or g~!(w) has been coded. Since there are < 274(7) guch w’s, and > 2P+(™ formulas,
f is not one-one on these formulas, so we spoil f. If there is another active reduction
f': SAT4 — T4, we replace f by the f' of lowest number and proceed as above. If not,
we discontinue coding g, restrain the string that P;4(0") just queried from the oracle, and
continue computing PA(0").

If f is one-one on the b(zy,r)’s, then there is a b(zy,r) that we can use. Thus, r, and
consequently g, is still polynomially bounded in |z|.

Notice that spoiling f requires that we fix a certain number of thickening strings.
However, the only thickening strings of length r affected by the diagonalization are those

beginning 001. This leaves all thickening strings of length r beginning 000 for thickening.

Notice that, in Case 2 or Case 2, we may later discover that f is not a reduction
from SAT4 to TA. However, if T4 is <P -complete for N PA, then there is some reduction
f:TA — SATA, and some stage ¢, such that after stage ¢, f is the active reduction from
SAT4 to TA with the lowest number. If we later discover that the function we considered
is not a reduction, we say the encoding of g is injured, and we begin again, with a new key
and padding function. Since this can only happen up to stage ¢, we know that, eventually,

some g : T4 & SAT# will be fully encoded in A.




18
Finally, we claim that this diagonalization does not ruin any pA-isomorphism g (except
for the finite injuries mentioned above). To show this, we must first describe how to
compute g(y) for those values of y not directly affected by the diagonalization. We note
that PA(0™) queries fewer than 2n—5 strings, so we can simply not count those strings
directly affected by the diagonalization when we compute the lexical ordering of the sets.”
Because so few strings are affected, and both sets are thick, this will add no more than
a constant, determined by TA, to the length of each new g(z). Thus, g remains a pA-
isomorphism between TA and SATA.2 We guarantee that diagonalizations never overlap,
so each g(z) is affected by at most one diagonalization. Therefore, g remains polynomially
bounded.

Finally, we add one string of length n, of the form Olstring, to A if PA(0™) = 0.

The Construction
Stage 0. A = 0.

Stage s. A is decided up to strings of length n,. We begin with a diagonalization, with
n = n,. We then set n,41 to two more than the length of the longest string affected by
the diagonalization.

Next we perform the thickening, and then the coding, one length at a time, for all
lengths up to ns41. We note that the diagonalization affects at most 3/4 of the thickening

strings of any given length: P;/(0™) can query no more than 1/4 of them directly, and the

7 This process affects particular isomorphisms, rather than the sets themselves. Al-
though we do not count z or b((z, k),0,r) (in Case 2) when we compute g, we still count
b({(z,k),0,) when we compute other isomorphisms from SATA.

8 Although this section of the proof does not follow their proof exactly, step 6 was
inspired by the proof of Theorem 4 in [LY-88].



19

b’s can restrain only those strings beginning 001, i.e., no more than half of the thickening
strings of a given length.
Thus, we construct an oracle A for which PA £ UPA and all <F-complete sets for

NP4 are pA-isomorphic. g

Theorem 2.2.3 raises several interesting questions. The first is whether we have con-
structed an oracle counter-example to Joseph and Young’s conjecture. Joseph and Young
[JY-85] asked whether, if f is a one-way function, f(SAT) =P SAT. Notice that, if fAisa
one-way function, f4(S AT4) is <PA_complete for N PA, However, we have no guarantee
that fA(SAT4) is <P -complete for NP4, In other words, it is possible that FA(SATA)
is not pA-isomorphic to SATA, even though all of the <! -complete sets for N P4 are
pA-isomorphic.

The next question is whether we have considered the right class of complete sets for
NPA. In Theorem 2.2.3, we “collapsed” the <% -complete sets for N P4, Clearly, this is
not the only definition of many-one complete sets for N P4, For instance, we could have
considered the <P4-complete sets for N P4, since that is clearly a stronger definition. It
could be argued, however, that the definition we used is the natural definition of many-one
completeness in an oracle setting, since it is the same definition as in the unrelativized case.
The fact that SAT# is <P -complete for NP4 lends strength to this argument. Although
we often consider Logspace reductions on P, or PSPACE, for instance, it could also be

argued that it is unnatural to consider reductions that are less powerful than the Turing
Machines we are also discussing.

We next consider p*-isomorphisms of <P-complete sets for NP#. This class of
complete sets properly contains the class of <P _complete sets for many A’s. In Theorem
2.2.4, we modify the construction of Theorem 2.2.3 to show that the two classes of N PA

sets can be distinguished with respect to collapsing, i.e., to pA-isomorphisms.




20

Theorem 2.2.4. There is a modification of oracle A such that all < -complete sets for

NP4 are pA-isomorphic but not all <[;4-complete sets are pA-isomorphic.

Proof. One way of ensuring that there are non-p#-isomorphic complete sets is to
have a complete set that is not thick. The construction of Theorem 2.2.3 ensures that
all <P_complete sets for N P4 are pA-isomorphic. At the same time, we can construct a
set G that is <P4-complete, and that has exponentially large gaps, or empty intervals, by
adding some extra coding to the oracle. These gaps guarantee that there is no polynomially
bounded reduction from G to SAT4.°

G is simple to describe. If h(0) = 2, and h(n + 1) = 2h(n) then for strings of
lengths 2(2n) to k(2n + 1), G is identical to S AT4, and empty otherwise. In order that G
contain no strings of lengths between h(2n + 1) and h(2n 4+ 2), we code those portions of
SAT4 into A. We use the same coding ideas that we used in the construction of Theorem
9.2.3. We reserve the number 2 as the key for this coding; we append 17(") to each
encoding of a string in I(n), where p(n) is a monotonically increasing polynomial bound
on the run-time of SATO. The encoding, e(z), is of the form 17U2D(12,0, z,1) whenever
h(2n) < |z| < R(2n + 1) for some n. Since |e(z)| > p(|z]), SAT#(z) can not consult its
own encoding.

We use a similar coding scheme for the intervals of SAT4 and for the isomorphisms
because we do not want the different codings to interfere with each other. This way, we
know that the same string is never called on to encode both a satisfiable formula, and
(part of) an isomorphism.

Finally, we show that the set

G = {z: 3n h(2n) < |z| < h(2n + 1) and SATA(z) = 1}

9 This technique has also been used in [Kur-83 & HHem-87].



21

is <PA_complete for N PA IS e NPA and f: S — SAT#, we describe the reduction

g4 : S — @G as follows:

f(z) if In A(2n) < |f(2)| < h(2n +1)
T if In R(2n + 1) < |f(z)] < R((2n + 2)
and e(f(z)) € A

F otherwise

g(z) =

where T' and F are the strings zo V —z¢ and zo A ~Zo respectively. (We assume that T' is

in G.) We observe that
z €S & f(z) € SATA & g4(z) € G.

We have to modify the construction from Theorem 2.2.3 so that the diagonalizations
(step 6) only occur in the intervals where SATA is not coded into the oracle. Before, the
diagonalizations controlled the number of intervals decided at each stage. Now, we extend
the construction so that at stage s, we determine all of A from I(h(2s)) to I(h(2s + 1)).
Thus, when we decide L4(0™) for some n at stage s, all of the strings affected by this
diagonalization will have lengths less than h(2s + 1). Thus, the encoding of SATA will

have no impact on the process of diagonalizing. g

If we look carefully at the construction in Theorem 2.2.3, we see that there are several
parts: “thickening” <P _complete sets, coding isomorphisis, and keeping PA £ UPA, For
each potential reduction, f, from S ATA, either f is one-one almost everywhere on the
set M, so we can use it to thicken the corresponding complete set, or we spoil f. The
thickening works because, if T45(f(z)) = T45(f(y)), then TA(f(z)) = TA(f(y)) for any
A extending A,. However, this does not necessarily hold if f(z) depends on the oracle.
This property, which we would like to extend, was studied by Berman and Hartmanis

[BH-77], and formalized by Balcdzar and Schoning [BS-85].




22

Definition 2.2.5. ([BS-85]) A set B is strongly bi-immune if every polynomial reduction
from B is one-one almost everywhere. In other words, if f is polynomially computable,
and if f(z) = f(y) implies that z is in B if and only if y is in B, then f is one-one on all

but a finite number of strings.

The proof of Theorem 2.2.3 shows that the purely oracle-dependent formulas form
a subset of SAT#A that is thick, co-thick and strongly bi-immune with respect to <P.
reductions. Thus, all of the <P-complete sets for NP4 have the same density, up to
polynomial factors. Since this subset of .S AT# is in P4, it cannot be bi-immune with
respect to <D4-reductions. Unfortunately, we cannot simply alter the construction to
allow the reductions we consider to query the oracle, since this would interfere with the
coding.l® However, this aspect of the proof can be isolated, and extended to reductions
that are allowed to query the oracle. Kurtz [Kur-86] constructed an oracle C' and set

B € NPC€ such that B is strongly bi-immune with respect to <I;¢-reductions.
m

Tt is not clear whether the Berman-Hartmanis conjecture holds with respect to Kurtz’s
oracle. It is also not clear how to combine this construction with any of the known tech-
niques for deciding the conjecture. Unlike Theorem 2.2.3, there are no intervals on which
we can temporarily ignore diagonalization requirements. While we cannot combine Kurtz’
technique with coding isomorphisms into C, there are other techniques for guaranteeing
that all <PC-complete sets for N P€ are p©-isomorphic. Thus, his construction may prove

useful, though not in direct combination with Theorem 2.2.3.

10 The problem of simultaneously coding information and satisfying diagonalization
requirements is one that has been a stumbling block for extending many results in this
area, for instance, [KLD-86, KMR86&87]. In fact, many of the results about complete
sets for NP and E use bounded truth-table reductions rather than many-one reductions
precisely because of this problem.



23

Can strongly bi-immune sets help us in an unrelativized setting? [BH-77] showed
that there is a strongly bi-immune set in F that is not sparse. However, [Ber-77, Dow-78,
W-86, & GH-88] also proved that all <P _complete sets for E are one-one interreducible.
This implies that they are all of the same density, up to polynomial factors, reducing our
interest in strongly bi-immune sets for this class.- -+ v s -4+ e vrmes o v @ aULULBLY
bi-immune sct cannot be a p-cylinder.'' [BH-77] obscived that any set thal is p-isomorphic
to SAT is itsclf a p-cylinder. Thus, we sec that the cxistence of a strongly bi-immune,

<P _complete sct for NP would actually contradict the Berman-Hartmanis conjecture.




24

2.3 The Construction of a Complexity Class Containing Non-Isomorphic <f,-

Complete Sets

In this section we prove a collection of results that show that there are settings in which

not all complete sets are pO-isomorphic.

Theorem 2.3.1. There is a sparse oracle C, and sets A and B such that
i) P¢ # NP€;
ii) A and B are <};,-complete for NP;

iii) A and B are both thick and co-thick; and

iv) A=t B, but A#P° B.

Proof. This construction precedes by stages. Each stage consists of two separate
diagonalization steps: we diagonalize away from all potential pC-isomorphisms from A
to B, and we guarantee that A is not recognized by any PC algorithm. As we do each
diagonalization step, we maintain <P _reductions l : A - B and r : B — A, and we
construct a <F,,-reduction e : SATY — A (B). As we make decisions about A and B, we

also include strings in C, so that both A and B arein N PC.

We begin with the two many-one, polynomially computable functions, {(z) and r(z);
when we have completed the construction, {(z) will be a reduction from A to B, and r(z)
will be a reduction from B to A. To do this construction, we need the functions [ and r to
have several specific properties. To this end, we begin by defining two polynomially com-
putable functions that possess the necessary properties. (After reading our construction

the reader will easily be able to find many other functions that would do equally well.)

The reductions:



25

! r
> ln ln \:\
> TORR 1y m—
> 0" o" <
z if £ = Qw; z if z = Ow;
I(z) =< 1=l if £ = 1lel; r(z) = { 10le1-1 if z = 10l21-1;
10lz1-1  otherwise. 1l=l otherwise.

With these definitions we are now ready to construct the oracle C, and sets A and B
that are <P -equivalent via the reductions [ and r, but not pC-isomorphic. While doing so,
we also ensure that A and B are Sf;t-complete for NP, and that PC # N PC. The sets
C, A and B are constructed in stages. Initially, C, A and B arein A (B). During stage s of
the construction we decide which elements in the intervals I(n,), I(ns 4+ 1), ..., [(ns41 — 1)
are in C, A and B. Thus, during stage s we do not alter any elements of C, A or B that
are in the intervals below I(n,).

Notice that if [ and r are reductions between A and B, there are some constraints
placed on how we may add elements to A and B. For instance, any element beginning with
0 that is added to A must also be added to B, and vice versa. These isomorphic intervals
of A and B are used to encode SATC. Furthermore, each subinterval of strings of the same
length beginning with 1 (except 1) is a subset of either A or A, since all of those strings
map to the same string in B under the reduction [. Similarly, the subinterval of strings
of the same length beginning with 1 (except 10"~') is a subset of either B or B. We call

these subintervals the spoiling intervals, to contrast them with the coding intervals.




26
o <F ., -completeness of A and B

In order to define the encoding e : SATC — A, we first define e; and e;. Let e;
code SATC into the lowest quarter of each interval, and e; code SATC into the second
quarter. In other words, e;(z) = 00y, and ez(x) = 0ly, for some y. Furthermore, for both
encodings, |ei(z)| > ¢(|z|), where ¢(|z|) is a strictly increasing polynomial bound on the
run-time of a nondeterministic algorithm for SATO(z). This prevents the computation of
SATC(z) from containing any queries about strings in C that might represent the encoding
of SATC(z).

For each n, e will be equal to one of e; or ez in I(n). The unused coding subinterval
will be empty. Given a set T¢ € N P€, we can define a <[};-reduction g from T to A as

follows. Let f be a <P -reduction from T to SATC.

9(z) = {61(f(:1:)) if e;(f(z)) € 4;

e2(f(z)) otherwise.

If e1(f(2)) € A, then f(z) € SATC, so z € TC. If e1(f(z)) € A, then either e = e,
in that interval, or ¢ ¢ TC. In either case, e2(f(z)) € A if and only if € TC. Thus, 4

and B are <};,~complete for NPC.

e A, Bc NP¢

If £ =1y, and  # 17, then z € A if and only if there is some string of length |z| in
C, of the form 10z. If z = 1%, then z € A if and only if there is some string of length |z|
in C of the form 11z. If z = 00y, then x € A if and only if there is some string of length
|z| in C of the form 00z, and (e; o f)'(z) € SATC. If z = 0ly, then z € A if and only if
there is some string of length |z| in C of the form 01z, and (e; o f)~(z) € SATC. To

decide whether z € B, simply decide whether r(z) € A.

e Sparseness



27

The oracle C contains at most three strings of any given length. For each n, C contains
a string of length n of the form
o 00z, if e = e; on I(n); or
o 01z, if e = ez on I(n);
o 10z, if the spoiling interval of I(n) is contained in A; and
o 11z, if the spoiling interval of I(n) is contained in B.
Thus C is sparse.
We include spoiling intervals in A and B for one of two reasons: to spoil a potential

pC-isomorphism between A and B, or to guarantee that A and B are not in PC,

e Initialization and specification

We begin by fixing an enumeration of polynomial time functions. Let p;(|z|) be
a strictly increasing polynomial bound on the run-time of f,() (z). We require that our
enumeration satisfy p;(n) < 2”72 for all n > 3.

Next, we fix the enumeration of polynomial time oracle Turing machines, M,-O. Let
¢i(Jz|) be a strictly increasing polynomial bound on the run-time of M,()(a:) We require

that g;(n) < 22 for all n > 1.

e The construction
Stage 0. C = A= B ={.

Stage s. As we mentioned at the beginning of the proof, stage s consists of two steps,
which we refer to as the diagonalization step and the spoiling step. The diagonalization
steps guarantee that each deterministic polynomial time oracle Turing machine TEC does
not recognize A, so P # NP, and the spoiling steps guarantee that A and B are not
pC-isomorphic. At the end of each step, we code SATC into A and B so that they will be

<P ,-complete for N PC. We begin with the spoiling step.



28

o APC B

Let f10, é), é), ... be an enumeration of polynomially computable functions, as speci-
fied above. We need to ensure that any pair, {(f, fJC ), of functions that are mutual inverses
are not reductions between A and B. To do this we consider one pair (fF, f]C ) at each

stage.

At stage s, let (fF, fJG ) be the first pair of functions that have not been considered
at an earlier stage. We begin by verifying that the pair behave as mutual inverses on all
elements on intervals I(1) up to I(n,), and that they are reductions between A, and B,.
If either of these conditions fail, then f¢ and f]-c cannot form an isomorphism between A
and B, so we are done with the spoiling step of stage s. Otherwise, we must add elements
to A and B to spoil the possibility that f€ and fJC form a pC-isomorphism.

If f€ is one-one and we compute f© on the upper half of I(n), then there must be
strings where f€ and [ do not agree. If we let z be the least element in that interval such
that fO(z) # 10", and we ensure that A(z) # B(ff (z)), then we will have guaranteed
that f€ : A 4 B. If f&(z) queries C about some z of length > n,, we immediately restrain
z from C. Because of the enumeration of f,-()’s we have chosen, this cannot restrain all of

the strings that could represent y, for any y of length > n.
To ensure that A(z) # B(f€(z)), we do the following.

Case 1: f€(z) is in an interval less than I(n,). Then B(fi(z)) was decided at an
earlier stage, so we simply add z to A if and only if f€(z) is not in B.
Case 2: f€(z) is in a spoiling interval greater than or equal to I(n,). Then neither z

nor f€(z) have been added to A or B. Therefore, we simply add z to A and f£(z) to B.

Case 3: f€(z) is in a coding interval greater than or equal to I(n,). Then we fix e on
that interval so that f€(z) is not in the range of e. This implies that fC(z) ¢ B, so we

add z to A.



29

Note that in Case 2 or Case 3, f€(z) may be in an interval that is greater than I(n.).
Furthermore, f€(z) may have queried a string z in an interval greater than I (ns). Let
n, + m be the length of the longest string affected by the computation. Now, during the
remainder of this step of stage s, we decide which elements in the intervals I(ns), ..., I(ns +
m) are in A and B, and which elements are in C. Our first task is to add to A, B, A and
B, elements whose membership is tied to the decisions we made about z and f€(z). For
the other intervals, the even-length spoiling intervals are included in A and B, and the
odd-length intervals vice-versa. Next we choose the least representative in C' that has not
been restrained for each spoiling interval we have added to A or B, and for each interval
of e.

We observe that, once C, A, and B are constructed, A 2P.C B. Suppose this were
not the case. Let fC be a pC-isomorphism from A to B. Let s;,52,33,... be an infinite
sequence such that at each stage si, the functions f€ and fJC considered are equal to
fC€ and (f€)~!. Then at each stage sk, for each k, there is a corresponding = such that
A(z) # B(f¢(z)). This contradicts our assumption that f€ was a p©-isomorphism from

A to B. Thus A 2P°¢ B.

e PC £ NPC
This step in the construction is again modeled on the construction in [BGS-75] of an
oracle to separate P and NP. It is similar to the spoiling step. At stage s, suppose that
the spoiling step of the stage has decided membership in A, B, and C for all strings up
to I(ns +m +1). Let = be a string in the spoiling interval of I (ns +m + 1) of A. Let
O be the st* deterministic polynomial time oracle Turing machine in our enumeration.
We run MC(z), restraining any z of length > n, + m that is queried. We set Az) =
1-- MS(z). This guarantees that M, C does not recognize A. Since each set recognized by

a deterministic polynomial time oracle program is recognized by infinitely many programs




30

in our enumeration, this construction guarantees that any such program with oracle C is
wrong about A infinitely often. Furthermore, since A <P B, this also guarantees that any
such program with oracle C is wrong about B infinitely often. Thus A and B € N PC_PpC°,

To finish stage s, we decide membership in C, A and B of all strings up to I(n41),
where n,41 is one more than the longest string affected by this step. Then we let e = e;
on those intervals, and we decide the remaining spoiling intervals on the basis of parity, as
before. Finally, we choose the least representative that has not been restrained for each
subinterval, and include it in C, if a representative is required. Notice that e is a one-one,

polynomially bounded reduction from SATC to A and B, so each is thick. g

Observation 2.3.2. In the construction above, the oracle C is in E.
Observation 2.3.3. In the construction above, PC # UPC,

The set consisting of the spoiling subintervals of A is in UPC — PC.

Because we have encorporated Baker, Gill and Solovay’s construction into the con-
struction of Theorem 2.3.1, the question arises of whether we can show that this result
holds with probability one, in the style of [BG-81]. However, Bennet and Gill’s Lemma 1
does not apply here, since the set 4 violates Condition 4 of their Lemma 1: S ATC C A,
and SATC is a p-cylinder, so each bit of C' decides infinitely many bits of SATC, and
hence of A. Kozen and Machtey [KM-80] give an alternative characterization of the oracle
properties that hold with probability one. They show that a diagonalization language L is
not in a class M if and only if for each M; € M, the set of oracles A such that LA =M#Ais
nowhere dense. In the construction for Theorem 2.3.1, we have the requirement that there
is a witness for e, for each interval. In other words, we set aside some polynomially recog-
nizable subset E of C, such that, for each n, e = e; on I(n) if there is a witness in some

specified subset of E, and e = ez on I(n) if there is a witness in some other specified subset



31

of E; there must be a witness for at least one of these. This necessity makes the set of
acceptable extensions of C,s nowhere dense. Thus, we cannot prove that there is an oracle
C extending C, that properly defines A and B, such that L€ # MF. However, many of
the constructions discussed in [BG-81], such as the Baker, Gill and Solovay construction,
are compatible with this one. Our next theorem shows that this combined construction is
robust, in the sense that it can be successfully combined with many other constructions. It
is essential to note that the construction does not require the addition of specific elements
to the oracle, although it does require that certain elements be restrained from the ora,r;lef

The two properties that make the construction robust are the possibility of satisfying
each requirement of the construction at whatever stage it is introduced, and the notion
of a restraint set. It is possible to combine more than one such construction if the com-
bined restraint sets do not interfere with any so-called “positive” requirements of including

elements in the oracle. At least, they should not restrain every element.

Definition 2.3.4. We say that an oracle construction can accept a bounded restraint set
if there is some super-polynomial function f(n) < 2", such that it is possible to complete
the construction, even if for each n, up to f(n) strings of length n have been previously

restrained from the oracle.

It is sufficient in the following theorem that when we are combining two constructions,
each one restrains no more than 1/4 of the strings of a given length.

The following definition adds more structure than we actually used in combining the
two constructions above. We could have encoded A and B on the odd strings, and the
Baker, Gill and Solovay set on the even strings. We separate them in the definition in

order to see more clearly how the two constructions interact.

Definition 2.3.5. We say that an oracle construction can tolerate delays if the oracle can

be divided into two infinite, thick, polynomially recognizable sets, E and O, so that




32

1) the construction can be carried out in E,
2) the construction can accept a bounded restraint set within E, and

3) the construction only affects O in a bounded restraint set.

The delays come from the other construction. By specifying that both constructions
can accept delays, we guarantee that a requirement from one construction will not injure
one from the other construction. This is important, since it would be difficult to confine
injuries induced by another, independent construction. A typical forcing argument (in
the sense of Torenvliet and Van Emde Boas [TV-86]), such as Kurtz’s construction of a
strongly bi-immune set, cannot tolerate delays, whereas a straightforward diagonalization

argument can.

Corollary 2.3.6. Any oracle construction that can tolerate delays can be combined with

the oracle construction of Theorem 2.3.1.

To prove this Corollary, we need only go through the proof of Theorem 2.3.1, replacing
the Baker, Gill and Solovay construction by something else, or combining it with a new
construction. Notice that there is a lot of flexibility in the old construction. A spoiling
requirement can be satisfied whenever it is introduced. Therefore, we can delay the old
construction, if that will simplify the new one. In fact, we can even allow the new con-
struction to insert elements into some of the even intervals, as long as the intervals are
syntactically correct for the old construction and there are infinitely many intervals left for
the old construction. In other words, the new construction may define arbitrary intervals
of E (and thus of A and B), so long as those intervals are in the form of the intervals
determined by the construction in Theorem 2.3.1, and at each stage, the old construction
can determine some intervals of E. It is likely that the new A and B will be different from
the old 4 and B, but the crucial properties will still hold, that A 2PC B and that A and

B are Sﬁt-complete for NPC. The one property that may be lost in the combination is



33

the sparseness of the oracle. This is evident, for instance, in the proof sketch for Corollary

2.3.8.

Corollary 2.3.7. There is a modification of the oracle C in Theorem 2.3.1, such that

every infinite set in NPC (or NP€ U coN P€) has an infinite PC subset.

Corollary 2.3.8. There is a modification of the oracle C in Theorem 2.3.1, such that
NPC = coNPC.
Sketch of proof. We simply “hide” coSATC in C so that it can be found by an

NP algorithm but not by a PC algorithm, and so that each z is represented by a string

sufficiently long that coS ATC(z) cannot query its own representative. g

Corollary 2.3.9. There is a modification of the oracle C in Theorem 2.3.1, such that

NPC # coNPC.

Sketch of proof. To show that N PC £ coNPC, we construct an infinite set S € N pPC
such that S intersects every infinite set in N PC¢. Thus, S ¢ coN PC. The construction
is the usual diagonalization with finite injury, except that we are diagonalizing over N pc
sets, TE, rather than PC sets. However, to find z € TE, we need only find one accepting
computation of TE(z), so we only need to restrain one set of oracle queries of polynomial

size. Therefore, the restraint set remains bounded. g

Corollary 2.3.10. There is a modification of the oracle C in Theorem 2.3.1, such that
NEC€ + EC.

In [AFH-86], Ambos-Spies, Fleischhack, and Huwig attempted to unify many of the
common diagonalization arguments over P. They described a class of diagonalization

proofs, and showed that there are sets that have all of the properties specified by these

diagonalizations. Most of the sets constructed in their paper are tally sets, and we will use

this convention here.




34

Definition 2.3.11. ([AFH-86]) A property Q is enforced by a p-standard diagonalization

if there is a sequence {C.} of sets in P such that for any tally set T, if for every e € N,
(3%s) (F) <1[T Tsx(2) € Cc]

= (3s) [T 15 € C]

then T' has property Q. In other words, if T' meets every C. that gives it infinitely many

chances to do so, then T' has property Q.

(Here, “T' T s” means the binary string b of length s, where the k** bit of bis 1 if and only
if0keT.)

Theorem 2.3.12. Any property that is enforceable by a p-standard diagonalization is

compatible with the construction in Theorem 2.3.1.

Sketch of proof. We assume that the set constructed by the p-standard diagonalization
depends on the second half of each interval of C: TA = {0%: Jy |y| = k— 1 and 1y € A}.
We construct A, and T4, by stages. At the beginning of stage s, we attempt to satisfy
some active requirement, where a requirement R, says that TA 1 s € CA, and R, is active
if e < s and it has not yet been met. If there is some e such that T4 1 n, * (i) € CZ for
i =0 or 1, we fix A so that this holds for the least such e and i, restraining any string of
length > n, that CA(T# T n, * (1)) queries. This can easily be shown to be a bounded
restraint set. We then proceed with the construction from Theorem 2.3.1 on the rest of
the interval. At each stage, we define A on exactly one interval, given a bounded restraint
set from previous intervals. This is a finite injury construction, since each time we satisfy
one requirement of the new construction, we may ignore the possibility of satisfying higher
numbered requirements on strings in that interval. Fortunately, we only care about those

requirements that give us infinite opportunity to satisfy them. m



35

As corollaries to Theorem 2.3.12, we have that all of the constructions listed in [AFH-

86] are compatible with the construction in Theorem 2.3.1.

Corollary 2.3.13. There is a modification of the oracle C in Theorem 2.3.1 such that

there is a pC-bi-immune set in NPC.

Corollary 2.3.14. There is a modification of the oracle C' in Theorem 2.3.1 such that
there is a set D € NPC that is not auto-p®-reducible. In other words, if f¢ : D — D is a

<PC_reduction, then fC€ is the identity almost everywhere.

We will give the definitions of p-selective and NT sets in §3.2. The relevant fact is
that, in each case, there is a polynomial algorithm that relates the membership of two

elements in such a set. Thus, a p-standard diagonalization will avoid both properties.

Corollary 2.3.15. There is a modification of the oracle C in Theorem 2.3.1 such that

there is a set in NPC that is not p©-selective.

Corollary 2.3.16. There is a modification of the oracle C in Theorem 2.3.1 such that

there is a set in NPC that is not in NTC.

There are a number of oracle constructions that are not compatible with this one. Sev-
eral such constructions involve coding information into polynomially recognizable subsets
of the oracle, instead of hiding it, as we have done in the constructions above. The construc-
tions that are incompatible with the construction in Theorem 2.3.1 tend to be compatible
with the construction in Theorem 2.2.4 that separated the <F:P-complete sets. (That
construction involved coding exponentially long intervals of SATP into the oracle D.) In
fact, one example of this other sort of compatibility is Theorem ;?,.2.4. Another example
comes from [HHem-87], in which PP = UPP. Since most diagonalization constructions of

oracles take one of these two forms (sparse “hidings” versus polynomial codings), it seems




36

that separating some class of N PC-complete sets does not limit our other diagonalization

options.

In [KLD-86], Ko, Long and Du constructed sets that are one-one equivalent, not p-
isomorphic, and Sftt—complete for E, using a one-way function. The proof of Theorem
2.3.1 yields a simpler proof that there are many-one equivalent <, -complete sets for E
that are not p-isomorphic. In their construction, each diagonalization step affects infinitely
many bits of A and B; in our construction, each diagonalization directly affects only two
subintervals.

The sets we construct are not necessarily equivalent under one-one p-reductions, but
our proof does not require the existence of a one-way function. Kurtz, Mahaney and Royer
have a proof of the same result in [KMR-86] that relies on the existence of p-immune sets
in TIM E[2°"]. While their proof is not necessarily difficult, ours is more direct, and gives

more intuition about the sets constructed.

Theorem 2.3.17. There are sets A and B € F such that
i) A and B are <f,,-complete for E, and

ii) A=F B, but A %P B.

Sketch of proof. The construction is a simpler version of the construction in Theorem
2.3.1. Again, we start with the reductions /: A — B and r : B — A, and construct A and
B accordingly. We do not have an oracle, so there are no restraint sets. We take care not
to consider any f; until = is large enough that the run-time of f;(z) is bounded by 2!%!, so
the construction stays in exponential time. Finally, instead of letting e map SAT into A,

we choose some set K that is < -complete for E to take the place of SAT. g

Notice that we did not mention thickness in Theorem 2.3.11. By Berman’s theorem

[Ber-77], we know that all <F -complete sets are thick and co-thick, so the reduction of E

to A and B is sufficient to guarantee that both are thick and co-thick.



37

It is natural to ask at this point whether we could have constructed A and B so that
they were <P -complete. Unfortunately, we do not know how to do this. The difficulty
here is that if A and B are to be <P -complete, then the above construction must encode a
copy of A into B and vice versa. However, all of the standard encoding methods result in
reductions that are for all practical purposes one-one. This is in conflict with the part of
the construction that ensured that A and B were not p-isomorphic by canceling one-one
reductions between A and B. As we have mentioned before, this difficulty is not unique

to our constructions.

A final consequence of the proof techniques of Theorem 2.3.1 is that there are <I-

degrees that do not consist of a single isomorphism type.

Corollary 2.3.18. There is an <P _degree that contains non-p-isomorphic sets.




38

CHAPTER 3. NEAR-TESTABLE SETS

3.1 Introduction

The near-testable sets were introduced in [GJY-87] as part of a study of the effect of internal
structure on the complexity of a set. A set A is near-testable if there is a polynomially
computable function, ¢, that recognizes when its input, z, is on the boundary between A
and A. In other words, for each string z, t(x) = 1 if and only if exactly one of z and z — 1
(the immediate predecessor of z) is in A. The internal structures considered in [GJY-87]
are ordering structures induced by the self-reducible properties. The ordering structure on
near-testable sets is simply the lexicographic ordering,.

Any set in P is near-testable. The natural question to ask about near-testable sets is
whether all near-testable sets are in P. I show (Theorem 3.3.1) that there are near-testable
sets that are not in P if there are one-way functions.!? In [Hem-87], Hemachandra extended
this result to show that there are near-testable sets that are not in P if and only if there
are sets in Parity-P — P.!® These results were further extended in [GHJY-87] where it is
shown that the collection of near-testable sets is one-one equivalent to the class Parity-P

via p-invertible functions.

In [GJY-87], a subclass of the p-cheatable sets, the (2 for 1) p-cheatable sets, was

described as a potential extension of the near-testable sets. That paper asked about the

12 Recall that f is a one-way function if it is polynomially computable, polynomially
honest, and one-one function from strings to strings that has no polynomially com-
putable inverse.

13 A set A is in Parity-P if there is a nondeterministic Turing machine M such that

z € A if and only if M(z) has an odd number of accepting computations. Parity-P was
introduced in [PZ-82].



39

relationship between these two properties. I show (Theorem 3.4.1) that sets that are both
(2 for 1) p-cheatable and near-testable are polynomially recognizable.!* This theorem was
extended in [GJY-88c] to show that any p-cheatable set that is near-testable is in P.

In [GJY-88c|, we also considered other combinations of self-reducible properties. For
instance, we showed that Turing self-reducible, p-cheatable sets are in P.!3 I have included
several results of this type in §3.4 of this chapter. Although the near-testable sets are
closely related to Parity-P, sufficient conditions for the existence of p-cheatable sets in
Parity-P — P are given. In combination with Theorem 3.4.1, this is reason to believe that
(if Parity-P # P) Parity-P is not equal to the near-testable sets. I also give sufficient
conditions for the existence of p-selective, near-testable sets that are not in P, and a
construction of a p-cheatable, p-selective set that is not in P. Thus, not all combinations

of self-reducibility properties yield characterizations of P.

14 This was proved independently by Beigel, [Bei-87b].

15 This was shown independently in [ABG-88].




40

3.2 Definitions

The sets we consider are either subsets of the natural numbers, or sets of strings
over the alphabet ¥. Most frequently, we will use ¥ = {0,1}. With any alphabet %,
there is a natural ordering of *, namely the lexicographic order. Thus, all strings of
length n precede all strings of length n 4 1, and the strings of length n are ordered by the
“dictionary” order. This induces an isomorphism between ¥* and the natural numbers.

We use “z — 1”7 to mean the immediate predecessor of z in this order.

Definition 3.2.1. A set A isnear-testable (A € NT) if there is a polynomially computable
function that given z decides whether exactly one of x and ¢ — 1 is in A. That is, the
function

s) = xa(2) + xa(z — 1) (mod 2)

is polynomially computable.

Thus, with respect to the lexicographic ordering on £*, we can fully relate the mem-
bership questions for  and = — 1. Near-testability is a special case of Balcdzar’s word

decreasing query self-reducibility [Bal-87], an independently defined concept.

Observation 3.2.2. ([Bal-87], [GJY-87])
(i) fA € P, then A€ NT;

(ii) if A€ NT, then A€ ENPSPACE;
(iii) there is an A € E — NT.

A useful concept in the study of near-testable sets is the boundary of a set. Given
a set A, the boundary of A will contain the first element of each contiguous sequence of

elements of A and of A (except 0). Thus, we have

boundary(A) = {z : exactly one of z and z — 1 € A}.

We can picture a set A for which 0 € A as follows:



41

e | O | ey | I | s | O | ...

The thinner bars represent A, the thicker bars represent A, and the thin vertical lines are

elements of boundary(A). Notice that boundary(A) = boundary(A).
Observation 3.2.3. A € NT if and only if boundary(A) € P.

Definition 3.2.4. ([BGGO-86, et al.]) A is (n for k) p-cheatable if there is a polynomial
time oracle Turing machine M4 that on input z;...z,, outputs xA(z1),...xa(zr), and
makes only k queries to the oracle. We say that A is p-cheatable if A is (2% for k) p-

cheatable for some k.

Beigel actually defines a set to be p-cheatable if there is some oracle B and polynormial

time oracle Turing machine M0 () such that M® on input z; ...z, outputs xa(z1),...xa(zar),

and makes only k queries to the oracle.

Observation 3.2.5. ([Be-87a], [GJY-87a]) A set A is (2 for 1) p-cheatable if and only if

there is a function associated with A, of the form

xa(z)+ xa(ly) (mod2), or
9(z,y) = { xal(z), or
xa(y).

Proof. If there is such a function g, then it is easy to see that there is a (2 for 1)
algorithm that makes use of g.

So let us assume that we have a (2 for 1) algorithm M A(z,y). We construct g by
simulating M4, without actually querying A. Since M“4(z,y) makes only one query to
the oracle, we consider both possible outcomes of the calculation. Each outcome contains
xa(z) and xa(y). If the two outcomes agree on one of these, then we have absolute

information about membership of that string in A. Otherwise, we learn that z € A if and

onlyifye /¢ A. m




42

The above observation can be generalized, to show that for any (2* for k) p-cheatable
set there is an associated function that, on input (z;, ...Zgk ), either outputs absolute infor-
mation about membership in A of one string, or relates x4(z:) ® xa(z;) (¢ < j < 2%) to
the membership information for the other inputs. (See [GJY-87], or [GJY-88a, Theorem 1,

Lemma 1].) Unlike the near-testable sets, p-cheatable sets may have high time complexity.

Theorem 3.2.6. ([BGO-87])
i. There are p-cheatable sets of arbitrarily high time complexity, and

ii. all p-cheatable sets are decidable.

There is one other type of self-reducible set that we will consider in §3.4. This is the
p-selective sets, which were introduced by Selman in [Sel-79]. Selman’s definition is the

polynomial time analog of the semi-recursive sets introduced by Jockusch [Joc-68].

Definition 3.2.7. A is p-selective if there is a polynomial computable function s(z,y)

such that

i) s(z,y) € {=,y}, and

ii) ifz € A ory € A, then s(z,y) € A.

Selman and Ko have both given structural characterizations of the p-selective sets. We
present the most general characterization, from [Ko-83]. First, we need some background

definitions.

Definition 3.2.8. ([Ko-83]) A preorder R on T* is partially polynomial-time computable

if there is a polynomial-time computable function f such that
(a) f(z,y) = f(y,z) = z, if zRy but not yRz,
(b) f(z,y) = f(y,z) € {z,y}, if 2Ry and yRz, and

(c) f(z,y) = #, if neither xRy nor yRz, where # is a special symbol not in 3.

Given a preorder R, we define an equivalence S, where .5 y if and only if zRy and



43

yRz. We can then define the relation R’ on £*/S in the usual manner. We call S and R’

the equivalence relation and the partial order induced by R, respectively.

Theorem 3.2.9. ([Ko-83]) A set A C T* is p-selective if and only if there is a partially
polynomial time computable preorder R in ©* such that if S and R' are the induced
equivalence relation and partial ordering as defined, then

a. R' is a linear ordering, and

b. A is the union of an initial segment of (£*/S, R').

Thus, we see that A is an initial segment of the <p/ ordering. This shows that
p-selectivity induces an ordering structure on sets, just as 2-conjunctive truth-table self-

reducibility induces an ordering on SAT.




44

3.3 One-Way Functions and NT

To construct a near-testable set that is not in P, we use an idea from the study of NP. If
A € NP, then it may be difficult to know whether there is a witness to “z € A”, although
it is easy to test whether y is such a witness. Thus, {(z,y) : y witnesses z € A} is in
P, but finding each element of this set may be hard without exhaustive search. We use a

one-way function to define a set with this and other useful properties.
Theorem 3.3.1. If there is a one-way function, f, then there is a set A€ NT — P.

Proof. We define A implicitly by using the function f to define boundary(A). In
particular, we let boundary(A) = {(2,y) : f(y) = z}, where we define the pairing function
(#,y) to have certain specific properties. We define A by boundary(A), and 0 ¢ A. Clearly,
boundary(A) € P. We claim that A is not.

First, we define the pairing function (z,y). Let ¢(n) be a strictly increasing polynomial
bound for both f and f~!. We are only interested in pairs (z,y) where y might be f~1(z).
This is the case only when |y| < ¢(]2]). We call a pair (2,y) relevant if |y| < g(]z]). Let
(2,y) = zy109U=D=1¥| for relevant pairs (z, y). Notice that this divides the strings of length
n + 1+ ¢(n) into subintervals corresponding to each of the strings of length n.

Suppose A € P. Then, to determine if f(z) exists, we need only determine whether
there is a boundary element of the form (z,y) for some y. We note that, by the definition
of (z,y), the string 209(2D+1 i not in boundary(A), and is between any boundary elements
of the form (z — 1,y) and those of the form (z,y). Notice also that for each z, there is at
most one element of boundary(A) of the form (2,y). Thus, we can deduce that there is
such an element (i.e., that f~!(z) exists) if exactly one of (2 — 1)19(z=1D+1 554 »0e(lzD+1
is in A.

Furthermore, using the same reasoning as above, we can use binary search on the

subinterval corresponding to z, to find f~1(z), if it does exist. This requires checking



45
if polynomially many strings are in A; if A were in P, we could polynomially invert f.

Therefore, A€ NT — P. g

To prove the next result it is useful to introduce the notion of the parity of a set.
Notice that the preceding proof shows the close connection between a set, the boundary

of the set, and the parity of the boundary.

Definition 3.3.2. Let < be the lexicographic ordering on {0,1}*. For any set B we define

the parity of B as follows:

0 if|{y <z:y¢€ B} iseven;

parityp(z) = {
(=) 1 otherwise.

Then, identifying a set with its characteristic function, it is easy to see for any set A that
0 ¢ A= A= pa‘rityboundary(A), and

0cAd=> A= parityboundary(A)~
Thus, A € P if and only if the parity of the boundary of A4 is in P.

Theorem 3.3.3. If f in the previous construction is both one-way and onto i.e. if f~1(z)

is uniquely defined for each z, then A € (NP N coNP) — P.1¢

Proof. We observe that, if f in the previous proof is onto, then there are an even

number of boundary elements of length n + 1 + ¢(n) for each n, namely 2" of them. Thus

parityboundary(A) (1 n+1+q(n)) =0,

16 Grollman and Selman show in Theorem 11 of [GS-84] that the existence of such a
function is equivalent to P # UP N coUP. Our theorem is a variation of a result from
Brassard, Fortune, and Hopcroft [1978], which is quoted as Exercise 13.24 in Hopcroft
and Ullman [HU-79], which asks the reader to prove that {(z,y) : f™1(z) > y}, f a
one-way function, is in (NP N coNP) — P.




46

and for |z| # n + 1+ ¢(n) for any n,

pa""ityboundary(A) (Z) =0,

ie., z ¢ A.
Suppose we are given a string of the form wz, where |w| = 1 + ¢(|2]). To decide

whether zw € A, we need to know

parityboundary(.A) (zw)

This can be broken down into two questions. The first is, “how many strings (mod 2) of
length |z| precede 27” The second is, “is f~1(2) < w?” The answer to the first question
is simply the parity of z. To answer the second, we guess y = f~1(z), and verify. This

nondeterministic polynomial time procedure provides a witness for z € A or for z ¢ A.

Thus, A € NP NcoNP. By Theorem 3.3.1, we know that A ¢ P. g

In the proof of Theorem 3.3.1, we used the fact that there was either one or no
boundary string in each “z-interval.” We could have used any set B, such that B is defined
by an odd number of strings in each interval. We use Parity- P to describe such sets.

Papadimitriou and Zachos refer to Parity-P as “a more moderate version” of Valiant’s
class #P, the class of functions, f(z), that count the number of accepting paths produced
by a nondeterministic polynomial time Turing machine on input z [Val-79]. Like #P,
Parity-P is in PSPACE, and is thought not to be contained in the polynomial time
hierarchy. Clearly, if we could compute #P, then we could compute Parity- P. However,
there is no obvious reason that the ability to distinguish between an odd and even number
of accepting paths would help in computing the total number of accepting paths.

After seeing the previous proof, Hemachandra pointed out that the near-testable sets
are in Parity-P, and that all sets in Parity-P can be uniformly <[ -reduced to near-testable

sets. Notice that the class UP is a subclass of Parity-P. Thus, the following theorem,



47

proved jointly by Goldsmith, Hemachandra, Joseph, and Young, is an extension of Theorem

3.3.1, and of Hemachandra’s result.

Theorem 3.3.4. ([GHJY-87]) Every set in Parity-P is <F-reducible to a near-testable

set via a p-invertible reduction.

Proof. This proof is a variation on the proof of Theorem 3.3.1. Let S € Parity-P. Let
M be the parity acceptor for S, and let ¢(|z|) be a strictly increasing polynomial bound
on the run-time of M(z). We can encode a computation, ¢, of M(z) as a binary string of
length ¢(|z|), that describes a path through the nondeterministic computation tree, padded

by the appropriate number of zeroes. We define T' € NT implicitly, by 0 ¢ T, and

boundary(T) ={(z,%,¢c) : ¢ codes an accepting computation of M(z),

and i € {0,1}.}

Here, we use (z,t,c) to abbreviate zlilc.

We include i so that each accepting computation is encoded twice. Since 0 ¢ A, this
means that z092D+3 ¢ T and £19(2D+3 ¢ T for each z. However, the “midpoint” between
these two strings, £1109(2D+1 is in T if and only if there are an odd number of accepting
computations of M(z). If we let f(z) =;:c1109(""|)+1, then f is a <f-reduction from S to

T, which is easily invertible. g

Corollary 3.3.5. ([GHJY-87]) NT = P if and only if Parity-P # P.




48

3.4 Characterizing P Using Self-Reducibility

In [GJY-87], we asked whether the (2 for 1) p-cheatable sets were an extension of the
near-testable sets. We show that this is not the case in Theorem 3.4.1. Beigel proved this

theorem independently in [Bei-87b], and announced it in [ABG-87].
Theorem 3.4.1. All sets that are both (2 for 1) p-cheatable and near-testable are in P.

Proof. Let A be near-testable and (2 for 1) p-cheatable. Let ¢ and g be the corre-
sponding functions. To decide whether z is in A, we do the following. We assume that we
know if 0 is in A. We maintain two variables, a and b. At each stage, we know whether
a € A, and we know xa(b) ® xa(z). To begin, weset ¢ = 0and b=2z. Ifa < b—1,
then let ¢ be the midpoint between a and b, and compute the (2 for 1) function g(c, b).
If g(c,b) outputs x 4(b), we are done. If it outputs xa(c), we let a := ¢, and if it outputs
xa(c) ® xa(b), we compute x4(c) ® xa(z), and let b := c.

When a = b — 1, we run the near-testing function ¢(b) = x4(b) ® xa(a), and use the
information about x 4(a) to deduce x 4(b), and thus x 4(z).

We apply g(c, b) at most log(z) + 1 times, and #(b) once, where b, ¢ < z. Thus, this

algorithm is polynomial in |z|,i.e., A€ P. g

This result can be extended to show that all p-cheatable sets that are near-testable

are in P.

Theorem 3.4.2. ([GJY-87]) All sets that are both p-cheatable and near-testable are in

P. In other words, P consists of those sets that are both p-cheatable and near-testable.

The only examples we have of non-trivial p-cheatable sets are sets with such sparse
boundaries that, given two elements of such a set that are separated by a boundary element,
then in time polynomial in the length of the larger one, we can recapitulate the construction

of the set, up to the smaller string. (These sets are either very sparse, or else have very



49

long sequences of elements whose membership depends on a few elements.) For sets in

E — P, we formalize this as follows.
Definition 3.4.3. S is log*-sparse if, whenever z,y € S, ¢ < y implies that 2%l < lyl.
If we let f(0) =2, and f(n + 1) = 2™, then the tally set {17(™} is log*-sparse.

We can construct a set S € E — P by diagonalization. If § C {1f("}, then S is
(2 for 1) p-cheatable as well: for n > m, in time polynomial in f(n), we can simulate the
m** diagonalization, and decide whether 1/(™ ¢ S. Thus, the (2 for 1) algorithm for §

need only query S about 17(®), Similarly, S is p-selective.

Observation 3.4.4. ([GJY-88]) If there is a set in Parity-P — P that is contained in a
log*-sparse set in P, then there is a set in Parity-P that is (2 for 1) p-cheatable, yet is not
in P.

Although we have shown that the collection of near-testable sets is one-one interre-

ducible with the class Parity-P, this is one indication that they are not the same. The

following two observations provide further indication that they are different.

Observation 3.4.5. There are sparse sets in Parity-P — P if and only if there are sets in
Parity-FE — E.

The proof of Observation 3.4.5 follows the proof of the analogous theorem for NP in
[HIS-85]. The only difference is that, in order to prove that Parity-E = E implies that
there are no sparse sets in Parity-P — P, we must take care to do the multiple Parity-time
calculations sequentially, rather than in parallel. Thus, the multiple calculation will remain

in Parity-time.
Observation 3.4.6. If S € NT and S is sparse, then S € P.

Lastly, we consider the relationship between the near-testable sets and the p-selective

sets. Again, we consider log*-sparse sets. This time, we want a set S € P such that there




50
is no polynomial algorithm that, on input 0%, can list all of the elements of S of length n.

Allender and Rubinstein [AR-86] proved that the existence of such sets is related to the

existence of certain kinds of one-way functions.

Definition 3.4.7. A sparse set S is P-printable if there is a polynomial time algorithm

that, on input n, will generate all of the elements of S of length < n.

Theorem 3.4.8. If there is a log*-sparse set in P that is not P-printable, then there is a
near-testable set that is p-selective, yet is not in P. Furthermore, by Theorem 3.4.2, this

set cannot be p-cheatable.

Proof. Let I, be the interval of strings from length f(n) up to length f(n + 1). Let
S € P be a log*-sparse set that is not P-printable. By the definition of log*-sparsity, we
know that |S N I,| < 1 for each n.

Let So = SN (Unlsn), S1 = 8N (Unlsnt1), and Sz = 5N (UnJans2). Then SN S; € P
for each 7, and for at least one i, SN S; is not P-printable. Without loss of generality, we
will assume that i = 0, and set S = §N S.

We define the set A as follows:

A={z: =0} U {seh,and Iy e ,NS, y >z}

U {:L' z € I3, or I3,41 and I3nﬂS=@.}

In other words, if there is an element y € I3, NS, then it serves as a “breakpoint,”
dividing that interval into a left subinterval in A, and a right subinterval in A. If there is
no such element, then both I, and I3,4; C A.

The boundary of A consists of
{0FGM} U § U {0FCM 1. 056G € 5}

U {0FBmD) L oS =0)



51

By the definition of the Iy’s, if y = 0f(37+2), then in time polynomial in |y|, we can test
whether there is an element of S in I3,. Thus, boundary(A) € P,so A € NT.

The following function is a p-selection function for A:

(z  if y € I3p42 for some n, or

ifz € Is, Ulgpyy and y € I3, U I3pya,
and z < y, or

€ I3n Ulzpyy, ¥ € [sm U I3y, m > n,
and z € A4;

|y otherwise.

Note that, in the third case, we can test z € A in time polynomial in |y|.

Finally, suppose A € P. Then the following algorithm P-prints S: for each k, if
f(3n) < k < f(3n + 1) for some n, and if 0¥ € A and 0¥+ ¢ A, then there is an element
of length k in S. If f(3n) = k, then there is an element of S of length £ if and only if
0%+l ¢ A. Otherwise, if there is an element of A of length k, we can use binary search to
find it. Notice that this can be done in time polynomial in k, contradicting our assumption

that S was not P-printable. Therefore, A ¢ P. g

Observation 3.4.9. There are sets that are p-cheatable, p-selective, and not in P.}7

Proof. Any subset of {1(")} that is in EXP — P will be both p-cheatable and p-

selective. The p-selector function is defined as follows, for z < y:

gz if y # 17 for any n;
s(z,y) = if z =17™ and y = 17(™) and z € 4;

y otherwise. g

17 JABG-88] also observes that the properties of being p-cheatable and p-selective are
independent of each other.




52

APPENDIX 1. NOTATION AND TERMINOLOGY

We use the following standard conventions: the letters ¢, 5, k are indices; P;, R;, S;, T; and
M; are characteristic programs in some canonical enumeration of Turing machines; and
f, g, h are functions from N to N or from {0, 1}* to {0, 1}*, which are usually polynomially
computable. |

P and NP are the classes of polynomial and nondeterministic polynomial time decid-
able sets; a set A € P if there is some polynomial time program T; such that z € 4 if and
only if T;(z) = 1. We frequently abuse notation and use T; both as a program and as the
set for which the program decides membership.

Thus,

P =|JDTIME[n® + c;
c

NP =| JNTIME[n® +c};
E=| ) DTIME[]2"");

NE = | JNTIME[2°"};
EXP=|JDTIME[2"];
NEXP =| JNTIME[2"];
PSPACE = | JSPACE[n® + dJ;
Logspace = U DSPACE](logen)].

c>0

The class UP is the subclass of NP such that A € UP if and only if there is a
nondeterministic polynomial time Turing machine M that recognizes A, such that M(z)

has at most one accepting computation for each input z.



53

In [PZ-83], Papadimitriou and Zachos defined the class Parity-P. A is in Parity-P if
there is a nondeterministic polynomial time Turing machine M such that z € A if and
only if there are an odd number of accepting computations of M(z). This class has some
similarities with the class EP defined by Goldschlager and Parberry [GP86]. EP is the
class of sets computable by nondeterministic Turing machines extended by an ezclusive-
or operator. By adding an exclusive-or “gate” at the root of the computation tree of a
nondeterministic Turing machine, the machine can determine the parity of the number of
accepting computations. Since Goldschlager and Parberry did not require their machines
to use the exclusive-or operator, EP contains both NP and Parity-P.

We say that a set A is Turing self-reducible if there is a polynomial time oracle Turing
machine, MO(), such that M4(z) = 1 if and only if z € A, and M4(z) only queries
strings that are shorter than .

In [Bal-87], Balcazar introduced the notion of word-decreasing query or wdg-) self-
reductble. We say that a set A is wdq self-reducible if there is a polynomial time oracle
Turing machine, MO(), such that M4(z) = 1 if and only if z € A, and M4(z) only
queries strings that lezically precede z.

In Chapter 1, we assume a uniform enumeration of polynomial time Turing machines
with oracles (both deterministic and nondeterministic). In particular, we assume that,
given a specification for T,-(), we can determine a polynomial bound, p;i(|z|), on the run-
time of T,-O(:z:), independent of the oracle. This can be done by specifying that each Ti()
is equipped with a polynomial clock that stops the calculation after a certain number of
steps.

We discuss several types of polynomial reductions and equivalences. We say that
A <P B if there is some many-one, polynomial time computable f such that z € A4 if and
only if f(z) € B. If there is a reduction f : A — B that is one-one and length-increasing,

then we say A Sf: ii- 1f there is polynomial one-one, onto, polynomially invertible reduction




54

from A to B, then A and B are p-isomorphic (A =F B).

We also consider bounded truth-table reductions. We say A < P, B if there is a poly-
nomial time function f such that, on input z, f computes 1, ...z and Boolean function
a, such that = € A if and only if a([z; € B],...,[zx € B]) = 1. Notice that many-one
reductions are a special case of the truth-table reductions.

For a given reduction, r, we say that A and B are polynomial r-equivalent (A =P B)
if A <F B and B <P A. The collection of all sets B such that A =P B is called the
r-degree of A.

We say that f is a one-way function if f is polynomially computable, polynomially
honest (i.e. there is a polynomial r(n) such that | f~(z)| < r(|z|) for all = such that £~ (z)
exists), one-one, and f~! is not polynomially computable. We say that f is p-invertible if
f is one-one and f~! is polynomially computable.

A set A is sparse if there is a polynomial p(n) such that, up to length n, there are no
more than p(n) elements in A. If A C {0}*, (or {1}*) then A is a tally set.

Finally, in our constructions we will consider the interval I(n) of all binary strings of

length n.



55

APPENDIX 2. RELATIVIZING COOK’S THEOREM

When studying properties of complexity classes, it is often useful to study the sets that are
complete for those classes. Unfortunately, there are classes C and oracles A and B such
that C4 has complete sets, and C® does not. (See [HHem-86], for instance.) However, it
is part of the folklore of the field that NP4 always has < -complete sets, and, what is
more, that there is a particular set, SAT#, that is always complete for NP4. Schoning
proved this in [Sch-81], although he did not give the full details of the proof. Therefore,
we are including a more detailed version, that is useful for proofs in Chapter 2.

Our definition of SAT4 must include oracle queries. We formalize this with clauses
of the form (zoz2T3 € A), or (Tsz3T2z222 ¢ A), where we interpret a “truth assignment”
as a mapping of the variables to {0,1}. Thus, a string of symbols can be read as a binary
string.1®

Thus, SAT# is the set in NP4 of “relativized Boolean” satisfiable formulas, i.e.,

formulas of the form
(370 Va1V 3}2)&(&:—1 \Y 1}3)&(33012253 € A)&,’ etc.

A relativized Boolean formula is satisfiable with respect to A if there is a mapping of the
variables that makes that formula a true sentence. In other words, the predicate SAT()()
takes as arguments a formula b(zo, ...z ), and an oracle A. Therefore SAT4 is dependent

on A, as well as on the satisfiability of the Boolean part of the expression.

Our proof relies heavily on the proof of Cook’s Theorem given in [MY-78]. The proof
in the unrelativized case requires that we show that any Turing machine is equivalent to a

machine that has only one tape, always moves the tape head at each instruction execution,

18 We assume that an oracle A is a subset of {0,1}*.




56

and the tape is one-way infinite (so the tape has a first square, but no last square). It
then shows that given any NP machine, we can uniformly encode a computation of the
machine on a given input as a Boolean formula, which is satisfiable if and only if the
machine accepts that particular input. Furthermore, this reduction is polynomial in the
length of the input. The proof we present is a modification of this approach. We begin by
standardizing our definition of an oracle Turing machine.

An oracle Turing machine instruction (7, €, a;, am, D, p) specifies the current state, the
tape in question (work or query), the symbol read, the symbol written, direction moved

(all on the specified tape), and next state.

Definition A.2.1. A restricted nondeterministic Turing machine with oracle has the fol-
lowing properties.
1) The machine has two tapes, one for the input and workspace and one for the oracle.
2) The machine has states 0,...,¢,9 +1,q + 2, h(= g+ 3). 0 is the initial state; q is the
oracle query state, the only state in which the machine queries the oracle; ¢ + 1 and
q+2 are the only states that can immediately follow ¢, indicating yes and no answers,
respectively, to the oracle query; and h is the unique halting state, so that M accepts
string x on a given computation if and only if during that computation, the machine
reaches state h, and whenever it enters state h, it halts.
3) If (i e aj am D p) and (i € a; a, D' p') are two instructions in the machine, then
e=¢€, am =ayp, and D =D'.
Proposition A.2.2. Any nondeterministic Turing machine with oracle, MO(), is poly-

nomially equivalent to a restricted nondeterministic Turing machine with oracle.

In other words, there is a restricted machine M'0 and a polynomial p(|z|) so that for
any oracle A, and input z, M4(z) halts within p(¢(|z|)) steps, where ¢ is a polynomial

bound on the run-time of the original machine.



57

Sketch of Proof. We assume that the original machine has only one oracle tape, and
that it records replies to oracle queries in its states, instead of on tape. If there are more
oracle tapes, we simulate the machine by making the extra oracle tapes into work-tapes,
and copying the contents of the appropriate work-tape onto the oracle tape before querying
the oracle. We then approximate M’ 0() by a one work-tape machine. We merge the read-
write tapes (if there are more than one) into one tape by interleaving them (for two tapes,
this corresponds to putting one on even squares, the other on the odds.) If the original
machine has k read-write heads on its work-tape(s), we increase the tape alphabet, so that
we can replace symbol a by a symbol a;, specifying that the it* head is reading symbol
a. Then we replace each step in the original computation with a sweep of the tape (in
O(q(|z])) time) in the new machine. For further details of machine manipulation, see [LP-
81, 198-204, 324-6]. At worst, these transformations increase the run-time of M '0(z) to
O(q(lo)?)-

Next, by a similar procedure, we force this tape to be a one-way infinite tape (if it
was originally two-way), essentially by folding it in half and intermeshing again.

The second condition implies that the following transitions never occur:

o (g,¢,0a5,am,D,p),

e (h,e,aj,am,D,p),

o (i,e,a;,am,D,q+1) and
e (i,e,aj,am,D,q+2).

A machine that satisfies this definition has its nondeterminism limited to the choice
of the next state, and not the write instruction, the direction the tape head moves, or
the choice of tapes. This last is easily implemented: each state : for which there are
transitions for both tapes generates tyork and fquery; €ach of the transitions to ¢ generates
two transitions, that the computation chooses between nondeterministically. The rest can

also be implemented by creating intermediary states where an unacceptable instruction




58

previously existed. Again, this may multiply the number of states by a small constant.

The details are available in [MY-78, pp234-5]. g
Theorem A.2.3. ([Sch-81]) For any A, SAT# is < -complete for NPA.

Proof. There are two parts to any proof that a given set is complete for a specified
class. First, we must show that the set is in the class; second, we must show that any set

in the class reduces to that set. In this case, the first part is easy.
o SATA e NP4

There is a polynomial time, nondeterministic Turing machine that on input b(z1...z»)
“guesses” an assignment for z;...z,, and checks if the resulting sentence is true. This

checking can be done in linear time, with fewer than |b(z;...z5)| queries to the oracle.

For the second part, we must show that any computation of a restricted Turing ma-
chine with oracle can be described by a relativized Boolean formula that is satisfiable if

and only if that Turing machine accepts the given input.

As in Machtey and Young’s proof for the unrelativized version, our goal is to produce,
for machine M and input z, a relativized Boolean formula, which is satisfiable for the given
oracle if and only if there is a halting computation of M on input z with that oracle. The

construction is uniform for all M. We begin by describing Machtey and Young’s proof.

e The unrelativized version

We construct a Boolean formula, based on the description of machine M, and input ,
that is satisfiable if and only if there is an accepting computation of M(z). The variables
we use represent bits of information about the computation of M(z). We describe the
formula one conjunct at a time.

Given machine M, with polynomial bound p(|z|), k + 1 states, and alphabet symbols

b,ay,...,ax, b a blank, we set m = p(|z|) for the given input z. We observe that we need



59

only consider times ¢ = 1,...,m, and m tape squares and k+1 symbols. We first construct
an m? * (k + 1) matrix of Boolean variables giving each possible symbol for each square at
any possible time:

SYMB(t,i,j) is true if and only if, at time ¢, the it square contains the j** symbol.

We construct two more matrices of variables of sizes m? and m * (h + 1), respectively,
to specify the position of the head, and to specify the state of the machine at time ¢:

HEAD(t,1) is true if and only if, at time ¢, the head is at square 1, and

STATE(t,s) is true if and only if, at time ¢, the machine is in state s.

In order to describe a valid computation, for each ¢ and square 7, exactly one SY M B(t,1, j)
must be true; similarly for each ¢, exactly one of HEAD(t,4), and one of STATEC(t,s)
must be true. We use the following formula to state this.

1) JUSTONE(z1,...z,) is true if and only if exactly one of zy, ...z, is true.®

We need a total of (k + 1) + m + (h + 1) of these.

Next we have formulas that express legal computations, based on the machine table:
given time ¢, the head position, the state, and the symbol, we specify the valid write
commands, move commands, and next states.

We say that, for each time ¢, square ¢, and symbol j,

2) ~SYMB(t,i,j)V HEAD(t,i)V SY MB(t+1,%,5). In other words, either the symbol
on square ¢ at time ¢ remains there at time ¢ 4 1, or the head is at that square at time

t to change it.

We have one conjunction,

3) /\OStSm STATE(t, h),

which is true if and only if the computation halts by the m** step.

19 JUSTONE(z;,...z,) is shorthand for the CNF formula (-z1Vz2 V... Vz,) & (z1V
-z3V..Vzy) & ... & (g VE2 V... V Ly ).




60
We have an formula that describes the initial condition of the tape, specifying the
input, and that the rest of the m squares are blank. The first half of this formula depends
on the input. The second half is
4) /\Izl<i$m SYMB(0,1,b).
Finally we have the transition table formulas:
5) (HEAD(t,i) & STATE(t,s) & SYMB(t,1,j)
— SYMB(t +1,%,a4))*°
& (HEAD(t,i) & STATE(t,s) & SYMB(t,i,j)
— STATE(t+1,r))
& (HEAD(t,1) & STATE(t,s) & SYMB(t,,])
— HEAD(t + 1,i + (=1)™)).
The conjunction of the Boolean formulas described by 1-5 is satisfiable if and only if

there is a valid halting computation of M on the given input, which accepts that input. It

is a formula of length @(m?), which is certainly polynomial in |z|.

e The relativized version

We have already described the legal transitions, and the matrices of possible states,
symbols, and head positions on the work-tape. In addition, we have a set of variables to
describe the oracle tape. We define the variables OHEAD(t,i) and OSY M B(t,i,j) in
the obvious manner. Here again, ¢ ranges from 1 to m, ¢ from 0 to m. However, j may be

one of the three symbols used on the oracle tape: 0, 1, and b.

For each ¢ and 7 we have

20 This could be written in conjunctive normal form as ~HEAD(t,:)V-STATE(t,s)V
LSYMB(t,i,j) V SY MB(t1,i, an).



61

6) JUSTONE(OHEAD(t,1),...,OHEAD(%, m)) &
JUSTONE(OSY MB(t,i,1),0SY M B(t,3,0), 0SY M B(t,%,b)).
At time 0, and after each oracle call, the oracle tape is blank:

7) MAi<i<m OSYMB(0,1,b), and for each t,
AISiSm(—ISTATE(t, q) vV OSYMB(t +1,4,b)).
For each t, ¢, and j, we have

8) ~OSYMB(t,i,j) VOHEAD(t,i) vV OSYMB(t + 1,%,j). In other words, either the
symbol on square i of the oracle tape at time ¢ remains there at time ¢ + 1, or the
oracle head is at that square at time ¢ to change it.

We have formulas describing those transitions that involve the oracle tape without
oracle queries.

9) (OHEAD(t,i) & OSTATE(t,s) & OSYMB(t,i,5)
— OSYMB(t +1,i,a,))
& (OHEAD(t,i) & OSTATE(t,s) & OSYMB(t,i,])
— OSTATE(t + 1,7))
& (OHEAD(t,i) & OSTATE(t,s) & OSY M B(t,4,j)
— OHEAD(t +1,i 4+ (—=1)™)).

Finally, we describe the oracle queries. At time t, if M is in state ¢, we want to ask
whether the string of nonblank characters on the oracle tape form a string in the oracle.
We assume that the nonblank characters are 0’s and 1’s, and that they are on squares
q,...,n (for n < m), and that square n + 1 contains a blank if n < m. If we know that the
ith square at time t contains a nonblank symbol, then OSY M B(t,4,1) = 1 (true) if the
symbol is a 1, and OSY M B(t,1,1) = 0 if the symbol is a 0.

10) (STATE(t,q) N—=OSYMB(t,1,b) NOSYMB(t,2,b)V
— [OSYMB(t,1,1) € A])
& (STATE(t,q) A-OSY MB(t,2,b) A OSY M B(t,3,b)V




62
-+ [0SYMB(t,1,1)OSY M B(t,2,1) € A]
& (STATE(t,q)~V OSYMB(t,m,b)A
— [OSYMB(t,1,1)-.- OSYMB(t,m,1) € A]).
The length of the conjunction of the formulas described in 1-10 is still of order m?2. In
fact, it is only twice as long as the previous one, and is satisfiable if and only if there is an
accepting computation of M4(zx). Therefore, any NP4 set may be mapped into the set of

satisfiable relativized Boolean formulas, and its complement mapped to the complement

of SAT#, making SATA <P -complete for NP4. g



63

BIBLIOGRAPHY

[AR-86] E. Allender, “Isomorphisms and 1-L reductions,” Journal of Computer and Sys-
tem Sciences, to appear. (First published in Structure in Complezity Conference, Springer
Verlag Lecture Notes in Computer Science 223 (1986), 12-22.)

[AR-86] E. Allender, and R. Rubinstein, “P-printable Sets”, to appear in STAM Journal
of Computing (Preliminary version appeared as “The complexity of sparse sets in P,”
Structure in Complezity Conference, Springer Verlag Lecture Notes in Computer Science
223 (1986), 1-11.)

[AFH-86] K. Ambos-Spies, H. Fleischhack, and H. Huwig, “Diagonalizations over polyno-
mial fime computable sets,” Preprint (1986), 1-54. (Also accepted by Theoretical Computer
Science.)

[ABG-87] A. Amir, R. Beigel, and W. Gasarch, “Polynomial terse sets IL,” Manuscript
(1987).

[ABG-88] A. Amir, R. Beigel, and W. Gasarch, “Cheatable, p-terse, and p-superterse
sets,” University of Maryland Technical Report TR-2090 (1988), 1-23.

[BGS-75] T. Baker, J. Gill and R. Solovay, “Relativizations of the P = NP question,”
SIAM Journal of Computing 4 (1975), 431-442.

[Bal-87] J. Balcdzar, “Self-reducibility,” Symposium on the Theoretical Aspects of Com-
puter Science, Springer Verlag Lecture Notes in Computer Science 247 (1987), 136-147.
[BS-85] J. Balcézar, and U. Schéning, “Bi-immune sets for complexity classes,” Mathe-
matical Systems Theory 18 (1985), 1-10.

[Bei-87a] R. Beigel, “Bi-immunity and separation results for cheatable sets,” Preprint

(June 87), 1-15.

[Bei-87b] R. Beigel, “A note on some open problems of Goldsmith, Joseph, and Young,”
Working draft (October 1987), 1-4.

[BGGO-86] R. Beigel, W. Gasarch, J. Gill and J. Owings, “Verbose, terse sets and




64

superterse sets,” Manuscript (1986).

[BGGO-87] R. Beigel, W. Gasarch, J. Gill and J. Owings, “Terse, superterse and verbose
sets,” University of Maryland Technical Report TR-1806 (March 1987), 1-25.

[BGH-87] R. Beigel, W. Gasarch, and L. Hay, “Bounded query classes and the difference
hierarchy,” University of Maryland Technical Report TR-1847,

[BGO-87] R. Beigel, W. Gasarch, and J. Owings, “Terse sets and verbose sets,” Recursive
Function Theory: Newsletter 36 (Feb. 1987), 13-14. (1987), 1-26.

[BG-81] C. Bennet and J. Gill, “Relative to a random oracle 4, P4 &£ NP4 with proba-
bility one,” SIAM Journal of Computing 10 (1981), 96-113.

[Ber-77] L. Berman, Polynomial reducibilities and complete sets, Ph.D. Thesis, Cornell
University, 1977.

[BH-77] L. Berman and J. Hartmanis, “On isomorphisms and density of NP and other
complete sets,” SIAM Journal of Computing 6 (1977), 305-322.

[Ber-78] P. Berman, “Relationship between density and deterministic complexity of N P-
complete languages,” Symposium on the Mathematical Foundations of Computer Science,
Springer Verlag Lecture Notes in Computer Science 62 (1978), 63-71.

[Dow-78] M. Dowd, “Isomorphism of complete sets,” Unpublished manuscript, (1978).
[For-79] S. Fortune, “A note on sparse complete sets,” SIAM Journal of Computing 8
(1979), 431-433.

[GH-88] K. Ganesan and S. Homer, “Complete problems and strong polynomial reducibil-
ities,” Boston University Technical Report #88-001 (1988), 1-13.

[GHJIY-87] J. Goldsmith, L. Hemachandra, D. Joseph, and P. Young, “Near-testable
sets,” University of Washington Technical Report #87-11-06 (1987), 1-18.

[GJ-86] J. Goldsmith and D. Joseph, “Three results on the polynomial isomorphisms of
complete sets,” Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science (1986), 390-397.



65

[GIY-87] J. Goldsmith, D. Joseph, and P. Young, “Self-reducible, p-selective, near-testable,
and p-cheatable sets: the effect of internal structure on the complexity of a set,” Proceed-
ings of the Second Annual Structure in Complezity Conference, IEEE Computer Society
(1987), 50-59. (Also appeared as University of Washington Technical Report #87-06-02.
Later revised as University of Wisconsin Technical Report #7438 (1988), 1-22.)

[GIY-88] J. Goldsmith, D. Joseph, and P. Young, “Using self-reducibilities to characterize
polynomial time,” University of Wisconsin Technical Report #749 (1988), 1-20.

[GS-84] J. Grollman and A. Selman, “Complexity measures for public key cryptosystems,”
Proceedings of the 25th IEEE Symposium on Foundations of Computer Science (1984),
495-503.

[GP-86] L. M. Goldschlager and I. Parberry, “On the construction of parallel computers
from various bases of Boolean functions,” Theoretical Computer Science 43 (1986), 43-58.
[Har-78] J. Hartmanis, “On logtape isomorphisms of complete sets,” Theoretical Com-
puter Science 7 (1978), 75-89.

[Har-83] J. Hartmanis, “Generalized Kolmogorov complexity and the structure of feasible
computations,” Proceedings of the 24th IEEE Symposium on Foundations of Computer
Science (1983), 439-445.

[HH-86] J. Hartmanis and L. Hemachandra, “Complexity classes without machines: on
complete languages for UP,” Cornell Technical Report TR-86-746 (April 1986), 1-17.
[HHem-87] J. Hartmanis and L. Hemachandra, “One-way functions, robustness, and the
non-isomorphism of N P-complete sets,” Proceedings of the Second Annual Structure in
Complezity Conference, IEEE Computer Society (June 1987), 160-174.

[HIM-78] J. Hartmanis, N. Immerman, and S. Mahaney, “One-way log-tape reductions,”

Proceedings of the 19th Annual IEEE Symposium on the Foundations of Computer Science
(1978), 65-72.

[Hem-87] L. Hemachandra “P#4 # NT# With Probability 1,” Unpublished manuscript




66

(June 1987), 1-11.

[Hom-86] S. Homer “On simple and creative sets in N.P,” Theoretical Computer Science
47 (1986), 169-180.

[F1S-88] S. Homer and A. Selman, “Oracles for structural properties: the isomorphism
problem and public-key cryptography,” Estended abstract (1988), 1-9.

[HU-79] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Language,
and Computation (1979), Addison-Wesley, Reading, MA

[Joc-68] C. Jockusch, Jr., “Semirecursive sets and positive reducibility,” Transactions of
the AMS 131 (1968), 420-436.

[JY-85] D. Joseph and P. Young, “Some remarks on witness functions for non-polynomial
and non-complete sets in NP,” Theoretical Computer Science 39 (1985), 225-237.
[Ko-87] K. Ko, “On helping by robust oracle machines,” Proceedings of the Second Annual
Structure in Complesity Conference, IEEE Computer Society (June 1987), 182-190.
[KLD-86] K. Ko, T. Long and D. Du, “A note on one-way functions and polynomial-
time isomorphisms,” Theoretical Computer Science 39 (1986), 225-237. (First reported in
Proceedings of the 18th Annual ACM Symposium on Theory of Computing (1986), 295-
303.)

[KM-81] K. Ko, and D. Moore, “Completeness, approximation and density,” SIAM Jour-
nal of Computing 10 (1981), 787-796.

[KM-80] D. Kozen and M. Machtey, “On relative diagonals,” IBM Technical Report #8184
(1980), 1-11.

[Kur-83] S. Kurtz, “A relativized failure of the Berman-Hartmanis conjecture,” Unpub-
lished manuscript (1983).

[Kur-85] S. Kurtz, “Sparse sets in NP-P: relativizations,” SIAM Journal Computing 14
(1985), 113-119.

[Kur-86] S. Kurtz, Personal communication (Nov. 1986).



67

[KMR-86] S. Kurtz, S. Mahaney, and J. Royer, “Collapsing degrees (extended abstract),”
Proceedings of the 27th IEEE Symposium on Foundations of Computer Science (1986),
380-389.

[KMR-87] S. Kurtz, S. Mahaney, and J. Royer, “Progress on collapsing degrees (extended
abstract),” Proceedings of the Second Annual Structure in. Complezity Conference, IEEE
Computer Society (June 1987), 126-131.

[KMR-88] S. Kurtz, S. Mahaney, and J. Royer, “The isomorphism conjecture fails relative
to a random oracle,” University of Chicago Technical Report #88-11 (Aug. 1988), 1-23.
[LP-81] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[Lon-88] T. Long, “One-way functions, isomorphisms, and complete sets,” abstract, Ab-
stracts of the American Mathematics Society 9 (1988), 125.

[LY-88] L. Longpre and P. Young, ‘Cook is faster than Karp: a study of reducibilities in
NP, Proceedings of the Third Annual Structure in Complezity Conference, IEEE Com-
puter Society (June 1988), 293-302.

[MY-78] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms,
North-Holland, NY, 1978.

[Mah-81] S. Mahaney, “On the number of p-isomorphism classes of N P-complete sets,”
Proceedings of the 22nd IEEE Symposium on the Foundations of Computer Science (1981),
271-278.

[Mah-82] S. Mahaney, “Sparse complete sets for N P: solution of a conjecture of Berman
and Hartmanis,” Journal of Computer Systems Science 25 (1982), 130-143.

[MY-85] S. Mahaney and P. Young, “Reductions among polynomial isomorphism types,”
Theoretical Computer Science 39 (1985), 157-165.

[MP-79] A. Meyer and M. Paterson, “With what frequency are apparently intractable
problems difficult?” MIT/LCS/TM-126 (1979).




68

[MS-72] A. Meyer and L. Stockmeyer, “The equivalence of regular expressions with squar-
ing requires exponential space,” Proceedings of the 13th ACM Symposium on Switching and
Automate Theory (1972), 125-129.

[Myh-55] J. Myhill, “Creative sets,” Z. Math. Logik Grundlagen Math (1955), 97-108.
[PZ-82] C. H. Papadimitriou, and S. T. Zachos, “T'wo remarks on the power of counting,”
Proceedings of the 6th Annual GI Conference on Theoretical Computer Science, Springer
Verlag Lecture Notes in Computer Science 145 (1983), 269-275.

[Sch-81] U. Schéning, “A note on complete sets for the polynomial-time hierarchy,” ACM
SIGACT News 13 (1981), 30-34.

[Sel-79] A. Selman, “P-selective sets, tally languages, and the behavior of polynomial
reducibilities on NP,” Math Systems Theory 13 (1979), 55-65.

[TV-87] L. Torenvliet, and P. van Emde Boas, “Diagonalisation methods in a polynomial
setting,” Structure in Complezity Conference, Springer Verlag Lecture Notes in Computer
Science 223 (1986), 330-346.

[Val-79] L. Valiant, “The complexity of enumeration and reliability problems,” SIAM
Journal of Computing 8 (1979), 410-421.

[Wat-83] O. Watanabe, “On pseudo-p-isomorphism of k-creative sets,” Department of
Information Sciences, Tokyo Institute of Technology Technical Report #C-57 (1983), 1-8.
[Wat-86a] O. Watanabe, “Hardness and Creativity,” Department of Information Sciences,
Tokyo Institute of Technology Memo (2/26/86), 1-4.

[Wat-86] O. Watanabe, “On one-one p-equivalence relations,” Theoretical Computer Sci--
ence 38 (1986), 157-165.

[You-66] P. Young, “Linear orderings under one-one reducibility,” Journal of Symbolic
Logic 31 (1966), 70-85.

[You-83] P. Young, “Some structural properties of polynomial reducibilities and sets in

NP.” Proceedings of the 15t Annual ACM Symposium on the Theory of Computing (1983),



69

392-401.

[You-88] P. Young, “Juris Hartmanis: fundamental contributions to isomorphism prob-
lems,” University of Washington Technical Report # 88-06-02 (1988), 1-19. (First appeared
in the Proceedings of the Third Annual Structure in Complezity Conference, IEEE Com-

puter Society (June 1988), 138-154.




