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ABSTRACT

An undirected graph G(V,E) is a tolerance graph if there exists a collection
Z = {T]lv € V} of closed intervals on a line and a multiset 7 = {tylv € V}
such that (z,y) € £ <= [2N7| > min{ts,1,}. Here |T| denotes the length
of interval Z. We present algorithms to compute the chromatic number, the
stability number, the clique number, and the clique cover number of tolerance

graphs.
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1 Introduction

Many sub-classes of perfect graphs frequently appear in real-life applications.
These include, among others, the classes of interval graphs, permutation graphs,
comparability graphs, and co-comparability graphs [Go80]. Recently, Golumbic
and Monma [GM82] introduced a new sub-class of perfect graphs called toler-
ance graphs.

An undirected graph G(V, E) is a tolerance graph if there exists a collection
T = {7]v € V} of closed intervals on a line and a multiset 7 = {t,|v € V} such
that

(z,y) € E <= [zN7| > min{t,,ty}.

Here || denotes the length of interval T. The number 1, is the Tolerance of ©.
We say that two intervals conflict if their intersection rises above a threshold,
which is equal to the minimum of the tolerances of the two intervals. Thus, a

graph is a tolerance graph if there exists a pair (Z,7) such that
(z,y) € E <= T and T conflict.

The pair (Z,T) is called a Tolerance Representation of G. For example, Cy4 -
the simple cycle of length 4, is a tolerance graph. Its tolerance representation
is given in Figure 1.

Trotter has shown that all tolerance graphs are perfect [GMT84]. In fact, the
class of tolerance graphs properly contains both interval graphs and permutation
graphs [GM82]. Like interval graphs, tolerance graphs have applications in
scheduling. Tolerance graphs can model situations in which the intervals can
tolerate a certain degree of overlap. Specific examples can be found in [GMT84].

An interval in a tolerance representation is bounded if its tolerance does
not exceed its length, otherwise it is unbounded. A tolerance representation is
bounded if all its intervals are bounded. A tolerance graph is a bounded tolerance
graph if it admits a bounded tolerance representation. The tolerance represen-
tation for Cy4 given in Figure 1, was not a bounded tolerance representation
since the tolerance of interval b was 6, while its length was only 3. However, Cy
is a bounded tolerance graph since it admits a bounded tolerance representa-
tion (see Figure 2). Golumbic and Monma [GM82] showed that every bounded

tolerance graph is a co-comparability graph 3,

3 A co-comparability graph is a graph whose complement is o comparability graph; that is,



Figure 1: A tolerance representation for Cy.
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Figure 2: A bounded tolerance representation for Cy.



The algorithmic aspects of tolerance graphs have not been studied. Since tol-
erance graphs are perfect we know how to find in polynomial time the following

four parameters:
o the stability number — the size of the largest independent set,
o the cligue number — The size of the largest clique,
o the chromalic number,

e the cligue cover number — the fewest number of cliques needed to cover

the vertex set.

In fact, since for perfect graphs the chromatic number equals the clique number
and the stability number equals the clique cover number, it suffices to compute
only two of these parameters. The algorithms to compute these parameters for
perfect graphs use the Ellipsoid method [GLS81] and hence they are not very
efficient. For most known subclasses of perfect graphs there exist more efficient
algorithms to determine the values of these parameters. Moreover, in some
cases the algorithms are constructive. For example, the algorithm to compute
the stability number for a co-comparability graph finds an independent set of
maximum size [Go80]. Similarly, the algorithm to determine the chromatic
number of comparability graphs does in fact produce an optimal coloration
[Go80]. Since bounded tolerance graphs are co-comparability graphs, all known
algorithms on co-comparability graphs will apply. These include polynomial
time algorithms for computing all the four parameters mentioned above. We
present polynomial time algorithms to solve these problems for general tolerance
graphs.

Given a tolerance representation, its corresponding tolerance graph can be
constructed in polynomial time. In contrast, the recognition problem for the
class of tolerance graphs is yet unsolved. Even when the input graph is known
to be a tolerance graph, it is not known how to obtain a tolerance representa-
tion for it. Moreover, given a tolerance graph it is not known how to decide
in polynomial time whether it is a bounded tolerance graph. In view of these
remarks, we assume that along with the input graph G = (V, E), we are given

it’s complement can be transitively oriented.



a tolerance representation (Z,7) of G. The interval corresponding to a ver-
tex v € V is 7 = (I(v),r(v)). Following [GMT84] we further assume that the
tolerance representation satisfies the following properties: (a) the end points
of the intervals are distinct; (b) the tolerances are all strictly positive; (¢) any
tolerance that is larger than the length of its corresponding interval is set to
infinity; (d) the tolerances are all distinct (except those set to infinity); and (e)
the intersection of all intervals is a nonempty interval. A tolerance represen-
tation satis{ying the above five assumptions is a regular representation. The
tolerance representations of C4 given in Figures 1 and 2 are both regular.

2 Maximum Independent Set

The intervals in a tolerance representation of a tolerance graph can be parti-
tioned into two sets of intervals. One set B = {b1,...,b,} consists of all bounded
interval and the other set U = {7, ..., %} consists of all the unbounded inter-
vals. Without loss of generality, we assume that r(b;) < r(b2) < ... < r(bp), and
r(u1) < r(uz) < ... < r(ug). This partition induces a partition of the vertices
into the two sets of vertices B = {by,..., by} and U = {uy,...,u,}. We refer to
vertices in B as bounded vertices and to vertices of U as unbounded vertices. The
subgraphs induced by these sets are Gp, which is a co-comparability graph, and
Gy which is an independent set. Qur algorithm to find the largest independent
set in a tolerance graph G transforms its bounded part into a weighted di-
rected graph whose weights are a function of the unbounded part of G. We first
describe the algorithm to compute the stability number of a co-comparability
graph.

The algorithm to compute the stability number of a co-comparability graph
G computes the clique number of its transitively orientable complement G¢. The
computation of the clique number of a comparability graph is based on the fact
that a clique in a comparability graph corresponds to a directed path in its tran-
sitive orientation [Go80]. Consequently, a maximum clique in a comparability
graph corresponds to the longest path in its transitive orientation. Although the
longest path problem is in general NP-complete, it can be computed in linear
time for a digraph obtained as a transitive orientation of a comparability graph
since this digraph is acyclic [Go80]. A transitive orientation of a comparability

graph can be computed in O(6]E|), where 6 is the maximum degree of a vertex
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in G [Go80)]. Thus, the time complexity to determine the stability number of
a co-comparability graph is O(|V|? + §|E|). In fact, the algorithm can actually
find the largest independent set in the given co-comparability graph since we
can easily recover the list of vertices along the longest path in the transitive
orientation of its complement.

We can find the largest independent set in a bounded tolerance graph G in
polynomial time simply because they are co-comparability graphs. However,
since along with G we are given a tolerance representation for G, we can use it
to transitively orient the complement of G in linear time. Following [GMT84],
we define the right end point orientation of G as follows. An edge (z,y) is
oriented from vertex z to vertex y if in the given tolerance representation of G,
interval T terminates before interval ¥. It is not hard to see that a right end
point orientation of a bounded tolerance graph is transitive [GMT84]. Thus, a
transitive orientation of a bounded tolerance graph can be found in time linear
in the size of G¢. It follows that the maximum independent set in a bounded
tolerance graph can be found in O(|V[?).

We extend the procedure to find a maximum independent set for bounded
tolerance graphs and present an algorithm to find the largest independent set
in a general tolerance graph. We reduce the problem of finding the maximum
independent set in a tolerance graph G to that of finding the longest (heaviest)
path in an acyclic weighted directed graph H(G). The digraph H(G) consists
of the right end point orientation of the complement of Gp together with two
additional vertices, a source s and a sink t. The source is joined to all the
vertices in B U {t} and the edges are oriented from s. The sink is joined to all
the vertices of B and the edges are oriented to t. One may think of s (resp.
t) as representing an interval that starts and terminates before (resp. after) all
the intervals in 7 and whose tolerance equals its length. Let G’ be the graph
obtained from G by adding to it the independent set {s,t} and set ¢, = |s| and
1, = |t|. Extend the tolerance representation of G to a tolerance representation
for G’ by adding the intervals 5 and 7 such that ¥ (resp. ) starts and terminates
before (resp. after) all intervals in Z. Then H(G) is simply the right end point
orientation of the complement of G’;. In other words, the vertex set of H(G) is
B U {s,t} and there is a directed edge from z to y if z and y are not adjacent
in G', and interval T terminates before interval 7.

We associate a set-valued function S(e) and a weight function w(e) with each



directed edge e = (z,y) in H(G). The set S(e) consists of all unbounded vertices
u, € G which are not adjacent either to = or to y and whose corresponding
unbounded intervals TE terminate after r(z) and before r(y). Note that for a
directed edge e = (s,b) in H(G), S(e) consists of those unbounded vertices uy €
G which are not adjacent to b and whose corresponding unbounded intervals T
terminate before b does. A similar statement holds for edges directed toward
the sink ¢, with the word "after” replacing the word ”before”. For the special
edge joining s and t we have S((s,t)) = U. It follows that each set S(e) is an
independent set. The weight function w is defined as follows:

_ [1s(e)l ife=(b1);
w(e) = { [S(e)|+1 otherwise.

The motivation for the definition of the weight function will become apparent
later. The construction of H(G) for a given tolerance graph G is illustrated in

Figure 3 in which

S((e,t)) = {a}, S((a,0)) = S((a,1)) = {f}, S((s,1)) = {b,d, f},

and for all other edges S(e) = ¢.

We first show a few properties of H(G). This is done in the next three
lemmas. The first of these lemmas shows the relation between an edge e =
(b;,b;) in H(G) and the positions of the intervals b; and b; relative to each

other.

Lemma 1 Let e = (b;,b;) be an edge in H(G) with i < j. Then I(b;) < I(b;)
and r(b;) < r(b;).

Proof : The fact that e is an edge of H(G) implies that b; and b; do not conflict
in the tolerance representation of G. This, together with the fact that both b;
and 7)7 are bounded intervals, imply that neither one of them can contain the
other. Since the vertices in B are ordered by their right end point, and since
containment is excluded, the right end point orientation implies that {(b;) < 1(b;)
and r(b;) < r(b;). W

Let P = {eg = (s,bi,),e1 = (biy, bi,), ..., ex = (bi,,1)} be a directed path
from s to t in H(G). The set of internal vertices of P, {bi,, biyy ... b}, is
denoted by Bp. The next lemma follows from the construction of H(G).

-~
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Figure 3: The construction of H(G).



Lemma 2 Every two inlernal vertices of a path in H(G) are joined by an edge
in H(G).

Since Bp is transitive, Bp is an independent set in G. The next Lemma
shows that we can extend the independent set Bp which consists of bounded

vertices to include unbounded vertices.

Lemma 3 Let P = {eg = (5,b;,),e1 = (biy, biy), ..., ex = (bi), 1)} be a directed
path from s tot in H(G). Then S(e;)UBp is an independeniset in G, 1 <j < k.

Proof : The sets S(e;) and Bp are each independent sets in G. So we need
only to show that there is no edge with one end point in S(e;) and the other
endpoint in Bp. That is, it suffices to show that if u € S(e;) (0 <j < k) and
b;, € Bp (1 <1 < k) then the vertices u and b;, are not adjacent in G. In
other words, we need to show that the intervals @ and b;, do not conflict.
Assume first that 1 <1< j < k. Since b;, and b;; are internal vertices of P
and | < j, Lemmas 1 and 2 imply that I(b;,) < 1(b;;) and r(b;,) < r(bi;). The
fact that u is in S(e;) means that T does not conflict with either 3: or b ...
It {ollows

In particular this implies that T cannot contain either 3: or :
that the left end points and the right end points of intervals b;,, b—;;, and T are
ordered as follows: I(b;,) < I(b;;) < I(u), and 7(b;) < 7(bi;) < r(u). Hence
and;,| < |b;, N b;;]. Furthermore, the intervals b;, and b;, do not conflict and
hence [b;, Nb;,| < min{ts,, , 1, } < 1, = min{ty, ,1.}. It follows that ¥ and by
do not conflict and hence u and b;, are not adjacent in G.

The case j = k follows verbatim if we let ¢ = b;,,. In this case it is more
consistent with our definitions to replace G by G’. This assumption is justified
since the vertex t represents a bounded interval with tolerance 0 which starts
(and terminates) after all other intervals. A dual argument can be used to
handle the case 1 < j+1 <1< k. Finally,if l = jorif Il = j+ 1 then by the
definition of S(e;), (u,b;,) & E(G). ®

Lemma 3 implies that an independent set in G consisting of internal vertices
of a path P from s to ¢t in H(G), can be extended to an independent set Ip =
Bp U S(eg) U S(e1)... U S{ex) in G. In the example of Figure 3 there are
two paths of total weight 3, P; = ((s,t)) and P» = ((s,a),(a,¢),(c,t)). Their
corresponding independent sets are Ip, = {b,d, f} and Ip, = {a,c, f}. Thus,



selecting edge e = (b;,b;) 1 < j <k to be included in a path P from s to{ in
H(G) is equivalent to selecting S(e) U {b;} to be included in the independent
set Ip. Since the sets S(e;) are disjoint, this means that each edge in the path,
except the last edge, identifies |S(e)| + 1 = w(e) vertices in the corresponding
independent set. The last edge identifies only |S(e)| = w(e) vertices. In other
words, each path from s to ¢ in H(G) corresponds to an independent set in G
whose size is the sum of the weights of the edges in the path. This observation
is the basis for our algorithm to find an independent set of maximum size in a
general tolerance graph.

Theorem 1 Given a tolerance graph G = (V,E) and a regular tolerance rep-
resentation (I,T) of G. There is an O(|B|?log(|U| + 1)) algorithm to find the
largest independent set in G, where |B| and |U| are the numbers of bounded and
unbounded vertices in G.

Proof :  We first construct the weighted directed graph H(G). Let P be the
longest weighted path from s to ¢ in H(G). Denote s by b;, and denote ¢ by
bi\ ., We claim that the largest independent set in G is

E
S={JS(es) U Bp.
i=0
Lemma 3 implies that S is an independent set. In order to show that S is
an independent set of maximal cardinality, it suffices to show that every inde-
pendent set S in G is equal to Ufzo S(e;)U Bp for some path P in H(G). So let
S be an independent set in G. Let Sg = {s,b;,, biyy...,bi,,1} be an ordered set
consisting of s, ¢, and all bounded vertices in S ordered by the right end points
of the corresponding intervals. Let Sy be the set of all unbounded intervals in
S. If Sp has no internal vertices then P consists of the single edge (s,t) and
S = Sy = U. Otherwise, the independent set Sg in G’ induces a clique in
G'®. Moreover, the directed edges, e; = (bi;,b;;,,), joining consecutive vertices
in Sg form a directed path P from s to t in the right end point orientation of
G’¢. That is P is a path in H(G). We can now partition Sy into k + 1 subsets
S(ej) for 0 < j < k. In this partition a vertex u € Sy belongs to S(ey) if
r(bi;) < r(u) < r(biy,,)-
The construction of the unweighted right end point orientation of H(G)
can be done in O(]B?|). The weight function w can be computed in time
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O(|B)? log(|U| + 1)), assuming, as we did, that U is sorted. If U is empty then
this stage can be done in constant time. The longest weighted path in H(G)
can be found in time linear in the size of H(G), [Go80]. The size of H(G) is
O(|B|* + log |w]) = O(|B|* + log |U]), where |w| is the largest weight in H(G).
All these steps combined yield a total time complexity of O(|B|*+|B|*log |U|) =
O(|B log(|U[ + 1)). &

Note that when the input graph is a bounded tolerance graph, all the weights
in H(G) are 1 except for edges joined to the sink. In this case our algorithm
reduces to finding the longest path in an unweighted digraph.

The next corollary follows from the fact that tolerance graphs are perfect.

Corollary 2 Given a tolerance graph G = (V, E) and a regular tolerance rep-
resentation (Z,T) of G. There is an O(|V|*) algorithm to find the clique cover
number of G.

3 Coloring

In this section we show how to color a bounded tolerance graph and how to find
the chromatic number of a general tolerance graph.

The chromatic number of a bounded tolerance graph equals the clique cover
number of its complement. Since the complement of a bounded tolerance graph
is a comparability graph, we first examine an algorithm to find the clique cover
number of a comparability graph [Go80]. Let G be a comparability graph and
let H be the right endpoint transitive orientation of G. We transform H into a
transportation network N by adding a super source S joined to all the sources
in H and a super sink T joined to all the sinks in H. Each vertex is assigned
a lower capacity 1. The value of a minimum flow of N equals the clique cover
number of G. There are many known network flow algorithms with varying time
complexities. The choice as to which one to choose depends upon the density of
the digraph and space considerations. For simplicity we state here a worst case
upper bound for the complexity of the network flow problem as O(|V|3). For
a discussion of the different methods and their associated time complexity see

[Tar83]. Thus, the complexity of finding the chromatic number of a bounded
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tolerance graph is O(|V[?). We note that this algorithm can be extended to find
an optimal coloring of a bounded tolerance graph.

Theorem 3 There is an O(|V|2) algorithm 1o color a bounded tolerance graph
with an optimal number of colors. (We assume that the input consisis of a

bounded tolerance graph together with a regular tolerance representation for il.)

Proof: Let G be the complement of the given bounded tolerance graph. We
first construct a network N as above and find a minimum flow F for N. We
then use the transitivity of H to find a minimum flow f that pushes exactly
one unit of flow through each vertex in H, except for its sources and sinks. The
procedure to find f is based on a breadth first search. Suppose that following
an edge (v, w) we discover that w has already been visited by our breadth first
search. If no such edge exists then f := F. Moreover suppose that at least one
unit of flow is pushed along a path from w to a sink t of H (there is at least
one sink with this property). Then we can redirect the flow along (v,w) to the
edge (v,t), whose existence is guaranteed by the transitivity of H.

The flow f induces a partition of the vertices into x(G) vertex disjoint paths
from a source of H to a sink of H, each with unit flow. (These path may have
a sink or a source in common.) The internal vertices of each path form a clique
in G and an independent set in its complement. A source s (resp. a sink t) of
H can be now assigned to an arbitrary clique corresponding to a path starting
(resp. terminating) with s (resp. t). The result is a partition of the vertex
set of G into x(G) sets whose induces subgraphs are cliques. This partition is
in fact a partition of the input graph G¢ into x(G) independent sets, which in
turn is an optimal coloring of the given bounded tolerance graph. The flow f
can be found in linear time, given any minimum flow on N. We note that an
implementation of the algorithm can incorporate this last stage into the search
for a minimum flow. & ‘

Theorem 4 Given a lolerance graph G = (V,E) and a regular {olerance rep-
resentation (Z,T) of G. There is an O(q|V[?) algorithm to find the chromatic
number of G, where ¢ is the number of unbounded intervels in the tolerance

representation of G.

Since tolerance graphs are perfect, Theorem 4 follows from Theorem 5 below.
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Theorem 5 Given a tolerance graph G = (V, E) and a regular tolerance repre-
sentation (Z,T) of G. There is an O(q|V[?) algorithm to find the clique number
of G, where q is the number of unbounded intervals in the lolerance representa-
tion of G.

Proof: Let U be the set of unbounded vertices of G. Then U is an independent
set and hence any clique in G contains at most one vertex from U. Let K be
a set of vertices that form a clique in G. If K contains an unbounded vertex,
then K\{u} forms a clique in the neighborhood N(u) of u. It follows that
a maximum clique in G is either a maximum clique in Gp, or it consists of
a maximum clique in N(u), together with u for some u € U. Both Gp and
N(u) are co-comparability graphs. As discussed earlier, the clique number of
co-comparability graphs can be computed via a network flow algorithm. These
observations lead to a simple algorithm to compute the clique number in general
tolerance graphs.

The algorithm finds the clique number kg of Gp, and the clique numbers k,
of N(u) for every u € U. The clique number of G is updated to the maximum
of kg and {ky +1 |u€eU}.

The algorithm performs g + 1 iterations of the algorithm to compute the
clique number of co-comparability graphs. Since the latter has time complexity
of O(|V|?), the total time complexity of our algorithm is O(g]V[?). B

4 References

[GMS82] Golumbic, M., and Monma, C., A Generalization of Interval Graphs
with Tolerances, Proc. 13th SouthEastern Conf. on Combinatorics, Graph
Theory and Computing, Congressus Numeraniium, 35, Utilitas Math.,
Winnipeg, 1982, 321-331.

[GLS81] M. Grotshcel, L. Lovasz, and A. Schrijver, The Ellipsoid Method
and its Consequences in Combinatorial Optimization, Combinatorica, 1,
(1981), 169-197.

[GMT84] Golumbic, M., Monma, C., and Trotter, W., Tolerance Graphs,
Disc. Appl. Math., 9, 1984, 157-170.

13



[Go80] M. C. Golumbic, “Algorithmic Graph Theory And Perfect Graphs”,
Academic Press, New York, 1980.

[Tar83] R.E.Tarjan,”Datastructures and network algorithms”, Siam, Philade-
phia, 1983.

14



