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ABSTRACT

GREEDY ALGORITHMS FOR
VLSI MODULE PLACEMENT AND ROUTING

This thesis addresses the problem of placing a set of rectangular modules on a
chip, and routing wires between numbered terminals on the module-boundaries. The
aim is to minimize the total area and wire-length of the final layout. This problem
belongs to the class of NP-hard problems, for which no optimum -solutions exist.
Approximate solutions by linear programming approaches are useful in restricted
problems, where all modules have a uniform size and aspect ratio, but fail in the gen-
eral case. Other approaches such as bipartitioning or clustering are either computa-
tionally expensive, or produce unsatisfactory layouts. We concentrate our work on
the development of the greedy approach to the placement and routing problems, its
synthesis with a clustering technique, and on its combination with a novel incremen-

tal global router.

The greedy approach attempts to build a layout by making placement and orien-
tation decisions with limited information on hand. The conventional scheme of a
separate placement and wire-routing phase is replaced by an incremental process.
Modules are selected in a sequence dictated by a clustering scheme, and are placed by
a recursive module-building algorithm. Global routing is carried out incrementally as

a sub-process within the module-builder. Every partial layout can thus be treated as a




module, with its internal wiring completed to allow only external nets to appear on its
rectangular boundary. This also guarantees completion of routing, unlike conven-
tional schemes. The absence of backtracking makes this a computationally fast

approach.

The greedy placer and incremental global router was implemented and tested on
sample circuits published in the literature. The resulting layouts had areas and wire-
lengths that were either close to those of the original examples, or, in many cases,
better than the originals. The tests also studied the effects of varying the sequence of
module selection for placement, the size of the clusters, etc. Guidelines were esta-
blished for determining the factors that influence such variations in the use of the
Placer. The greedy approach, therefore, was successful in performing as well as or
4 better than conventional approaches, at much lower computational as well as develop-

ment COSts.
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Chapter 1

INTRODUCTION

With the widespread use of very large-scale integrated circuits (or VLSI cir-
cuits) in almost every piece of computing machinery, the design and implementation
of circuits has become a complex and demanding task. This area of modern technol-
ogy has seen dramatic progress in the last decade. Practically every aspect of circuit
design has experienced an explosive growth in the size and complexity of the prob-
lems that need to be solved [Mead80a]. One of the primary goals of research and
development in circuit design and implementation has been to devise algorithms that

make it possible to manufacture cheaper and faster chips.

The advantages of mass production and economies of scale are especially evi-
dent in the field of VLSI chip manufacture. The exact technology of manufacture of
VLSI circuits is irrelevant to our discussion; suffice it to know that a chip is manufac-
tured by exposing certain areas of silicon to certain chemicals, producing active
electrical circuit elements on the silicon surface. It is, of course, much more cost-
effective, as well as easier from the engineering standpoint, to process large surfaces
of silicon rather than to process one chip at a time. A typical silicon chip might have
dimensions of 1 cm. by 1 cm., while a typical wafer of silicon, as it is called, might be

a slice from a cylinder of crystalline silicon with a diameter of about 15 cm. Thus a




single wafer would have enough area on it to accommodate on the order of 100 chips.

Not all of these chips, however, are likely to be functional. Various problems,
such as defects in the crystalline structure of the silicon wafer, or errors in alignment
of the masks, cause a large percentage of the chips to fail at the testing stage. Typical
figures for net yield are as low as 10% for large circuits [Ullm84a]. As a first approxi-
mation, this figure for yield falls at an exponential rate for a constant factor increase in

the area. For example, if area increases by a factor of ¢ > 1, the probability of obtain-

ing an unflawed chip falls to (0.1)°. This motivates a major concern in the design of
large VLSI chips, which is to reduce the total area occupied by a circuit. A reduction
in the total area for a given task would also permit a designer to put more circuitry on

a single chip, leading to more functional power available on a single chip.

Chip area is not the only factor of interest in the design of circuits. Speed of
operation is another property of vital interest, as are power consumption, heat dissipa-
tion, etc. All these factors are interrelated, and for a given circuit design, with all dev-
ice sizes determined, bringing down the total area will result in bringing down the
chip delay. As a first approximation, area can be considered to be the factor to be

optimized [Ullm84a].

Consider the problem of laying out a VLSI circuit on a chip so as to minimize
its area. This problem has been well researched, and broken down into independent
problems of circuit placement and wire routing. Solutions for these problems and
their own subproblems have been attempted for over two decades. However, owing to
the fact that many subproblems are NP-hard [Sahn80a, Dona80a], progress has been

slow.



During the early stages of the development of circuit layout algorithms, it was
usually the case that automatic circuit layout packages fared poorly in comparison
with manual placement [Prea86a]. This monopoly of the VLSI layout domain by
manual designers has given way to design automation: computer-aided design (or

CAD) programs now do the bulk of the placement and routing tasks.

There are two factors behind this trend away from manual design. First, circuit
layout algorithms have grown increasingly sophisticated. Coupled with the greater
power of modern-day computers, this provides a quality of automatic layout compar-
able to or better than that of manual layout. Second, the number of devices that can
be placed on a single chip has grown to the extent that manual circuit layout is no
longer feasible in a reasonable time-frame, whereas CAD programs can finish the job
much faster. Although the CAD programs are computationally expensive, the lead
time for a CAD program is far less than the expected lead time for manual layout.
Under these changed conditions, the common scenario is for CAD programs to under-
take the initial placement and routing jobs. Human designers provide the final scan,
hand-packing the layout to squeeze the last bit of additional improvement that might

be overlooked by a program.

At this point, one question to be answered is: at what level of the layout process
should research into design automation be aimed? One possible area of research is
silicon compilation: the completely automatic synthesis of a circuit given its func-
tional description. A silicon compiler would be responsible for all aspects of circuit
design, from determining the sizes and interconnections between active circuit ele-

ments to the final layout of the circuit. However, during silicon compilation,




placement and routing stages would have to be included. Hence, the silicon compiler
needs to use a placement and routing algorithm in order to generate its circuit layout.
As yet, there are no algorithms with any proven bounds on the output, and there is still
much scope for new algorithms. Moreover, there are many well understood and
thoroughly analyzed designs for building-block circuits, or modules, in VLSI design.
Basic circuits such as PLAs, ROMs, RAMs, multiplexors, decoders, etc. have been
designed, tested, and packed into very compact la};outs. These circuits have been in
existence for a number of years [Mead80a]. An approach to placement which begins
with these basic circuits, carrying out the job of placing them and connecting them
together correctly, would be applicable in its own right as a tool for placement of a

pre-designed logical circuit, as well as being available as a stage of a silicon compiler.

Before we proceed further we need to standardize some terminology. We speak
of a layout as a realization of a circuit on a single chip of silicon in some technology
such as nMOS or CMOS. A module is a circuit laid out within a bounding rectangle.
Typically, modules are subcircuits combined to form the entire chip, each module tak-
ing care of a functionally independent task. Connections between a module and the
outside world go through terminals, each terminal being assigned a position on the
bounding rectangle of the module. A net is a wire connecting two or more modules,
represented by a number assigned to each net. A channel is the area between two
modules that is reserved for routing the nets. Channels may be concave polygons, or

they may be decomposed into rectangles.

The automation of VLSI circuit design can be divided into three subproblems:

initial placement, global routing and channel routing. The placement problem is to



find a position for each module such that certain properties are optimized. These pro-
perties include total chip area, total interconnection length, crossing count (the
number of unavoidable crossovers) and maximum number of nets assigned to any
channel. Placement is often not an independent phase of the overall design process;
rather, it is one step in an iterative process, where a fresh placement may be requested

because of insufficient space being allotted for a channel.

The problem of packing a set of rectangles into a bounding rectangle so as to
minimize the total area is NP-complete, being reducible to the problem of two-
dimensional bin-packing [Gare79a]. The placement problem has been shown to be
NP-hard [Sahn80a, Dona80a], and there are no known sub-optimal approximation
algorithms for this problem. Recent research in cémplexity theory gives us no reason
to expect a quick resolution of the P = NP question. Moreover, the problems typically
encountered in circuit design projects are of such a size that exact solution by an
exponential-time algorithm carrying out an exhaustive search is not reasonable. This

situation makes heuristic algorithms the only alternative.

The global routing problem follows from the placement: once a relative posi-
tioning has been decided upon between the modules, how should the nets be assigned
to channels? In other words, what path should each net take in going from one
module to another? There could be several choices, and once again the quantities to
be minimized are total interconnection length, crossing count and channel area. This

problem is also NP-complete, as shown by Pinter [Pint83a].

The channel routing step is the moment of truth for the layout program, since it

is usually at this stage that a proposed placement and global routing are either found




acceptable, or are found unworkable and rejected. The channel router may find that
the estimated channel area between two modules was insufficient. This may be either
due to the placement algorithm putting two modules too close, or because the global
router routed too many wires through certain channels. There are many ways in
which layout schemes handle these problems: for instance, the global routing phase
could be repeated to distribute the wiring more evenly across the available channels.
Additional tracks could be introduced in the channel area, as is the case with Tim-
berWolf [Sech86a]. The PI package, on the other hand, repeats the whole process
starting from the placement phase [Rive82a], as do other proposed placement algo-
rithms [Goto79a, Laut79a]. There is, however, no rigorous method for dealing with
these problems, and certainly no known theoretical foundation for choosing one over

another. Heuristic rules form the basis for the existing algorithms.

In the area of channel routing, however, there has been a significant amount of
work, and heuristic algorithms are now available to do detailed channel routing with
nearly optimal results [Reed85a]. Channel routing with doglegging is a variation in
which the wire is allowed to change tracks arbitrarily. Although this technique has
resulted m many related algorithms with very good average-case behavior
[Deut76a, Yosh82a], the dogleg channel routing problem has also been proven to
belong to the class of NP-complete problems [Szym85a]. Although there is no exist-
ing proof of sub-optimality for any of these algorithms, several difficult problems in
detailed channel routing [Deut76a] have been successfully routed using only a negligi-
ble amount of additional routing area. For example, Sechen and Sangiovanni-
Vincentelli [Sech86a] claim that the YACR2 channel router consistently routes chan-

nels within 1 track of the channel density.



Although channel routing is an important issue, we have chosen to concentrate
on placement and global routing; and, in particular, on the interaction between these
two problems. Our approach begins with a placement algorithm that tries to combine
two different approaches to partitioning the set of modules prior to placing them. We
then propose a novel algorithm to do global routing incrementally during placement,
rather than as a separate phase. We believe that the placement phase can provide an
insight into the way global routing should proceed, and that this "insider information”

is lost when global routing is a separate phase.

This thesis is organized in the following manner. Chapter 2 is a survey of some
of the popular algorithms for placement, with examples to illustrate the approaches
used by these algorithms. We also briefly preview our approach to placement in
chapter 2, contrasting our approach with the other approaches surveyed. We argue
that the existing algorithms have overlooked the question of why humans have been
more successful than algorithms in this area, at least for small to moderate-sized lay-
outs. Chapter 3 surveys some global routing algorithms, with two case studies of lay-
out packages that have been designed and implemented. Chapter 4 presents the
overall layout algorithm, including both placement as well as routing. Beginning with
a description of the graphs used to represent the layout picture abstractly, it then
proceeds to present the placement algorithm in detail. Global routing and channel
routing issues are discussed in chapter 5. Finally, we close with a discussion of the
results obtained in chapter 6, and present a summary of the work and future directions

for research in chapter 7.







Chapter 2

INITIAL PLACEMENT

The placement phase is critical to the global routing and channel routing stages
in the circuit design process. A good placement will allow wire-routing to be success-
fully completed without much need for rerouting the wires. On the other hand, if the
placement is not very good, it might result in some channels being used for a large
number of nets (i.e., overloaded), while other channels might bear less than their fair
share of nets. In such a situation, many iterations may be needed in order to distribute
the wires more equitably across the channels. Overloaded channels need to be
avoided because if the channel size estimates of the placement phase are significantly
off the mark, then some channels may need to be drastically resized, causing the final

layout to have a different shape from that obtained by the placement phase.

The definition of the placement problem given in the introduction is a simplified
version of a much more complex problem. In its generalized form, the problem could
include modules with arbitrary shapes, non-Manhattan (i.e., non-rectilinear)
geometries, overlap of modules, etc. We restrict our attention to the restricted place-
ment problem as defined, i.e., a set of on-overlapping rectangular modules with termi-
nals of nets on the edges, to be placed in such a way that it minimizes an evaluation

function.




The placement phase may itself be broken into two steps, depending on the

algorithm used to do the placement. The first step is constructive placement, when

the system first looks at the set of modules and makes some crucial decisions, such as:

In what order should the modules be placed?
Which modules should be placed close to each other?
How should the modules be oriented relative to the neighboring modules?

Following initial placement, the next step is to attempt improvements to the lay-

out, i.e., the iterative placement step. Some of the more popular quantities used for

measuring improvements are [Leis80a]:

Total chip area: the sum of the individual module areas and the channel areas.
Chip area is the major quantity that we would like to reduce for the obvious rea-
sons that increased area leads to decreased chip yield. Moreover, assuming that
the problem is of module placemeni (i.e., device sizes are fixed), increased area
in general means longer wires, leading to higher signal-transmission delays

because of the increased capacitance of the wires [Mead80a].

Total edge length: the sum of the lengths of all the wires interconnecting the
modules. The price paid by high edge lengths is the increased chip delay, as
described above.

Crossing count: the number of wire crossings. Each crossing eliminated
amounts to an easier job of routing at a later stage, and hence to a greater likeli-

hood of acceptance of the proposed placement.
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® Maximum channel density [Souk81a]: Channel density is the maximum number
of wires at any point running in parallel along the channel. High density in a
channel means that the channel needs to be wide to provide enough space for
the wires. This in turn affects the placement, since the algorithm needs to take
note of the wider channel requirement and adjust the positioning of neighboring
modules. The maximum channel density, therefore, is a good target for reduc-
tion, although this implies that we also need to worry about global routing while
doing the placement. Currently, Loosemore’s COMPEDA system is the only
widely known algorithm that combines the placement and global routing

processes [Loos79a].

2.1. Constructive Placement

The first stage in producing a placement is constructing an initial placement.
The input to this stage is a list of modules, each with its dimensions and the lists of
nets on each of its sides. Some approaches use additional information, such as the
relative importance of some nets, which may be provided as weights on the nets.
Also, while some algorithms are designed to run independently, others interact with
the circuit designer to varying extents. For example, Preas and Gwyn [Prea78a]
implemented three levels of interactive capability in their placement program: com-
pletely automatic, automatic but influenced by user hints, and semi-automatic with a
partial placement provided by the user. Our interest lies mainly in fully automatic
algorithms, and hence we restrict our attention to those algorithms which are either
totally independent, or have a mode of functioning that is independent of user interac-

tion. We further classify fully automatic placement algorithms into four broad
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categories [Prea86a]: global approach, branch and bound, top-down partitioning

based, and bottom-up cluster-growth based.

2.1.1. The Global placement approach

The first class of constructive placement algorithms that we consider differs
from the other approaches in one crucial respect: any placement decision affects all
modules at the same time, rather than some subset. The global placement approach
includes such algorithms as Quadratic Assignment [Hana72a] and Force-directed
placement [Quin75a] Although not currently in use in their original form, global
placement algorithms have been combined with other approaches with a reasonable

degree of success [Wipf82a, Blan84a].

Force-directed placement considers the placement problem to be analogous to
the following static physics problem: given a set of blocks on a frictionless plane
attached to each other by a network of springs, with a given tension in each spring,
what is the equilibrium state of this system? This statics problem is solved by using a
system of first-order differential equations to represent the initial state of the system.

Figure 2.1 shows the steps involved in a force-directed layout.

In this analogy, each block represents a module, each spring a set of nets, and
the tension in a spring is proportional to the number of nets between the two modules
involved. A closer model would actually include as many springs as the number of
nets, with distinct attachment points, instead of representing a set of nets as a single
spring of some tensile strength. With this modification, we can take into account the
positions of the nets on the module boundary. This would force rotation of modules to

a preferred orientation.



12

(a) Set of modules and interconnections

41 16

164

(b) Blocks-&-springs equilibrium state (c) Approximate Manhattan orientations

Figure 2.1: Force-directed placement
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Beginning with the set of blocks and interconnections as shown in the schematic
diagram of the example layout of Fig. 2.1(a), the algorithm computes the equilibrium
position of the system of blocks and springs. One possible equilibrium position is
shown in Fig. 2.1(b). This equilibrium position then needs to be adjusted in order to
force the modules to conform to the Manhattan layout constraints of the technology,
as shown in Fig. 2.1(c). Note that the initial layout of Fig. 2.1(a) is only for our visu-
alization, and is not part of the input to the force-directed placement algorithm; the
only information provided to the algorithm is the set of blocks and their interconnec-

tions, not their relative positions.

The force-directed approach seems to be reasonable, and it would appear that it
should produce a good initial placement. There is one major problem with this
approach: multipoint nets cannot easily be modeled [Souk81a]. Since a multipoint
net would have to be modeled by a spring with a Y-connection, the branch points on
the Steiner tree would have to be decided in advance (i.e., we would have to decide
where the Y-connection is to be made), and this information is not known at problem
specification time. A related problem arises with multiport nets, where there is a
choice of two or more ports on a module boundary corresponding to the same net. In
this situation, the most convenient port should be chosen for connection to other
modules. However, the blocks-and-springs analogy does not provide any facilities for
automatically choosing between a pair of possible positions to attach springs. Hence,
the statics problem would have to be formulated by arbitrarily selecting one port out
of the set of available ports. This would lose whatever flexibility might have been

gained by having the multiport net in the first place.
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Force-directed placement has another drawback: it does not consider channels
and wiring space during its placement phase. Channel sizing is a separate phase that
is executed after the placement is completed; and after allocating space for the chan-
nels, it is possible for the final placement to have little similarity to the initial place-

ment and its apparent compactness.

Another algorithm falling under the class of global approaches is convex func-
tion optimization. This algorithm constructs an objective function that depends either
on the number of interconnections and the distances between pairs of modules, as in
the quadratic assignment formulation [Hana72a] or on some convex metric, such as a
Jeast squares metric, as in a convex function optimization formulation of the problem
[Blan84a]. In the quadratic assignment formulation, for instance, the objective func-

tion to be minimized might be defined as:

G=X cij xd where

2000
C= {cij] is the cost matrix, representing the cost of the connec-
tions between modules i and j;
D =[d,] is a distance matrix representing the distance between
positions k and I; and
p(i) represents a permutation of the components’ positions.
The objective function is then minimized over all permutations of the component
positions.
The drawbacks of these optimization metrics are common ones: they are unable

to deal with practical constraints, such as finite areas for the cells, fixed positions for
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some of the cells, and the necessity to impose Manhattan orientations on the final form
of the layout [Souk81a, Prea86a]. Moreover, in the case of the quadratic assignment
formulation, there are additional constraints: only two-point nets can be modeled; and
an optimum solution to the quadratic assignment problem does not necessarily imply

an optimum solution for the associated placement problem.

2.1.2. Branch and bound

The branch and bound algorithm has been used in a wide range of applications,
typically in situations where an exhaustive search of the solution space appears to be
unavoidable [Hill80a, Lawl66a]. Heuristic solutions to many NP-complete problems
are obtained by' this technique, such as the Traveling Salesman problem, the Haﬁlﬂ—
tonian Path problem, etc. Although it is computationally expensive, there are often no -
acceptable alternatives. The method is named after its behavior of generating a tree of
all possible partial solutions and discarding branches of the tree by using some known

bound lower than the estimated cost of the discarded subtrees.

In the context of the placement problem, the branch-and-bound algorithm starts
by picking some module, and then generating one subtree for each possible position of
that module in the placement [Hana72b]. In each subtree, it uses a heuristic cost func-
tion to determine the minimum cost of that subtree; in other words, it tries to predict
the best possible placement that could be obtained within that subtree, assuming a
fixed position for the chosen module. Once this cost function has been computed for
each subtree in the tree, the costs are compared with some known lower bound,
perhaps from a random placement that is first carried out simply to provide a bound.

All subtrees with an estimated cost greater than the known lower bound are
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abandoned — obviously, it is pointless to work any further on a placement if, with just

a few modules placed, it costs more than a known placement.

Having thus removed the more expensive branches from the tree, the remaining
subtrees are further expanded by choosing another module and generating one new
subtree for each position of the next module chosen, with the first module’s position
fixed. As the tree gets deeper, more modules are placed and more subtrees are elim-
inated because of their high cost; thus the algorithm avoids the problems of an

exponential increase in the number of layouts to be considered.

Although branch-and-bound is an elegant and powerful technique in general, its
use in placement is limited by its high computational complexity. In order to reduce
the set of subtrees to tractable limits, a tree-pruning heuristic function needs to be for-
mulated; however, it has also been noted that the more accurate the heuristic cost
function, the greater its computational complexity [Prea86a]. As a result, there
appears to be no way out of a high computational cost associated with this approach.
Moreover, the branch-and-bound technique can significantly reduce the problem size
only if the early subtrees close to the root can be pruned; this, of course, can never be
guaranteed. The increased size of modern-day circuits aggravates this problem to the

extent that branch-and-bound is not in popular use as a placement algorithm.

2.1.3. Top-down partitioning

We now turn to the top-down approach to partitioning the set of modules into
subsets for placement. Algorithms based on partitioning the module-set into subsets
are widely used in modern layout systems. The rationale behind the top-down parti-

tioning process is to reduce the number of wires in the center area of the layout by
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partitioning the module set across a small number of interconnections, thus moving
the highly-connected modules away from the center. Among the available top-down
partitioning algorithms, two approaches merit a detailed description, based on their

popularity: hierarchical placement and min-cut placement.

Hierarchical placement is an approach that depends on the user to provide the
chip hierarchy. The initial information provided to this algorithm includes some ver-
sion of a "decomposition tree", describing the hierarchy of the components

[Prea78a, Wipf82a]. For example, as in Fig. 2.2a, the designer may have designed
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(a) Partition of layout area (b) Hierarchical decomposition tree

Figure 2.2: Hierarchical layout example
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modules Al and A2 as subcircuits of the enclosing module A; likewise with modules

B and C. This hierarchical decomposition may be several levels deep.

The tree representation of Fig. 2.2b shows how the chip might be partitioned
into subproblems. Leaf-nodes correspond to the smallest (atomic) modules, which
cannot be partitioned any further. An internal node is a module whose components
are the smaller modules living in the subtree of the internal node. The subsets in each
subtree of an internal node X reflect the structure of the chip, since modules in each
subtree are more intimately related to each other than to modules in other subtrees of
X.

Placement is done on the lowest level subtrees first, in the manner of a recursive
postorder tree traversal, bottom-up. Each subtree is treated as a separate problem,
and placing modules in a subtree ends with the entire subtree built into a new module,
i.e., a rectangle with terminals on the periphery. As a subtree is processed, it is

replaced by the new module containing the modules of the subtree.

A major drawback of hierarchical placement is that sometimes VLSI layouts
may not have a strict hierarchy enforced during the design. As a result, the decompo-
sition of the hierarchy may not be isomorphic to a tree, as might be the case when
some area of a layout mask is realized by overlapping two modules. Moreover, the
placement algorithm is dependent on user-interaction to provide the decomposition
tree. Hierarchical placement has often been used in layouts containing only a few
modules. But with the size of layouts that designers are faced with today, it is very
difficult for a designer to assimilate and analyze the design to the extent of being able

to provide meaningful information. Although designers do provide valuable
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information, their perception of the circuit may bias the hints they provide, overlook-
ing some possible choices in the layout design decisions. In order to provide the abil-
ity of investigating such possibilities, a reasonable design for a placement algorithm
would allow human designers to provide hints for the algorithm to use or discard at its
discretion. Algorithms may then be able to uncover good placements that the human

designer might have overlooked, while paying heed to the wisdom of the designer.

Ideally, the placement algorithm should provide additional information to aug-
ment the user’s intuition, in the form of suggested groupings of modules. The min-cut
family of algorithms does, in fact, carry out placement with such information in mind.
Most recent research in placement algorithms has included minimum-cut placement as
a part of the solution [Rive82a, Wipf82a, Laut79a]. The minimum-cut approach parti-
tions the set of modules into subsets and recursively lays out each subset, much in the
manner of the hierarchical placement technique. The difference is in the way the par-
tition is determined. A minimum-cut algorithm is used to break up a graph into two
subgraphs such that each subgraph has about the same total area of modules, and such
that the number of edges between the subgraphs is minimized. Thus, minimizing

interconnections between subgraphs increases the interconnections within a subgraph.

The number of nodes in each subgraph may be bounded from below; for exam-
ple, each subgraph may be constrained to contain at least one-third of the nodes in the
original graph. Such a partition would ensure that the decomposition of the chip into
sets of modules would not result in trivial or degenerate trees, i.e., it would ensure that
each node would have subtrees of about the same size. Both routing area and total

wiring length should be decreased by following this heuristic.
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Figure 2.3: Minimum-cut placement -

As an example, consider Fig. 2.3a, where a number on the edge indicates the
number of nets represented by the edge. What is the minimum-cut for this problem?
The decomposition tree shown in Fig. 2.3b shows the minimum-cuts at each stage,
ending with the leaf nodes; at the topmost level, this partitions the modules into two

sets {A, B, C, E} and {D, F, G} with 26 edges between them.

The biggest shortcoming of the min-cut approach to module placement is the
difficulty of determining the min-cut. In general, if the size of each subgraph in the
minimum-cut partition is bounded, then the problem is NP-complete [Gare79a].

Thus, some heuristic is needed to compute a minimum cut, and these heuristics tend to
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be computationally expensive [Mura80a].

Besides this problem, the bipartitioning approach is often not able to obtain a
min-cut which matches a natural partition of the circuit [Prea86a]. Connectivity infor-
mation (the number of nets between modules) may often contain unsuspected hints for
a good layout. A layout tends to be biased by the designer’s perception of the flow of
control between modules. It is quite possible that there may be situations in which a
partition might be counter-intuitive, but result in a better placement. In such cases,
minimum-cut placement might reveal surprising ways to partition the chip. On the
other hand, situations may arise in which the min-cut partition of the module set is at
odds with the flow of control without any significant advantage gained by deviating
from the natural partition. For instance, consider a set modules realizing a piece of
sequential logic, with the modules connected in sequence. Since min-cut does not use
know anything about the function of the circuit, it could place these modules in dif-

ferent subtrees of the min-cut partition tree, if they were lightly connected.

In such a situation, it would be desirable for the min-cut algorithm to choose a
partition that does not separate sequentially interdependent modules by a large dis-
tance on the chip. Such constraints are not part of the min-cut approach; nor is it
apparent that constraints of this form can be added to the min-cut algorithm. The
problem is that the additional constraint needs to achieve its results without seriously
obstructing the general purpose of the min-cut approach, which is to provide a good
layout for global routing. For instance, the heuristic Dyjkstra min-cut algorithm
[Dyjk78], which is the algorithm used by the PI system, does not accept such con-

straints.
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2.1.4. Bottom-up cluster-growth based placement

Cluster-growth based placement algorithms have also been in vogue in the past
few years. The viewpoint of this approach is similar to that of minimum-cut. The
difference is that while minimum-cut takes a top-down approach, clustering takes a
bottom-up approach; it sets out to place modules close together if they are highly con-
nected [Rive82a]. Hence it typically starts by picking a module, based on such pro-
perties as its size, or the number of terminals, or the number of connections to the
input/output pads on the chip, etc. Once a module has been chosen, the sequence of
subsequently placed modules is determined by the number of nets going from the
unplaced modules to the already-placed ones. Again, there is room for variation in the
criteria for selection of the next module: the basis could be, for instance, how thickly
the module is connected to some particular module in the placed set, or how thickly it

is connected to the entire currently placed set.

The biggest advantage of using clustering is that connectivity information is
much easier to compute and manage than minimum-cut heuristics, and hence this
approach is very simple to implement, as well as computationally inexpensive. Most
algorithms using clustering tend to have a time complexity of O( n?) [Kurt65a]. Typi-
cally, the kind of information required is readily computable, such as the degree of
interconnection of the modules in the circuit. Also, as opposed to minimum-cut
heuristics, the cluster-based approach does not care about decomposing the module set
into equal sized subsets; its bottom-up mode of functioning groups the modules into
natural clusters. However, this approach does not provide much help to the global

routing phase. With a min-cut partition, global routing algorithms can assume that
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there will be few nets in the center area of the layout. Although clustering puts highly
connected modules together, it may lead to a large number of nets being routed near
the center, leading to congested channels in that area and relatively empty channels
near the periphery. As a result, global routing algorithms associated with cluster-

based placement may need to be modified to take this into account.

Modern systems tend to use either the cluster-based or the bipartitioning
approach to placement. These two approaches have fewer basic problems than either
the global placement algorithms or the branch-and-bound approach. The global
approach is not able to satisfactorily handle such practical considerations as mul-
tipoint nets, multiport nets and wiring space. Branch and bound suffers from high
computational complexity, which makes it infeasible for current problem sizes. The
hierarchical approach, although computationally feasible as well as practically work-
able, requires user-interaction and user-intuition, which may not be very dependable
for very large problem sizes. Overall, the only approaches that combine workable
principles with independence from human intuition are bipartitioning and clustering

approaches.

2.1.5. Combined approaches

In addition to the algorithms discussed in the last section, combinations of
approaches have also been implemented, and some have attained reasonable success.
The MIT PI (Placement and Interconnect) project [Rive82a] is an experimental pack-
age which merits a detailed case-study, being a good example of combining two
approaches to placement. The PI placement’s partitioning heuristic behavior is shown

in Fig. 2.4(b), along with its iterative design cycle in Fig. 2.4(c). The layout proceeds
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Figure 2.4: MIT PI placement process

as follows. Based on some evaluation function, a decision is made at each step in the
placement process as to whether to apply a min-cut partition or a bottom-up

connectivity-based step to the module set. A min-cut step would partition the set of
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unplaced modules by applying the min-cut heuristic, whereas a bottom-up step com-
bines two closely connected modules into one subtree. Repeated application of this
process decomposes the entire module set into a binary tree, with each level in the tree
representing one step in the placement process. Each subtree is then placed during a
recursive postorder traversal of the partition tree. Channel spacing is approximately
estimated and left for later confirmation. Global routing is performed next, and finally
the "greedy" channel router [Rive82b] does the detailed channel routing on each chan-
nel. If any channel is undersized or excessively oversized, then it reports a failure,
and the placement is revised by enlarging or shrinking the offending channel(s). In
his paper describing the PI project, Rivest claims that only a few iterations were typi-

cally necessary to lay out and route the test examples.

Other combined approaches include a combined force-directed and min-cut
algorithm [Wipf82a], a hierarchical approach combined with connectivity-based
heuristics [Prea78a], and a placement strategy for standard cells (with some uniform
dimension) using a combined bipartitioning and cluster-based algorithm [Rich84a].
Having already discussed the basic ideas inherent in these approaches, we proceed to

the placement improvement algorithms.

2.2. Iterative placement improvement

Since initial placement algorithms often ﬂproduce layouts that can still be
improved, most placement packages go through an iterative improvement phase after
obtaining an initial placement. In this phase, the placement is repeatedly perturbed by
making local changes; the resulting placements are then evaluated. The changes may

involve the position of a module, its orientation, or the relative positions of a group of
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modules. There may be several iterations before a final placement is accepted, result-
ing in a final layout that is very different from the initial placement. The
modifications are accepted if the resulting placement is superior to the original place-

ment.

Pairwise exchange is the simplest of the improvement schemes. This algorithm
repeatedly picks a module, and some k modules in its neighborhood. Within this set
of modules, there are kx(k—1)/2 possible pairs of modules. Each such pair is
exchanged, and the exchange resulting in a placement of least cost is determined. The
best of these placements is used as the starting point for another pairwise exchange

centered on another module.

Naturally, this is an expensive exercise. Typically, a design has several "core"
modules (i.e., modules considered important enough to serve as centers for starting a
pairwise exchange pass) and each module may be surrounded by 7 or 8 neighboring
modules. For each core module, the entire placement must be re-evaluated some 30
times to produce an iterative improvement. Moreover, the exchanges will be difficult
to carry out if the modules are of diverse sizes. In such a situation, an exchange
would have to be accompanied by a re-computation of positions and channels. With
standard cell types of layouts, where all modules are of about the same size,
exchanges do not force additional changes in the entire placement. General layouts
with varying-sized modules will raise the cost of this procedure, making this approach
computationally expensive. In spite of these problems, pairwise exchange is a widely

used iterative improvement algorithm.
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A more sophisticated version of the pairwise exchange scheme involves more
modules in the improvement iteration. Instead of attempting to do kx (k—1)/2 pair-
wise exchanges, all k! possible permutations within a neighborhood of k modules

could be tried. If the layout is a gate-array type of layout, with uniform-sized modules

arranged in rows, we might try all 2 possible exchanges between 2 rows of k
modules. These approaches are even more prohibitively time-consuming than the
iterative pairwise exchange; naturally, they also produce more improvement than the

limited pairwise exchanges could.

The basic problem with the exchange schemes is that such approaches do not
have the capability of getting past local optima. A local optimum is an optimum
value for the placement evaluation function within some limited neighborhood. Since
the improvement algorithms discussed only accept changes when the cost is reduced,
they locate only local optima. It is often the case, however, that if a large enough per-
turbation could be introduced, the optimum value in the new neighborhood could be
better than the previous local optimum. Unfortunately, large changes are rarely tried,
for the simple reasons that they are computationally expensive, and that there are too
many possible large changes for the program to consider them all in a methodical way
within a reasonable time-frame. The relaxation algorithm was developed by Goto

[Goto79a] as an attempt to overcome the local optimum problem.

The relaxation algorithm starts with an initial placement produced by an algo-
rithm such as those discussed in section 2.1. Given this initial placement, a module A
is chosen (some reasonable size/connectivity criterion can be used). A best position is

computed for module A, relative to the all the other modules in the initial placement,
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and it is placed in that best position, even if this position overlaps another module. If
it does overlap another module B, then module B is selected next, and placed in the
best position that it could be in. Each time a module is moved, its possible overlap

with another module is handled by forcing the overlapped module to move next.

The process is repeated until either the list of modules is exhausted, or (more
likely) there is a loop in the sequence of moves; in other words, when the process
attempts to move a module which had already been moved. When such a loop is
encountered, the modules involved in the loop are all considered, and one is selected
as the winner; the winner gets to keep its position, forcing the other modules to iterate
out of its way. The relaxation then proceeds with the unplaced modules. During this
continued relaxation loop, unplaced modules may overlap with each other, but they

may not overlap the winning module of the previous relaxation loop.

The reason relaxation does better than pairwise exchange is that the loop of con-
straints between modules tends to span many local optima, and gives the algorithm a
chance to look at and choose from a range of local optima. In other words, relaxation
goes over a larger neighborhood and has a wider choice of configurations. This is
quite a bit better than getting stuck in and being unable to extricate the placement
from a local optimum, as was the case with pairwise exchange. The iterations are not
much more expensive than pairwise exchange, but the method allows a wider range of

possible placements to be examined.

Relaxation is most conveniently applied to problems dealing with modules of
approximately the same size, for reasons already stated. In Goto’s paper, for instance,

all cells were of the same (or almost the same) size, and the "best positions" computed
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were all made to coincide exactly with the position of the overlappéd module; partial
overlaps and multiple overlaps were not considered. Intuitively, it is easy to see that
different sized modules cause more problems here than in pairwise exchaflge. Both
approaches share the problem of modifying the entire placement if varying-sized
modules have to be moved. In addition, if modules can be of different sizes, then
exchanges may cause the moved module to overlap with not one but several other
modules. This leads to a blowup in the number of modules that are forced to relocate.
Hence relaxation may fare better than pairwise exchange in the uniform-size model,
but it behaves very poorly when faced with nonuniform-size model, and is best suited

to gate-array or standard-cell types of layout problems.

Simulated annealing is a new technique that is based on the physical process of
annealing used in the manufacture of glass and ceramic plates, metal sheets etc.
Annealing is the process of cooling a substance at a slow and controlled rate, so that
the material cools evenly. This allows all internal stresses to even out, with the result
that the material settles down in a low-energy state, and should therefore be less brittle
and more resilient. In the circuit placement analogy, the cost of the placement
corresponds to the energy of the state; thus, simulated annealing attempts to find a

"low-energy" placement, i.e., a low-cost placement.

The key idea in annealing is that by providing enough heat to slow down the
cooling rate, enough energy is also provided for the material to gain energy to a lim-
ited extent, which allows it to settle down in the more stable of the possible states.
Figure 2.5 shows an example of what the "energy levels" might be for a set of dif-

ferent placements. Viewing this graph as an analogy of the energy levels of a sheet of
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Figure 2.5: Simulated annealing in placement

glass, it can be seen that if the glass is cooled swiftly, it might find itself in the state
labeled A in the graph. On the other hand, if the cooling were slow, and enough
energy was available, then from state A, the glass might be able to absorb enough
energy to reach state B or C; from where the most stable energy level would be D or

E, rather than A. The reason why this works is that by allowing the system to
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temporarily gain energy, a wider neighborhood of possible states is sampled in look-

ing for the stablest, lowest-energy state.

The algorithm for simulated annealing can be stated very simply as follows.
Perturbations are again made in the layout, where each perturbation is typically a pair-

wise interchange of modules. A perturbation is accepted if it results in a lowering of

the cost. If the cost increases, then the change is accepted with probability et

where A ¢ represents the change in cost due to the perturbation, and T represents the
"temperature” of the system. During the simulation, the temperature is reduced by
repeatedly multiplying it by a function o, called the cooling schedule [Sech86a].
Thus, after a perturbation loop at temperature T, the new temperature is determined
by:

Toew = 0(T,) X T,y

new

Simulated annealing has been adopted by several placement algorithms as a
viable and moderately successful technique to improve on the initial placement.
However, it is also computationally very expensive. Annealing schedules tend to be
more successful as more "hill-climbing" is allowed; i.e., as the energy level is allowed
to get higher. This can only be achieved by slowing down the cooling schedule,
which can only be done at the expense of processing time. An analysis of the com-
parative performance of simulated annealing against a min-cut algorithm showed,
surprisingly, that while simulated annealing was at least 100 times slower than min-
cut, it did not produce significantly better layouts than min-cut [Hart86a]. Moreover,
in the same paper, the point is made that simulated annealing also involves several

arbitrary parameters in the computation of the cost function; in spite of extensive



32

experiments, no consistently optimal set of parameters could be obtained. In conclu-
sion, Hartoog says:
While we believe Simulated Annealing will continue to be of considerable theoreti-

cal interest, it does not appear to be useful in a production environment, even when

the highest quality results are desired.

In the light of the iterative approaches discussed above, we need to point out
that the PI project goes through a very different style of iteration from the iteration of
the simulated annealing or relaxation algorithms. The processing cycle, as discussed
in section 2.1.6, is typical of many constructive placement schemes that do not use
any iterative improvement as a special phase. Placement impl;ovemem has a set of
possibilities that it tests out one after the other. According to the PI philosophy, on
the other hand, possible placements are tried out based on specific failure information
obtained from the channel router. The argument put forward by Rivest [Rive82a] for
this omission is that PI’s constructive placement produces good layouts, based on the
right properties of the circuit; and iterative improvement is not really helpful for such

placements.

One result of this philosophy is that the iteration occurs at a time when all the
global routing and channel routing has been done. In section 2.1.5, we surveyed the
layout style used by the PI algorithm, and we noted that the loop to determine a valid
laybut encompassed a large number of computationally expensive stages. We now
contrast these two different, computationally expensive, iteration styles with the philo-

sophy of our placement algorithm.
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2.3. Proposed placement philosophy: an overview

In all the above algorithms, one point of view is consistently missing: how a
human designer would react to a given problem. In these problems, as in many other
similar hard problems, human minds have always shown much better ability at intui-
tively jumping to almost-optimal or optimal answers. None of the above approaches
tries to use this point of view. Each algorithm touches on one aspect of the human
approach, but no approach attempts to combine the qualities that make human
designers better than most programs. We have made the point that problems have
grown beyond the point of employing human designers to find manual solutions.

However, it is still instructive to study the approach that a human designer takes.

Let us consider a designer sitting at a CAD terminal during a VLSI design
implementation session, in the process of putting down modules on a frame. How
does the designer pick the next module to place? How does he (or she) decide where
to put it down, and how to connect up the nets? The typical approach of a human
designer is to approach the layout problem with a great deal of hierarchical informa-
tion about the circuit. By the time the layout stage has been reached, the designer
knows the functional relationships between the various modules. Hence the designer
tends to lay out the modules in roughly the order in which they were designed, i.e., in
order of importance of the modules. This can be variously denoted by the order of

decreasing number of terminals, or of decreasing connectivity, or of size.

However, this is not an absolute rule. The designer applies this rule to perhaps 2
or 3 levels, then abandons that stream of control flow and picks up a different stream.

Thus, there is a point at which any single sequence of dependent modules is
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abandoned, and another one is started. The leftover modules are usually the unimpor-
tant (or peripheral) modules, which are taken care of at the end of the layout process,

and fitted in wherever there is space.

Another consideration that is at the forefront of the designer’s mind is shape and
orientation information. A designer looks at the next module to be placed, and at the
existing layout, and visually determines roughly where the module should go. This is
something that is of paramount importance in achieving compact layouts; however,
most placement algorithms have either ignored this factor altogether, or relegated it to
the final stages of constructive placement and iterative placement improvement. One
should note, however, that this is not the same question as bin-packing. Area is not
the only quantity under consideration; there are connectivity constraints that influence
the final placement of a module with respect to another. In addition to low chip area,

we would also like the placement algorithm to help the global routing phase.

These, then, are the central ideas in our approach to placement. Our algorithm
attempts to place modules in order of their relative importance for a few steps. In
order to identify these "more important" modules, a clustering algorithm is developed.
Keeping in mind the drawback of the clustering approaches, we give this cluster-
formation stage a tendency to identify closely connected modules, while at the same
time it tries to minimize the connectivity between clusters. Thus we hope that the

final layouts will not contain congested channels in the central area of the layout.

The algorithm repeatedly places modules beside the "most important" module of
a cluster, using orientation and size information to select the next module to be placed.

As modules are placed, they are combined into super-modules. Choosing and
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combining modules into super-modules is also influenced by size and shape informa-
tion. After reaching a point at which the selected modules are below some "impor-
tance threshold", the algorithm abandons them temporarily, leaving them for later
placement. The detailed algorithms implementing this approach are presented and

discussed in chapter 4.
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Chapter 3

GLOBAL ROUTING

Having run through a range of placement algorithms, we now switch to global
routing as the next phase of an automatic VLSI circuit layout process. Global routing
is the process of determining the topological route that should be taken by each net in
order to connect together terminals with the same label. The global router assumes
that the placement is done, or at least roughly done, in the sense that all modules are
assumed to have known positions relative to each other. It then computes which
route each net takes. This computation involves two stages: channel definition, and

loose routing.

Channel definition is the stage that identifies the channels through which the
nets will have to pass. The channel area is the empty space between modules; we can
either design clever algorithms to handle irregularly-shaped channels, or else we need
to break up the channel area into rectangles. Channel definition is not really a very
difficult problem and there are several acceptable solutions to choose from

[Souk81a, Rive82a, Ullm84a].

Loose routing determines the sequence of channels traversed by each net, given
the set of channels. The problem is in picking routes for nets in such a way that the

resulting routing is a close-to-optimal routing, in the sense of the measures discussed
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in the early parts of chapter 2: total area, total edge length, crossing count and max-
imum channel density. In this phase, the total area is not as sensitive to the global
routing produced as the edge length, crossing count, or maximum channel density.
The most important quantities should be the total edge length and maximum channel
density, since the first influences the overall chip delay, while the routability of the
channels depends on the latter. The loose routing problem has been shown to be NP-
complete [Pint83a,Sahn80a]. Moreover, it is hard to concoct a function that might
represent and measure the "goodness” of a layout so as to reflect all the issues
involved. This is because the quantities that need to be optimized are drawn from a
set of widely varying and disparate entities. Referring to chapter 2, some of the quan-
tities involved are total edge length, crossing count and maximum channel density:
three quantities that have different units, and can’t be combined into one single optim-
ization criterion in any rigorous sense. Even in manually laid-out and routed chips,
we have no way of choosing one layout over another when the two have very close
values for these measures; we do know when one measure is outrageously violated in
order to obtain a good value for another. To this extent, a composite function could
be built based on heuristics, such that it would reject layouts below a certain threshold
for any single measure. This does not, however, lead to any reasonable cost function
for optimization. As with placement, so with global routing: heuristic algorithms are

needed.

Although much research has gone into this area, the results are not very promis-
ing. The majority of the algorithms are modifications of the basic Lee-Moore expan-
sion algorithm [Lee61la, Moor59a]. A second class of algorithms consists of a small

number of more innovative algorithms that have surfaced in recent times, but there is
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to date only one attempt, by Loosemore [Loos79a], that approaches what our pro-
posed algorithm does, which is to combine placement and global routing. The prob-
lem tackled by Loosemore, however, is that of approximately uniform-sized modules

placed in rows and columns, which is a very restricted version of our problem.

This chapter reviews the channel definition problem, and the two classes of glo-
bal routing algorithms mentioned above. It then conducts two case-studies: a recent
modification to the basic Lee-Moore expansion approach, to see the direction modern
algorithms have taken; and the MIT PI project’s approach, as a different direction in

which the expansion idea can be extended.

3.1. Channel definition

Consider the simple example of Fig. 3.1, where the rectangles are the laid-out
modules. The solid rectangles represent the modules, whose edges are extended as
dashed lines. The ordering of channel edges based on the decreasing order of edge
lengths of the longer edges have been placed alongside the channel edges. Thus, a
channel edge marked 13 is smaller in size than edges marked with lower numbers. A
large number of different algorithms all define approximately the same set of channels
as the ones shown in Fig. 3.1b. The MIT PI project algorithm is typical of these algo-

rithms. It can be broken down into the following three basic stages:
® Extend all cell edges to meet either the cell or the chip boundary.

® Considering each line segment of the cell edge extensions in the order of longest
segment first, delete the segment under consideration unless this would leave a

non-rectangular channel area.
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Figure 3.1: Channel definition

® Add border channels if necessary.
In Fig. 3.1(a), a few of the larger line segments have been numbered in order of
length, and Fig. 3.1(b) shows the set of channels after deleting all unnecessary line
segments in order of size.

There are a few other factors that the channel definition algorithm needs to take
care of: avoiding constraint loops , and avoiding switch-box channels.

A constraint loop is a set of channels such that each is constrained by another in

terms of position. The example of Fig. 3.2 shows a constraint loop between channels

a, b, ¢ and d: a must lie above b, b to the right of ¢, c below d and d to the left of a.
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Figure 3.2: Constraint loop between channels

Such a loop could disrupt certain loose routing algorithms, especially if the algorithms
depended on information about the nets in adjoining channels while in the process of

assigning a net to a channel.

A switch-box channel is a rectangular channel with fixed terminals on all four
sides. While many detailed channel routing algorithms have been developed, the
switch-box routing problem is still a mostly unsolved one; existing algorithms are

unsatisfactory, to say the least, and we would like to avoid this problem if possible.
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3.2. Loose routing

Most loose routers in the literature hail from the well-known Lee-Moore algo-
rithm, as it is now termed [Lee61a, Moor59a]. The principle of the algorithm is quite
simple: picking a net, the algorithm begins to expand the net to all adjacent grid
points or rectangles, generating points called source points. Each source point is
again expanded, and this proceeds outwards from each terminal of the current net,
until they meet somewhere. The expansion of source points can be controlled by
attaching a cost property to each point. If the cost is made proportional to the distance
from the source terminal and the distance to the destination terminal, then at any point
during the expansion process, we only need to expand those source points that have

the least cost.

This process, when applied to a 2-point net, looks very similar to ripples spread-
ing outwards from a pair of pebbles dropped in still water; the meeting-point of the
two expanding circles of ripples will automatically be the shortest distance between
the two points. However, when more than one terminal is involved, this needs some
modification. As soon as two terminals meet at a point, all points on the established
path are given a cost of 0, and the search is continued for the best connection to the

remaining terminals.

This algorithm, developed in 1961, is very simple, and it is a measure of the
difficulty of the global routing problem that no landmark algorithms have been pro-
posed for this problem since then. Research has concentrated on improving this basic

approach.
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3.3. Case study I: Clow’s algorithm

One recent algorithm proposed by Clow looks at various gains to be made by
applying more intelligence to the steps of selecting source points and expanding them
during the net-expansion stage of the Lee-Moore class of global routers [Clow84a].
Clow speeds up the selection phase by selecting the next source point based on a com-
plex cost function, and applying artificial intelligence techniques to the potentially
explosive number of possible search paths at each step. And he streamlines the
expansion process to travel along a channel edge, ignoring any expansion across a
channel. This improves the running time immensely, since much of the expansion
might go across channels, while we really do not expect to go across a channel until

we actually are "across the road", so to speak, from the target terminal.

In Clow’s algorithm, the next source point is selected by applying Nilsson’s A*
algorithm [Nils71a] from Al which is a tree-search approach with pruning of high-
cost subtrees. The algorithm keeps track of two costs for each source point: the cost
g(n) of the expanded path from the source terminal to the source point, and projected
cost h(n) of the path from source point to destination. The function h(n) needs to be
a lower bound on the actual cost; hence the Manhattan distance (horizontal distance +
vertical distance) is used for h(n). If the source point already had an associated cost,
the algorithm compares this old cost to the computed value of g(n) + h(n), and sets
the cost as the lower one (which also determines the lower-cost path from the source

terminal to the current point).

Expansion of source points does not need to proceed in units of one grid dimen-

sion. We only need to note that if the cost decreases on entering a channel, then it is
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Figure 3.3: Clow’s global routing algorithm

most likely that we want the net to traverse the entire channel. Hence, instead of
going point-by-point within a channel, the channel expands right to the end of the
channel. To take care of other eventualities, the algorithm actually expands along all
possible directions, but the next source points are the points of intersection with the
channel boundaries. The example of Fig. 3.3 shows, in steps, the expansions tried (in
dashed lines) and the successful expansions (in continuous lines). The expansion to
point 1 has a larger g(n) than that to point 2, forcing the expansion of point 2 first.
From then onwards, the upper route never drops below the other in cost, so that it is

chosen as the winning route. The channels have not been drawn explicitly for reasons
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of clarity.

3.4. Case study II: PI project approach

The algorithm used by PI is somewhat more than just a modification of the
Lee-Moore algorithm. The expansion process is similar to the Lee-Moore algorithm,
but expansion is driven by Dijkstra’s single-source shortest path algorithm [Ahog83a].
This is a dynamic programming algorithm that finds the shortest path between two
points in a graph containing weighted edges. In the channel routing problem, the
expansion proceeds by jumping between midpoints of channel boundaries. It is
assumed that there are edges connecting any two points between which we wish to

travel; the length of an edge is its physical length.

Again, a generalization is necessary when more than 2 terminals are involved.
To quote from Ullman [Ullm84a],

When a net consists of more than two points, PI uses a generalization of Dijkstra’s
algorithm, where we push out from all ports on the net simultaneously, extending the
set of points (midpoints of channel boundaries) reached from each point in such a
way that at all times the points below a certain distance have been reached, and
points above that distance have not been reached... as the wavefronts of reached
points about each port expand, at times there will be a point just reached from one
port that borders a channel previously reached from another. If that is the case, we
know the channel in which these two paths will join, and we permanently join them,

allowing only the wavefront from one of the two ports to continue expanding.

The algorithm finds shortest paths for each net. However, it doesn’t take into

consideration the routability or the capacity of each channel, or the overall shape of
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the chip (overloaded channels forced to increase in width could result in a misshapen
chip). Also, there is the issue of whether or not the shortest path is natural for the net.
For instance, if a bus consists of 16 wires, 8 of them may take one route and 8 others

another route, simply because of an obstacle in the way.

3.5. Combined placement and routing

The GAELIC layout package [Loos79a] was designed at the COMPEDA com-
pany in England, and it is unique in that it does combined placement and routing.
This approach is similar to ours: the placement is not separated from global routing
because of the valuable information available to the global router from the placement

phase.

The placement problem considered by the GAELIC program is the standard-cell
placement problem, with modules of similar size being placed in rows. The program
also assumes a predetermined value for one of the final dimensions of the entire lay-
out. This amounts to providing the placement algorithm with a bin to pack, with one
of the bin’s dimensions specified, namely its width. The algorithm therefore proceeds
to place the cells row-by-row in the bin, ending each row when it reaches the wall of
the bin. The selection of cells is based on connectivity, starting with bonding pads at
the outer edge of the frame and working from one edge, say the bottom edge, inwards.
Having placed one row of modules in the bin, global routing is carried out for that
row, wires are propagated to the top of the currently placed layer of modules, and then
the placement of the next row begins. During the placement, the layout also goes

through an improvement phase, where different orientations are tried for each cell.
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The global routing is greatly simplified by the .assuraption of row-wise cell
placement. Let’s say the algorithm begins with the bottom row. The algorithm
proceeds to lay out a row of cells, followed by iterations to choose a good placement
that minimizes the total interconnect length in this row. At this stage, all connections
to higher rows are ignored (except to provide them with enough channel area to get
clear of the current row). The next row of cells floats somewhere above the first row;
its exact y-coordinate is not known yet, since the channel routing has not been done
for the wires between the rows. Before placement of another row can begin, the inter-
connections are made, and the channel routing completed immediately above the first

TOW.

As a design approach, this method does not sufficiently satisfy the demands
placed on a layout system by current designs. The COMPEDA system is in the class
of standard-cell placers and routers, generating a layout very similar to the array
topolo@; this is a more limited problem than the full-custom VLSI placement prob-
lem. However, it is a rarity, in that it mirrors our design philosophy: rather than
separating placement and global routing into two phases, much can be gained by com-

bining them, although this complicates both problems.

As before, we conclude by comparing our approach with those surveyed. The
main purpose of our incremental approach to global routing is to supply placement
information to the global router. Doing global routing as a separate phase forces the
global router to determine a route starting from scratch, whereas with a partial place-
ment, the global router can_obtain useful hints about the routing of nets. Moreover,

since the partial placement is a smaller subproblem, the effect is to attack the global
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routing problem in smaller pieces. In addition to obtaining hints for global routing,
this approach results in completely specified channels being determined even for a
partial placement. Thus, channel routing may also be done incrementally, so that
when the placement is completed, there can be no unroutable channels. In other
words, the entire algorithm can be guaranteed to complete in time polynomial in the
number of modules and nets, with no necessity for either manual intervention or itera-

tion of the placement phase.
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Chapter 4

THE GREEDY PLACEMENT ALGORITHM

In the previous chapters, we have seen a range of algorithms for the module
placement and global routing problems. While the placement algorithms have varied
greatly in their basic principles, they have all had one common characteristic: they are
all based on some form of backtracking. For instance, the PI algorithm, reviewed in
section 2.1.5, is essentially a straightforward min-cut and global-routing algorithm, in
which the backtracking is implemented as a loop all the way back to the placement
phase if the channel-routing phase (at the very end of the layout process) detects an

undersized or overloaded channel.

The aim of this thesis is to study how well an algorithm can perform in the
absence of any form of backtracking. This is the essence of the greedy approach: at a
given time, any decision that is taken will never be changed in the future. As a result
of removing backtracking, we can expect certain tradeoffs. Since the algorithm is not
allowed to redo any previously made decision, it will have a bound on its running
time, unlike a backtracking algorithm which needs to redo some indeterminable
amount of its work during the placement/routing process. On the other hand, since the
algorithm cannot go back to change any portion of its placement, it may perform

much more poorly than a backtracking algorithm. In the following sections, we
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develop the basic structure of a greedy algorithm. This basic structure will then be
extended in several different directions in order to study the factors that affect the

quality of layouts.

We begin with an overview of the block diagram of Fig. 4.1, which gives a top-
level view of the stages of the placement process, and the interaction between them.
In our algorithm, these stages are not completely independent of each other, as is the
case with conventional placement algorithms such as min-cut or hierarchical layout.
For instance, we see from Fig. 4.1 that the "Make-WCG and Make-CNG" phase is
executed once after each set of clusters has been placed and global routed, whereas in
the min-cut approach or in the PI package, the placement phase was completed before

any global routing was attempted.

4.1. Preliminary stages

Our placement algorithm begins with the initialization stage, by reading data
from a CIF description of a set of cells [Mead80a]. We use an extended version of
CIF that supports text labels in the layout; these labels are placed on the bounding
boxes of the modules to represent terminals that are to be connected to each other.
The initialization stage is executed only once for each run of the placer. A detailed set
of specifications is available in [Moha87a] Figure 4.2 shows an example layout EX1
that was published as the end-result of a placement-global routing package [Cies87a].
Although this figure has the wire-routing displayed, the input to our placement algo-
rithm would include only a list of modules. In other words, the information obtained
from the CIF file would contain only a list of modules, their dimensions, and the posi-

tions and numbers of the terminals on each module. Arrows on the nets represent
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Initialization
From cif layout file
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Figure 4.1: Placement algorithm overview
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Figure 4.2: Layout example EX1

external nets to I/O pads for off-chip communication.

Following the initialization stage, the algorithm constructs two graphs, the
Weighted Connectivity Graph (or WCG) and the Closest Neighbor Graph (or CNG).
Beginning with the set of modules and their terminals read in during the initialization

stage, the WCG is constructed to represent the modules and their interconnections. In
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Figure 4.3: Weighted Conrectivity Graph for EX1 layout

this graph, modules are represented by vertices, and the connections between them are
represented by weighted edges. The weight of the edge between two modules indi-
cates the number of wires between them. Figure 4.3 shows the Weighted Connec-
tivity Graph for layout example EX1. We see that modules BL2 and BL6, for
instance, are connected by nets 6, 7, 8, 11, 12 and 13; hence the weight on the WCG
edge between BL2 and BL6 is 6. At this stage, the algorithm only considers the

number of nets connecting the modules, and ignores the positions of the terminals.
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The WCG is the basis on which a Closest Neighbor Graph is constructed. The
CNG is a directed graph; it is built by adding directed edges between the vertices of
the WCG. An arc from module A to module B indicates that of all the WCG edges
incident on A, the one with the greatest weight connects A to B; i.e., A’s "most impor-

tant" neighbor is B. For instance, an arc from module BL4 to module BL6 indicates

that, of all the edges of the WCG incident on BL4, the edge of greatest weight

Figure 4.4: Closest Neighbor Graph superimposed on WCG for EX1
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connects BL4 to BL6.

4.2. Cluster Identification

In chapter 2, we discussed a few different methods to partition the chip, min-cut
and clustering being two of the more popular and important methods. The desirable
property of min-cut was that connectivity between members of a cluster was high, and
. there were few connections between clusters; its drawback was its high computational
complexity. Clustering, on the other hand, is simple to implement, and has a low
computational complexity, but does not guarantee an even distribution of wires during
the global routing phase. In this section, we introduce a novel clustering algorithm
which attempts to partition the module-set into clusters, while it also tries to make the
placement easy for global routing. We trace the behaviour of our algorithm on layout

EX1 of Fig. 4.2.

The clustering stage unfolds as a continuing process of adding modules to a
cluster one by one. When the CNG is constructed, it superimposes a directed graph
on the WCG; each connected component of the CNG is a cluster. The actual process
of selecting modules for placement begins by selecting a core module (henceforth
referred to as CORE) as the most important module in the module set; this effectively
selects the most important cluster. The CORE thus selected is the module with the
largest in-degree in the CNG. The rationale behind the "largest in-degree" criterion is
to pick a module which is the "most important neighbor” to the largest number of

modules. From Fig. 4.4, the first CORE selected is BL2, with an in-degree of 4.

We now define a satellite set, or SATSET, as the set of modules which consider

CORE to be their most important neighbor. SATSET is built up from those neighbors
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of CORE who have WCG-edges with weight greater than some threshold, and who
have arcs to CORE. In the layout EX1, the SATSET for BL2 would be {BL1, BL3,
BL6, BL7); if the threshold weight for membership in a cluster is at least 1, then BL7
wouldn’t be included. The cluster is, therefore, SATSET U CORE.

The CNG being one of the major criteria that determine the order in which
modules are selected for placement, it is essential that there be no cycle in this graph,
since such a cycle could result in an infinite loop during selection of a core module.
For instance, suppose that a CNG could be constructed with modules A, B and C hav-
ing directed arcs between them forming a cycle of length 3. There might then be a
cyclic relationship between them: A might be the core module, but at the same time it
might be C’s satellite. Fortunately, it is easily shown that cycles of length greater than
2 cannot exist in a CNG. Suppose that the CNG contained a set of k > 2 vertices M,
M,, ... M, and a set of k arcs (M, M, ), i= 1,2, ..., k=1, and (M, M)). Let W(A, B)
represent the weight of the edge (A, B) in the WCG. Since M is connected to both
M, and M,, the arc (M, M,) indicates that the weight of that WCG edge is greater
than the weights of all other WCG edges incident on M ; specifically, that it is greater
than W(MI, Mk). By a similar argument, it is clear that for alli =2, 3, ..., k-1, the
W(M,, M, ) is greater than the weights of all other WCG edges incident on M. This
leads to the inequality

W(M,, M,) < W(M,, M;) < W(M3, M) ... < WM, _,, M)

Thus, we see that
WM, M,) < WM,_;, M,).

Therefore, it is not possible for the CNG to contain an arc (M k, M J ), since that
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would only be possible if
WM, M) > weights of all other edges incident on M,
and it was previously established that

W(M,, M,) > W(M,, M,)

This establishes that the CNG cannot contain directed cycles longer than 2 edges. A

cycle of length 2 may exist, but that is acceptable to our algorithm.

Once SATSET has been determined, a satellite module (or SAT) is selected
from SATSET. The criteria for this selection are: connectivity to CORE, and how
closely the preferred side of SAT matches the preferred side of CORE in dimension.
This implies that before SAT can be selected, its orientation needs to be determined.
In fact, at this point in the algorithm, all possible modules in SATSET are tried out, in
all possible orientations; the module that is selected must have a winning combination
of connectivity to CORE and a close match between the dimension of its selected

CORE-facing side and the dimension of the SAT-facing side of CORE.

It should be noted that the above algorithm for selecting CORE and SAT
modules provides several opportunities for introducing heuristic factors. First, vary-
ing the threshold weight for inclusion in the cluster provides a mechanism for selec-
tively blocking off less important modules from membership in a cluster. These less
important modules are collected into a set of free modules, termed loose modules; we
deal with these shortly. Second, the selection of CORE from the set of modules is
dependent on the criterion for considering a module as "important”. This could be
varied between such different aspects as the in-degree of the module in the CNG, area

of the module, number of terminals on the module, etc.; or it could be constructed as
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some composite of all the above criteria. Third, selection of the SAT module from
SATSET is dependent on connectivity and closeness of fit of the two facing sides of
CORE and SAT. Again, these two criteria could be combined, and the degree of
importance of one with respect to the other could be varied to provide a range of

results.

A final point to note is that this approach mimics the human designer’s approach
as outlined in section 2.3. The clustering approach, combined with the threshold con-
nectivity to decide membership in a cluster, is designed to select and place modules
approximately in the same sequence as a human designer might choose. The
influence of connectivity on the module selection process reflects the human
designer’s tendency to build the placement influenced by the functional relationship
and the flow of control between modules. In switching from placement of modules in
clusters to placement of clusters themselves, too, the algorithm draws on the paradigm
of the human designer’s tendency to build up the placement in clumps of highly con-

nected modules before putting the clumps together.

4.3. Module Placement

The placement stage is, in itself, a complex process. It consists of a combined
iterative and recursive process. Iteration is used to repeatedly select satellites and
build up the core module; recursion is used whenever a satellite module is too small to

appropriately fit beside the core module.

Starting with the Cluster Identification process dealt with in the previous sec-
tion, the placement process enters the "Recursive placement” phase, as shown in

Fig. 4.5. During this phase, all elements of the cluster are placed relative to each
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Figure 4.5: Placement phase

other, and routing of wires is done within the cluster. This brings the layout to a state
in which terminals to be connected to as yet unplaced modules are available at the
boundary of the cluster. The Recursive-build algorithm is explained in section 4.4

which follows this section.

A close examination of Fig. 4.5 shows that, during the placement of a cluster,
Recursive-build is repeatedly called; at each call, the newly constructed module (or
NEWMOD) replaces the previously selected CORE as the new core module. Laying
out a cluster thus turns out to be a process of attaching satellite modules from the clus-

ter, one by one, and then carrying out the necessary wire-routing. After each




59

invocation of Recursive-build, control either returns to the recursive i)lacement block
(to continue placing modules of the cluster relative to CORE), or if the cluster has
been entirely placed, control goes back to the Cluster Identification phase. This latter
action causes another CORE to be selected out of the set of remaining unplaced
modules (i.e., UNPLACED-SET), and the recursive placement of that CORE and its

cluster continues.

Referring back to Fig. 4.1, we see that the placement of all the clusters results in
control returning to the preprocessing phase to re-make the two graphs WCG and
CNG. In the new WCG, each vertex is a supermodule containing an entire cluster,
rather than a single module. The effect is thus a staged decrease in connectivity
between modules in a cluster. Each invocation of Make-WCG would cause a decrease
in the degree of connectivity between modules relative to their size, since the highly-

connected modules would have been placed together within a supermodule.

To complete the picture, we need to explain the role of loose modules. These
are the modules that are weakly connected to other modules. Modules whose connec-
tivity lies below a threshold are not allowed to become members of a cluster, and are
thrown into a pool of free or loose modules, from which any cluster may draw
modules for placement. During the placement of a cluster, if all its elements have
already been placed and the Recursive-build algorithm still requires additional
modules to place beside CORE, then in that situation a loose module may be selected
to fill in the empty space within the supermodule being built. Owing to their low con-
nectivity, these modules typically get oriented and selected primarily on the basis of

size rather than connectivity.
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4.4. Recursive-build algorithm

The recursive algorithm forms the heart of the strategy for placing modules rela-

tive to each other. Figure 4.6 depicts the behaviour of Recursive-build with CORE as

Algorithm Recursive-build (CORE)

| Select SAT from SATSET

[ Orient CORE and SAT r|<

is SAT-side
<<
CORE-side?

SAT «
Recursive-build (SAT)

No, fit
is good

Construct NEWMOD
Global-route nets
Estimate channel dimensions

|

[ Return (NEWMOD1

Figure 4.6: Recursive module placement
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its parameter. At the beginning of the recursive building, a satellite module SAT is
selected from SATSET, and a side (SAT-side) is selected for SAT as the preferred
side to be oriented facing CORE so as to minimize the width of the channel. Simi-

larly, a preferred side is chosen for CORE, called CORE-side, to face SAT.

The next step is the branch which determines whether this CORE-SAT combi-
nation is satisfactory from the point of view of their relative sizes. If SAT-side is
smaller than some preset fraction of CORE-side, then Recursive-build is invoked
recursively, with SAT as its argument. This causes the process to be executed, but
this time SAT is treated as though it were a CORE module. As a result, when the
recursive invocation ends, the returned module (consisting of SAT coalesced with
other members of the cluster) replaces SAT as the new — and larger — satellite. At

this point, control goes to the orienting stage, where the new SAT is oriented.

Since this algorithm is recursive, it is possible that during its invocation with
SAT as its argument, it could enter further recursive invocations in order to build up
the modules selected to be placed beside SAT. This branching to the recursive call is
repeated until all the satellite modules selected during the sequence of recursive calls
finally reach a satisfactory size through repeated recursive building-up. Once that
point is reached, the non-recursive side of the "is SAT-side < CORE-side?" condi-
tional branch will be taken, leading to the construction of the new module (or
NEWMOD), and the routing of wires within it, as is described in the next chapter.
The new coalesced module NEWMOD, possibly consisting of many modules, is

returned by the algorithm as its return value.
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Note that although the CNG is the main criterion for determining the sequence
of selection of modules for placement, the iterative process of selecting a module is
bypassed by the recursive step. The satellite selection function may be invoked either
from the iterative loop, or from within the recursive module-building function. This is
the factor that controls the relative positions of the modules, and also the factor that
yields densely packed layouts. Note also that this particular style of recursive build-
ing of the SAT module is motivated by our desire to construct rectangular modules,
and to keep the supermodules from containing a lot of vacant space. In the absence of
recursive building, as the CORE module grows larger, placing a small SAT next to it
and enclosing the pair within a rectangular boundary causes the area to grow to unac-
ceptable levels. This point is illustrated by the step-by-step placement of layout

example EX1 below.

In tracing the placement of example EX1, we refer back to Figures 4.2, 4.3 and
4.4. All positional references to various sides of specific modules (such as the "top of

module BL3") are with respect to the original positions of the modules as in Fig. 4.2.

We begin with the selection of a core module. The CNG of Fig. 4.4 shows
module BL2 to be the first core module. The satellite set for BL2 includes BL1, BL3,
BL6 and BL7; of these, BL6 having the heaviest edge to BL2 (with a weight of 6), it
is selected as the first satellite to be placed beside BL2. Module BL6 is deleted from
the satellite set, and satellite BL4 of module BL6 is added to it, since BL6 is now in
the process of being coalesced with the core module. The orientation is decided: it
sets the top side of BL6 to face the right side of BL2 so as to minimize the width of

the channel between them. Since the dimensions of this pair of sides do not match
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very well, recursive building is invoked on the satellite BL6 to try to build it up to
size. This restarts Recursive-build with BL6 treated as the CORE parameter, and a
satellite is selected for BL6. Again referring to Fig. 4.4, we see that of the remaining
satellites, BL4 has the heaviest weight of 4, and hence it becomes the next satellite.
BL4 and BL6 are placed and oriented; in this case, the left side of BL6 is selected to
face the left side of BL4, having 4 nets in common between these two sides. Since the
dimensions match well enough to pass the degree-of-fit threshold, BL6 and BL4 are
placed together, the global routing is carried out for the wires in the channel (this pro-
cess is discussed in detail in Ch. 5) and the two modules replaced by a new module
named m8-6-4 (the name is generated from the module numbers of the subcells

comprising the new module).

At this point, BL2 and m8-6-4 are to be placed together. Since the dimensions
of m8-6-4 are now greater than BL2, they are placed together, forming another new
module named m9-2-8. Continuing the satellite selection process, BL3 is the next
choice; being too small, it is first recursively built up with BL1 (forming new module
m10-3-1), which is then placed next to m9-2-8. That ends the placement of the first
cluster. The second cluster contains only modules BL5 and BL7; and finally, the two

clusters are placed together to yield the complete layout.

It should now be clear that as the core grows larger and larger, the mismatch
between core dimension and satellite dimension also grows, since the core module is
being repeatedly built up, whereas satellites are raw modules. This motivates the
recursive-build philosophy: as mentioned earlier, if there were no recursive building,

the mismatch would cause large areas of the layout to remain unoccupied. The more
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the number of modules, the larger the core modules would grow, and the greater
would be the amount of space wasted. The recursive process is a tool to check that
tendency by building up satellite modules to comparable dimensions before coalesc-

ing them with core modules.

To sum up the greedy placement approach: we have designed a method for plac-
ing modules on a chip without resorting to backtracking. Hence the decisions we
make are based on incomplete information. In spite of this constraint on our layout,
the algorithm is capable of placing and orienting modules in a way that is helpful to
future global routing. The algorithm is also capable of packing modules close
together without allowing too much vacant space within the layout. In addition to its
performance on the layout, it is a fast algorithm, with a polynomial time complexity
and guaranteed completion of the layout process, unlike many industrial packages

which may leave some percentage of the work to human hands.
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Chapter 5

THE INCREMENTAL GLOBAL ROUTER

The development of the greedy approach to placement leads to certain con-
straints on the global routing of wires. The philosophy of greed is to make placement
decisions with limited information and to avoid changing those decisions at a later
stage. Referring back to Chapter 4, we saw that the final layout was built up in stages,
with modules being coalesced intq supermodules at each stage. In addition, there was
no backtracking during the building of the layout. To be consistent with such a philo-
sophy, the global router cannot itself require backtracking, since that vwould offset the

benefits of greed. The constraints on the global routing algorithm are:

(1)  Since every call to the Recursive-build algorithm results in building one pair
of modules into a supermodule, the width of the channel between the two
modules needs to be determined before recursive building is completed. If
this computation were left to be done later, then by the time the channel width
is determined, the layout process may have built up many supermodules; it
would therefore require changes in the sizes of previously built supermodules

in order to insert channels of the appropriate size.

(2) The relative positions of two modules must be decided in order to compute the

channel width. The routing of wires in the channel depends on the exact
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positions of two modules, in conjunction with other factors such as positions

of terminals and detailed routing of wires.

The routing of external wires from within the channel to the supermodule
boundary has to be decided. This is a greedy decision: the recursive-build
algorithm has no advance information about the future positions of the neigh-
bors of the supermodule currently being built. The global routing algorithm,
therefore, needs to route the channel wires "blind", without knowing where
the placement algorithm will eventually place the modules to which the nets

need to be routed.

The global routing may remain incomplete at the time of module construction.
Consider a net N connecting modules A and B. If these modules belong to dif-
ferent clusters, then they will be built into separate supermodules, perhaps
many times (because of the recursive-build step), before their supermodules
are coalesced. Until that time, as the supermodules containing A and B grow,
the net N must be extended to the boundaries of all the intermediate supermo-
dules. This ensures that when the supermodules containing A and B are finally
put together, the global routing of net N would already have been partially
done; the only routing task left would be to connect the points reached by N
on the boundaries of the two supermodules. In other words, nets are global
routed incrementally, until the placement algorithm puts all the modules con-
nected to a net together in one supermodule. At that point the entire routing
area that will be spanned by the nets will lie within the supermodule being

built, and the routing can be completed.
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Our approach to this problem of greedy global routing is to construct an algo-
rithm which will route wires in directions which will probably be the best direction for
the wires, based on the connectivity between the sides of the supermodule and its
neighbors. From point number 4 of the above discussion, it is clear that net N may not
need to be extended to the boundary of the supermodule containing it. If N connects
only modules within a supermodule, and does not need to be connected to other
modules, then it will cease to be a net of interest during the further stages of the layout
process. Only if a net is to be routed to other modules external to the current super-

module will it appear as one of its terminals on its boundary.

5.1. Specific goals of the global router

We now define the exact global routing problem to be solved, and the goals of
the global router. To begin with, we know that at the end of a module-building step,
the relative orientations of CORE and SAT modules have already been determined.

The factors influencing this decision are:

(1) The connectivity between pairs of edges, ie., the size of the intersection

between sets of terminals on the facing sides;

(2) The degree of fit— how closely the dimensions of the facing sides of CORE
and SAT match;

(3) A penalty for a large percentage of non-matching terminals on the facing
sides. This is to encourage the selection of facing sides to reduce the channel
width by choosing sides to face each other which will need to route fewer nets

in the channel.
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Recall that when the global router is called by the module-building algorithm, the
sides of CORE and SAT that are to face each other have already been selected. When
control returns from the global router, the module-builder proceeds to construct a new
module, with complete specification of its internals. According to our definition of a
module (in chapter 1), the new module must be a rectangle, with terminals on its
boundary. Knowing the starting and final states, the job of the global router can now
be defined to be the making of all decisions that will allow CORE and SAT to be
placed within a rectangle, and the routing of all nets to be performed within the rec-

tangle bounding the two modules.

We first consider the question of the relative positioning of CORE and SAT
modules, and then go on to discuss the routing of nets in the channel and of other nets

between the modules.

5.2. Relative positions of CORE and SAT

Initially, when global routing begins, the orientation of CORE and SAT have
been determined. However, that only decided which side of CORE and SAT will face
each other. The two modules can still be allowed to "slide" relative to each other,
with their faces parallel to the channel. The goal in determining a final relative posi-
tion for the modules is to minimize the width of the channel. However, since the
channel width can only be determined by actually doing the global routing
[Szym85a], we fall back on greedy heuristics to arrive at a relative position for the

two modules.

The heuristic is based on the fact that modules are often designed to be fitted

together exactly. The terminals on such modules are usually spaced identically on the
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sides to be fitted together, thus allowing the modules to be placed next to each other
very close together with minimal routing necessary. The terminals on the facing sides
are said to have a matching pitch, and typically such sets of terminals can be con-
nected by a set of straight-line wire segments, or by a river-routing algorithm (i.e., a
routing algorithm which connects pairs of terminals with no crossing wires). Our
heuristic is to scan the facing sides of CORE and SAT for a large block of pitch-
matched terminals, and to pick the relative position which maximizes the block of
pitch-matched terminals. This is determined by repeatedly sliding CORE and SAT
with respect to each other, and counting the number of matched terminals at each
position. In the absence of matching pitches, the modules are positioned with their

centers aligned.

5.3. Channel net routing

Consider a set of nets in the channel, i.e., on the facing sides of CORE and SAT.
The direction of routing of these nets to the boundary of the CORE-SAT supermodule
will later contribute to an orientation decision when the supermodule is placed beside
one of its neighbors. Hence, the goal in global routing the channel nets is to cause this
routing to fit in harmoniously with the existing terminal positions on the other sides of

CORE and SAT.

We illustrate our approach with the example of Fig. 5.1. Modules A and B are
to be coalesced into new module AB. We term the set of nets on the facing sides as
CHANNETS, after their existence in the channel. In our example, Channets = {2, 4, 5,
6,7,8,9,11, 13}. The set of nets on the top-side of AB (or TOPnets) is {2, 10, 13,
16, 19, 25}); and similarly, BOTnets is {4, 8, 9, 23, 27}. The sets of nets to be routed
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Figure 5.1: Global routing of channel nets.

to various neighbors is also determined to be the following sets:
Channel nets to neighbor 1 = NBRnet{, = {1,4,9};
NBRuets, = {1, 5, 9, 13}

NBRnets, = (2, 14,27}
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NBRuets, = {6, 7, 19, 25)

NBRuets, = {10, 27}

The set of nets in the channel contains some nets that only need to be to be routed
between the modules{A and B; plus some external nets which are to be routed to the
boundary of the supermodule AB. The key decision at this stage is which side — top
or bottom — to choose for global routing each external net in Channets. To motivate
our algorithm, it should be noted that the positioning of a neighbor X will be decided
by the nets on the other sides of A and B, in addition to other factors. If neighbor X
has a large intersection with BOTnets, it would make sense to route all channets con-
nected to X towards the bottom of AB. If some of those nets were also connected to
neighbor Y, then it would be reasonable to assume that, were Y to be placed first
(before X) then the Channets connected to Y would also have to be routed towards the
bottom of AB. In other words, we need to partition the set Channets into equivalence

classes.
To begin with, let AB have k neighbors NBR, ... NBR, . For each neighbor

NBR,, we have a set of nets C; going from Channets to NBR,, i.e..,

C,=NBRnets; N Channets
These subsets of channel nets C, .. C, are the starting point for partitioning them into
equivalence classes according to the equivalence relation:

C‘.ECjiffC‘.ij¢®
In other words, if two neighbors NBRx and NBRy are both connected to net N, i.e., if

N is to be found in subsets C_and C y of Channets, then both C_ and Cy should get
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routed in the same direction. Hence C_ and Cy should belong to the same partition or
equivalence class.

The equivalence class partitions can then be decided separately. Given partition
P, connected to, say, a group of neighbors G, the direction of routing of P is deter-
mined by comparing the sizes of intersection of TOPnets and BOTnets (i.e., nets on
the top and bottom sides of supermodule AB) with the netlists of the neighbors in the
group G. If neighbor group G has a greater intersection with TOPnets then all Chan-

nets in partition P should be routed towards the-top, and vice versa.

To summarize, the goal of the global routing algorithm is to keep down the
channel width and the total wiring length. Channel width is determined based on
maximizing the set of pitch-matched terminals on the facing sides of the modules.
Wiring length is limited by making a greedy routing decision that tends to keep nets to
neighbors ‘from being routed all the way around the module. The heuristic used to
pursue this goal is the routing of subsets of nets in the channel in the direction that the

neighbors connected to the nets are likely to end up on.

5.4. Routing non-channel nets

The only nets yet to be routed are those which connect CORE and SAT
modules. These nets are routed in a straightforward manner by computing intersec-
tions of nets on pairs of sides of CORE and SAT modules, and setting aside enough
tracks to accommodate the number of nets expected. For instance, in routing a net
from the left side of module A to the top side of module B, the intersection of the left-
nets of A with TOPnets would yield the number of nets traveling between those two

sides. It would then suffice to compute the amount of routing area to set aside for
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routing that number of nets. This process is repeated for various pairs of sides; nets
that may choose either direction are split into halves, and each half is routed in dif-

ferent directions to reduce the routing area width.

5.5. Detailed channel routing

As we had pointed out in Chapter 1, we do not include detailed channel routing
in our algorithm. Instead, using the information collected and computed in the above
sections, the channel width is estimated. This computation is based on the maximum
channel density (see Chapter 1), and on the maximum block of terminals on both of
the facing edges whose positions match exactly. Recall that the density at any point in
a channel is defined as the number of nets crossing that point. The maximum channel
density can therefore be considered to be an upper limit on the width of the channel,
since at some point in the channel, there are enough nets needing that width of chan-

nel.

The channel width estimation begins by determining, from the previous global
routing steps, the sets of nets entering the channel from either end. A straight scan of
the channel is sufficient to calculate the maximum channel density, by keeping track
of the number of nets on an open list. Membership of a net N in this list implies that
N has not yet been completely routed in the channel. For instance, if N were posi-
tioned at column 4 on the top edge of the channel, and at column 17 on the bottom
edge, then it would enter the open list when column 4 is considered, and leave the list
at column 17. Nets entering at the left edge of the channel are entered into the open
list initially; nets leaving the channel at the right edge remain in the open list after the

scan is complete.
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As we have pointed out in Chapter 1, there are many excellent algorithms for
detailed channel routing. Many of these algorithms have also exhibited the ability of
routing channels using only one track more than the channel density. We have there-

fore chosen to estimate the channel density, and allow an additional 15% space, and

have concentrated rather on the algorithms for placement and global routing’. It
should be noted that the wiring space provided is a liberal estimate of the spacing
required. It is quite likely that an additional compaction stage may produce significant
area gains if applied after completion of the layout. We deal with this issue in

Chapter 7.

The figure of 15% was arrived at after noticing that a majority of the channels contained fewer
than about 10 nets to be routed. The figure for the additional channel space percent had to be high
enough to provide at least one additional track; less than 15% allowance causes too small an increase in
channel width to accommodate even one additional track.
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Chapter 6

RESULTS

The algorithms described in the previous two chapters comprise the greedy
placer and incremental global router; we henceforth refer to the package as the Placer.
The Placer has been implemented in Lisp, and produces layouts with positions of
modules and routing areas specified. A Placer layout run producing a single layout

took between 36 seconds for the smallest layout, to 166 seconds for the largest; timing

was on a VAX 11/750 running 4.3 BSD Unix? including the time for operating system
overheads. Input to the Placer is in the form of a CIF file [Mead80a], in which each
module is represented by a cell consisting of a rectangle of metal with numeric labels
on the boundary to denote terminals. The Placer produces a CIF file as output, con-
taining a subcell for each application of the Recursive-build function. These subcells
are organized in levels, with one level of cells per level of recursion during the
Recursive-build process. Subcells contain both rectangles (the constituent modules)
and routing areas (denoted for viewing purposes by polysilicon, or red, rectangles).

The Placer also outputs the area, estimated total wiring length, and the aspect ratio of

UNIX is a trade-mark of Bell Telephone Laboratories
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the finished layout to a separaté output file.

In the following sections, we proceed in stages, evaluating the performance of
the algorithm with respect to one decision criterion before turning to the next one.
The sequence in which we consider the criteria reflects their relative importance to the
algorithm. We first review those criteria which we consider to be central and vital to
our approach, and which we believe is the contribution of this thesis. These criteria

are:
e the size and membership of a cluster; and
e the stage at which recursive building takes place.

The next pair of criteria that we discuss determine the sequence in which modules will

be selected for placement, and their orientation:

® the relative importance of connectivity and dimensional fit in determining the

next module to be placed;

® the relative importance of connectivity, dimensional fit and non-channel net-

count in determining the orientations of a CORE-SAT placement decision.

Finally, we consider the factors that control how the cluster-membership, recursion-
threshold and connectivity-weight vary with increasing size of cluster; ie., as the
cluster-building process makes larger and larger supermodules, should the cluster-
membership criterion change? Should the recursion threshold change? What should
they change to? For instance, a tactic which was suggested in Chapter 4 was to begin
with a low value for the threshold dimensional fit that triggered recursion; and to
increase it later, as modules became larger. This set of factors is in the nature of

"fine-tuning” the Placer.
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The test layouts on which we ran the Placer were presented as results in various
articles published in the IEEE Transactions on CAD of Integrated Circuits and Sys-
tems. Our fist two example layouts (labeled EXI and EX2 in our results) were
obtained from [Cies87a]. The placement was carried out by digraph relaxation,
which begins with a rough initial relative placement of modules. A placement
improvement process based on relaxation (discussed in section 2.2) was carried out,
combined with a branch-and-bound apl;roach for area minimization. The placement

was followed by channel definition and routing stages.

From [Marg87a], we obtained layout EX3. This layout was published as an
example of a global router that was incorporated into a chip floor-planning tool, ARI-

ANNA [Anto85a].

Finally, we obtained EX4, EX5 and EX6 from [Roth83a]. These layouts were
again published as an example of a global routing algorithm, starting with a given ini-
tial placement. In addition to the placement and routing, a compaction stage was also
included in their production. We should point out that comparisons between the
Placer’s layouts and examples EX3, EX4, EX5 and EX0 are therefore rather biased
against the Placer, since the Placer has no compaction stage built into it, nor does it
have the human interaction and guidance that a floor-planning system (such as the

ARIANNA system) has access to.

6.1. Notation

Before presenting the results, a short description of the notation used in the
graphs and tables is necessary. The results were obtained by repeatedly running the

Placer at different settings of the weight-values for the various decision criteria. As
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the following sections further show, many of these weights are quite unstructured in
terms of their range of values and their relationship to the actual areas obtained. In
order to meaningfully compare the performance of the Placer, the runs were repeated
with identical sequences of weights on different layout examples. The results are
therefore presented with simply the layout run number on the x-axis, rather than the
actual weight value. The correspondence between runs and actual weights is tabu-

lated separately for each set of tests.

Against the series of layout numbers, we plot the resulting area, total estimated
wire-length, and final aspect ratio. Area (and wire-length) plots are of the ratio of
obtained layout area (and wire-length) over the area (wire-length) of the example in
the original publication. In other words, the area and wire-length plots all indicate
how well the Placer did relative to the original layouts; the y = 1.0 line marks the area
of the original layout. In the following sections, we see that many layouts produced
by the Placer have areas and wire-lengths that fall below this line, signifying that at
those points, the Placer has built a layout with smaller area or wire-length than the ori-
ginal (the exact result value indicates what fraction the Placer-generated area or wire-
length is relative to the original layout). The aspect ratios of all the original examples
were very close to 1; hence we have plotted the absolute aspect-ratio values without

modification.

Each set of test results is presented in three parts. First, a table shows the
weight values of interest corresponding to each layout number. This is followed by
six graphs, one per layout example, showing the behavior of area, wire-length and

aspect-ratio against layout number. Area plots are marked by circle symbols (O),
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wire-length by triangles (4) and aspect-ratios by crosses (+). Finally, the ranges of

weights corresponding to the best layouts are summarized in a separate table.

6.2. Impact of cluster size on layout

We begin by presenting the effect of varying the cluster size. Recall from sec-
tion 4.2 that the selection of modules for placement is based on the arcs in the Closest
Neighbor Graph (or CNG). In fact, during the construction of the CNG (which was
dealt with in section 4.1), an arc is inserted only if the weight of the WCG edge
exceeds a certain minimum value, which we call the Cluster-threshold. The threshold
connectivity is specified as a percentage of the average number of terminals per
module, which can then be used on any layout independent of the actual number of

terminals that the particular layouts may have.

Consider the simple mechanism of providing a threshold connectivity level that
will block off weakly-connected satellites from inclusion in a cluster. By varying the
cluster-membership threshold, it is possible to test not only the threshold that leads to
the best layouts, but also to choose between different algorithms themselves. Setting
a very low cluster-threshold (approaching zero) leads to the inclusion of all possible
satellites in a cluster, maximizing the size of the cluster. On the other hand, by setting
a very high cluster-threshold (approaching infinity), we have a mechanism to allow no
members at all in the cluster. In that circumstance, the CORE module selection algo-
rithm would find that all modules had zero in-degree in the CNG, and would therefore
fall back on the conventional measures of area and size of net-list to select the next

module for placement.
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The table of weights vs. layout numbers is shown in Fig. 6.1. Figures 6.2—06.7
show the behavior of the six test layouts at different values of the cluster-threshold.
(Besides the cluster-threshold, all other factors were set at approximate values; their
best values are established in later tests.) An extremely encouraging sign obtained
from this first series of tests is the fact that 4 of the 6 examples were placed and routed
in less than the original areas and wire-lengths. Although a greedy approach could
conceivably produce poorer layouts compared to global approaches, we find that such
is not the case; and in the following sections, we see that the remaining two layouts

come down in area as wider ranges of weights are tested.

Looking at Fig. 6.2 (the result for layout EXI), we see that the best layout in
terms of both area and wire-length occur at runs 16 through 30. These layouts
correspond to cluster-threshold values ranging from 1.5 through 100, ie., they
correspond to layouts obtained when the cluster-threshold value is set to a maximurm.
In fact, the same layout is obtained for this entire range of cluster-threshold. This
indicates that as low a cluster-threshold as 1.5 suffices to block off all arcs from being
formed. Since this value of cluster-threshold produces the best layout, we must there-
fore conclude that for this example, using in-degree in the CNG to identify core
modules produces layouts with greater areas than those produced by using conven-

tional measures such as module area or module net-list size.

The other examples, however, tell a different story. Example EX2 (Fig. 6.3) has
little variation in area and wire-length, but a very high aspect-ratio on many of the lay-
outs leaves the layouts numbered 8 — 10 and 18 as the best ones. These correspond

to cluster-threshold values of 0.7 — 0.9 and 2.0 as the most appropriate values.
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Examples EX3 and EX5 have their most promising layouts at the minimum cluster-
threshold values, i.e., with the largest clusters possible. EX4 does well at cluster-
threshold = 2.5 — 3.0, while EX6 does well almost everywhere, with layouts 17 — 18
(i.e., cluster-threshold = 1.7 — 2.0) doing marginally better than the others. The

results are summarized in Fig. 6.8.

We can thus claim that for a majority of the test layouts (examples EX2 through
EX6), the presence of arcs in the CNG — and hence, the use of in-degree as the pri-
mary criterion for Core-module selection — yields better layouts. Even in the case of
EX1, we find that the second-best layouts (numbered 5 — 15, i.e., cluster-threshold =
0.4 — 1.4) are not significantly worse layouts than the best layouts. We therefore
conclude that the in-degree criterion — which is one of the key ingredients in our
attempt to simulate the human designers’ approach — does indeed lead to comparable
or better layouts. It should also be noted that these sets of tests have all been made at
some plausible pre-determined values for all weight factors. In the following sections,
we shall see that as wider ranges of values are tested, the global view results in a
changed set of results. However, even as limited a test as this first one has sufficed to
bring us to the conclusion that using the in-degree criterion to choose core modules

produces better results than the conventional area/net-list criteria.
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Layout number | Weight | Layout number Weight
1 0.01 16 1.5
2 0.1 17 1.7
3 0.2 18 2.0
4 0.3 19 25
5 04 10 3.0
6 0.5 21 3.5
7 0.6 22 4
8 0.7 23 5
9 0.8 24 7

10 0.9 25 10
11 1.0 26 15
12 1.1 27 20
13 12 28 30
14 1.3 29 50
15 14 30 100

Figure 6.1: Cluster-threshold weights vs. layout numbers




- 0K

VoS —e <

...........................................................................

'
P

1

i
'
b 1 i
'

]

t

- Aspect-tatio :

..................
: : : :

: : | :

1 +
' 5 1
3 + [ t
1.0 hee et (aiaiaiataheheih k Sulninkeiukeinhehubshaiiubehab e o m s m “1
t
i
[l
)

t
t
1

0.0 : : ; |

0 10 20 30 40
Layout run number

Figure 6.2: Cluster-threshold performance for EX1

83




84

[Ep——

bt e o o e e et o

o d am o e o

o )

s L e

tatio

Aspect-

|||||||||||||||||||||||||||||||||||||

[ Lk £

40

30

20
Layout run number

O

6.0 4--omemmmmmee

Figure 6.3: Cluster-threshold performance for EX2



85

| Siniainbuinitel 1 v T k) r rosmm———— b Rl ( Shniniaieiid | Balabdainbeiadd o
¥ 1 1 + t + i ! 4 1
] ] 1 i k) ] i ] ] i
i i 1 1 ' ! ' ] 1 '
i ¥ 1 [} 1 i t 1 1
1 i ] ) 1 ) + 3 1
t i ] 1 ' ' | i i ]
i 1 i ] t 3 1 1
1 1 i i i t b ¥ 1
1 t 1 ' i ' ' t ] 1
t i ‘ H ) i H i t H
] 4 ' + 1 ] 3 t 1 1
§ i ' 1 ( 1 i i 1 ]
¥ ) 0 i ) 1 1 1 .
1 1 ] ) 1] 1 t 1 )
i 4 . L] 13 1 i 1 ] i ¥
H H m H H H ' H H
£ 1 t ) ] 1] 1 4
e S P U | I . PR N L S PR - 1 N ISR Logg-m-mpm
1 1 13 1 1 ¥ )
' . ! 1 ' ' ' Vi O
t ] ol ¢ ' t 1 1 1 byl '
¥ ] 1 1] i t ! 1 ¥ 1
¥ 1 1 ] i ] $ ¥ e 1 ¥
] 4 t i ' i i i wu 1 1
' ) 1 i t 1 1 ) ]
) t ¥ 1 1 ] T
1 ] A : t ] | i W ] 1
+ 1 v T i 1 1] 1
+ 1 k) ] H
1 i ' i 1
] 1 t ) i
1 ) ' 1
1 ] t ¢ [
' 1 ' ]
i t 1 13 1
1 t ] ' i
||||||||| B b LT e e B---mwmrm e m e fe
] t 1] ) 1
1 1 ' { t
13 1 3 ] 1}
1 ¥ 1 1 ]
1 1 i t i
¥ ¥ 1 i ) $
) 1 ] 1 ¥
1 i ' 1 i
1 ) i ] i 1
¥ v 1) t i 1
t 1 i + ]
1 + i i ] ]
] i i ) ¢ H
v i ' 1 t
] ) 1 E 3 H
i 4 1 1 i ¥
i ] ' ' 1 1
L ' e e - 3 e = = 1 - ) L}
| it B 0 T ¢ i Sainiainteietainds Aeiniuinieiniaiait S LhA S | i 2
t + 1 ' t t
' + i) ) k] ¥ 1

1 ] b ¥ ¥
1 1 1 § i 1 1
) t ) ] 1 v 1. 1

1 ¥ 1 i [}
i ] 4 1 ! 1 3 1
+ ) ¥ 3 1 T
4 L) ¥ + 1 1 [}
I i H ] i+ ' 1 1
1 1 ¥ + + 1 ¥
] 1 k) 1 1 ' 1
' i ' 1 i ] i

1 \ i 1 i ¥ 1

4 i ) ] ) 1 ¥
1 ] ! i i i 1]

1 ¥ 1 i Ll ) t

: : : " ; H 4
¥ i 1 1 1 ¥ ¥ i L] ¥
= “. “. S ”. H. = ”. = ”. =
-~ =] o)) 0 ~ O vy <t o o —
L} yf

O D P ™t 3O W

20

Layout run number
Figure 6.4: Cluster-threshold performance for EX3




86

bl T T e e e o
t ¥ )
£ i )
1 1 1
1 ¥ i
] ] +
+ 1 ]
s : '
i 1 1]
i 1 *
¥ 4 L)
1 t ¥
i t i
i) ¥ 1

O i .m i 1
=l i 1 +
' ) 1
3 ’ on i *
B A e mmmm Locouno ---od----- LT E PR -
1 t 5] ' 5
) ' - i 5] '
3] ! : :
¥ L} t )
(3] ' 3] ' '
[ i f i
172) i .E 1 1
v 1 ¥
A » W 1 i
) 3
' ]
i ¥
'
1
i
¥
t
'
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| -
1
'
]
¥ i
1
¥
1 3
1
' 1
1
§ i
¥ ¥
3 1
1
¥ o 1]
1 r
P 1
.................................... IR N S S SR 5
’ i
' H H
+ o] ¥
s 1
» ¢
i 13 t
1 i
1 ' ¢
1 )
'
' 1
' r
s
H i3
H &
s
¥ T 1
= = = “.
.
(22} (o] - <

20 30 40

Layout run number

10

Figure 6.5: Cluster-threshold performance for EX4
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Layout name | Layout numbers Cluster-threshold range
EX1 16 —30 15—
EX2 8§ —10 0.7—09
EX3 1—3 0.01 0.2
EX4 19,20 25—30
EXS5 1—13 001 —12
EX6 17,18 1.7 2.0

Figure 6.8: Summary of the best Cluster-threshold values

6.3. Recursion-threshold: when to stop recursive-building

The first set of tests dealt with one of the central themes of this thesis, the idea
of clustering based on the in-degree of a module in the Closest Neighbor Graph. The
next factor we consider tests the other key idea contributed by this thesis, namely, the
idea of recursively building up satellite modules in a greedy incremental manner. Of
course, the entire concept of greedy placement and incremental global routing can
only be evaluated in toto, after the best weights for all the decision criteria have been
determined. To some extent, we have already seen that greedy placement can do
comparably well or better than a global scheme: of the six examples, four have been
placed and routed with a lower area, and three of them with a lower wire-length as

well.

In this section, however, our testing is aimed at determining a recursion-

threshold. The Recursive-build algorithm quits its recursion when the built-up SAT
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edge dimension falls within a predetermined factor of the CORE edge dimension; this
is what we term the recursion-threshold. Setting a low value for the recursion-
threshold causes the Placer to quit the recursive-build process early, when SAT is still
relatively small compared to CORE; a high value (approaching 1) causes it to build up

a SAT recursively until its dimension is very close to or greater than the CORE edge.

Result values have been plotted for a series of recursion-thresholds, which has
itself has been iterated over a set of representative cluster-threshold weights obtained
from the previous section. This provides a more global view of the behavior of the
Placer. Figure 6.9 lists the layout numbers and their corresponding dimension ratios,
while Figures 6.10 — 6.15 contain the graphs of result values against layout numbers,

and Fig. 6.16 summarizes the conclusions.

Example EXI now displays a behavior that is a major shift from the curve of
Fig. 6.2 in the previous section. It is now seen that the best layouts for EXI are at a
cluster-threshold value of 0.8, and not at oo as previously concluded; the culprit in the
previous conclusion being an assumed value for the recursion-threshold that did not
suit EXI. The recursion-thresholds that produce the best EXI layouts range from 0.01
through 0.5. In other words, the best performance for this example occurs when

recursive building carries on with no limits at all!

Similarly, some of the other examples also produce layouts that are better than
those obtained in the previous section. A study of the summary (Fig. 6.16) shows the
emergence of two broad groups of layouts by the recursion threshold criterion. EXI
and EX4 do well with relatively little recursive-building, while the other layouts have

their best layouts at high recursion-thresholds. In addition to this, it should also be
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noted that the role of clustering is now established firmly, with all six examples pro-
ducing their best layouts at cluster-threshold values ranging from 0.8 to 2.0. The per-
formance at cluster-threshold = oo is no longer the best; in other words, clustering
using the in-degree criterion from the CNG can be claimed to be a success. Finally, in
terms of absolute performance, we have examples EX1, EX2, EX5 and EX6 below the
1.0 mark, and example EX4 at about the 1.3 mark, which means that for most of the
layouts, the Placer is doing much better than the global approaches that produced the

original placements.

One other characteristic worth commenting on is the extreme fluctuations in
aspect-ratio. This odd behavior is explained by the fact that control over aspect-Tatio
has been left to an indirect mechanism, namely a combination of connectivity and
dimensions in the orientation stage. As a result, in some circumstances, the layout is
built as a row of modules, all side-by-side, with very little building in the orthogonal
direction, yielding thin and long layouts with very high aspect ratios. We shall have

more to say on this subject in section 6.8.
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Layout number Weight Cluster-threshold

1 0.01

2 0.1

3 0.2

4 0.3

5 0.35

6 0.4

7 045

8 0.5

9 0.55

10 0.6 0.01

11 0.65

12 0.7

13 0.75

14 0.8

15 0.85

16 0.9

17 0.93

18 0.96

19 0.99
20 — 38 0.01 —0.99 0.8
39 —57 0.01 —0.99 2.0
58 —176 0.01 —0.99 2.5
77 95 0.01 —0.99 oo

Figure 6.9: Recursion-thresholds vs. layout numbers
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101

sizes involved, which requires the function to evaluate and score a side relative to
some other intrinsic characteristic of the layout itself. This would ensure that there

would not be any significant variation in the weights needed for different layouts.

The SAT module increases its size by adding on more modules; hence, its size
can only increase in units of the smallest edge length available in the module set,
called the min-size. The min-size is therefore a natural choice pf intrinsic measure,
relative to which we construct the degree-of-fit function. This leaves only the exact
form of the function to be decided. From the various layouts, both among the exam-
ples presented as well as other layouts we had studied, we noticed that a particular
pattern was frequently repeated: that the distribution of module edges was not uni-
form. Rather, it was often the case that modules designed to fit together had identical,
or near-identical, edge-lengths. Hence, we designed the degree-of-fit function to
strongly bias those edges that were very nearly the size of the CORE edge under con-
sideration. The degree-of-fit function was therefore built as the sum of two com-
ponents, one being the actual ratio on the two dimensions, and the other being the bias
that was added based on the size-difference between the edges. Since the dimension
ratio is bounded by 1 (we always compute it as the ratio of the smaller dimension to
the larger), this ensures that it will only come into play when the choice is between
two modules, both of which have edge-sizes that are in the same general range. The
degree-of-fit function was defined as:

degree-of-fit = (dimension ratio) + (bias value)
where bias value = 8 if SAT-size is within 5% of CORE-size

else, = 0 if SAT-size > CORE-size + min-size
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else, = 2 if SAT-size > CORE-size + (min-size + 2)
else, = 4 if SAT-size > CORE-size + (min-size + 4)
else, = 6 if SAT-size > CORE-size + (min-size + 8)
else, = 3 if SAT-size < CORE-size — (min-size + 2)
else, =7 if SAT-size < CORE-size — min-size

else, = 5 if SAT-size < CORE-size — (min-size x 1.2)
else, = 3 if SAT-size < CORE-size — (min-size X 1.5)

else, =1

The above function provides a means of evaluating the degree-of-fit of a candidate
SAT-side relative to the CORE-edge and min-size, returning the score (a real number
less than 10) as the degree-of-fit. This degree-of-fit value can now be added to the
weighted SAT-connectivity value. Since only these two quantities contribute to the
total for a side, we only need to vary one weight while keeping the other weight fixed,

ie.,

Score for a SAT module =

(SAT-connectivity x connectivity weight) + (degree-of-fit)

The Placer was accordingly tested at different weights for SAT-connectivity, keeping

the weight for the degree of dimensional fit fixed at 1.

The table of layout numbers and SAT-connectivity weights is shown in
Fig. 6.17, and the results from this series of tests are displayed in Figs. 6.18 — 6.23.
As before, this testing was repeated for different <Recursion-threshold, Cluster-
threshold> tuples in order to view the behavior in a more global setting; all other

weights are fixed as before. Note that in all six layouts, variation in SAT-connectivity
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weight does not produce better layouts at other tuples than those corresponding to the
best tuples determined for each layout in the previous tests. It is likely that, due to the
extensive testing that has already been carried out, most of the weight values esta-

blished are the best ones.

These results of the connectivity weight tests are quite surprising. With the
exception of EX3, all layouts have their best behavior somewhere in the range of
values of 20 — 30 for connectivity weight. EX3 alone displays erl:ant behavior, with
its best layouts at weights in the range 1.2 — 5.0. However, it has a very close
second-best placement at the weight range of 20 -— 50. Taken all together, these
results lead to the conclusion that a judicious combination of connectivity and dimen-
sional fit yield the best criteria for satellite selection, rather than either connectivity or
sizing alone, as has been the case in such approaches as min-cut or pure clustering.
Also, another conclusion to be reached is that the balance point between connectivity
and dimension considerations is fairly stable and less sensitive to differences in the
layout problem, unlike the other factors tested so far. This is an encouraging
discovery, since it means that with a high degree of confidence, we may use a weight
of about 25 for most layouts. Finally, comparing the performance of the Placer with
that of the original layouts, we note that for a greedy strategy, the results are very
heartening indeed. Our results range from around 50% of the original area and wire-
length (example EX2) as the most favorable, to around 130% in examples EX3 and

EX4.
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Layout number Weight Cluster-threshold | Recursion-threshold
1 0.01 '
2 0.2
3 0.4
4 0.6
5 0.8
6 1.0
7 12
8 14
9 1.6
10 1.8
11 2.0
12 24
13 2.8 0.8 0.35
14 34
15 4
16 5
17 7
18 10
19 15
20 20
21 25
22 30
23 40
24 50
25 1000
26 —50 0.01 — 1000 0.8 0.85
51—15 0.01 — 1000 2.0 0.75
76 — 100 0.01 — 1000 2.0 0.85

Figure 6.17: Connectivity weights vs. layout numbers in SAT-selection
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Figure 6.19: Satellite-connectivity performance for EX2
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Figure 6.21: Satellite-connectivity performance for EX4
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Figure 6.22: Satellite-connectivity performance for EX5
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Figure 6.23: Satellite-connectivity performance for EX6
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Layout name | Layout numbers | Weight Cluster, Recursion threshold tuples
EX1 16—25 500 0.8,0.35
EX2 44 — 47 15—130 0.8,0.85
EX3 57— 66 12—5 2.0,0.75
EX4 21 25 0.8,0.35
EX5 89 — 100 34 —o0 2.0,0.85
EX6 43 —49 10 —50 0.8,0.85

Figure 6.24: Summary of Connectivity weights in SAT selection

6.5. Side-connectivity: making orientation decisions

We have discussed in detail the behavior of the Placer in the context of cluster-
ing, recursion and satellite-selection decisions. These criteria are all intricately woven
together, with decisions at some levels affecting ‘the outcome at other levels. For
instance, it was seen that a modification in the recursion threshold led to a change in
the best cluster-threshold value for example EXI. Although the same is generally true
of the module orientation criteria, we have insulated the actual orientation decision
from the satellite-selection decision by making global orientation decisions rather than
greedy ones. Specifically, when a SAT module is to be chosen, orientation decisions
are made for all the candidate SAT modules before allowing the satellite-selection
procedure to continue. A modification in the orientation criteria directly affects the
satellite selection; but once SAT has been chosen, the orientation decision will not run

counter to the choice.
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The fact that the orientation decision is a major input to the SAT selection pro-
cess suggests that testing of the orientation criteria should also be carried out in a glo-
bal framework, and not locally within the best pre-determined values of the weights
from the preceding sections. Accordingly, we present the results from testirig of the
orientation criteria over a series of tuples of <Recursion-threshold, Cluster-threshold,

Connectivity-weight>.

To make an orientation decision, a "score" is again generated for each side of a
candidate SAT module. The inputs for determining this score are: connectivity
between the CORE module and the net-lists of the four sides of the SAT module, and
lengths of the edges of the SAT module. The conversion of a dimension into an
appropriate quantity for comparison with or combination with other quantities has
been discussed at length in the previous section; the same degree-of-fit function is
used here. The connectivity that we consider now is not between modules, but
between CORE and the sides of SAT; hence, it is handled in a different way. The
orientation of SAT determines the length of wire-routing that will be necessary, not
only from the side of SAT that is chosen to face CORE, but also from the remaining
three sides of SAT. The side-connectivity measure therefore needs to take the overall
wiring length into consideration. This is approximated as a weighted sum of the
number of nets on each of the three sides nearest to CORE, that are connected to
CORE. Figure 6.25 illustrates how this side-connectivity value is obtained. Given a
known side of CORE that will face SAT, we calculate the side-connectivity value for
a particular side S of SAT as the sum of the nets on side S, plus half the nets on the
two sides of SAT adjacent to S, considering only those nets that are connected to

CORE. In Fig. 6.25, S is the left side of SAT, and X, Y and Z are the nets from the
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CORE

Figure 6.25: Side-connectivity computation

A

SAT

A

top, left and bottom sides of SAT that are connected to CORE. The side-connectivity

computed for the left side of SAT is, therefore,

Y+X+2Z)+2

This side-connectivity is then converted as before by dividing it by the average nets

per module. The idea is to weight nets on a facing side higher than nets on adjacent

sides, and to not count nets on the opposite side at all. This side-connectivity is com-

puted for each of SAT’s four sides, as is the degree-of-fit. The side of SAT with the

highest total for
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degree-of-fit + (side-connectivity X side-connectivity weight)

is selected as the best side to face CORE, since this side would have the strongest
combination of high connectivity close to the CORE, as well as a good dimensional

match.

As before, we begin with the table of Fig. 6.26, which displays the series of lay-
out numbers and their corresponding weight values. Figures 6.27 — 6.32 detail the
behavior of the examples over the range of side-selection connectivity weights, with
the summary of our conclusions tabulated in Fig. 6.33. Two points emerge from this
test. The first is that, with the exception of example EXG6, all layouts do well at a
weight in the region of 0.8 for connectivity in side-selection. Hence, it is again a fair
conclusion that orientation decisions can be successfully based on both connectivity
and on the dimensions of the edges of the modules involved. The knowledge that we
gain from these tests is the information that greedy satellite-selection can yield perfor-
mance comparable to more complex global approaches: we should point out again that
of the examples, only EX3 and EX4 are placed with larger final areas than the origi-
nals. The second point to note is that a changed value for side-selection connectivity
weight (from the pre-determined value used in previous tests) leads to better layouts

for two of the examples, EX4 and EX6.
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Layout number Weight Cluster, Recursion, SAT-connectivity weight tuples
1 0.01
2 0.2
3 0.4
4 0.5
5 0.6
6 0.7
7 0.8
8 0.9
9 1.0
10 1.2
1 14 0.8,0.35,25 .
12 1.7
13 2.0
14 2.3
15 2.6
16 3
17 4
18 5
19 10
20 100
21 —40 0.01 —100 0.8, 0.85,25
41 —60 0.01 — 100 2.0,0.75,3
61 —30 0.01 — 100 2.0, 0.85,25

Figure 6.26: Side-connectivity weights vs. layout numbers
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Figure 6.29: Connectivity weight in SAT selection for EX3
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Figure 6.30: Connectivity weight in SAT selection for EX4
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Figure 6.31: Connectivity weight in SAT selection for EX5
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(number of channel nets not connected to both CORE and SAT)

In this series of tests, the best subsets of tests have been selected to show only
the relevant information, since it was noted that variation in the penalty weight did not

reveal any further changes in the best tuples of weights for any of the layouts. The

Layout number | Weight | Layout number (contd.) Weight (contd.)
1 0.01 16 1.8
2 0.1 17 20
3 0.3 18 22
4 0.5 19 24
5 0.6 20 28
6 0.7 21 32
7 0.8 22 3.6
8 0.9 23 40
9 1.0 24 45

10 1.1 25 5
11 12 26 6
12 1.3 27 7
13 14 28 8
14 1.5 29 10
15 1.6 30 100

Figure 6.34: Penalty weights for non-channel nets vs. layout numbers
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penalty-factor behavior is very disciplined, uniformly producing the best layouts at a
range of values of 0.7 — 0.9 for all the examples. Once again, the fact that this
weight is an intermediate value, and not an extreme value (such as near-zero or near-
o) supports the the idea of imposing a penalty on certain orientations on the basis of

"unconnectivity".
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Layout name | Layout numbers | Penalty weights Cluster, Recursion,
for non-channel nets | SAT-connectivity,
Side-connectivity weights

EX1 8§—19 09—24 0.8,0.35,25,0.8
EX2 5—6 0.6 —0.7 0.8,0.85,25,0.8
EX3 813 09—14 2.0,0.75,3,0.8
EX4 §—11 09—12 2.0,0.85,25,0.8
EX5 8§—15 09—1.6 2.0,0.85,25,0.8
EX6 7—8 0.8 09 0.8,0.35,25,2.5

Figure 6.41: Summary of penalty weights in orientation

6.6. Reduction in weights between clustering cycles

We conclude this presentation of results by discussing results for the fine-tuning
of the weight factors between clustering cycles. In section 4.3, the recursive building
process was described; in that process, whenever all the modules in a set of clusters
have been built up into supermodules, the Closest Neighbor Graph is rebuilt for the
new set of modules. At this point, it may be possible to effect some improvement in
the performance of the Placer by reducing some of the weight factors. For instance, as
supermodules grow, the number of nets per module will clearly decrease. Therefore,
it may be a good idea to modify some of the factors dealt with in previous sections so
that after each round of clustering, the factor is multiplied by a corresponding reduc-

tion factor.
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Two sets of tests were run for this purpose, one dealing with the cluster-
threshold weight, and the other with connectivity weight for SAT selection. The
results are summarized in Fig. 6.42; since this section of the results is more of a detail
than a fundamental concept, the graphs are omitted. We merely point out the uniform
behavior of all examples for both the reduction factors considered. In the case of the
threshold cluster-membership connectivity, a reduction factor of 0.5 is seen to be
within the best value range of 5 out of the 6 examples. EX4 deviates from this, requir-
ing a reduction factor of at least 1.0, i.e., ah increasing, or at least, a non-decreasing
cluster threshold. For the connectivity weight for SAT selection, all layouts uniformly

do well over a range of reduction of 0.4 — 0.8, indicating that a choice of 0.6 for the

Layout name | Cluster-threshold | SAT-connectivity

reduction factors | reduction factors
EX1 04 —0.8 02—oo
EX2 0.4 —0.6 02—eco
EX3 04—05 03—11
EX4 1.0—oe 04 —038
EX5 05— 0.2 o0
EX6 0.5—0.8 04 —12

Figure 6.42: Summary of weight-reduction factor performance
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SAT-connectivity reduction factor would satisfactorily cover all cases.

6.7. Overall trends in the successful weight values

We have finally reached the stage where we can step above the detailed setting
of weight values, and discuss the overall picture: what knowledge has been gained
regarding the appropriate weights to use when dealing with a module set to be placed
and routed. We have mentioned one of the benefits of a greedy approach as the high
speed with which a layout can be produced. This benefit is, of course, contingent on
our identifying weights that need to be used. If this cannot be done, then the greedy
approach loses its edge, since producing a layout would mean iterating through many
different layouts for different sets of weights. Although individual layouts may be
speedily completed, obtaining a good layout would be reduced to a long search
through many possible candidate layouts, with less compelling reasons to choose this

approach over any of the global approaches discussed in chapter 2.

The results for all six layouts have been tabulated, along with additional infor-
mation about the examples themselves, in Fig. 6.43. We should again point out two
facts. Firstly, of these six layouts, EX3 was generated by a floor-planner, which
involves human interaction in producing the design of the system; and EX4, EX5 and
EX6 were compacted by an additional stage after the placement and global routing
stages. Secondly, the Placer overestimates its channel sizes. For instance, the layout
produced for £XI was hand-routed, and it was seen that every single channel was
larger than required. It would appear that our channel size-estimation has been pes-

simistic, and therefore, an additional improvement could be expected from including a
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EX1 | EX2 | EX3 EX4 EX5 | EX6
Number of modules 7 18 17 19 8 16
Number of nets 34 37 89 27 17 79
Smallest edge® 144 | 144 84 84 72 62
Largest edge 492 468 780 516 624 391
Smallest # of nets on 1 module 2 2 2 2 2 5
Largest # of nets on 1 module 15 6 34 8 12 14
Cluster-threshold 0.8 0.8 2.0 20 2.0 0.8
Recursion-threshold 035 | 0.85 | 0.75 0.85 085 | 035
SAT-connectivity 25 25 3 25 25 25
Side-connectivity 0.8 0.8 0.8 0.8 0.8 2.5
Area (% of original) 76% | 40% | 160% | 135% | 80% | 88%
Wire-length (% of orig.) 37% | 28% | 145% | 175% | 104% | 70%
Aspect ratio 1.005 | 12 2.1 1.1 1.07 1.28

Figure 6.43: Overall performance summary

detailed router within the recursive-build algorithm.

We now consider each of the major weight factors in turn. The table shows that,
for the cluster-threshold factor, the examples fall into two groups: EX1, EX2 and EX6
in one, with a cluster-threshold of 0.8; and the others with a cluster-threshold of 2.0.
Looking at the dimensions for EX1, EX2 and EX6, we see that they are more uniform,
with less variation than the others. Hence, by allowing larger clusters (which is the

effect of lowering the cluster-threshold), more modules are made available to the SAT
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selection process, which improves the chances of a good placement. The other group
of layouts, EX3, EX4 and EXS, have a wider spread in their dimensions, and hence
putting only the more tightly-coupled modules together in a cluster prevents poorly
matched modules from being built together at an early stage. A guide for selecting
reasonable cluster-threshold weights might therefore be the spread of module dimen-
sions, with more uniform dimensions indicating that a lower cluster-threshold may be
used. In any case, the range of successful cluster-thresholds is small enough that a

limited search could be undertaken in that range for a good layout.

Recursion-threshold values split the layouts into three groups corresponding to
the values 0.35, 0.75 and 0.85; We consider the latter two groups to be actually in the
same group, since the recursion-threshold values are close enough. EX3 is the lone
member of group 2; its minimum and maximum dimensions are also the farthest apart,
which might have a bearing on this factor. However, we should also note that many
layouts were disqualified on the basis of aspect ratio alone, since an aspect ratio of
above 3 is unacceptable enough to force even low-area layouts to be discarded (see
Figures 6.10 — 6.16). The main reason for the choice of final recursion-thresholds
being the aspect ratio, we therefore coﬂsult the range of dimensions of the modules
again. Modules EX3, EX4 and EXS5 contain the widest spread of dimensions, while
modules EX2, EX4 and EX5 have the lowest count of nets per module (all around or
below 2, compared to nearly 5 for the rest). Widely differing dimensions would be
one good reason to require a high recursion-threshold leading to long sequences of
recursive-building to build up the smaller modules until they are large enough. Alter-
natively, if connectivity is generally low, then again a high degree of recursion may be

in order, since the channels will not be very dense and will not need much routing
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arca.

For EXI and EX6, with high connectivity, it is quite likely that repeated recur-
sive building (which takes place without any re-clustering in between) causes the fol-
lowing problem with orientation. Some layouts do not use all four sides of modules
uniformly in terms of terminal locations; it is often the case that, for instance, the top
and bottom sides of modules have no terminals situated on them. However, if all
sides of the modules do have terminals located on them, then no matter which orienta-
tion is chosen, large channels have to be built. In this situation, therefore, the best
policy is to stop recursive-building from building up too many modules together out-
side the control of the clustering phase. We note that for these examples, a low
recursion-threshold is combined with a low cluster-threshold, allowing large clusters

and not too much recursion.

The final two factors have very little variation between layouts. SAT-
connectivity is very successful at a value of 25, with only EX3 requiring a deviation to
3. Since EX3 has the largest number of nets with approximately the same number of
modules, it would need a lower emphasis on connectivity than the other modules
(remember that the degree-of-fit function returns values that are constrained to be
small integers, whereas the converted SAT-connectivity value depends on the number
of terminals on a module, which is as high as 34 out of a total of 89 nets for this exam-
ple). Finally, side-connectivity is uniformly 0.8 for the first five examples, and 2.5 for
the last one: the probable cause is its combination of large degree of connectivity and
small range of dimensions. In this situation, the orientation function is not able to

obtain a wide-enough separation between the different edge-dimensions available, and
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hence needs to emphasize the connectivity criterion to help make better orientation

decisions.

In chapters 4 and 5, example layout EXI was repeatedly used as a real-world

Placer layout
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Figure 6.44: Final Placer layout for EXI (outer box = original size).
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example to illustrate the working of our algorithm. Figure 6.44 displays the final
result for EX1 obtained by the Placer, displayed at the same scale as the original lay-
out (Fig. 4.2). The outer box bounding this layout shows the size of the original
placement, while the inner box is the bounding box specified by the Placer for its final
layout. The one advantage that the original layout has over the Placer layout is that its
external nets have been arranged so that connections to input/output pads can easily
be done. On the other hand, much can be said in favor of the Placer’s layout. The
most striking difference is the drastic reduction in the amount of wiring required. The
Placer appears to have arranged the modules so as to cut down on the amount of long
wiring needed, which is the effect that was targeted by the clustering algorithm.
Secondly, it can be clearly seen that all the channels provided by the Placer are very
liberally estimated; there is no channel that is carrying its capacity of nets. For
instance, the channel between modules BL3 and BL4 has enough space to route 10
tracks, whereas only 6 are actually needed. Finally, the placement obtained is itself
far from satisfactory; it is clear that much more improvement can be obtained by mov-
ing module BL2 down, making room for modules BL5 and BL7 in the upper right
corner to be compacted into the vacant area to their left. It is quite clear that a com-

paction stage would make a significant improvement in the final layout.

In summary, we have carried out exhaustive tests with the Placer, and have
obtained outstanding results on 4 of the 6 sample layouts available. The Placer was
able to produce layouts which were as low as 40% of the area of the original layout,
with only two of the examples not doing as well as the original layouts. Wire-length
and aspect ratio performance was also very good as compared to the original layouts.

The set of weights to be applied has been brought down to a very small subset, and



139

reasonable guidelines for using the weights have been evolved. Moreover, the Placer
being greedy and fast, a limited search of the available set of weight-factor combina-
tions is also possible with very little computing time consumed in comparison to the

computation times of the conventional global placement and routing approaches.
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Chapter 7

SUMMARY AND CONCLUSIONS

Considering the problem of placing and routing a set of modules on a VLSI
chip, a greedy approach was suggested as a fast and approximate method of obtaining
results that might be comparable to layouts obtained by much more time-bound global
approaches. The problem, defined as the placement of a set of rectangular modules on
a chip and the routing of wires between terminals on the boundaries of the modules,
had been shown to be NP-hard. Therefore, attempts to develop algorithms for obtain-
ing optimum placements have been abandoned in favor of obtaining acceptable place-

ments.

Currently successful conventional approaches to the placement and routing
problem have fallen into three broad classes of algorithms: top-down partitioning,
bottom-up cluster-growth and combined approaches. Top-down partitioning uses the
idea of min-cut to partition the module set into subsets which are likely to minimize
the wiring to be done between them, while cluster-growth builds a placement by put-
ting highly-connected modules near each other. Min-cut has the drawback of having
to solve the NP-complete sub-problem of finding an even division of the module set
that also minimizes the connections between the partitions before proceeding with the

placement. The cluster-growth approach, on the other hand, often leads to congested
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channels near the center of the placement area because it is based mainly on local con-
nectivity information without considering global concems. Combined approaches
have had some success, but nearly all of them suffer from very high computational
times, since they are all based on some form of backtracking in order to obtain suc-
cessful layouts. Concerning the problem of global wire routing, conventional
approaches tend to treat this as a separate phase, to be applied after completion of the

placement phase.

Greedy placement and incremental global routing is an attempt to overcome the
backtracking nature of conventional algorithms. The idea of global routing as a
separate phase is discarded in favor of combining placement and routing into a single
process, in order to provide the router with the information available during the place-
ment stage. In this framework, a clustering approach is combined with recursive
_ building of the layout. Clustering is based on a novel scheme that identifies CORE
modules as those that are considered to be most important by the largest number of
satellite modules. Both selection and orientation of modules is influenced by a com-
bination of connectivity and dimensional considerations. The layout is built step-by-
step, adding on modules to clusters one at a time. Global routing is performed incre-
mentally, completing just enough of the wire-routing at each step to be able to com-
pletely specify a partially laid out set of modules as a supermodule, with all external
terminals routed from their internal source-modules to the periphery of the supermo-
dule. The decision-making process for such things as the membership of the clusters,
the point at which to recursively build up a pair of modules into supermodules, the
choice of modules to build up and their orientations, are all driven by a set of weights

assigned to each decision function.
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The Placer was extensively tested over a very large parameter space. Six test
layouts were obtained from examples in journal publications, and these layouts were
used as inputs to the Placer. The tests revealed that a very small subset of weight
values produced the best layouts for all the sample problems. The Placer was also
successful in producing layouts that were better than the original layouts in 4 of the 6
cases. The tests for the individual decision criteria were able to establish that each of
the criteria was worth using, by showing that layouts produced by ignoring the factors
failed to do as well as those that took all the factors into consideration. The algorithm
proved to be very fast, placing and routing the samples in real-time periods of between

1% a minute for a 7-module layout, and 3% minutes for a 19-module layout.

The tests also revealed some areas of possible future research. Considering that
most current-day installations are configured as local-area networks containing many
work-stations, the greedy approach fits in very well with such an environment. Given
the set of weights to be applied, each layoilt task is totally independent of the others.
This therefore provides us with a natural division of the overall series of Placer runs
into convenient units for parallelization and independent execution on separate pro-
cessors. Minimal additional coding would be sufficient in order to convert a series of
Placer runs into a parallel-Placer run. Since the Placer is also very fast in producing
its results, such a configuration would be able to yield real-time placements much fas-
ter than existing systems, with comparable results. Moreover, since the testing of the
Placer involved a series of runs to determine the best layouts and the corresponding
weights, such a search could be combined with the Placer in the manner of a simu-
lated annealing exercise. The Placer itself could be run at a set of weights, using the

hill-climbing techniques of simulated annealing to locate good layouts.
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Turning to the algorithms of the Placer, we note that one of the characteristics of
the layouts was a tendency for aspect ratios to vary in an extreme manner. The reason
for this is that the Placer does not directly control aspect ratio, leaving it to the
recursive-building and orientation algorithms to control in their indirect manner. It
would seem that this approach is not sufficiently successful, since many otherwise
good layouts had to be discarded because of poor aspect ratios. A separate control for
aspect ratio, however, is likely to fail, since it is possible for supermodules to have
very poor aspect ratios until near the very end of the placement process; the last few
module-building steps might successfully put together some high aspect-ratio modules
to produce a final layout with a very good aspect ratio. Hence, a control for aspect
ratio must be based not only on the aspect ratios of individual supermodules, but also
on the number of modules (and clusters) currently present in the module set. Such a
control should be constructed to encourage better aspect ratios close to the end of the

layout process, remaining dormant during earlier stages.

A second area that we feel needs further investigation, is the Recursive-build
algorithm. This algorithm allowed only SAT modules to be built, and not the CORE
module. The reason for this was that some restraint needed to be placed on the degree
of recursive building. Allowing both CORE and SAT modules to build themselves up
whenever either one was smaller than the other might lead to unconstrained recursive
building beginning with a single recursive call, bypassing all re-clustering phases.
While that is a valid problem, the restraint, in its turn, leads to wasted area because of
built-up SAT modules that are much larger than their unchanged CORE modules.
Some limited degree of building-up of the CORE module might provide an improve-

ment. In effect, this means that in certain circumstances, a non-recursive, strictly
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limited building of CORE might be sanctioned; hence an additional non-recursive

module-building function needs to be implemented.

Having had the experience of the tests that established the performance and the
weight-assignment guidelines for the Placer, we feel that the next step would be possi-
ble if similar tests could be carried out on a very large number of sample layouts. It
would then become possible to issue very detailed guidelines for the use of the
weights for different kinds of layout problems. Moreover, it might be possiblé to
obtain some amount of correlation between the architecture of the chip being placed
and the set of weight-ranges to use. Such a correlation might be based on human
experience, as well as on the characteristics of the modules constituting typical exam-
ples of such architectures. It might then be possible for the Placer to generate a set of
layouts given additional information about the class 6f architecture that the problem

belonged to.

Finally, in terms of converting our experimental Placer into a production-quality
system, we envisage two additional projects that would complete the job. First, a
detailed channel router is necessary to convert the Placer into a production-quality
system. Such a router would need to be supported by input of a more detailed descrip-
tion of the module set to be placed. This might also bring down the area of the layouts
by replacing the estimated channel areas by their actual areas. Second, a placement
improvement and compaction stage could be added to the Placer in order to squeeze

some additional improvement from the final layouts.
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