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ABSTRACT

Experiments indicate that a multigrid-type cycle can be used as an efficient precon-
ditioner in the iterative solution of the discrete problem corresponding to a singularly
perturbed elliptic boundary value problem. Motivated by a report of Goldstein, we ex-
plore the theoretical basis for the efficiency of such a preconditioner when applied to a
model problem. The techniques developed are also used to analyze a multigrid V-cycle

when used alone as a fast iterative solver.




1. Introduction
This work is motivated by a report of Charles Goldstein [7] in which the author

discusses the task of numerically solving the following elliptic boundary value problem:

2 2
"522'3% (ai(w)agi‘f)) rey bi(x)a;if) + ao(2)u(z) = f(z) in Q@ C R
t=1 i=1 (11)

u(z) = g(x) on 00

where ¢ = (z1,22) € @, 0 < e << 1, the coefficients and data are sufficiently smooth,
and ai(z) >co >0in 2, :=0,1,2.

The discrete problem arising from a typical discretization of (1.1) on a uniform grid of
mesh size h, h < ¢, is a large system of linear equations. For the solution of this system
to approximate the solution of the boundary value problem (1.1) with a fixed accuracy, we
must choose the mesh size small for small ¢, specifically, it is sufficient to keep the ratio
h/e fixed [1], [11]. In doing so, we not only get a much larger system, but the resulting
system is also more poorly conditioned.

With the goal of trying to solve this type of system, we use the conjugate gradient
algorithm as our iterative solver. It is known (e.g., [2],09]) that if we apply the method
of conjugate gradients to the problem Bv = F' where B is symmetric, positive definite,
then the number of iterations, Ng, required to solve the system to within a given relative

error, ||v — v'||/|lv = ¥°|| < n, is given by

Ng(n) < Cin(2/n) VK(B) (1.2)

where K(B) = Amax(B)/Amin(B), v° is the initial guess and v* is the ¢ th approximant
to the solution, v. Our goal is to precondition the system so that the condition number,
K (B'), of the new system, B'v' = F', is much smaller than K(B) and behaves nicely
(bounded or slowly increasing) as € and h decrease to zero.

Tt has been observed experimentally that a certain multigrid-type cycle is an inex-
pensive preconditioner for this system. The effectiveness of this preconditioner is quite

sensitive to the choice of the number of grids, k, used in the multigrid process. Fourier
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analysis was used in [7] in an attempt to prove that a careful choice of the number of
grids does guarantee a good preconditioner in the case where Q is a rectangle. Although
Fourier analysis is routinely used to study 2-grid multigrid cycles, the k-grid analysis, for
k > 2, is quite unwieldly and is not usually attempted. The difficulty arises from the
use of coarser grids on which certain modes “alias” (see [3]) or are “not visible” (see [12]).
Unfortunately, this “aliasing” was ignored in [7]. The experimental evidence is so striking,
however, that it seemed worth trying to complete the analysis.

We examine the effectiveness of the multigrid preconditioner by considering a special
case of the boundary value problem (1.1) with a;(z) =1, ¢=0,1,2, bi(z) =0, 1 =1,2,
Q = (0,1)x(0,1) and ¢ real and small. It is for this model operator, A = —e?A+1, that
we prove our basic results. More general singularly perturbed problems such as variable
coefficient and/or non-symmetric with positive definite symmetric part can be analyzed
using the properties of the multigrid preconditioner acting on A% together with such ideas
as spectral or norm equivalence, see [5] and [7].

Let h = 2" for a positive integer, n. Discretizing this model problem on a uniform
grid, Qx = {({h,mh) : ,m =1,2,...,2" — 1}, with mesh size, h, using a standard 5-point

discretization of the Laplacian (see Section 2.1), we obtain the linear system
¢ up = (—e® Dp +)up = fa. (1.3)

In Section 3.1 we define a symmetric linear operator, My, based on multigrid ideas, using
k — 1 auxiliary grids of larger mesh sizes, 27k, for p=1,2,..., k — 1. In fact, the vector

Mjwy, is essentially one “partial” multigrid V-cycle applied as if to solve the problem:
Ahvh = W, (1'4)

starting with initial guess = 0, where Ay is the matrix resulting from the corresponding
discretization of the Dirichlet boundary value problem for Poisson’s equation. In order to
obtain a symmetric operator, we take symmetric smooths. Le., if r, smooths are done
on the p th grid in the fine to coarse part of the cycle, then r, smooths must be done on
the pth grid in the coarse to fine part. We take a fixed r, = r for all p=0,... Jk—1.
The adjective “partial” refers to the following property of this particular V—cycle: instead

of solving for the coarse grid correction exactly on the coarsest grid, 2r iterations of the
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smoother are applied. We choose the smoother to be a damped Jacobi iteration with
damping parameter, w, where 0 < w < 1. Taking w = 1 would correspond to an
undamped Jacobi iteration, but we exclude this choice. The choice w = .5 corresponds to

a Richardson iteration. Using My as a preconditioner for (1.3), we claim:

If the mesh size on the coarsest grid is choosen to be approximately equal
to the singular perturbation parameter, ¢, then the condition number of

the preconditioned system is bounded independent of € and .
Defining M§ = My, where k is chosen so that h; = €, we justify this claim in 3 steps:

1. In Section 3.2 we reduce the problem to finding appropriate upper and lower
bounds for the eigenvalues of MfAf. Let ¢ : Q» — {1,2,...,(2" = 1)?} :
(i1h,i2h) = gi,t = (11,12), be a given ordering of the (2" — 1)? points of
Qp, and let {a;} be a (given) complete set of eigenvectors of Ap. Define a

(27 — 1)? x (2" — 1) matrix, M, by

(M)‘]h‘h' = i

where

pij = (Mf A5, 05)

for each i = (41,%2), § = (Jj1,J2) where 1 < i1,%2,J1,J2 < 2™ and (-,-) is the
discrete - L? inner product. Using this eigenfunction analysis (Fourier analysis),
the problem reduces to finding bounds on the eigenvalues of M. The off-diagonal
elements of M represent the “aliasing”.

9. In Section 3.3 we obtain a formula for a bound, C;;’ korw such that, for every ¢,

> lisl < Ch ol ti]-
prr

Therefore we have diagonal dominance of the matrix, M, provided Ch krw,

where

Ch,kyrw = sup Clz;,k,r,wa
i

3



can be shown to be less than one. The constant C’h,k,r,w is calculated for
r=123,4, w=.5,6,7,.8.9, h = 1/2,1/4,1/8,...,1/8192 and all possi-
ble corresponding values of k. All computed values of Ch k,rw are less than one
with the exception of the case where only one smoothing is used and w < .7.

3. In Section 3.5 we restate the bounds given in [7] on the diagonal entries of the
matrix. These bounds are used, combined with the diagonal dominance, to show
that:

ce? < Amin(MEAR) < Amax(MA3) < coe?,

for constants ¢;,cp > 0. The diagonal dominance of M is needed only to guar-

antee the positivity of the lower bound.

In Section 4 we describe some experiments which illustrate the efficiency of using the
optimal number of grids in the multigrid preconditioner. Experimental comparisons are
made between three different solvers for the model problem. In a preconditioned conjugate
gradient routine, two preconditioners are used, first the preconditioner analyzed in this
paper, namely the preconditioner based on the Laplacian with smoothing on the coarsest
grid, and secondly a preconditioner which is based on the model operator itself, solving on

the coarse grid. The third solver used in the comparison is a symmetric multigrid V-cycle.

The techniques used in the analysis of “multigrid-as-a—preconditioner” can also be
used to analyse “multigrid—as—a—solver”. This analysis is simpler than the preconditioner
analysis since we don't need diagonal dominance (and we don’t have it), see Section 5. In
Section 6 we show how the k-grid convergence bounds obtained in this way compare to the
experimentally observed convergence rates and to V-cycle convergence bounds obtained by

other methods.




2.1 Notation

Consider the two-dimensional Dirichlet problem

{—Au:f in Q=(0,1)x (0,1)

u=0 on 0
where A = Z§'=1 o2/ 3:1:?. We discretize this problem on a family of grids. Let h = 27",

(2.1)

as in Section 1. Choose a positive integer k, k < n. Define a coarse grid mesh size
hy = 2¥"1h . In Q we define k intermediate grids, Q7 , p = 1,2,...,k with mesh sizes
hy = 91-Ph, . Clearly h = hy and
Q? = {(z1,Ym) = (lhp, mhp) : ,m =1,2, ey Np — 1} (2.2)
where N, =1/hy and p=1,2,.., k.
We define the discrete operator, Ap, which is the negative of the discrete five point

Laplacian, on the grid QF, using the standard five-point discretization of the differential

operator, —A (see e.g., [6]). Each A, is a sparse (N, = 1)? x (Np — 1)* matrix with a

complete set of eigenvectors, aEP ), given by:

agp)(m, n) = 2sin (iywmhy) sin(igmnk,) m,n =1, vy Np— 1. (2.3)

where i = (41,%2) , and 71,22 = 1,2, weyNp — 1. The corresponding eigenvalues are:

V§P) — 4 —2 cos (i1mhy) — 2 cos (3emhp) .

i (2.4)

As usual, the multigrid operators we consider are constructed from smoothers, G,
p=1,2,...,k and intergrid transfer operators, I?_; and Ip7t, p=23,.,k.
To simplify the analysis we choose Gp(+,-) to be a damped Jacobi smoother, defined
by
Gp(up, fp) = (I — 2wepAp)up + 2wep fp
= Goup + (I = Gp)A;  fp (2.5)
where ¢, = h§/8, p=1,..., k, and @p is the linear part of G,. We require that
0 < w< 1. Wedo not allow w = 1, which would correspond to a Jacobi iteration. The

constant, ¢,, is approximately equal to the inverse of the spectral radius, p(4,). In fact,

cpp(Ap) =1— O(h?,), and therefore G, is a contraction, L.e.,

p(I — 2wepAp) < 1. (2.6)



We define inner products and norms by:

(uP,vP)p = hi Z uP(z)o?(z) (2.7a)
zellp
and
[uP||? = (uP, wP)p , (2.75)

for uP, vP defined on QF .

For the projection and weighting operators we take I;,’_l to be linear interpolation:

1 1 2 1
Ip_1 1 } 2 4 2 [ , (2.8a)
1 2 1La,.

and I},"'l to be the adjoint of I ;__1 relative to the discrete — L? inner products defined by
(2.7a):

Pl = _1__

1
2 2.8b
4 16 1 ’ (2.80)

where we have used the “distribution” and “collection” stencils as in [10].

In the eigenfunction analysis we need some notation and simple formulas. Let : =

(i1,i2). Define
£ = cos? (%) (2.9a)

and

n? = cos? (zy;h,,) : (2.90)

A simple trigonometric identity gives us
7D = (1267 (2.10a)

and
n# = (1- 2n{PY? (2.10)




The eigenvalues of A, can be written as

2= 0P
i h2 .
p

(2.11)

A simple calculation shows us that the effect of the projection on the eigenvectors of

A, can be expressed as(?)
I£—1a£p) - gz(?)ngp)agp—l) ‘ (2.12)

The corresponding formulas for interpolation is

P oD = 6§p)n§p)a§p) (1- E(P))T)(p) () (2.13)

—'1 i Np—ix,ig)

- fgp)(l - nfp))aEfB,Np_iz) +(1- ép))(l - nz(p))age'p-il,]vp_il) .

(p)

Note that eigenvectors of A, are also eigenvectors of G,. The eigenvalue, g; of
G, corresponding to a(p ), is given by
ggp) =1 - 2wcy V(p) (2.14)
where the constants ¢, are related by
cp—1 = 4cp. (2.15)

When we apply the multigrid algorithm, we transfer vectors to coarser grids. In the

process we lose information. In this two- dimensional problem with an (h-2h) grid structure

the four (if 4, # N,/2 and ip # N,/2) eigenvectors agfl)’iz), E%p'—zlﬂ2)7 - EleP_”)

and a!?) _ _.y,defined on Q?, are indistinguishable on 2P~ . There are also 2N, —3
(N ’1 :N r 11.’)
eigenvectors as defined on Qf which are indistinguishable from the null vector as defined

on OP~1. This phenomenon is what is referred to as aliasing.
This aliasing plays an important role in the analysis of the multigrid process and we

introduce the followmg notatlon Given two multi-indices 7 = (41,41) and j = (J1,J2),
(») (»)

consider a( ) and a I a :i:a(p ) then we write i ~ j (p). If &;” and a}" are not
linearly dependent then 7 % j (p).
(?) In the cases where | i |:= max(i1,72) > 1/Np, one should replace a?"l) by its

proper (unique) representation, aSP ), where | 7 |< Np—1. However, Formula (2.12) is

also correct in this form.



2.2 Intergrid Operator Identities

A multigrid cycle consists of smoothings and intergrid transfers. The smoother is
applied to reduce the high frequency (rough) components of the error. The residual is
transfered to a coarser grid where solving exactly for the error correction is less expensive.
By solving and then interpolating this coarse grid correction back to the fine grid, the low
frequency (smooth) components of the error are reduced. In the boundary value problem
(2.1), the eigenfunctions are easily identifiable as rough or smooth, being products of sine
functions. The same is true for the discrete operators, 4;, 1 < p < k . To gain insight
into the properties of the multigrid process we study the effect of a multigrid cycle on the
eigenvectors of Ag.

Using formulas (2.12) and (2.13) it is clear that transferring aS” ) from QP to QP!
and then interpolating back, results in a linear combination of the four eigenvectors which

)

alias from Q7 to QP71 . A ‘smooth’ eigenvector, i.e. Egp ) and n,{p close to zero, picks up
‘rougher’ components. In the full k-grid problem where there are 4¥~! vectors aliasing
from QF to Q! , keeping track of the aliasing is difficult. Fortunately, there are a few
simplifying features. The second of the following three Lemmas, in particular, simplifies

the analysis. Define

m=I I, 1S <p Sk (2.16)

Lemma 2.1

If j~i(n) and j#£1i(n+1) for some 0 < n <k, then

0 if n<p<k;

B oy = n
(", Ifaj”) (I £ m) (6™ o) (0P o), p<n (2.17)
m==p

Proof of Lemma 2.1
Let j~i(n)and j£:(n+1) forn, 0<n<k.

For p > n, the orthogonality of the olP gives

i




(@, 2oy, =0.

For p < n and i # (0,0) (p),

(I7a®, o) =< H £y (m)) (o™ ™y,

m=p+1

( H £my (m)) NOINONS

m=p-+1

Since IJ II Ik y then
P [p k " P " k
(ag )7 kag ))P ( pag )’ kag' )>n

Using j ~ ¢ (n) and (2.19) gives

k
0.1,

m=p+1
If i ~ (0,0) (p), then (2.21) is trivially true. H

Lemma 2.2
Forany n, 1<n <k, and i # (0,0) (n),

n _(k )
3 e pa{P)a =1

j~i (n)

Proof of Lemma 2.2

n
II &mn™ ), Faf)ael?, o),

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

If n=k then j ~ i (1) implies j = i. Since (a{”,a{™); =1, (2.22) holds for n = k.

Assume 3. ; (541) | (a; (a+1) I (* )) s+1 |=1 for s, where s < k.

Define

il = Z = (il,i2) y

2= (Not1 — i1,%2)
i3 = (N3+1 - le,rNs—H - ?:2) 9
i* = (i1, Nog1 — 12) -

9

(2.23)



————— = — = N T T TN T T TN level k
VAR 1 N[ AN S e

level £ — 1

level s =k — 2

Figure 2.1: A splitting of the j, j ~ ¢ (s), where s =k — 2.

The set {j|j ~ i (s)} can be split into four disjoint subsets corresponding to all
j~il (s4+1), i~ (s+1), i~ (s+1) and j ~ i* (s +1). Figure 2.1 shows this

schematically for the case s = k — 2. Therefore the summation can be split as:

K] 3 k K] 8 38 k
S el e, 1= Y] | (1216, I al®) 4 | (2.24)
Jj~i (9) g~i (8)

(T y v )

jeoil (1) jei? (s41) i (s+1) jevit (8+1)
(retad? Italy o |
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(s+1)

i

Using (2.13) and the orthogonality of the o

s g 8 s s k
S 1 af, IalP), | = R Y (o™, 1 a Py g 1)

, the summation can be written as:

ji (9) " joeit (s41)
F (1= e ST @S, I al) e |
j~iZ (841)
L= =) Y (@, ) |
j~i® (s+1)
F(EEA =Y Y @, e |
jroit (841)

By the inductive hypothesis, each summation on the right hand side is equal to one and

the coefficients also sum to one. E

Lemma 2.3
Forall n, 1<n <k, and i #(0,0) (n),

S 1@ e |= 1 g™ (2.25)

j~i (n)
jAi (n41)

Proof of Lemma 2.3

Identity (2.25) follows directly from Lemma 2.2 since
n n k n n n
> el g l= Y Hel” Rl
j~vi (n) j~i (n)

jbi (n+1)
: k
— gD S (e e |
j~i (n+1)
—1— €§n+1)m(_n+1) N |
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3.1 Definition of the Preconditioner

The multigrid preconditioner is based on the discrete five point Laplacian. M} is one
standard multigrid symmetric V—cycle starting with zero as the initial guess, except that
the coarse grid correction is obtained by smoothing instead of by solving exactly on the
coarsest grid. Having choosen a fixed number of grids, k, the multigrid preconditioner is
defined recursively. Choose a positive (integer) number of smoothings, r. Then Mg fi :=
i where @, (= Mypfp), for fp defined on QF, p=1,...,k, Iis given by:

1.) Smooth 7 times starting with initial guess = 0:
iy, = G5 (0, fp) - (3.1a)
2.) Compute the residual and transfer to the coarse grid:
rp = fp— Apilp, fp—1 =175 (3.1b)
3.) Compute the coarse grid correction:
If p=2, Gp—1 = = G7 (0, f1) (3.1¢c)
If p> 2, tp-1=Mp-1fp-1- (3.1d)
4.) Add the coarse grid correction:
fp = Up + Ih_1Up-1. | (é.le)
5.) Smooth r times starting with initial guess = ip:
iy = G (&p, fp)- (3.1f)

Because we have started with an initial guess of zero, the multigrid preconditioner is

a linear operator acting on fx. This definition of M} can be rewritten as:

M, = (I-G¥) A7 + Gl My I}7'Gy p=2,...,k (3.2)
and My = (I-G¥) A7t
These identities rely on the commutivity of Gp and 4p, p=1,2, ..., k.

12




3.2 The Problem

As remarked in the introduction, it is sufficient to examine the effectiveness of the
multigrid preconditioner by considering the model problem (1.3). We take © = (0,1) x
(0,1) and ¢ real and small. It is for this model operator, 45 = —e*A + I, that we prove

our basic results.
Define
¢ =e?Ap+ I (3.3)
Writing the symmetric preconditioner as My = Q%LQk, the preconditioned system is

As'v' = F' where As' = QA5 Q}. Experimental evidence suggests the following:

Conjecture: .
Let r>0,0<w<1, h >0 and € > h. Choose the number of grid levels, k, so
that h; = 25"1h ~e. Define Mf{ = M;. Then there exist constants ¢, ¢z > 0 such that

0152 < Anin (M}e; 7;) < Amax (M}fAi) < 0252-
What we prove in this paper is:

Theorem 3.1

Let r=1,2,3,4 and w=.7,.8,9 or 7 =2,3,4 and w = .5,.6. Let h > 1/8192 and
¢ > k. Choose k so that hy = 2¥71h = e. Then there exist constants c1(h), ca(h) >0
such that

c1(h)e? € Amin (MEAL) £ Amax (M;A}) < ca(h)E>. (3.4)

Remark 3.1

For fixed e, r and w, numerical evidence indicates that, as h — 0,
ci(h) — ¢ >0

ca(h) — ¢ > 0.

Remark 3.2:
Since A§' is similar to M A§, (3.4) implies that K(A%') is bounded independent

of €.
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Proof of Theorem 3.1:
Define
pij = ( My (2 Ax + I) al®, ag-k) )k- (3.5)

Because of the aliasing, y;; can be nonzero for j # i. However if 1 47 (1) (ie. agk) and

ag-k) are distinguishable on the coarsest grid) then u;; =0.
Choose m = (my, my) where |m| := max(my,mz) < Ni.
Let j1, j2,.--, jar—1 be some ordering of the j ~ m(1).

We now define M, to be a 4%~ x 4¥~! matrix given by

(Mm)p,q = ,"‘jqu' (3.6)

We consider the subspaces

Sm: = linear span ({ag-k) 1 j~m (1)}) , (3.7)

where |m| < Ni. The Sp are orthogonal (with respect to the inner product defined by
(2.7a)) subspaces and invariant under M k(2 A + I). Therefore if we show that

le':2 < Amin (Mm) < Amax (Mm) < C252 (3'8)

for each m, then (3.4) will be proved.

By the Gershgorin theorem, any eigenvalue, A, of My, must satisfy

A = pii| < Z |51 (3.9)
j~i ()
J#Fi
for some i ~ m (1).
We show that M, is diagonally row dominant and therefore we can use information
about the behaviour of the diagonal entries of My, to prove (3.8). Specifically, in Sec-
tion 3.3 we give a computable formula, (3.22), for a quantity C};, k) independent of ¢,

such that

> Iwisl £ Chogrew M (3.10)
g (1)
it

14




For certain choices of r and w, C};,k,r’w has been computed, for every ¢, showing that
Ch krw = SUpP; C;z,k,r,w < 1 for the k = 2,3,...,12 grid problems, using h = 2-1 to
h = 2-13 See Section 3.4. In Section 3.5 it is shown that 3¢,¢ > 0 such that

ce? <

< min p; < max fi S ee2. 3.11
1< M Bii > i< N Hiz > ( )

Combining (3.9),(3.10) and (3.11) we have, for any eigenvalue, A, of My,
(1= Chrw) e < A < (L4 Chirw) T, (3.12)

which verifies (3.8) with ¢; = (1 - C—'h,k,r,w) ¢ and ¢3 = (1 + C'h,k,r,u) .
Note that a common factor, 52v§k) + 1, appears in all the p;j, j ~ 7 (1), therefore

(3.10) is equivalent to

> | (Mial®, i), l < Chprw ( Mia{?, 0l )i (3.13)
j"};(il)
Let
| D;:= (Mkagk), agk))k. (3.14)

3.3 Bounds on the Off-Diagonal Elements of M,,.

When applying a multigrid-type cycle to an eigenvector, a(-k), of Aj, the resultin
g i g
(k)

vector, M kagk), is a linear combination of agk) and all of the other eigenvectors, a;”,
which alias with agk) on the coarsest grid. In this section we give a formula for a bound

on this aliasing. Specifically, we find an expression, C;‘;’ P where

Jo= Y. (Mpal®, ol )] < Ch trw ( Mia®, a9 ), (3.15)
j~i (1)
JFi

Let 7 = (41, 12), h, k, 7 and w be fixed.

Define _
¢p = cos’ <Z17;hp> (3.16a)
np = cos’ (iz’f;hp> (3.16b)

15



= (G, "),

2r—1
ep = (Z é;) P, aiP ),
o==0

and  vp= (APO‘(P) gp))p,

(3.16c¢)

(3.16d)

(3.16¢)

where the 7,7, h and w dependence has been suppressed in the notation and only the grid

level is displayed.

The following lemma gives a formula for any entry in the row of M,, corresponding

to i, where ¢ ~ m (1).

Lemma 3.1

For any j ~ i (1),

Tk k
k k
(Mkag ),ag- ))k = ZkaZep ( H 4gm€m77m) ( E ,Ip+1Gp+1

p==1 m=p-+1

Proof of Lemma 3.1

A proof by induction shows that for every s, 2 <s <k,

(MsaES), a§‘8))3 - 2wc3 Z eP ( H 4:gm€mnm> M (QES), I£+1 G;+1 e

p=1 m=p+1

Taking s = k gives (3.17).
For s = 2, (3.4), (3.16) and (2.12) give

(Mza?), a§-2)>z =((I- Ggr) AEIO‘;(Z), 0‘2'2))2

+((I G2r) Ai—-lIlGr (2) IZGT (2)>

— k
. IF IG;ag .

(3.17)

LGy,

(3.18)

(3.19)

_ 2(.4)6262(&22),0[52))2-*- 2&)616192627]2( () IZGT (2)> .

Substituting 4c; = ¢, proves (3.18) for s = 2.
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Assume (3.18) is true for s — 1 grids, s > 2. For the s—grid problem, (3.4), (3.16)
and (2.12) give

(02, aP), = (1 - G27) 4770l ),

+ (Myo1 I G0 171Gl ) e
(3.20)
), o,

= 2wcgeq(a;

+ 6377.993 (Ms-—l aES) ) I:_l G:a_(js))s-—l .

Using the inductive hypothesis with I3~ G’;ags) replacing ag-s‘l) , and using 4c¢, = c,—1
proves (3.18). &

Lemma 3.1 can be used to get an expression for J;, but the summation over all
j ~ i (1) would be difficult to compute. Theorem 3.2 shows that J; can be bound by an

expression which is no more complicated than the expression for D; = (M kagk),af-k))k.

We claim that the J; can be bounded by an expression which is no more complicated

than the expression for D; (= (Mkagk), al® I

]

Theorem 3.2

k k
a.) D; = 2wck ), ep( I1 4gfn§,2nn,2n>. (3.21a)

=] m=p+1

b.) Ji < 2wek kil ep (1—-( IkI fmnm>> ( ﬁ 4|gm[§mnm>. (3.21b)

p=1 m=p+1 m=p-1
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Proof of Theorem 3.2

a.) Using Lemma 3.1 with j = i, combined with equations (3.16¢c) and (2.12) proves
(3.21a).

b.) To prove (3.21b), split the grid levels by partitioning the j ~ i (1), j # . See
Figure 3.1 for a schematic {llustration for k = 3. Foreach n=1,2,...,k—1 consider
the j’s such that j ~ i(n) but j 4 1 (n+1). Lemma 3.1, Lemma 2.1, Lemma 2.3
and (2.6) lead to the following bound:

k-1
=3 > (M1, olP)i (3.22)

n=1  jei (n)

j#i (nt+1)
k—1 n n k
< 2wey Z (1 - €n+1"7n+1) Z €p ( H Sm"'lm) ( H 4lgm‘§m"7m) .
n=1 p=1 m=p+1 m=p+1

Changing the order of summation gives

k-1 k-1 n
T < 2wer ) e [Z (1= arimmsr) ][ Igmlémnm} (3.23)

p=1 n=p m=p+1

k
( H 4lgml5m77m>-

m=p+1
Observe that the quantity in square brackets can be simplified to:

k
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level 3

level 2

level 1

Figure 3.1: A splitting of the j, j ~ (s), 7 # 1.
X ]~z(1),]74z(2)
© j~i(2),541(3)
A j~1(3).

Remark 3.3

The constants Ch k,rw can now be expressed as

A . i
Ch,k,r,w - SU‘.p (Ch,k,r,w) ’
1

where - . )
}:ep (1— H §m77m>< H 4‘lgm|5m77m>

m=p+1

i r=1 m=p-+1
Chkrw= - - (3.24)
Sep| I 49h&hnk
p=1 m=p+1

Note that the denominator has one more term in the sum than does the numerator.
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3.4 Computed Values of the Off-Diagonal Bounds

Ideally, one would like to find analytic bounds for C;‘;’ kyrw independent of i,k and
L. On the other hand, bounds are easily computed for any given h,k,r and w.

Figures 3.2-3.5 indicate the dependence of C,’;,k,r,w on i = (i1,42) for h = 1/64,
r=1, w=.8 and k=2,3,4and 5 grids. The maximum is taken on the boundaries 7; =1
or i = 1. Along the boundary i, = 1 there are 2k=2 relative maxima for the k—grid
problem. (For all values of h, k,r and w tried, the maximum of C* was attained at (1, i2)
and (iz, 1) for some i3.) Figures 3.6-3.9 show the dependence on r for k =4 grids.

Tables 3.1-3.8 give the calculated bounds, supy; <1z (C,';’k’r’w) , for w = .5,.8 and
r=1,2,3 and 4. The multi-index at which the supremum was attained is listed below the
bound.

To find bounds for w = .8 and r = 1,2,3,4, independent of h and k, we used
h = 1/8192 (which means > 67 million points on the fine grid). These numbers are
bounds for all A > 1/8192 and all k corresponding to these meshsizes. Observing the
asymptotic behaviour leads one to believe that they are also bounds for all h < 1/8192
and any number of grids, k. See Tables 3.9-3.10.
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Table 3.1 Chi,rw

w=.5,r=1

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .4640 7165 8026
e | @ |
1/32 .4688 .7530 9484 1.025
(1,19) | (12 | @21 | (L)
1/64 4707 7632 19942 1.149 >1
(1,37) (1,45) (1,41) (1,21)
1/128 4712 .7669 1.004 >1 >1 >1
(1,74) (1,39) (1,81)
1/256 4712 .7669 1.006 >1 >1 >1 >1
(1,149) | (1,178) | (1,163)
1/512 4712 7671 1.007 >1 >1 >1 >1
(1,208) | (1,357) | (1,325)
Table 3.2 Chirw w=5,7=2
h 2 grids 3 grids 4 grids 5 grids 6 grids T grids 8 grids
1/16 ..3115 .4296 .4680
(1,9) (1,5) (1,5)
1/32 3196 .4574 5441 5573
(1,17) (1,10) (1,11) (1,11)
1/64 3215 .4658 5700 .6084 6142
(1,35) (1,19) (1,22) (1,21) | (1,11)
1/128 .3220 .4680 BTT1 6277 6591 .6643
(1,70) (1,39) (1,44) | (1,23) | (2n) | (1,21)
1/256 3221 .4685 5790 .6349 6741 .6856 6876
(1,139) | (1,77) (1,88) (1,45) | (1,41) (1,43) | (1,43)
1/512 3221 .4688 5795 .6368 6782 .6923 .6997
(1,218) | (1,185) | (L,177) | (1,91) (1,82) (1,36) (1,43)
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Table 3.3 Chirw w=5,7=3
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .2200 2998 .3102
(L,7) (1,5) (1,5)
1/32 2271 3283 3484 3581
(1,15) (1,9) (1,8) (1,5)
1/64 .2285 .3346 .3694 3961 3981
(1,31) (1,18) (1,10) (1,11) (1,11).
1/128 .2289 3362 3756 4093 4165 4170
(1,61) 136) | (1,20 | (122) | (1.21) | (1.21)
1/256 .2290 3367 3773 4130 4243 4297 .4302
(1,123) (1,71) (1,39) (1,44) (1,23) (1,21) (1,21)
1/512 .2290 .3368 3777 .4139 4279 .4356 .4366
(1,246) | (1,142) | (1,78) | (1.88) | (1,46) | (1,41) (1,42)
Table 3.4 Chirw w=.5,7=4
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1689 .2253 .2368
(L7) (1,3) (1,3)
1/32 1732 2481 .2659 .2684
(1,14) (1,7) (1,5) (1,5)
1/64 1747 .2550 .2823 .2876 .2880
(1,27) (1,15) (1,9) (1,10) (1,9)
1/128 .1749 2567 .2868 .2945 .3013 .3016
(1,54) (1,31) (1,18) (1,20) (1,11) (1,11)
1/256 .1750 .2570 .2880 2971 .3081 .3089 .3090
(1,109) | (1,83) (1,35) (1,19) (1,23) (1,19) (1,19)
1/512 .1750 .2571 .2883 .2982 .3099 3125 3131
(1,217) | (1,126) | (1,70) (1,38) | (147) (1,25) (1,26)
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Table 3.5 Chk,rw

w=.8,r=1

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/8 2801 3473
(1,5) (1,3)
1/16 .3448 4724 5071
(1,9) (1,5) (1,5)
1/32 3565 .5080 .5894 6015
L7 | e | @y | @)
1/64 .3581 .5166 6179 .6647 .6698
134) | (1,19) | (1,220 | (121) | (L,21)
1/128 .3586 5188 .6256 .6857 7243 7293
168) | (137) | (L4a9) | (41 | (L2) | (1.21)
1/256 3587 5194 6278 .6916 7423 7531 7551
(1,136) | (1,75) (1,87) (1,45) | (1,41) (1,43) (1,43)
1/512 3587 5195 .6283 .6938 7471 .7609 .7695
(1,273) (1,150) (1,175) (1,89) (1,82) (1,86) (1,43)
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Table 3.6 C’h,k,r,w w=.8,r=2

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1954 .2552 .2640
(1,7) (1,3) (1,3)
1/32 .2001 .2840 .2993 .3013
(1,14) (1,7) (1,5) (1,5)
1/64 .2013 .2932 3223 3252 .3268
(1,28) (1,15) (1,9) (1,10) (1,9)
1/128 .2016 .2956 .3285 3337 .3387 .3389
(1,55) (1,31) (1,17) | (1,20) | (L,11) (1,11)
1/256 2017 .2961 .3299 .3387 .3473 .3499 .3500
(1,111) | (1,63) (1,34) | (1,18) | (1,21) (1,19) (1,19)
1/512 .2018 .2963 3304 .3402 .3497 .3537 .3538
1,222) | (1,127) | (1.69) | (1,36) | (142) | (139) | (139)
1/8192 2018 .2963 .3305 .3407 .3505 .3550 3581
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Table 3.7 Chirw w=38,7=3
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1353 .1880 .1891
(1,6) (1,3) (1,3)
1/32 .1385 .1993 2077 .2088
(1,12) (L,7) (1,3) (1,3)
1/64 .1393 .2032 .2233 .2240 .2243
(1,24) (1,13) (1,7) (1,7) (1,7)
1/128 .1395 .2044 2267 2296 2303 .2307
(1,47) (1,27) (1,15) (1,7) (1,7) (1,7
1/256 .1396 .2046 2278 .2339 2341 2353 .2353
(1,95) (1,54) (1,29) | (1,15) (1,14) (1,14) (1,14)
1/512 .1396 .2047 2281 .2348 .2357 .2369 .2370
(1,189) | (1,108) | (1,58) | (1,30) (1,15) (1,27) (1,29)
Table 3.8 Crirw w=38,7=4
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 .1039 .1441 .1482
(1,5) (1,3) (1,1)
1/32 .1057 .1531 .1628 .1629
(1,10) (1,6) (1,3) (1,3)
1/64 .1067 1557 1705 1716 1716
(1,21) | (L,12) (1,6) (1,6) (1,6)
1/128 .1068 .1563 .1736 1761 1762 1762
(1,42) | (1,29) | (1,13) (1,7) (1,6) (1,7)
1/256 .1069 .1565 1742 .1788 1795 1797 1797
184) | (1,48) | (1,26) | (1,13) | (1,13) | (L,13) (1,13)
1/512 .1069 .1565 1744 1795 .1803 .1808 .1810
(Lies) | (195 | (1s) | (2n | (128) | (1,13) | (L13)
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Table 3.9 Ch k,rw

w=.8, h=1/8192

Table 3-10 C’h’k'r’w

7 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids
1 3587 5196 .6284 .6945 7487 .7638
2 2018 2963 .3305 3407 3505 .3550
3 1396 2047 2282 2351 2370 .2375
4 .1069 .1566 .1745 .1798 .1812 .1818
T 8 grids 9 grids 10 grids 11 grids 12 grids 13 grids
1 7800 7896 7933 7953 7948 7951
2 .3581 .3589 .3590 3592 .3592 .3952
3 2390 .2394 .2398 .2398 .2398 2398
4 1821 1824 .1825 .1825 .1825 .1825
k=12 , h=1/8192
T w=. w= .6 w=. w=.8 w=.9
1 >1 >1 .980 .795 .648
2 721 554 .439 .359 305
3 444 345 282 .240 210
4 318 254 212 .183 .161
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3.5 Bounds on the Diagonal Elements of M,
Recall that the diagonal elements, pi;, of My where i ~m (1), are given by,

Bii = (MkAiaSk), agk) Vk- (3.25)
Since A§ = €A + I and hence
i = (52u§k) + 1) D;, (3.26)

the bounds on the pj; can be obtained from suitable information about the D;’s. The
following characterization of the effect of the preconditioner on smooth and rough eigen-

vectors of A is central to the analysis and was given by Goldstein in [7].

Theorem 3.3
For r > 1, w suitably chosen and h sufficiently small, the D;’s are positive real

numbers such that:

a.) D; = 0(h?) for Vz(k) < d/h? (3.27a)
b) D; = (—1;—(})@ for ® > d/n? (3.27b)

where 0 < 7 < 1 and 7 is independent of h and d is a constant.
We prove a more explicit version of the same result:

Theorem 3.4
For r > 1, 0 <w < 1 and a fixed constant, d, where + < d <2,

w(l —w) 9 2rw 5 (k) d

: D; < ==h . — 3.2

2) mex@ditre) S 7= T3M for w7 < i3 (3.282)

b.) d“’(l”“’zk) < D; < --% for v® > -‘-lg. (3.28b)
8(1 + rw)y; v, hi

Proof: in appendix.
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These theorems give us bounds on the p;;, and, for example, Theorem 3.4 leads to

the following bounds:

(k) d w(1l — w)h? < 2rwd (5  hi
For v; < h% ) max (2’ d(l + TUJ)) S Had S.. 3 e° + Cl (3.293,)
2 2
gk) > _EZ— d(.d(l — LU)E < < 2 Z.L_l_
For v}’ 2 23 —————-—8(1 ) < pi £ €t (3.29b)

Therefore, taking hi = €, we prove (3.12).

Using the diagonal dominance of the matrices, My, we can estimate the dependence
of the condition number of Mx(e2Ax + I) on the ratio o = h%/e? from the behaviour of
the diagonal elements, p;;. From the inequalities (3.29) we get an estimate for the choice
of a which minimizes the condition number:

1/ 3\’
Goptimal = = (%) . (3.30)

This predicts that the optimal number of grids decreases as the quantity rw increases. One
can also use (3.29) to show that it is better to choose too many grids, (a > aopt ), rather
than too few, (@ < @opt ), (see Figure 3.10). These observations all accurately describe the

experimental results — see the next section.
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condition
number
a = h2/e?
Figure 3.10: The condition number estimated from the diagonal terms.
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4. Multigrid Preconditioner — Experimental Results.

Our numerical computations were carried out with three objectives in mind:

i) Observe the optimality of taking the meshsize on the coarsest grid, h; , to approx-
imate the singular perturbation parameter, €.

ii) Check the boundedness of the condition number of the multigrid—-preconditioned
system as £ and the fine grid meshsize, h, decrease.

iii) Compare the efficiency to other fast solvers, in particular, the corresponding multi-

grid algorithm used as an iterative solver.

We discretize the boundary value problem:

{ cui=(—e2 A+Du=f in Q=(0,1)x(0,1) (4.1)

u=0 on 0L,
on a grid of uniform meshsize, k, as in Section 2.1. Using the multigrid preconditioner, M},
as defined in Section 3.1, we iteratively solve the discrete problem using a preconditioned
conjugate gradient algorithm. Recall that k is the number of grids used in the multigrid
algorithm, hjx = h, and the smoothers, Gp ,1 < p < k,used to define M}, depend on the

damping parameter, w, and a fixed number of smooths per iteration, r. We solve
(EzAk + I)uk = Fy, (4.2)

starting with initial guess, u}. We call this iterative solver PCCG(-A,sm). The “A”
reminds us that the multigrid preconditioner is based on A, the negative of the discrete
Laplacian, and not on the operator Aj = e2A; + I and “sm” indicates that we smooth
instead of solving exactly on the coarsest grid. Experimentally, we find that a reasonably
good choice of r and w is r =2 and w = .8 (w = .8 is optimal for the corresponding
2-grid multigrid solver, see [12]).

We first consider solving (4.2) with Fx = 1. For h = 1/64 we show the dependence
of the number of iterations required to reduce the norm of the residual by a factor of 107¢
on the choice of ¢ and h;. See Table 4.1 . For given ¢ and h, the number of iterations
listed is the largest observed for various choices of u. Note, in particular, the cases where
hi=¢.

Table 4.2 displays the number of iterations required to reduce the relative error by a

factor of 10~ for various choices of h and €, taking h; =¢. Here we used Fi =0.
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Finally, we compare the efficiency of PCCG(—A,sm) to other elliptic solvers. We
take h = 1/64, € = 1/8, Fx =1 and an initial guess consisting of a smooth and a rough

component, namely:

u = 10 + 20 cos(64mz) cos(64my).

We consider a symmetric V-cycle, which is a fast iterative solver for equation (4.1), where
we solve exactly on the coarsest grid (we use a symmetric band solver to invert e?A; +1I).
We denote this algorithm by MULT. For comparison, an (extreme) choice of a precondi-
tioner for the preconditioned conjugate gradient algorithm is considered, where the pre-
conditioner is based on A§ instead of Ax and we solve exactly on the coarsest grid. In
other words, this preconditioner consists of one cycle of the solver, MULT, starting with
initial guess of zero. This algorithm is called PCCG(-£2A + I ,50). Of course we expect
the behaviour of this preconditioner to be better than that of the simpler (—A ,sm) pre-
conditioner, but we have the added expense of a coarse grid solve and (slightly) more
complicated operator. Of interest to us here is that PCCG(—¢%A + I ,s0) is not a signif-
icant improvement over PCCG(—A ,sm) if the optimal choice of the number of grids is
used.

In a conjugate gradient algorithm, the error reduction factor, ||ex||/|lex—1ll, typically
decreases as k increases, whereas for a multigrid algorithm the error reduction factor
increases as k increases. Therefore the preconditioned conjugate gradient routines will
be more competitive when a large reduction in the relative residual is required and the
multigrid algorithm is more competitive when a smaller reduction in the relative residual
is required.

We also observe that increasing the number of smoothings per grid level will im-
prove the performance of MULT more than it will improve the performance of the
PCCG(—A ,sm) algorithm. Similarly, optimizing the choice of the damping parameter,
w, will improve MULT more than it will improve PCCG(—A,sm).

Furthermore, one should keep in mind that, though it is difficult to improve the
behaviour of the multigrid preconditioner, it is quite obvious how to improve the multigrid
solver. Using better smoothers, or using a full multigrid algorithm (FMG) will dramatically
improve the convergence rate.

Our first comparison is made with parameters which should give the PCCG(—A,sm)
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algorithm an advantage. We therefore consider a relatively inefficient choice of the damping
parameter, w = .5, and require the norm of the residual to be reduced by a factor of 10712,
The total cpu time (seconds) is recorded in Figure 4.3, with the number of iterations given
in parentheses next to the time. The PCCG(-A ,sm) algorithm appears to be competitive
with MULT, at least for this meshsize, h. The PCCG(-e?A + I,s0) algorithm is only
slightly faster.

We then take a more reasonable value of w = .8 and require the norm of the residual
to be reduced by a factor of 10™®. The total cpu time is recorded in Figure 4.4. The
multigrid solver, MULT, is now the best choice.

All computations were done on a VAX 11/780.

We end this section with a few comments on the choice of using multigrid by itself as

a solver, or using multigrid (based on a simpler operator) as a preconditioner:

_ For the model problem (8.1), our experiments indicate that, for modest values of &
and e, a good multigrid algorithm is more efficient than a multigrid-preconditioned

conjugate gradient algorithm.

~ In a true variable coefficient problem, (1.1), the multigrid preconditioner has the ad-
~ vantage of being based on a constant coefficent operator. In this case, using multigrid
as a preconditioner should be more competitive than in the model problem case. It
is doubtful whether the multigrid preconditioner could outperform a good multigrid

solver even in this case, but more testing would need to be done.

~ In an indefinite problem, where multigrid solvers are more troublesome, one of the

preconditioned conjugate gradient routines for indefinite problems might be preferable.

36




Table 4.1 Optimality of choosing h; = e.
Largest (observed) # of iterations required for lri|l/llr%]l < 107°.

h1 e=1/2 e=1/4 =1/8
1/32 > 20 > 20 20
1/16 12 12 10
1/8 9 8 8
1/4 7 7 9
1/2 7 8 9

Table 4.2 Boundedness of condition number independent of h and e taking € = hy

Largest (observed) # of iterations required for |juz — ub)l/lue — vl < 1078,

h e=1/4 e=1/8 e=1/16 e=1/32
1/32 5 6

1/64 6 6 6
1/128 6 6 6 6
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Table 4.3

Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for |[res||/ |lreso|| < 10712

e=1/8 ,h=1/64 ,uj =10+ 20 cos64rz cosB64ry

# of grids MULT:V(2,2) PCCG(-A,sm) PCCG(—€%A + I,50)
2 61.3 (20 - (>20) 53.4 (10)
4 44.2 (21) 40.6 (11) 39.2 (10)
6 44.4 (21) 44.8 (12) 39.5 (10)

Table 4.4

Experimental comparisons of approximate cpu time (sec).

Approximate cpu time (no. of iterations) required for |lresk||/|Iresoll < 107°.

e=1/8 ,h=1/64 ,u} =10+ 20 cos64rz cosbiry

# of grids | MULT:V(2,2) | PCCG(-A,sm) PCCG(—e?A + I,50)
2 24.3 () 49.9 (14) 35.2 ()
4 14.3 (¢) 22.4 (s) 29.6 (s)
6 144 (5 23.8 (5) 29.7 (s)
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5.1 V-cycle Convergence Bounds

In this section we briefly describe the results of applying the same techniques, in
particular Lemma 2.2, to obtain bounds on the asymptotic convergence rates for multigrid
V-cycles used to solve the Dirichlet problem for Poisson’s equation in the unit square. The
analysis is simpler in this case because we don’t need diagonal dominance. Instead, we
numerically evaluate the || - ||¢,, norm of the appropriate matrix (i.e., the largest row sum
of absolute values) which is a bound on the spectral radius. We present the details of this
analysis in Section 5.2. We first define our basic multigrid V-cycle applied to the linear

system

BU = F} (5.1)

starting with initial guess, u}, with auxiliary problems, ByUp = fp, p=1,2,...,k—1,

corresponding to discretizations on the coarser grids.

1. Initialize:
fr & Fy
Up — Uy
2. Update:
up — Uk

where each @p, p=2,3,...,k is defined recursively by:

(a.) Smooth r times starting with initial guess = u,:
ip = Gp(up, fp) (5.2a)
(b.) Compute the residual and transfer to the next coarser grid:
rp = fp— Bpilp, fp-1=107"1p (5.2b)
(c.) If p> 2 then return to (a.) to evaluate @,—y. If p=2 then:
% =B f (5.2¢)
(d.) Add the coarse grid correction:

iy = p + I)_1Up—1 (5.2d)
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(e.) Smooth s times starting with initial guess = Up:

ap = Gp(ilp, fp) (5.2¢)

For the model problem analysis, we take Q,, Ap, r_., I},"‘l and G, as defined in

P
Section 2.1.

5.2 Error Analysis

Bounds on the asymptotic convergence factors of the multigrid cycles M\ k,rw can
be found in the following manner. Let ex = Ug — ux be the initial error and & = U — tUx
be the error after one multigrid cycle, where Uy satisfles AyUx = fix . In terms of the

errors, definition (5.2) becomes:

(a) Forp=k,k—1,---,2
Ep = Gpep »
ep—1 = Ay IDTHAE,.

(b) For p=1

o
i
o

(c) For p=2,---,k

&p=&p— Ip_1(ep-1 - Ep—1) -
Recall that G,, is the linear part of G,. If M ke, = &k , then MF is defined recursively
by:
MP=Gh—IP_(I-MP VAL I IGRA,, 2<p<k (5.3a)

p-1 -

M'=0. (5.3b)

Note that the agk) are eigenvectors of Ag and G , but not of MP¥ . Define

S; = linearspan {a_(ik) :j~1(1)}. (5.4)

By formulas (2.12) and (2.13) we see that the 5; are orthogonal subspaces which are

invariant under M* . Therefore a basis of eigenvectors, {v,} , of M k exists such that
each v, can be written as

k
va= Y. el (5.5)
jrvi (1)
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(k)

for some i, ¢ |< Ni , where aj, ¢ R. Since the o are orthonormal with respect to the

discrete Lo inner product, then

k
(Mkvwvu)k = Z ajuMko‘g' ) ) Z amuaﬁ,f) )k

j~i (1) m~i (1)
i k
= Z Amp Z aj”(Mkag-),ag- ))k = A, Z al, (5.6)
m~i (1) j~i (1) n~i (1)

where ), is the eigenvalue of M k corresponding to v, .
A bound on the A,’s will be a bound on the asymptotic convergence rate of the
multigrid cycle. Let M; be the 4571 x 451 matrix with (Mi)p,q = (M*al®), oP), with

1, j2s - - jar-1 some ordering of all the j ~ i (1).

Remark 5.1 Note that for some i’s, these j,’s are not necessarily unique. For example,

if 1 = (Nk/2,1) then (N¢/2,1) = (Nt — Ni/2,1) .

Remark 5.2 The diagonal elements of M; are the Rayleigh quotients,

k k
(Mka.(fp)’ agp))k
k k
<a.(fp) 4 a.(ip))k

and the off-diagonal elements are the contribution from the aliasing vectors.

By Gershgorin’s theorem, any eigenvalue A of M; must satisfy

A —(MFa®, el Y (M4, 0l | (5.7)
j~n (1)
j#n
for some n ~ i (1) . Therefore a bound on the asymptotic convergence rate, p , is given

by

p < max ( max Z I(Mka%k),ag-k))kl)

T li<Ny \ n~i (1) i (1)
Ky (k
= max E i (Mkag ),ag- ))k | (5.8)
<t e

for the k-grid problem with meshsize hy =1 /Ny on the fine grid.

In section 5.3 we derive formulas for a bound on the righthand side of (5.8).
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5.3 Derivation of Bounds on the Convergence Rate

For a fixed fine meshsize h, a given number of grids k, r smoothings and a damped
Jacobi parameter w, we derive formulas for a constant Ckrpw < 1, independent of i
which is a bound on the asymptotic convergence rate. In Section 5.4 we give values of
these constants for various values of h, k and r using a typical value of w.

By (5.8) it is enough to bound Z | (M kagk),ag-k)) ¢ | independent of ¢ . Divide

j~i (1)
the sum into two parts,

S e o) | =1 (MFal o) | (5.9)

i (1)
k k
+ Y (kP o) |
j~i (0)
J#1
=: Di+ Ji,

where D; is the “diagonal part” and J; is the “aliasing part” of the sum.
Let ¢ = (i1,42), k, 7, h and w be fixed. Define

1h
€ = f(p) = cos (_2_1_7_%__11) , (5.10a)
np = 2P = cos? <-Z-2—7;£> ) (5.100)
=GP, o), (5.10¢)

=

ZG0> ® 4P (5.10d)

o=0
and

vy =P (5.10¢)

where the 7, r, b and w dependence has been suppressed in the notation and only the
grid level is displayed.

We have the following theorem.
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Theorem 5.1

H 4gm5mnm> (5.11a)

m==2

k-1
CLV,
D; = gi—2werve Y fp( H Agmér, 2) - k(

p=2 m=p+1

and

7i < 2wewm k}ffp(l—( 11 tmn) ) ( I £19m | émm ) (5.118)

p=2 mz=p--1 m=p-+1
CkVk u
+C (1'—(H€m77m)> (H4|gml€m"7m)
m==2 m==2

Remark 5.3 Theorem 5.1 allows us to obtain a bound on the asymptotic convergence

rate that is no more complicated than the diagonal elements themselves.

Before proving Theorem 5.1 we find expressions for the inner products

(M*a{®, iy,

Lemma 5.1

For any j ~ i (1),

k
(M4, 0}y = gifaf®, af”)s — 2wernn pr( 11 4gm£mnm> (ofP, I2alD),

p—2 m=p+1

o ( H 4gm£mnm>< O, e . (5.12a)
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Proof of Lemma 5.1

We prove by induction that for every s <k,

31 K}
(MSO‘ES),ag'S))s = gs( 53)7 .(7_3))8 — 2wesvs pr( H 4gm§m7lm> (agp)aIfag'S))P

p=2 m=p+1
_CsVs @ n
4 m m m . , . - -
> (mlJl Im&m™ )(ozz La; ). (5 12b)

Taking s = k gives (5.12a).
We start with s = 2. From (5.3), (5.10) and (2.12),

(M2a§2),a§2)) (Gr (1)’ (.2)) _ (A—lIl G£A2a$2) Il (2)) (5.13)
= g2(a! (2 ) (2))2 2 92‘5277 (a (1),1'21(15-2))1
Using 4cp = c1 gives us (5.12a) for k = 2.

Assume (5.12a) is true for k = s — 1 grids, s > 3. For the s-grid problem, (5.3),
(5.10) and (2.12) give

(M*a 58),6\4(3)) = (GTa (3),a(3)) —{(I - Ms——l)A-—l IF1GT A (8) Il (3))
(s-1) Is—l ())

= gy — ——&sMsgsr;

Us..

+ Lt g (ML ), (5.14)

g1

We factor 1 — gs—1 = 2wCs—1Vs—1fs—1 . Using the inductive hypothesis and using 4c; =

cs—1 finishes the proof. 1

Proof of Theorem 5.1

(a) Using Lemma 5.1 with j = 1, (5.10c) and (2.12) proves (5.11a).

(b) To prove (5.11b), split the grid levels by partitioning the j ~ i (1), j # t. See

Figure 3.1 for a schematic illustration for k=3.Foreachn=1,...,k — 1 consider

the j’'s such that j ~ i (n) but j # i (n+1). Lemma 5.1, Lemma 2.1 and Lemima
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2.3 show that

k-1
=% 3 [P al?) | (5.15)

n=1 jei (n)
j#i (n1)

k—1 n n k
S 2wckyk Z(l’"fn-i-lnn-*-l) pr( H é.mnm>( H 4‘ 9m I émnm>

n=1 p=1 mz==p+1 m=p-+1
k
f:Zk [Z(l - §n+177n+1)< H Em"]n)] < H 4 I dm l £m77m>-
m==1

Changing the order of summation gives

Ji < 2werv ,Sfp{kz—:l(l = &nt1) ( ﬁ €m77m>] (

p=2 n=p m=p+1

Ztl;k [Z(l - €n+177n+1)(

k
H 4 I Im I £m77m> (5'16)

m=p+1

ﬁ ﬁmﬂmn ( fI 4| gm | €mnm> :

m=p+1 m==1

The quantitites in the square brackets in (5.16) equal

and
k
1- H Gmrlm
m=1
respectively, and therefore (5.11b) has been proved. |
We use this theorem to find bounds on the multigrid V-cycle asymptotic convergence
rate for the k-grid problem with a given damped Jacobi parameter w and r iterations per

smooth. The results are given in the next section.

5.4 Computed values of the asymptotic convergence bounds

Ideally, one would be able to compute k-grid convergence bounds independent of
L . The 4F—1 x 4k=1 matrix, M;, can be written as a 4F~1! x 4*~1 matrix, M(,7),
with variable entries depending on the continuous variables £ and 7 € (0,1) evaluated at

€= €(k) and n = n(k)
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In the two grid case one could get an analytic formula for the characteristic equation
of M(&,n) (a polynomial of degree 4 for fixed £€,m), find analytic expressions for the
eigenvalues and then find the supremum of these expressions over all £ and 7 in the unit
square. This would give an exact 2-grid asymptotic convergence rate independent of 2 . In
practice this is too much work even in the simple 2-grid case. Instead, one chooses a value
of h = 1/N and computes the spectral radii of M; for each ¢, | i |< N, keeping track
of the largest. One then repeats the procedure for different values of h and so constructs
a table as in [12] see Table 5.1. From such tables one can predict the h-independent
convergence rates.

In the k grid problem, £ > 2 each M; is a 4%=1 x 4k-1 matrix and therefore
computing the spectial radius for each 7, | 2 | < N is expensive, especially for small
h . We therefore use Theorem 5.1 and Gershgorin’s Theorem to compute a bound on
the spectral radius of M; for each ¢ . This amounts to roughly twice the work of just
evaluating the diagonal elements.

The sharpest bounds on the asymptotic convergence rates for the analysis of the
V-cycle are obtained by these techniques when no smoothing is performed on the coarse-
to-fine part of the cycle, i.e., s =0 in step d. This is called an M \ cycle. The symmetric
cycle, i.e., s = r, is called an MG cycle. We consider two discretizations of the Laplacian,
the five point discretization, B, = Ap, as given in Section 2, and a certain nine point

discretization given by the following stencil:

i , [-1 -1 -t
=— |-1 +8 -1| . (5.17)
P 2
8hy |1 1 -1

h?
The corresponding V-cycles will be denoted by, e.g., Ms\, or MGy, to indicated which
discretization is being used.

We consider a M\ algorithm and compare our theoretical bounds to the experimen-
tally observed asymptotic convergence rates. In order to compare our two grid bounds
to the exact two grid convergence rates obtained by the model problem analysis in (8],
we consider a damped Jacobi paramete w = 4/5. Experimentally, this is a good choice,
though its optimality depends on the number of smoothings and the number of grids. We
take r = 1, 2, 3 or 4 smoothings (smoothing only from fine to coarse meshes). Tables 5.2-

5.5 show the convergence bounds for commonly used meshsizes. Table 5.6 indicates the
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limiting behaviour of these rates for very small A and large number of grids. The experi-
mentally observed asymptotic convergence rates are shown in Table 5.7 for r = 1,2, 3, 4,
w =4/5 and h = 1/64. For exact two grid convergence rates, see Table 5.1

In practice, as k increases there is not as much degredation in the convergence rate
as Tables 5.1-5.7 would indicate.

We compare our bounds to the finite element bounds of [8], using the MGy cycle
given by taking B, = fip and s = r. The comparison is possible because the operators
/1,, satisfy:

Apoy = IPTTAID | forp=1,2,...,k (5.18)

Eigenvectors of A, are also eigenvectors of fip. We also note that for a symmetric V-
cycle, convergence bounds in the energy norm are equivalent to asymptotic convergence
bounds given by the spectral radius. Our bounds are given in Table 5.8 for w = 3/4,
h =1/64, and r = 1,2,3,4. In the next to the last column of Table 5.8 we show the
bounds (which are independent of the number of grids used) obtained by the methods of
[8]. We also calculate the exact two grid convergence rates for MGy, as in [12]. These
numbers are given in the last column of Table 5.8. In this symmetric case, at least for small
r, our bounds are larger than the finite element bounds because in the Fourier analysis we
essentially throw away the post smoothing factors in the off-diagonal terms in order to be

able to apply Lemma 5.1.

Table 5.1 M;\ Two grid asymptotic convergence rates w = .8

h r=1 r=2 r=3 r=4
1/16 592 .351 .208 .135
1/32 598 .358 214 137
1/64 .600 .359 216 137
1/128 .600 .360 216 137
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Table 5.2 Ms\ Asymptotic convergence bounds w=.8,7r= 1
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 gﬁds
1/16 615 719 715
1/32 .622 .749 .769 750
1/64 .624 .758 197 .800 187
1/128 .625 .760 .808 .826 .820 815
1/256 .625 .761 812 835 .835 .830 .828
Table 5.3 M;\ Asymptotic convergence bounds w=.8,r=2
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids 8 grids
1/16 369 454 455
1/32 370 .460 481 481
1/64 .370 .466 .490 491 491
1/128 370 467 495 .499 .500 .499
1/256 370 468 495 .502 .505 .505 .504.
Table 5.4 M;\ Asymptotic convergence bounds w=.8,r=3
h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids
1/16 274 .348 .367
1/32 274 .348 .367 372
1/64 275 .350 370 372 373
1/128 275 .350 371 376 .376 .376
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Table 5.5 M;\ Asymptotic convergence bounds

w=.8,r=4

h 2 grids 3 grids 4 grids 5 grids 6 grids 7 grids
1/16 220 284 302
1/32 221 .284 302 .307
1/64 221 284 .302 .307 .308
1/128 221 .284 .302 .307 .308 .309

Table 5.6 M;\ Asymptotic convergence bounds for small 4

w=.8
h r=1 P o= r=3 r=4
1/2048 .843 5105 37779 .3087905
11 grids
1/4096 .846 5111 37T .3087916
12 grids
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Table 5.7 M;s\ Experimental asymptotic convergence rates

w=.8, h=1/64
r 2 grids 3 grids 4 grids 5 grids 6 grids
1 .600 .600 .600 .600 .600
2 .360 .360 .360 .360 .360
3 .216 .228 .233 242 .246
4 137 138 171 .181 .193
Table 5.8 MGy A comparison of the theoretical bounds
w=.75, h=1/64
bounds exact 2 grid
T 2 grids 3 grids 4 grids 5 grids 6 grids from [8] conv. rates
1 .686 717 816 .860 .879 .40 .249
2 275 .299 .348 .362 .364 .25 .067
3 121 147 .161 .162 162 .18 .040
4 .079 114 124 124 124 .14 .029
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APPENDIX

A.1 Proof of Theorem 3.4

Fix ¢ = (41, i2),h, k,r and w as in Section 3.3. Define &p,7p,9p,€p and v, as is

(3.16a-€). As seen in the proof of Lemma 3.1,

Dsp): = <Mpa£p)’ a:(p))P = ((I - G?f) Ap—lagp)v agp))p

(A.1)
My 271G, 27 GhaP) por
Therefore a recursion formula for DEP ) is
D =a, + b,DP™V p=1,2...k (A.2)
where a, and b, are given by:
ap = 2wcpep p=1,...,k (A.3a)
by = gzz, gng(a?’””,aﬁp’”)p_l p=1,...,k (A.3Db)
bo = 0. (A.BC)
The following four lemmas are all proved by direct calculation.
Lemma A.l
For each p=1,2,...,k
a.) ap < 4drwep (A.da)
and b.) ap > 4w(l—w)cp. (A.4b)
Lemma A.2
For each p=2,...,k
a.) b, <1 (A.5a)
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and if cpyp, < 1/4,

b.) b, = (1—4(1+rw)cpvp).

Lemma A.3
For each p=2,...,k

a) vy/vper & —
) P/ P fpnp

and b.) vp/vp—1 2 1.

B B 1
Ifz;;{ﬁ CpVp < Z‘&—,p=2,...,k and-é-<ﬂ<2, then
B
a.) Cponlp—n < pr—
B 2 _p
and b) Cp_nl/p_n Z W 1- gm .

Proof of Lemma A.l1
Tnequality (A.4a) follows immediately from the inequality

1-(1-2)*" < 2rz

since |1 —z| < 1 where ¢ = 2wcpvyp.

Using the inequality
1-(1—-2)*" 2 z(2-1) for all £ such that |1 —z| < 1,

it is clear that

ap > 2wep (2 — 2wepvy),

from which follows (A.4b) since 0 < cpvp < 1. 1
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Proof of Lemma A.2

Since
Cplp = —2—:—%—:-17—?-, (A.11)
where 0 < &5,1p < 1 and |gp| = |1 = 2wepry| < 1, (A.5a) is obvious.
If c,vp < 1/4, then (1—§p) and (1 —1p) < 1/2 and therefore
(@™, o), = 1.
Moreover,
Znk > 1—4cpvp. (A.12)

It is also clear that (1 — 2wcp1/p)2r > 1—4rwcpy,. Combining these inequalities gives

by > (1 — drwepvp)(1 — depvyp)

(A.13)
> 1-4(14rw)epy,. B
Proof of Lemma A.3
Since 0 < &p,mp < 1,
=& (1 —&)(L—mp) = mp(1—&) (1 — np) < 0. (A.14)
Factoring the lefthand side gives
Epmp(2 — &p — 1p) < £p(1 = &p) + (1 — 71p)- (A.15)
Recall that
— 4(2—& —np)
P h?}_]
and
4(2—¢€5-1 — Np~ 4 - 1 —
Vpoy = ( E}z;zl Mp 1) — (gp(l ﬁp)h‘: 77p( 7717)). (A.16)
p—1 P
Thus by (A.15)
Vp 1
vp—1 ~ EpMp .
The second inequality, (A.6b), is clear since

Vp—1 - €p(1 - é'p) + 7713(1 - 77p)
and 0 < &,mp < L. |
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Proof of Lemma A.4

If
v < eprp ST X 1/4 (A.18a)

then

47(1 = 27) < cp1Vp—1 < 47(1— 27). (A.18Db)
Note that this is just the calculus problem: Find the maximum and minimum of f(z,y) =
z(1—z)+y(l- y) in Q= {(z,y): 2v < z+Y < 27,z > 0, y > 0}, and the solution
is straightforward.

By induction, it is easy to see that
n-1 ,B
4a—n+1 ,I_Io< 4a+1-1> < CpnVp—n S LTm (A.19)
By (A.18) this is true for n =1, ie.
B 24 B 20 B
?E:T(l" 1 Z;") < (A.20)

4a+1) = Cp—1Vp—1 < 40:——1( - Z&_:f'

Assume (A.19) is true for cp—nt1Up—n+1, then

n—2 n—2
28 28
Cp—nVp—n 2 4 4a—-n+2 H ( 4a+1-—1) 1- 4o—n+2 (1 4__01+1"'J>

Jj=0 =0

ﬁ n—2 2[3 2
2 m H (1 4a+1—1> (1 - Z&:@m) (A.zl)

§=0

= 4a-—-n+1 H ( 4a+1—])

j=0

Using H (1-zj) 21— Z T; gives
j=0 j=

n-—1 n—1
2 2 1
H (1 - 4a+1-j> 2 1- qo—n+2 Z 4

7=0 = (A.22)




The upper bound for ¢p_n¥p—n is obvious. |

Proof of Theorem 3.4 part a.

w(l —w) 2 (k) _ 2rw o d
. R < D < == < =.
%) mmediie)t <D ST for ve = 32
From lemmas A.la and A.2a, p=k,k—1,...,2,
k
D¥ < 4rw (}: c,,) +DW, (A.23)
p—2
On the coarsest grid, Dgl) < 4rwc; . Hence by the definition of the c,’s (2.15)
(k) k 16rw
D" < 4 < . .
;L 4rw (; cp> S —5a (A.24)

Using ¢; = h2?/8 gives the upper bound

p® < -z-rwhf. (A.25)

To get the lower bound, use an induction argument. By lemma A.186,

PAYY
DM > 4w(l—w)er = “’._(.1__2_‘.".).@.1. (A.26)
Let 1 < p < k and assume that
A2

= max(2, d(1 + rw))’

By rearranging terms, using lemmas A.1b and A.2b (which can be used since v; < d/ 2

implies ¢c,v, < d/(8-47) < 1/4 by lemma A.4a) it is seen that:

(L reo)vpss 12
max (2, d(1 + rw))

D§P+1) > w(l - (“J)hila

=~ max(2, d(1 + rw)) ) - (A28)

+ 4w(1 — w)ept1 (1 -

d

Lemma A.3b guarantees that v, < v, < w7 and therefore the last term in (A.28) is
1

positive and can be thrown out. This proves part a.) of Theorem 3.4. |
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Proof of Theorem 3.4 part b.

dw(l = w) < DM < L for v > 4

b 8(1 + rw)vg T Vi h% )

Using the definition of ¢k, vk > d/h? implies cxvr > d/(2 - 4%+1). For each p1,
/\EP ) < 1. To see this, first note that

AD =11 —2wem)? < 1. (A.29)

Lemma A.3a together with the definition of b, imply

(1 — 2wepvp) 2 vp_y .

b, < (A.30)
Vp
Combining (A.29) and (A.30) with the definition of a,, gives Dgp ) <1 /vp.
For the lower bound, divide the argument into two cases. Define
v = [log, 2(1 + rw)] (A.31)
where [z] means the greatest integer in z.
1 > d A
case CkVk 2 FTo3 (A.32)
2 d < < f i <a<k (A
case gaerT = avy <1 or some integer a, v < a < K. (A.33)
By the definition of v,
1
:2-(1 +rw) < 47 < 2(1 +rw). (A.34)
For case 1, Lemma A.lb gives
4w(1 — -
o > (1-w) d S dw(l — w) (4.35)

= Uk 2.47 T (1+rwvg

For case 2, look at the finest grid on which the eigenvector is “rough enough”. For

p=k—a+7, lemma A.4 shows that

d d d
5.4 (1 — 3 r~/+1> < s S g (A.36)
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Therefore on Q?,
d(1 — ww

D(.‘f')>ﬂ>4 1 - R
i =9 = w( wiep 2 8(1 + rw)v;

(A.37)

Now this information needs to get back to the fine grid, Q% On QP, for p > p, lemma
A.4 says

d d d
5 4 FFpIT (1 - W) S Ve S g gaRy (4.38)

Now using lemmas A.16, A.26 and A.36 and rearranging terms,

_d(l - ww d
= o + 4w(l — we, [1 - é—} (A.39)
d(1 — w)w
81+ rw)y,

Since this is true for all p > p, take p=k. H
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