Selective Reset in the AND Process

by

Will Winsborough

Computer Sciences Technical Report #684

February 1987

Errata for TR 684

p. 17:
for:
(* Check the sender’s Activation ID to be sure the sender is
not supposed to be dead. *)
read:
(* Check Pf’s Activation ID to be sure Pf is not supposed
to be dead. Also, Pf may be marked ’'solved,’ if the
Reset Algorithm made current a member of the Eliminated List
for Pf while Pf was processing a redo. In that case Pf’s
inability to generate a new solution can be ignored. *)
for:
2. If that algorithm reports "AND Process Fails,"
read:
2. Otherwise, run the Backtrack Literal Selection Algorithm with
Pf as the input parameter. If that algorithm reports
"AND Process Fails,”
p. 18:
for:
(Base Case), remove from the Backtrack Literal Set any members
read:
(Base Case), remove from the Backtrack Literal Set and mark
‘solved’ any members
p. 19:
for:
This Process has no synchronization requirements with the
Failure Message Handler except that adding to and deleting from
the Backtrack Literal Set musts be atomic operations.
read:
Execution of the Failure Message Handler must be atomic relative
to execution of the Backtracking Algorithm. Deletion from the
Backtrack Literal Set must be atomic relative to execution of
the Failure Message Handler. Failure messages can be queued
upon arrival and handled one at a time by the Failure Message
Handler, subject to these synchronization constraints.
for:
(b) Otherwise, generate and record a new Activation ID and send
a redo message with it to the process for Pl.
read:

(b) Otherwise, assign null to the Current Solution for Pl, generate
and record a new Activation ID and send a redo message with
that ID to the process for Pl. Mark Pl ‘executing.’

Selective Reset in the AND Process

Will Winsborough

February 2, 1987

Abstract

We present the problem of selective reset in the AND process for AND
parallel execution of logic programs. Selective reset is the natural dual
to the selective backtrack problem that has received much attention in the
literature [3,8,9,10,12]. A method for backward execution is given that per-
forms selective reset and selective backtrack. The algorithms that comprise
the method are proven correct for programs that define finite SLD-trees in
the sense that, so long as the forward execution algorithms, OR process
algorithms and data dependency graphs are correct, the method will find
all solutions.

Because it essentially performs a depth first search of the SLD-tree,
the AND/OR Process Model cannot be made to find all solutions in the
general case (infinite SLD-trees). By constraining the OR process to explore
alternative clauses in lexical order and by requiring that the AND process
execute interdependent calls in lexical order, the AND/OR Process Model
can be made to find the same solutions as Prolog and in the same order.
This does not rule out AND parallelism. It just dictates which literal
should be given the first chance to bind a shared variable. Further, using a
variant of the reset algorithm described here, selective backtrack and reset
can be incorporated without harmful deviation from Prolog’s enumeration
of query solutions. The only difference will be that occasionally the new
method will continue to enumerate solutions after Prolog has entered an
infinite loop.

We describe informally two alternative versions of the selective back-
track and reset method that reduce the overhead costs but that provide
reduced selectivity. Handling of cut and calls with side effects is also ad-
dressed.

1 Introduction

Selective Reset is a device to improve execution of logic programs. It has its
origins in [1] where a selective reset method is described for sequential inter-
preters. This paper describes a mechanism for selective reset as well as selective
backtrack in the context of the AND process for AND parallel interpreters. The
mechanism is called the Witness Method for selective backtrack and reset.

Previous methods to improve the performance of the AND process have
taken advantage of independence among literals to improve backtrack literal se-
lection. Just as literals that share no unbound variables can be solved (executed)
simultaneously [5,4,6], they can often be backtracked independently [5,3,12,10].
The Witness Method for selective backtrack and reset offered here uses the same
independence to lessen the amount of work undone by the reset that occurs each
time backtracking takes place.

This presentation explains how the Witness Method for selective backtrack
and reset works in the context of the AND/OR Process Model [5]. It will be
clear, however, that the method is applicable to any AND process, AND parallel
model that uses backtracking to handle non-determinism (as opposed to full OR
parallelism [9] or committed choice [7]).

1.1 Background
1.1.1 The AND/OR Process Model

We summarize the salient aspects of the AND/OR Process Model. For a com-
plete discussion see [5].

As execution of a user query proceeds in the AND/OR Process Model, a
tree of AND and OR processes is created. The root is an AND process and the
tree’s levels alternate between AND and OR processes. Each AND process tries
to solve one query consisting of the conjunction of one or more literals. (We will
use the terms call and literal, and solve and execute interchangeably, as seems
more natural to the context.) The AND process’s query is either a top level,
user query or the body of a rule invoked to solve a literal in the grandparent
AND process’s query. In the latter case, the query is actually the substitution
instance of the rule’s body under the mgu (most general unifier) of the call with
the rule’s head.

To execute a call, P;, the AND process creates a sub-process called an OR
process. The OR process unifies P; with either a fact or a rule-head. In the
former case the OR process can report success and a solution to the AND process
immediately. In the latter it must create a AND sub-process to solve the rule-
body and wait to hear from that descendant.

A solution to a literal, P;, consists of a substitution on the variables of F;.
For example, a solution to smallcity(X) might be {X/urbana}, indicating that
the substitution instance of smallcity (X) where X is replaced by urbana can be
proven from the program clauses.

In general, if another literal P; shares a free variable with F;, we force P;
and P; to execute sequentially to avmd binding conflicts. Assuming F; comes
before P; and they share the free variable X, we will call P; a generator of X and
P; a consumer of X. We will not start execution of P; until P; has completed
and the substitution that is the solution to P; has been applied to P;.

So, for example, if we have the query,
?- smallcity(X), notTooFlat(X).

we will execute the calls sequentially. If a consumer fails, it is necessary to try
it with other solutions to the generator applied. To get those other solutions in
the process model, the AND process initiates backward ezecution in response to
the failure message from the consumer’s OR process. The AND process sends a
redo message to the OR process for the generator. That OR process must find
and report another solution.

In our example, the first solution, {X/urbana}, causes the consumer, not-
TooFlat(X), to fail. This is because the substitution instance of the consumer
in force when execution of the call begins cannot be proven from the program
clauses. (Henceforth we shall refer to a substitution instance of a call in force
when execution of the call starts as an activation instance.) To handle the failure
of the activation instance notTooFlat(urbana), the AND process sends a redo
message to the OR process for smallcity(X), and a new solution is generated
(or the call fails, if no more solutions can be found). We say the first solution
has been eliminated. If the new solution, perhaps {X/boulder}, induces an ac-
tivation instance of the consumer that succeeds, then the consumer accepts the
solution. Otherwise, the generator must be redone again. In the case that no
solutions to the generator are acceptable to the consumer, the generator will
be redone until no new solutions can be found.! The OR process then reports
failure. One of two things is done by the AND process to handle the generator’s
failure. If the generator is also the consumer of a solution generated by a third
literal, backward execution is performed recursively. Otherwise, there are no
solutions to the query and the AND process reports the query’s failure.

Sometimes it is necessary for an AND process to cancel an executing call
because the activation instance is no longer viable. For example, if we have the

query
7- £(X), s(X), t(X).

r may instantiate X to a ground term, say c. In that case, s and t may be executed
concurrently, since no binding conflicts can arise. But if one of them, say s,
should fail, X/c would be rejected as a solution to the query. Thus the activation
instance t(c) would no longer be of interest. In this sort of circumstance, the
AND process sends a cancel message to the OR process for t, and t is marked
‘waiting.’ It, like the failed consumer, s, can be restarted when the generator, r,
has been successfully redone.

1.1.2 The Reset Problem

The above description of backward execution does not explain how to handle
the case where a literal consumes bindings from several generators. In order

1{Unless otherwise indicated we assume all calls generate only a finite number of solutions.
Tor a discussion of infinite solution sequences see Section 4.

that all possible query solutions be explored, the consumer must be tried on
all combinations of solutions to the generators. There are two problems, each
related to ensuring all possible solutions are explored. First, which generator
should be redone? Second, when that backtrack literal has been redone, which
other generators must be reset, that is started over in the enumeration of their
solution set?

An example may illuminate. If we have the query

?7- P(X), Q(Y), R(X,Y).

we need to cycle through bindings for X and Y generated by P and Q, trying R
with the various combinations. Retaining Conery’s nested loops paradigm [5],
we will try each Y-binding with the first X-binding, then each with the second,
and so on. This is achieved in the Model as follows. When R fails, rejecting
the first solution pair, the AND process eliminates the current solution to Q
(a Y-binding) and sends (the OR process for) Q a redo message to get a new
solution. If none of those combinations are acceptable to R, (the OR process
for) Q will eventually respond to the redo with a failure message. When that
happens, each Y-binding has been eliminated, and the AND process must try the
second X-binding with each Y-binding. So, when Q reports failure, P is redone
to find the second X-binding, and Q is reset to make its eliminated solutions,
the Y-bindings, available again and to make one of those Y-bindings Q’s current
solution. (It was Conery [5] who pointed out that the Y-bindings do not have
to be recomputed if the AND process just saves them. This is correct because
the activation instance of Q remains the same.) Determining which literals to
reset when a redo occurs is the reset problem.

There are simple solutions to the backtrack literal selection problem and
to the reset problem. They are analogous to naive backtracking in sequential
Prolog: take as the backtrack literal the call immediately to the left of the
failed call, and reset all calls to the right. These rules are correct, but wasteful.
Efficient backtrack literal selection has been handled for the AND process by
[10,12]. We present a method for performing reset more selectively.

Existing reset methods (of which we are aware) simply make available all
eliminated solutions to all calls to the right of the redone call’>. It may be
that many of those solutions were eliminated for reasons having nothing to do
with the redone call, and so will certainly be eliminated again (see Section 1.2).
This paper presents a reset method that avoids the wasted effort caused by such
excessive conservatism. It shows that correct selective reset can be accomplished
using an amount of overhead comparable to that for selective backtracking (see
Section 5.2).

We do not present the details of forward execution, or of the OR process.
Nor do we specify exactly how the generator/consumer relation is determined.

2 A Technical Report by Vipin Kumar and Yow-Jian Lin, not yet available, apparently contains
gome suggestions as to how to achieve selective reset.

4

For discussion of these issues see [5,4,6]. But the generator/consumer relation is
central to understanding selective reset. Following the example of Conery and
others, we represent that relation by a data dependency graph.

A data dependency graph for a query is a directed acyclic graph with one
node for each call in the query. We will call a data dependency graph correct for
the query execution if it contains an arc for each possible (generator, consumer)-
pair from the generator to the consumer. Here possible means possible in any
of the execution sequences that may arise while the graph is in force. Thus, in
general, if a data dependency graph is defined before execution begins it must
be more restrictive of concurrency than if it is defined at runtime for each clause
activation, when more is known about which variables must be generated.

The example execution snap shots shown in Figures 2, 4 and 5 of Sections 1.2
and 1.3 adorn data dependency graphs with the arcs labeled by the variable
involved in the (generator, consumer)-pair. We represent the configuration of
the AND Process that way because the significance for selective backtrack and
reset of the process state is only revealed in light of the data dependencies.

We will resume the topic of data dependency graphs briefly in Section 1.3.
But first we consider some examples of the reset problem.

1.2 Examples
1.2.1 Why Selective Reset is Useful

Figure 1 gives a program that illustrates why selective reset is desirable. Using
several descendant OR processes, some calls can execute concurrently, so there
are many sequences of events that could occur in the AND process for the
program query. Here is one possible sequence leading to a redo.

1. Pi, P; and Py succeed: A/ai, B/b1, C/c1
2. P; fails

3. P4 is redone: C/ec2

4. P; fails

5. P, is redone: B/b,

In the naive reset method this redo would cause an unnecessary reset to be
performed.

Figure 2 shows the configuration of the AND process when P3 reports failure.
It shows the current and eliminated solutions of literals that are solved. The
set ({P1}) following the eliminated solution is called a witness set. Witness
sets are used to record sufficient history information to allow selective reset and
backtrack. How this is achieved will become clear in Section 1.4.

When P; fails and P, is redone, the naive reset method makes C/c; an
available solution to P;. But this is unnecessary because that solution was
rejected by Ps independently of the solution to P;. It is undesirable because,
when P; eventually rejects C/cg, if C /ey is available it will be made current only

5

1. Pl(al) 2. Pz(al,bl) 4. P3(bz) 5. P4(a1,c1) 8. P5(63)
3. Pz(al,bz) 6. P4(a1,02)
7. P4(a1,c3)

?- Pi(A), Py(A, B), Ps(B), P4(A,C), P5s(C).

Figure 1: A Simple Program Requiring Only One AND Process

P1(A
A
elim: C/c1,{P1}
PAAC) current: C/c2
B (o
Fail Executing

Figure 2: AND Process Configuration Before A Redo Requiring No Reset During
Execution of the Program in Figure 1

to be rejected a second time. On the other hand, if C/¢; is not available, C/c3
will be tried next, speeding execution toward success.

In the simple case of Figure 1, it is easy to determine from the data de-
pendency graph shown in Figure 2 which literals (the empty set) must be reset
when P, is redone. Assuming the data dependency graph is fixed statically, as
described in [4], some selective reset advantage can usually be compiled into the
code for performing reset. In the example of Figure 1, since no literal consumes
more than one variable there is no need to cycle through all combinations of
solutions to variables consumed by a single literal. Thus, no reset ever need be
performed.

1.2.2 Why Discuss a Method that Incurs Runtime Overhead

Chang et al. [4] mention a way to perform selective reset (as well as selective
backtrack) according to pre-execution analysis in the context of statically de-
termined data dependency graphs. In Section 5.3 we present the static version
of the Witness Method and indicate how the correctness of that method could
be derived using the proof, given in Section 3, of the correctness of the dynamic
Witness Method. The advantage of statically determined reset is low runtime
overhead. The disadvantage is a loss of selectivity for some queries.

Chang’s method appears to be identical to the static version of the Witness
Method. The presentation in [4] of a static method does not constitute an

6

1. ,Pl(a]_) 2. ,Pg(al,bl) 4, P3(a1,c1)
3. .Pz(al,bz) 5. P3(a1,02)

0. P4(bz) 7. P5(bl,61) 9. P6(03)
8. ,P5(b1,02)

7. Py(A), P:(A, B), Ps(4,C), Py(B), Ps(B,C), Ps(C).

Figure 3: A Program That Benefits From Dynamic Selective Reset

l P1(A) I current: Afal

/ A
elim: C/c1,{P1}

P2(A,B) | current: B/bl m current: C/c2

B c
[paB) | Fail Executing Executing

Figure 4: AND Process Configuration Before A Redo Requiring No Reset During
Execution of the Program in Figure 3

algorithm nor does it argue why the method is correct. However, this paper, in
Section 5.3, only discusses briefly how the algorithm and proof would be done.
The motivation for this paper’s focus on the algorithm and correctness proof for
the dynamic version of the Witness Method is twofold.

First, the dynamic version can be applied in a system where the data depen-
dency graph is determined dynamically. While such a system incurs additional
runtime overhead over a static graph system, it allows a greater degree of par-
allelism to be realized, which, for some queries, will outweigh that additional
overhead.

Second, the dynamic version, even if used with statically fixed data depen-
dency graphs, can perform reset more selectively than can the static version.
Kumar and Lin [10] have already shown that a dynamic backtrack algorithm
can be more selective than Chang’s static one, even when coupled with stati-
cally defined data dependency graphs. We now give an example illustrating why
the same is true of the reset problem.

Figure 3 gives a program that illustrates why we can get better selectivity
from the dynamic approach. In this case the program query fails. Suppose the
following sequence of events takes place in the AND process for the program:

7

. Py, P, and Ps succeed: A/ay, B/b1,C/cr
. Py fails

. Ps is redone: C/c2

. P4 fails

. P, is redone: B/b;

G

o

The configuration before the last redo (line 5) is shown in Figure 4. Upon
performing that redo, the naive method would reset C /e1 as a solution to Pj.
This is unnecessary because C'/¢c; was rejected by Ps independently of the solu-
tion to B. Reseting C/c; only causes it to be rejected again. So this query fails
more quickly if C'/c; is not reset.

In this example, a static method for selective reset would have to reset the
solutions to Ps because in general it cannot know before execution whether
those solutions will be rejected by Ps or by Ps. It must take the safe action of
providing all solution combinations to Ps.

1.3 The Data Dependency Graph

1.3.1 Statically versus Dynamically Constructed Data Dependency
Graphs

Correctness of a data dependency graph for a query was defined at the end
of Section 1.1: the graph must contain an arc for each possible (generator,
consumer)-pair. There can be many correct data dependency graphs. For ex-
ample, the linear graph (total ordering of calls) is always correct, though it
permits no concurrency. As mentioned in Section 1.2, Chang has presented a
method of determining correct data dependency graphs at compile time using
static program analysis[4]. This avoids runtime overhead, but may miss potential
concurrency. On the other hand, Conery [5] defines the data dependency graph
incrementally as execution of the calls proceeds. In this way more concurrency
can be realized at the cost of runtime graph construction overhead.

The Witness Method is applicable in tandem with both data dependency
graph definition mechanisms mentioned above, as well as with intermediate ap-
proaches such as in [6]. Of course it is required that the data dependency graph
be correct. But it may be defined incrementally, at runtime, as call executions
occur and complete.

1.3.2 Redo Can Be Handled Like A Failure

By incorporating the clause head into the data dependency graph for the
clause, the same backward execution method can handle failure messages (from
below in the computation tree) and redo messages (from above). This was done
in [5]. So for the program clause

head(X,Y) = P1(X,Z), Po(X,W), Ps(W,Z,Y), Py(Y).

[Pix.2)] P2(X.W) |

|
N s

Y Y

chad(X.Y) I P4(Y) |

Figure 5: Data Dependency Graph With a Dummy Consumer Node for the
Clause Head

and the call, head(1,Y), we may have the data dependency graph shown in
Figure 5. (In this example P; and P; may run concurrently because the only
variable they share, X, is already ground.) A redo message can be handled
exactly as a failure from the ‘dummy’ call to head, selectively backtracking
directly to Ps, the generator of Y rather than trying to resolve P, a call that
cannot change the clause solution.

1.3.3 Lexical Order of Calls Should Not Be Violated

Execution order among calls with shared variables affects the solutions found.
For a depth-first search strategy such as the AND/OR Process Model, this is true
even of pure Horn clause programs. The Prolog primitives not and var aggravate
the problem. In order to ensure that the solutions found do not depend on the
data dependency graphs used, we must insist that the partial order on the calls
defined by the data dependency graphs be consistent with the (total) lexical
order. This guarantees that whenever a synchronization constraint must be
imposed to avoid binding conflicts, the calls involved will be executed in the
same (user specified) order. This requirement is necessary to ensure that the
(operational) semantics do not depend on which data dependency graph is used.

1.4 A Refinement of the Selective Reset Problem

Thus far we have behaved as though all solutions to a literal must be reset if
any are reset. We now refine that view and define the aim of selective reset
to be as follows. When a call is successfully redone, make available only those
eliminated solutions to later calls that were rejected for a reason that the redo
could have removed. To illustrate this idea we return to the data dependency
graph displayed in Figure 4. Again, suppose we redo P, and want to reset
selectively. To carry out our refined understanding of selective reset we make
available the eliminated solutions of Ps that were rejected by Ps, but not those
that were rejected by Ps. The idea of resetting individual solutions is similar to
the suggestion in [1] that individual clauses be reset separately.

The intuition behind the Witness Method is as follows. Following Conery’s

example, we keep eliminated solutions on a list, the Eliminated List, so they
don’t have to be recomputed. But we associate with each solution some infor-
mation that allows each solution to be considered for reset independently. That
information is a subset, called a witness set, of the literals to the left of the call
in question.

The reader may object: one set per solution is considerably more information
than is required for selective backtracking alone. Section 5.2 shows that one can
maintain just one witness set for all solutions (cf. the redo cause set of [12] or
the B-list of [10]) and still perform selective reset. However, one must be willing
to reset either all or no solutions to a literal.

1.5 Witness Sets

Before considering the formal specification of the algorithms, let us discuss the
concept at their base.

Suppose Py, ..., P;, ..., P, is a query in some AND process, and ¢ is an elimi-
nated solution to P;. A witness set for o is a subset, W, of {P;|j < i} such that o
and W have the Witness Property: if the current solutions to the members of the
witness set, W, are applied, then the associated solution, o, cannot pariicipate
in a solution to the query.

The Witness Property is related to the property used in [2]. The witness set
contains essentially similar information to the Redo Cause Set of [12] and the
B-list of [10]. Besides being what we need for selective reset, witness sets are
sufficient to allow the dual, selective backtrack.

The idea is that if a literal, P, to the left of some P, is redone we can tell
whether a solution, o,, for P, must be made available again based on whether
P, is in the witness set associated with o,. If P; is not in o,’s witness set, there
is no point to trying to apply o, again: the current solutions to the calls in
the witness set are not changed by the redo, so o, will be rejected for the same
reason as before.

It is always possible to construct a correct witness set for any rejected call-
solution so that all members precede the call. This is because the AND/OR
Process Model requires the the data dependency graph to be acyclic.

To illustrate the construction and use of witness sets, consider again the data
dependency graph displayed in Figure 4. Suppose this time the corresponding
query is posed to a data base of program clauses where P fails first. This behav-
jor allows us to conclude that as long as all the ancestors of Ps, {Py, P:, Ps}, are
solved with their current solutions, Ps will fail. The Backtrack Literal Selection
Algorithm presented below always chooses to redo the lexically rightmost literal
that could remove the cause of failure. So whenever Ps fails, P; will have its
current solution, call it o3, eliminated. The witness set for o3 is then {P1, P2}
because so long as the current solutions are applied to Py and P, if 03 is applied
to P3, Ps will certainly fail, causing o3 to be eliminated. Thus the Witness Prop-
erty holds. The witness set for o3 becomes useful if P3 fails or if P, is redone.

10

% Pi(X), Po(W), Ps(Y), Ps(Y, W, Z), Ps(X, Z)

Figure 6: A Query and its Data Dependency Graph

Consider the case where P fails. We know that o3 is eliminated whenever the
current solutions to P; and P are applied. But if a different solution to P,
were applied, o3 might be accepted by Ps. ® Thus, we conclude to redo P, the
rightmost literal that is either in a witness set for Ps or is an ancestor of Fs.
In the dual case, where P; gets a new solution, the witness set for o3 allows us
to recognize that o3 might now be accepted by Ps and we therefore reset o3,
making it again available as a solution to P3. (Such a situation would arise if,
for example, Py were to fail, causing P; to be redone.)

Let us consider how witness sets might be constructed. When an executing
consumer call, P,, reports failure, a solution, o, to a previous call will be elimi-
nated. We must record in the witness set for o all the literals that could affect
the failure of P, because, so long as their current solutions are not changed,
whenever o is applied, P, will fail, rejecting 0. On the other hand, once a literal
that could affect the failure of P, has its current solution changed, it may be
that P, will succeed, even with o applied. So we can no longer rule out o.

So the problem of constructing a witness set for o is reduced to determining
which literals can affect the failure of P,. Clearly P,’s ancestors are among this
collection, since they determine the activation instance of P, being solved. But,
the witness sets for the eliminated solutions to P, must also be included.

Consider Py in Figure 6. Py may fail because all its solutions are rejected by
P;. By the above argument, such eliminated solutions would have P; in their
witness sets, since they have to be tried again if Py gets a new current solution.
When P; fails, rejecting some solution to Ps, 03, P; must go in the witness
set for o5. This is because if Py got a different solution, P4 might not fail, so
o3 would not necessarily be rejected. So when Py fails, its rejected solutions’
witness sets must be incorporated into the witness set for 03. P also goes in
the witness set for o3 because it is an ancestor of Py, the literal whose failure
caused o3 to be rejected.

31f a different solution were applied to P,, Pz and P; would have new activation instances,
8o their processes would have to be canceled and restarted.

11

This example illustrates the principle that when a failure of P, causes o to
be rejected, o’s witness set should include all of the witness sets for eliminated
solutions to P, and all ancestors of P,.

1.6 The Rest of this Paper

In Section 2 we present a group of algorithms that perform backward execution
according to the Witness Method. Section 3 proves that the algorithms do
not cause any solutions to be missed, so long as the program has only a finite
SLD-tree. In Section 4 we argue that, even in the presence of infinite SLD-
trees, by using a slight variant of the algorithms in Section 2, and by placing
some restrictions on the OR process, the AND/OR Process Model using the
Witness Method for backward execution can be made to perform similarly to
and at least as well as Prolog in the presence of infinite SLD-trees. Section 5.1
addresses correct handling of programs with side-effects. In Sections 5.2 and 5.3
we discuss versions of the Witness Method that may be less selective but that
require less overhead.

2 Algorithms

We now describe bottom-up a collection of algorithms to handle failure and all
aspects of backward execution. Section 2.1 introduces some formal definitions
that will be used somewhat in Section 2, but more in Section 3. Section 2.2 intro-
duces the data structures used in the formal algorithms. Sections 2.4 through 2.8
present the algorithms themselves. Roughly, these interact as follows. The Fail-
ure Message Handler is invoked when a failure occurs. It selects the backtrack
literal using the Backtrack Literal Selection Algorithm and records it with a
witness set in a data structure called the Backtrack Literal Set. The members
of that set are removed and processed by the Backtracking Algorithm, which
saves the rejected solution on the Eliminated List, sends the redo message and
performs reset and cancellation as necessary. Section 2.9 then discusses some
alternatives in the details of the algorithms.

2.1 Definitions

Let G denote the set of literals to be solved by the AND process. Let n be the
cardinality of G. We assume G to be linearly ordered and denote members of G
by P;, for 1 < i < n, with the understanding that P; precedes P; in the linear
order iff i < j.

Next we define the mutually recursive notions of a query-solution and a call-
solution.

Let V; be the set of variables occurring in the call P;. Let o be the mgu of
P; with a program clause. Then the restriction of ¢ to V; is a call-solution for

12

P; if the clause is a fact, and o7* restricted to V; is a call-solution if the clause
is a rule and 7 is a query-solution for the rule body under o.

A query-solution, Z¢, to a query, G, relative to the order of the calls in G,
is a composition of substitutions,

Yg =0102...0p

where o; is a call-solution to P;o102...07-1.

We will drop the prefixes, query- and call-, when the meaning is clear from
context.

In a given query, a witness set for a rejected solution to a call in the query
is a subset of the calls to the left. It and the rejected solution must have the
Witness Property. A legacy set is the same thing as a witness set, except that it
is used in the Backtrack Literal Set data structure, rather than on an Eliminated
List. (See below.) We draw the distinction because a witness set is paired with
a rejected solution whereas a legacy set is paired with a literal whose current
solution will be rejected when the Backtracking Algorithm can get to it.

2.2 Data Structures

The Ancestor Set, Descendant Set, and Literal Order Number are data struc-
tures that must be established for each literal in the AND process. The Ancestor
Set and the Descendant Set reflect the data dependency graph for the query.
Any method for constructing the data dependency graph will do, subject to the
considerations in Section 1. However, the Ancestor and Descendant Sets for a
literal must be constructed by the time the literal is executed. Of course the
performance is likely to vary with the quality of the data dependency graphs
used and the overhead required to generate them.

e Literal Order Number: positive integer. This is the lexical order of the
literals in the query, fixed when the program is written, numbered starting
with one. Recall that the partial ordering defined by the data dependency
graph is always extensible to this total order.

e Ancestor Set: set of literals. Each literal has an Ancestor Set containing
its ancestors in the data dependency graph.

e Descendant Set: set of literals. Each literal has a Descendant Set contain-
ing all the literals whose input values are dependent on the given literal’s
output substitution. If a fixed data dependency graph is used, this set is
just the descendants in that graph. Otherwise, the descendents must be
known by the time the literal is started executing, though it may not be
known how those descendants are ordered among themselves.

4We use the definitions of substitution application and composition found in [11], in which
the application of o to E is written Eo and which makes (Eo)7 = E(o7), for all expressions
E.

13

The following process data structures are maintained by the algorithms pre-
sented below. Each literal has an Eliminated List, an Available List, a Current
Solution, and a Status. Each executing or solved literal has an Activation ID.
The AND process has one Backtrack Literal Set.

e Eliminated List: list of (call-solution, witness set)-pairs. Each literal has
an Eliminated List containing solutions to the current substitution instance
of the literal that have been rejected by their consumers. When the AND
process is created the Eliminated List is empty. It is also emptied every
time the values that the literal consumes are changed.

e Available List: list of solutions. Each literal has an Available List contain-
ing previously computed solutions to the current substitution instance of
the literal. These have been transferred from the Eliminated List by the
reset operation. When the AND process is created the Available List is
empty. It is also emptied every time the values that the literal consumes
are changed.

e Current Solution: call-solution. Established by the Forward Execution
Mechanism or by the Reset Algorithm. This is the only solution consumers
can work with until it is eliminated and replaced. The Current Solution is
null before the call first succeeds, after it is canceled, or when it has failed.

e Status: one of ‘waiting,’ ‘executing,’ ‘solved,” and ‘failed.” Each literal is
marked with its current status. ‘Waiting’ means the call has no solutions
yet but can be run as soon as all solutions it consumes are available. We
assume the forward execution algorithm handles starting these calls when
all dependencies are satisfied and changes there status to ‘executing’ at
that time. We also assume the forward execution algorithm fields success
messages, installs the solutions as the current solution, and changes the
status to ‘solved.” A call marked ‘executing,’ ‘solved,’ or ‘failed’ can have
solutions on the Eliminated and Available Lists. A call marked ‘solved’
must have a current solution but a call marked ‘waiting,” ‘executing’ or
‘failed’ must not. Since the Reset Algorithm (see Section 2.7) may change
the status of a (redone) literal from ‘executing’ to ‘solved,” we assume that
upon receiving a success message from an OR process for a call marked
‘solved’ the forward execution algorithm simply appends the new solution
to the Available List.

e Activation ID: a unique identifier that is associated with a process when it
is marked ‘executing.’ This complication is necessary to ensure correctness.
When a call is marked ‘executing,” and its OR process is sent a start
or a redo message, an Activation ID that is unique to this activation is
associated with it. The same ID is sent to the OR process for this call
and will be included in all messages from that OR process regarding this
call activation. As Conery has pointed out, it is necessary to be sure the

14

message received in the name of this call is for the correct activation of
the call.

e Backtrack Literal Set: ordered set of (backtrack literal, legacy set)-pairs.
There is one Backtrack Literal Set per AND process. The presence of a
pair indicates that the backtrack literal must be redone because its current
solution has been rejected. The legacy set will become the witness set for
that solution on the Eliminated List. The Backtrack Literal Set is a holding
tank for failure information. The Failure Message Handler (Section 2.5
below) adds to the Backtrack Literal Set in response to receipt of a failure
message. The Backtracking Algorithm (Section 2.8 below) removes the
(backtrack literal, legacy set)-pairs one at a time, using their contents to
update the AND process state and to send the necessary redo message.

The legacy set component of the pair is a kind of witness set: the Witness
Property holds for the legacy set and the current solution of the literal
component. So if the current solution is changed for whatever reason, the
entry for that literal (if one exists) must be removed from the Backtrack
Literal Set.

The Backtrack Literal Set is initially empty. Its members are ordered by
the Order Number associated with their literal component.

There are three reasons for buffering (backtrack literal, legacy set)-pairs,
rather than just the failed literals, to represent the failures remaining to be
handled.

First, it is possible that two or more consumers of a generated variable should
fail in quick succession, the second failure arriving before the first can be han-
dled. If they both indicate the same generator must be redone, their failure
information must be pooled. To see this, suppose each failure were recorded
separately. If one failure record were handled independently, causing a new so-
lution to be found for the generator, the other failure record would erroneously
appear to reject that new solution. The pair representation allows us to main-
tain at most one failure record for each backtrack literal. The Failure Message
Handler recognizes duplicate backtrack literals and pools the failure information
by combining the legacy sets.

Second, redoing one literal may remove the (possible) cause of several fail-
ures. By recording the failure with an explicit legacy set it is possible to discover
quite easily when this occurs. By the Witness Property, if redoing a literal could
remove the cause of failure for some failure recorded in the Backtrack Literal
Set, that literal will be in the legacy set of the failure record. The Reset Algo-
rithm (see Section 2.7 below) checks for this and removes failure records from
the Backtrack Literal Set as necessary.

Third, it is advantageous to treat first the left most literal whose redo is
called for in the Backtrack Literal Set.

15

2.3 Another Definition

By available solutions for a call we will mean solutions on the Available List
and solutions not yet reported by the sub-process for the call. Additionally, we
include the current solution so long as the call is not in the Backtrack Literal
Set.

2.4 Backtrack Literal Selection Algorithm

The Backtrack Literal Selection Algorithm is called by the Failure Message Han-
dler.

Input Parameters:
1. Py: A literal. P; has failed.
Output Parameters:

1. (backtrack literal, legacy set)-pair. The correct literal to redo and
the witness set for its Current Solution. The Current Solution will
be eliminated by the Backtracking Algorithm.

Locals:

1. Redo Set: A set of literals that could remedy the failure.
2. Backtrack Literal: The literal selected for backtracking.

3. Legacy Set: Will become witness set for the Backtrack Literal’s Cur-
rent Solution.

4. RightMost: A function that takes a set of literals and returns the one
occurring latest in the linear ordering.

Procedure:

1. Redo Set := Ancestor Set(Py) UU(, w)eEliminated Listp,) W+

(* Redoing any one of these literals could remove the cause
of failure. *)

2. if Redo Set is empty then exit algorithm with the message “AND
Process Fails.”

(* No literals within the query could remove the cause of
failure. *)

3. Backtrack Literal := RightMost (Redo Set).

(* Use the nested loops paradigm for enumeration of possible
solutions. The rightmost literal is the inner loop, so we
select it to get a new solution. *)

4. Legacy Set := Redo Set - {Backtrack Literal}
5. exit reporting (Backtrack Literal, Legacy Set).

16

2.5 Failure Message Handler

The Failure Message Handler is invoked upon receipt of a failure message from
a descendant OR process.

Input Parameter Set:
1. Ps: A literal. Py is the literal reporting failure.
Procedure:

1. If the sending process is not marked ‘executing’ or the Activation ID
in the failure message does not agree with the current Activation ID
recorded for Py in the AND process, then exit.

(* Check the sender’s Activation ID to be sure the sender is
not supposed to be dead. *)

2. If that algorithm reports “AND Process Fails,”
(a) then send a message to the parent process reporting failure and

cancel all subprocesses.

(* The Backtrack Literal Selection Algorithm was unable
to find a call inside the AND process that could re-
move the cause of failure. *)

(b) Otherwise, call the resulting (backtrack literal, legacy set)-pair
(Pb, Wnew). Mal‘k Pf ‘failed.’

(* Record the result in the Backtrack Literal Set for sub-
sequent processing by the Backtrack Algorithm. *)

If there is already an entry in the Backtrack Literal Set for P,

i. then call its witness set W,;4 and replace the old entry with
(Pb7 Wold U Wnew)-
(* Only want one entry per call, so just add new suspects
to old legacy set. *)

ii. otherwise, add the new pair to the Backtrack Literal Set.

2.6 Cancel Algorithm
The Cancel Algorithm is called by the Backtracking Algorithm.

Input Parameters:

1. P,: a literal. P, has had its input bindings changed and so must be
canceled.

Procedure:

1. Empty both the Eliminated List and the Available List of .

17

(* A canceled call cannot have any solutions, available or
eliminated. *)

2. Assign null to the Current Solution.
3. Remove the Backtrack Literal Set entry for this literal, if one exists.

(* That entry refers to the rejection of a solution to a problem
that we are no longer interested in. *)
4. Send a cancel message to the OR process for P,.
5. Mark P, ‘waiting.’

2.7 Reset Algorithm
The Reset Algorithm is called by the Backtracking Algorithm.

Input Parameters:

1. 4: integer. The Order Number of the first literal to check for resetting.

2. R: aset of literals. R contains the literals that have had their solutions
changed during this reset, including the redone call.

Constants:

1. n: an integer. n is the number of literals in the AND process’s query.

Procedure:

1. if ¢ > n (Base Case), remove from the Backtrack Literal Set any
members whose legacy set components intersect R. Then exit.

(* An element (P,, LS) of the Backtrack Literal Set repre-
sents the rejection of the current solution to the literal
P,.. If a member of the legacy set LS has a new current
solution then the Witness Property no longer holds. The
solution can no longer be rejected, so the (P, LS) must
be removed from the Backtrack Literal Set. Note that
this does not constitute a new solution to P, so no reset
need be initiated when the entry is removed. *)

2. Otherwise (¢ < n), if P;’s Eliminated List contains any entries such
that the witness set component, W S, satisfies WS N R # ¢, then
(a) move all such solutions to the Available List (discarding witness
set components),
(b) and, if P; is marked ‘failed’ or ‘executing,’ then
(¥ P; now has available solutions so we must make one
current. Some eliminated solutions to the right may

have to be reset because P; has a new current solution,
so we add P; to R for the recursive call. *)

18

i. remove one member of the Available List and make it the
Current Solution,

il. mark P; ‘solved,’ and,

iii. recursively call Reset with ¢ + 1 and RU {P;} as the input
parameters.

(c) Otherwise (P; is not marked ‘failed’ or ‘executing,’ i.e., P; already
has a current solution), call Reset with 1 + 1 and R.

3. Otherwise (WS N R = ¢ for all WS on P;’s Eliminated List), call
Reset with ¢ +1 and R.

2.8 Backtracking Algorithm

We write this algorithm as though it were a subprocess that continually executes
or waits throughout the AND process’s life. Alternative implementations are
plausible. This process has no synchronization requirements with the Failure
Message Handler except that adding to and deleting from the Backtrack Literal
Set must be atomic operations.

Locals:

1. P aliteral. P, the least literal in the Backtrack Literal Set.

2. Legacy: a set of literals. Legacy is the witness set associated with F.
Procedure:

1. Wait until the Backtrack Literal Set is not empty.

2. Remove (P}, Legacy), the element whose first component has the least
Literal Order Number, from the Backtrack Literal Set.

(* Choosing the least element is not necessary for correctness,
it just improves efficiency. *)

3. Put P’s current solution on the Eliminated List with Legacy as its
witness set.

4. If P’s Available List is not empty,

(a) then take the first solution off the list and make it current.

(b) Otherwise, generate and record a new Activation ID and send a
redo message with it to the process for Pj.

5. Run the Cancel Algorithm on each member of P;’s Descendant Set.

6. Run the Reset Algorithm with {F} as the input parameter.

19

2.9 Alternatives in the Algorithms

We could have canceled the failed literal’s (F’s) descendants in the Failure
Message Handler. But then if the Reset Algorithm were to remove the failure
record for that failure, because of some other redo, we would have to start the
canceled process’s descendents over and repeat the lost work.

In the Backtracking Algorithm it is not necessary to perform reset upon
sending a redo to the selected process if, instead, reset is performed when a redo
succeeds. To facilitate this, the call status value ‘executing’ would be refined
to ‘executing a started call’ and ‘executing a redone call.’ Then the forward
execution algorithm could tell whether reset should be performed when the call
succeeds. Delaying reset until success is reported would avoid some overhead in
the case that the redone process reports failure. But it is not clear whether it is
more efficient to eagerly reset and allow the consumers of reset solutions to run
ahead so far as they may, or to wait until it is known how far the failure will
reach and which processes will be canceled.

We could avoid sending a redo message to the OR process when it has already
failed by recording a pseudo entry on the Available List upon receiving the first
failure message. Once recorded, the pseudo entry remains the last member of
the Available List until the call is canceled. When a new solution to the call is
sought by the Backtracking Algorithm, if the only entry on the Available List
is the pseudo entry, there is no point in sending another redo message. The call
has already reported failure, so backtracking can continue. The Backtracking
Algorithm then has to call the Backtrack Literal Selection Algorithm to find a
new backtrack literal and legacy set.

3 Correctness of the Algorithms

We assume the Witness Method does not interfere with the soundness of the
AND/OR Process Model, since it implements resolution. The problem is to
show (partial) completeness.

In this section we show, assuming correctness of the data dependency struc-
tures, the forward execution algorithms and the OR process, that the algorithms
in Section 2 allow generation of all solutions to the AND process’s query, pro-
vided the SLD-tree defined by that query is finite. In Section 4 we will argue
informally that under certain restrictions to the Model, the AND/OR Process
Model using the Witness Method for backward execution finds a superset of
those solutions found by the standard depth first interpretor, even in the pres-
ence of infinite SLD-trees.

Define a correct solution sequence for a query, G, to be an enumeration of
the multiset of substitutions corresponding to success leaves in the SLD-tree for
G. We will say that a call P; generates a solution sequence if the sequence of
solutions generated in response to repeated redo messages is that sequence and,
in the case of finite solution sequences, the next redo message evokes failure.

20

Lemma 1 Let G be the set of calls in some query, P; € G. I P; fails and R
is a subset of G having the property that “if the current solution to each
element of R is applied, P; will fail,” then some element of R must be
redone before a solution to G can be found.

Proof Obvious. I

Lemma 2 Each (Solution, Witness Set)-pair put on a Eliminated List by the
Backtracking Algorithm has the Witness Property, viz., “if the current
solutions to the calls in the witness set are applied, then the corresponding
solution cannot participate in a query-solution.”

Proof Use induction on the failure level of the witness set. Failure level was
defined in [10] for literals. We define and use the same concept as it applies
to witness sets:

1. If a witness set was generated by the failure of a literal that produced
no solutions, the failure level of the witness set is Zero.

2. Otherwise, let the failure of the literal Py cause the rejection of the
solution o, for the literal P.. Let I be the set of witness sets for
solutions on Py’s Eliminated List when P; failed. Then the failure
level of the witness set for o, is n + 1 where

n = maz{FailureLevel(W)|W € Q1}.

First we treat the single rejection case where the Backtrack Literal Se-
lection Algorithm never selects a Backtrack Literal that already occurs in
a (backtrack literal, legacy set)-pair in the Backtrack Literal Set. Then
we show the multiple rejection case, where the Failure Message Handler
modifies an existing pair by adding to its legacy set, is also correct.

Basis Suppose a literal, Py, fails without generating any solutions. This implies
that the current substitution instance of Py cannot be solved. Any correct
data dependency graph has the property that all literals that affected the
substitution instance of P; are ancestors of Py, so we may conclude that,

“so long as the current solutions are applied to Py’s ancestors, Py will
fail ”

In this case (failure level = 0) the Backtrack Literal Selection Algorithm
takes the rightmost ancestor, call it P,, to be the Backtrack Literal and the
other ancestors, call that set W, to be the Legacy. So long as the current
solutions to the calls in W are applied, if the current solution to P, call
it o, is applied then P; will fail. Therefore, W and o, have the Witness
Property because, so long as the current solutions to W are applied, o,
cannot participate in a query-solution.

21

Step Assume Lemma 2 for all witness sets of level <n. Let P; be a literal that,
as it fails, has witness sets with failure level n but no higher. Then by the
induction assumption we have that, for each solution on Py’s Eliminated
List the Witness Property holds: “if all the members of the witness set
are solved with their current solutions, then the corresponding solution on
the Eliminated List cannot participate in a query solution.”

The Backtrack Literal Selection Algorithm takes the union of all the wit-
ness sets on Py’s Eliminated List and the Ancestor Set to be the Redo
Set. Call that Redo Set R. Since R is a superset of (correct) witness
sets for all solutions to Py, we have that, “if the current solutions are
applied to all members of R, then no solutions to Py can participate in
a query-solution.” Suppose the Backtrack Literal Selection Algorithm se-
lects P, € R to be the backtrack literal. Call the current solution to P,
or. Together, o, and the set W = R — {P,} have the property that “so
long as the current solutions are applied to W and o, is applied to P,, the
no solutions to Py can participate in a query-solution.” This implies that
“so long as the current solutions are applied to W, o, cannot participate
in a query-solution.” Thus, 6, and W have the Witness Property we set
out to prove.

Multiple Rejection We now show that the Failure Message Handler maintains
the Witness Property for elements of the Backtrack Literal Set in the
presence of multiple rejections. Specifically, if (P, legacy) is a pair in
the Backtrack Literal Set with the Witness Property holding for legacy
and the current solution to P,, and some P; fails, causing (P, legacy')
to be returned by the Backtrack Literal Selection Algorithm, then the
Witness Property holds for (P,, legacy Ulegacy'). But this is trivial, since
the antecedent, “the current solution to the literals in legacy U legacy'
are applied,” is stronger than the antecedent of the Witness Property for
legacy and P,, which we have, and the consequent is the same.® I

Lemma 3 The Reset Algorithm correctly restores to the Available Lists all the
call-solutions on the Eliminated Lists for all literals Py, k£ > ¢, that could
possibly participate in a query-solution involving the current solutions to
P;, j < 1, provided the input parameter R contains all literals P;, 5 < 1,
that have new solutions.

Additionally, the Reset Algorithm makes available (by removing the cor-
responding literals from the Backtrack Literal Set) those current solutions

SFor the purpose of selective reset, better behavior might be achieved by leaving the old,
stronger legacy set in place. This would be correct for selective reset, but the legacy set is
also used for selecting the backtrack literal. For that purpose we cannot neglect the members
of legacy' —legacy lest some query solutions be missed. This suggests a more aggressive (and
expensive) version of the Witness Method that uses separate data structures for these two
purposes.

22

that could participate in a query-solution involving their predecessors’ cur-
rent solutions (because redoing or resetting changed one of those current
solutions.)

When a redo and a reset are done, they may remove the cause of some failure
that has occurred but has not been handled yet by the Backtrack Algorithm.
Lemma 3 says the Reset Algorithm removes the artifact of such failures from
the Backtrack Literal Set.

Proof The proof is by induction on ¥ = n — ¢ 4+ 1, the number of literals
remaining to be explored by the Reset Algorithm.

Basis k = 0. Here we show the second part of the lemma, that the Reset
Algorithm correctly removes entries from the Backtrack Literal Set. Any
literal’s current solutions could participate in a query-solution involving its
predecessors’ current solutions when the Backtrack Literal Set is empty.
When a literal is added to the Backtrack Literal Set its current solution
cannot participate in a query-solution involving the current solutions to
its legacy set. But if the current solution to one of those legacy members
is changed, as when it is backtracked or reset, then the current solution to
the literal could possibly participate in a query-solution. It is in exactly
these circumstances that the Reset Algorithm removes an entry from the
Backtrack Literal Set.

Step Assume for k — 1, show for k. There are three cases on Pi:

Case 1 WS N R # ¢ for some WS on P;’s Eliminated List and F;’s Cur-
rent Solution is null. By Lemma 2 it is sufficient to only put on the
Available List the solutions whose witness sets intersect B. The Re-
set Algorithm does reset those solutions in line 2.a. The others can
remain eliminated since none of their witnesses have been redone. Be-
cause the Current Solution to P; is null before the reset, it is changed
afterwards. Therefore, it must be added to R for the recursive call
so that the induction assumption may apply. The Reset Algorithm
does that, so this case is correct.

Case 2 WS N R # ¢, but Py’s Current Solution is not null. This only
differs from case 1 in that the Current Solution to P; is not changed.
Thus, P; does not have to be added to R for the induction assumption
to be applied to the recursive call.

Case 3 WS N R = ¢ for all WS on P,’s Eliminated List. In this case
Lemmas 1 and 2 tells us no solutions need be reset. So the algorithm
is correct in its handling of P;’s solutions. Since P;’s Current Solution
is not changed it does not have to be added to R for the induction
assumption to apply to the recursive call. 1

23

For the subsequent results we use implicitly the following assumptions:

1.
2.
3.
4.

The program defines a finite SLD-tree.
Correctness of Forward Execution Algorithm.
Correctness of Data Dependency Graphs.

Correctness of the OR process (or whatever mechanism is used to step
through alternative rules).

We use the first assumption because, by soundness, it implies that calls terminate
and generate finite solution sequences. Although these weaker properties are all
that our proofs require, it seems unattractive to characterize the instances for
which the correctness assertions hold in terms of the behavior of our algorithm
on those instances. The latter three assumptions reflect the limited scope of this

paper.

Lemma 4 Let G be the set of calls in some query. Define S; = {P; € G|j < 1}

and U; = {P; € G|j > 7}. Let ¥; be a solution to S;. Suppose all
P; € G generate correct solution sequences. (By assumption these must
be finite.) And suppose all call-solutions that participate in solutions to G
are available solutions €. Then, in response to a sequence of redo messages
for the query, an AND process using the algorithms presented in Section 2
will, first, generate a correct solution sequence for U;%;, and, then, a failure
will be reported (by a call in U;) that generates a Redo Set having no
elements in U;.

Proof Use induction on k = |U;|. We assume the data dependency graph for

U; is the corresponding subgraph of the data dependency graph for G.

Basis When k£ = 1 the solutions to U,X; are exactly the solutions to P,%;.

By the assumption that P; € G generates correct solution sequences, all
solutions to U,X; are found.

Step By definition, P is the first element in U;. By assumption, the call to P;%;

generates a correct solution sequence. Let o; be the first solution to P;X;
generated. The induction assumption may be applied to (U; — {P;})Z;0; =
U;+13;0;. Thus we have that all query-solutions for U; that involve the
first call-solution to P; are generated and a failure occurs with a redo set
containing no members of U;;1. If the redo set does not contain P; then
a failure has occurred which, by Lemmas 1 and 2, cannot be removed
by replacing P;’s solution. Therefore, in that case, there are no more
solutions to U;X;. The algorithm has found all the solutions to U;X;, and

SRecall that a solution to a call is available if either it is on the Available List for the call, it
has not yet been reported by the descendant process for the call or it is the current solution
to the call and there is no entry for the call in the Backtrack Literal Set.

24

failed with a redo set containing no members of U;. If, on the other hand,
the redo set does contain P;, then F; is redone, since the Backtrack Literal
Selection Algorithm uniformly selects the last element of the redo set to
be the Backtrack Literal. A new solution to F; is found, according to
the correct call-solution sequence assumption. By Lemma 3 we have that
the Reset Algorithm will make available all solutions to members of U;4q
that could participate in a query-solution. So we may again apply the
induction assumption as we did for the first solution to P; and conclude
that all query-solutions involving the second solution to P; are found.

This line of reasoning is repeated until the redo set provided by the in-
duction assumption does not contain P; or another solution to F;%; is
requested and the call fails. The former case is shown correct above. In
the latter we certainly have generated all query-solutions, and the failure
of P, will generate a redo set containing no members of U;. By assump-
tion P;X; only generates finitely many solutions, so we have that, in a
finite number of steps, a failure occurs that generates a redo set having no
elements in U;. |

Corollary Assuming the calls in G generate correct solution sequences, all so-
lutions to G are found by an AND process using the Witness Method
described in Section 2. When all solutions have been found, a redo mes-
sage will prompt a failure response.

Proof When an AND process is created, all solutions are available solutions. By
taking 1 = 0 we have S; empty, U; = G, and X; the identity substitution.
Therefore, Lemma 4 can be applied directly. I

Theorem Under the assumptions mentioned on page 24, an AND process ex-
ecuting a query G using the Witness Method responds to a sequence of
redo messages by enumerating the multiset of solutions corresponding to
the success leaves of the SLD-tree for G.

Proof This just says the hypothesis, “assuming all calls in G generates correct
solution sequences,” can be dropped from the Corollary. The proof is a
simple induction on the maximum depth the AND process tree reaches
during computation. We shall measure the depth of the AND process
tree by the number of AND processes on the longest branch. The maxi-
mum depth reached during computation exists and is finite because of the
assumption that the SLD-tree for G is finite.

Basis An AND process tree of depth 1 contains one AND process, all of whose
calls are solved by facts. By assumption the OR process correctly steps
through applicable clauses. So the calls generate correct solution sequences
and the Corollary applies.

25

Step By the induction hypothesis, the AND process’s OR sub-processes are
provided with correct solution sequences for all applicable clause bodies.
We assume those OR processes correctly report those solutions, so the
Corollary applies. 1

4 Behavior in the Presence of Infinite SLD-trees

The AND/OR Process Model does a depth first search of the SLD-tree, as does
Prolog. For this reason it is not a complete interpretor: some solutions may
not be found, though they are logical consequences of the data base (and hence,
by completeness of SLD-resolution, correspond to a success leaf somewhere in
the SLD-tree). When more than one rule can be resolved with an activated call
the various alternatives are represented in the SLD-tree by different subtrees
(see [11]). The AND/OR Process Model, like Prolog, explores each subtree
exhaustively before proceeding to the next. In general, these subtrees may not
be finite, so the alternatives may never be explored. This problem is inherent
in the search strategy, and no amount of intelligent backtracking can aviod it.

But Prolog programmers have developed techniques for controlling the struc-
ture of the SLD-tree and the order in which the subtrees are searched. While
these techniques remove Prolog from the ideal plane of declarative languages,
there is a considerable number of Prolog enthusiasts, nonetheless. A complete
yet efficient interpretor is still a problem for research. So we cater to the Prolog
programmer by offering a variant of the Witness Method that generates more
or less the same solutions in the same order as Prolog. The difference between
the Witness Method Variant and Prolog is that the Variant may occasionally
continue to find more solutions past the point where Prolog has been caught in a
non-terminating computation that generates no solution. Unless and until that
comes to pass, the Variant will generate the same solutions in the same order as
Prolog.

To allow solutions to be generated in Prolog order we must impose two re-
strictions on the forward execution portion of the AND/OR Process Model.
The first restriction, compatibility with lexical call order, was discussed in Sec-
tion 1.3.3, above. The second is to require the OR process to report solutions
according to the lexical order of the clauses that generated them. It must report
first all the solutions reported by the AND process for the first matching clause,
and so on. It also must preserve the order in which each AND process reports
its solutions. This drastically limits the opportunity for OR parallelism, though
some may still be possible in the form of eager generators.

Now we describe the change required in the backward execution algorithms
given in Section 2, above.

26

4.1 A Witness Method Variant

As it was presented in Section 2.7, the Reset Algorithm leaves in place the current
solution of a literal even when it makes available a solution that was reported
earlier. This has the advantage of not interrupting consumers of the current
solution, but it can cause the sequence of solutions to depend on the Backtrack
and Reset Method, the strength 7 of the witness sets, and the data dependency
graph. If the Reset Algorithm is changed to merge the reset members of the
Eliminated List into the Available List according to the order in which they were
reported by the OR process, and to preempt the current solution as necessary
to be sure the current solution is the first available solution, then we claim the
solutions would be found and reported in Prolog order.

Induction on the height of the AND/OR process tree and the fact that the
matching clauses are explored in Prolog order allow us to conclude that, so
long as the calls terminate, solutions to calls are generated in Prolog order. The
main point in the argument is that both Prolog and the Variant Method try call-
solution combinations according to the nested loops model [5]. By the induction
assumption and the sorted merging of solutions by the reset operation, we have
that, after each backtrack, each call’s list of available solutions agrees with the
order that Prolog would discover them in, except that some call-solutions that
cannot lead to successful query-solutions are omitted. Since the combinations of
viable call-solutions are explored in the same (nested loops) order as they would
be in Prolog, the successful combinations must be found in that same order.
Hence, the query-solutions must be reported in the same, Prolog order.

So, up until the time it executes a call that fails to terminate, the Variant
will report the same solutions as Prolog.

Infinite paths in the SLD-tree cause termination problems for depth first
search in two ways: either some call fails to terminate or some call that can-
not remove the source of failure is backtracked to but succeeds every time it
is given a redo message (it has an infinite solution sequence), preventing back-
ward execution from reaching a point that could remove the source of failure.
The Witness Method Variant may avoid execution of some non-terminating call
activation instances by deducing that the combination of predecessor solutions
cannot participate in a query solution for some other reason. It also may skip
redoing a call because it cannot remove the cause of failure. In this way, the
Witness Method Variant may occasionally continue to find solutions after Pro-
log is in an infinite loop. On the other hand, if the Variant executes a call that
never terminates, the only way Prolog can avoid execution of the same call is to
already be caught in another infinite call.

We hope this informal argument is convincing.

There are two reasons we did not present this Variant in Section 2. First,
we want it to be clear that the Witness Method is applicable to the original

"Tn general a variety of witness sets have the witness property for a given rejected solution.
The smaller witness sets are stronger, since they result in fewer resets being performed.

27

AND/OR Process Model, as proposed in [5]. That model does not attempt to
mimic Prolog’s enumeration of solutions, so the overhead of merging Available
Lists in sorted order and cancelling consumers of preempted current solutions
would be wasted effort. Second, the algorithms are hard enough to follow as they
are currently presented. It seems pedagogically preferable to discuss controlling
enumeration order separately.

b Variations and Further Remarks

5.1 Subtrees With Side Effects

Skipping a call that cannot remove the source of failure is fine when the call has
no side effects. But calls that can cause side effects, like print or assert, must
not be skipped and they must always recompute their solutions, not just copy
them from the Eliminated List. Otherwise, the behavior of the program will be
affected by selective backtracking and reset.

To ensure correct behavior, calls with possible side effects must be treated
as synchronization bottlenecks for the whole query in which they appear. All
previous calls must succeed before executing the synchronized call and all suc-
cessive calls must wait to start until the synchronized call successfully completes.
Consider, for example,

?- generate(X), test(X), print(X).

We must ensure test(X) accepts a solution to generate(X) before printing it. For
correct execution of the query

?- assert(P(X)), P(Y).

it is necessary to complete the assert before going onto P(Y). A simple, sufficient
solution is to make all its predecessors ancestors of the call with side effects and
to make it an ancestor of all its successors. This ensures both synchronization
constraints and it forces the call to be canceled and reexecuted, instead of merely
reset, when backtracking through the call with side effects.

Unfortunately, we must treat specially not only the primitive calls that cause
side effects, but every call that could indirectly cause such a primitive to be
activated. This necessitates a reachability analysis be performed before creating
the data dependency graph. It may be necessary to repeat that analysis each
time new clauses are added to the data base. This may be plausible for additions
that take place between queries, though it might require static data dependency
graphs to be revised. But what about assert and retract calls that change the
reachability relation during query execution? We suggest requiring the predicate
symbols in the assert calls to be constants. Then the reachability analysis can
be done under the worst case assumption that all clause (templates) that could
be asserted will be. (Note that, thus far, these problems are not peculiar to

28

the Witness Method, but reflect a basic conflict between side effects, on the one
hand, and concurrency and selective backtrack and reset.)

Also unfortunately, asserts can make a previous failure unreproducible. It
may no longer be that “if all the current solutions to calls in the witness set
are applied, then the call fails,” because the assert has changed the program.
This destroys the correctness of the witness sets. So long as all predicates
being asserted are compile-time constants, we may avoid this problem. Calls
to predicates that can reach an assertable call must be treated differently: all
predecessors that can reach calls to assert must be made their ancestors in the
data dependency graph. This will make all such predecessors members of the
Redo Set when the assertable call fails. Any solutions eliminated because of that
failure will be made available again as soon as any predecessor that can reach a
call to assert succeeds.

Cut can only be incorporated if the model imposes Prolog’s clause-try order
with clauses that contain cuts. If the OR process is made to try each clause with
cuts before its lexical successors, the cut can be implemented. Since it has side
effects, cut must be treated as described above. The effect of executing a cut
requires a new kind of message to be sent by the OR process to its parent AND
process. The Cut message tells the parent to remove the alternative matching
clauses from further consideration.

5.2 Less Strong Witness Sets Allow Faster Reset

If the overhead of checking each solution’s witness set independently is not
worthwhile, we can just store the union of the witness sets for all solutions
to a literal and reset either all or no solutions, according to that one set. When
a literal fails, the union is identical to the redo set constructed by the Backtrack
Literal Selection Algorithm and so can be used to select the backtrack literal.
Since the union contains all witness sets, it has the Witness Property for all
solutions to the literal. So correctness follows from the results in section 3. Of
course, some solutions will be reset this way that would not be were the witness
sets kept separately for each solution.

The cost of this version of the Witness Method for selective backtracking and
reset minimally exceeds that for selective backtracking alone [10,12]. No more
space is required except an amount of local storage for the recursive Reset algo-
rithm’s local variables linear in the number of calls in the query. Realistically,
this is a small constant since clause bodies and top level queries are bounded
in length in practice, if not in theory. The time requirement beyond that for
selective backtracking alone is, for each redo and each literal to the right of
the redone literal, the time for one set intersection (witness set N literals with
new solutions), one set test for emptiness (of intersection to decide whether to
reset the call’s solutions), and one set union (if the current solution is changed).
Note that the selective-backtrack/naive-reset methods in [10,12] visit most lit-
erals to the right of the redone call just to make all solutions available again.

29

Since the sets range over a small universe, the literals in the query, a bit-vector
implementation could be utilized to make each of those set operations efficient.

5.3 Static Witness Sets

In a system such as that of [3,4], where the data dependency graph is statically
fixed, we can minimize the runtime overhead by also fixing the witness sets stati-
cally. Static versions of witness set are constructed to contain all literals that the
Backtrack Algorithm could ever possibly put there. This can be accomplished
by looking at the ancestor sets of all literals in the dependency graph. Let R
be the relation containing a pair of literals, (F;, P;), if P; and P; appear in the
ancestor set for some third P, and 7 < j. Note that (P;, P;) is in R just in case
P; could be in one of P;’s witness sets. Let R* be the transitive closure of R.
(P;, P;) is in R* just in case redoing P; could possibly call for P; to be reset.

If this method is used then, rather than searching witness sets, we can de-
termine at compile time which literals should be reset if a given P; is redone. It
is all P; such that (P}, P;) € R*

This is not an algorithm, but it does indicate how one would be constructed.
A simplification of the proof of Lemma 2 could be used to show the analogous
result: let W; = {P;|(F;, P;) € R*}; so long as the current solutions to members
of W; are applied, the eliminated solutions for P; cannot participate in a query-
solution. That is the core of the correctness proof. The balance depends on the
actual reset algorithm.

5.4 Further Research

We plan to explore the trade-off between increased selectivity and overhead.
Besides the less exact methods suggested in sections 5.2 and 5.3 there are more
exact ways of constructing the witness sets.

We plan to assess empirically the usefulness of these various methods for dif-
ferent forms of query. It is conjectured that through static analysis the compiler
may be able to select different approaches for different rules in the program
and hence only pay the high overhead of the more elaborate methods in the
cases where they are likely to be worthwhile. This will be facilitated by the
natural boundary that the AND Process Model draws around each rule-body’s
execution.

5.5 An Existing Model That Does Selective Reset

In [8] a semi-intelligent (i.e., somewhat selective) backtracking scheme is pre-
sented for Restricted AND parallelism [6]. That method achieves a somewhat
selective reset in a very natural way. In Restricted AND parallelism, the form
of possible data dependency graphs is limited. Roughly, the last paths to part
must be the first to rejoin. Semi-intelligent backtracking is achieved for Type I

30

backtracking® by selecting as the backtrack literal the last call that must have
completed before the failed call was started. To handle Type II backtracking,
the AND process records how far forward execution has reached in each branch
of the dependency graph. The right most ancestor of that point that is to the
left ot the failed literal is selected as the backtrack literal. Parallel branches that
are independent of the redone call are not reset.

It is not necessary to retain failure history information as in this work (the
witness sets) and as in [10,12]. Selective behavior can be achieved by a simple
recursive backtrack algorithm that requires no information to be saved between
invocations. It comes as no surprise that the data dependency graphs given
in the counter examples [10,12] to Conery’s [5] original backtracking method
cannot occur in Restricted AND parallelism.

There is no doubt that Restricted AND parallelism is an important model
because, as M. V. Hermenegildo has shown, it allows highly efficient implementa-
tion. But, before dismissing the work of [10,12] and the work presented here, the
reader is encouraged to consider the limitations of the semi-intelligent backtrack-
ing presented in [8] when attempting to solve a problem with a highly connected
data dependency graph, such as the map coloring problem, in Restricted AND
parallelism. The ability of Restricted AND parallelism to represent the real
data dependencies depends on their simplicity. As the complexity of the graph
increases the selectivity of the backtrack and reset diminishes.

6 Conclusion

We have presented algorithms for backward execution that perform selective
backtrack and reset. We call that scheme the Witness Method for Selective
Backtrack and Reset. The algorithms have been proven correct for programs
with finite SLD-trees. We have argued that the AND/OR Process Model with
the Witness Method can be restricted so as to find roughly the same solutions
as does Prolog and in the same order.

We have indicated alternative variants of the method that generate solutions
in Prolog’s order and that require less overhead. Also, we have indicated how
to handle calls that could have side effects so that selective backtrack and reset
do not change the semantics of the program.

7 Acknowledgements

We want to thank Charles N. Fischer for substantial assistance with this pre-
sentation. If the paper is at all readable, it is largely due to his criticism and

8Type I backtracking [3] occurs when a call fails without generating any solutions. Type II
backtracking is when some solutions were eliminated and so the failure is in response to a
redo.

31

suggestions. We also thank Ken Kunen, Charles Stewart and Felix S.-T. Wu for
many helpful discussions of the ideas offered here.

References

[1]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

Maurice Bruynooghe, “Analysis of Dependencies to Improve the Behaviour
of Logic Programs,” Conference on Automated Deduction, 1980, pp. 293-
305.

M. Bruynooghe, L. M. Pereira, “Deduction Revision by Intelligent Back-
tracking,” Implementations of Prolog, Ellis Horwood, 1984, J. A. Campbell,
ed., pp. 194-215.

Jung-Herng Chang, Alvin M. Despain, “Semi-Intelligent Backtracking of
Prolog Based on Static Data Dependency Analysis,” IEEE Symposium on
Logic Programmaing, 1985, pp. 10-21.

Jung-Herng Chang, Alvin M. Despain, Doug DeGroot, “AND-Parallelism
of Logic Programs Based on a Static Data Dependency Analysis,” IEEFE
Spring CompCon, 1985, pp. 218-225

John S. Conery, The AND/OR Process Model for Parallel Interpretation of
Logic Programs, PhD Thesis, University of California Irvine, 1983.

Doug DeGroot, “Restricted And-Parallelism,” ICOT International Confer-
ence on Fifth Generation Computer Systems, 1984, pp. 471-478.

Steven Gregory, Design, Application and Implementation of a Parallel Logic
Programmaing Language, PhD Thesis, Imperial College of Science and Tech-
nology, 1985.

M. V. Hermenegildo, R. I. Nasr, “Efficient Management of Backtracking in

AND-Parallelism,” Third International Conference on Logic Programming,

1986, Springer-Verlag, “Lecture Notes in Computer Science,” Vol. 225.

Laxmikant Vasudeo Kale, Parallel Architectures for Problem Solving, PhD
Thesis, State University of New York at Stony Brook, 1985.

Yow-Jian Lin, Vipin Kumar, Clement Leung, “An Intelligent Backtracking
Algorithm for Parallel Execution of Logic Programs,” Third International
Conference on Logic Programming, 1986, Springer-Verlag, “Lecture Notes
in Computer Science,” Vol. 225.

J. W. Lloyd, Foundations of Logic Programmaing, Springer-Verlag, Berlin,
1986, pp. 18-19.

32

[12] Nam Sung Woo, Kwang-Moo Choe, “Selecting the Backtrack Literal in the
AND/OR Process Model,” IEEE Symposium on Logic Programming, 1986,
pp. 200-210.

33

