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Abstract

Access to system services in traditional uniprocessor operating systems are
requested via protected procedure calls, whereas in message-based operating systems
they are requested via message passing. Since message exchange is the basic kernel
mechanism in message-based operating systems, the performance of the system
depends crucially on the rate of message exchange. The advent of local area network-

ing has sparked interest in message-based operating systems.

One of the main problems in existing multicomputer message-based operating
systems has been the slowness of interprocess communication. This speed limitation is
often due to the processing overhead associated with message passing. Previous stu-
dies implicitly assume that only communication between processes on different nodes
in the network is expensive. However, we show that there is considerable processing
overhead for local communication as well. Therefore, we propose hardware support in

the form of a message coprocessor.

Our solution to the message-passing problem has two components: a software
partition, and a hardware organization. To determine an effective solution we fol-
1owed a thiee—step process: Fifst, we proﬁled the kernels of four operaﬁng systems to
identify the major components of system overhead in message passing. The results
suggested a partitioning of the software between the host and the message coprocessor.
Second, we implemented such a partition on a multiprocessor and measured its perfor-
mance. Based on these results, we proposed bus primitives for supporting the interac-
tions between the host, the message coprocessor, and the network devices. We

designed the bus in detail to show the feasibility of the primitives from the point of




m

view of hardware implementation. Through the simplicity of the design, we show that
our bus proposal is cost effective in this environment. Finally, we used Timed Petri
nets to model and analyze several system architectures and show the effectiveness of
our software partition and hardware organization for solving the message-passing

problem.
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Chapter 1

Introduction

Traditionally, operating systems for uniprocessors have been implemented as a
monolithic kernel. System services such as resource management, file management,
device management, and medium-term and long-term scheduling were integrated into
the kernel. The kernel is considered a protected area of the system software and thus
the system services made available to the user are safe (from the user’s point of view)
and secure (from ﬁe system’s point of view). The structure of a monolithic kernel is
based on a shared memory model. The kernel individually shares memory with every
application. User initiated operations are performed by the kernel using this shared

memory window.

Distributed systems drastically changed the expectation of the user community
toward the operating system. We define a distributed system as a collection of comput-
ing nodes interconnected by a local area network (LAN). There are one or more pro-
cessors and a certain amount of memory in each node. The nodes do not share
memory. Message exchange across the network is the only mechanism for communi-
cation between nodes. We. do not assume anything else regarding the hardware
configuration of each node. For instance, it is possible that one node may have a
printer attached to it while another may not. Figure 1.1 shows our model of a distri-
buted system. There are several disadvantages in a monolithic kernel that get

highlighted in the context of a distributed system.
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Figure 1.1 — Distributed System

System services are distributed among the nodes. Users may request services
available on a remote node. System services have to deal with local and
remote requests and be able to specify policies for handling them (perhaps) dif-
ferently. Moreover, with a diverse user community there is greater need to
protect the integrity of the system from malicious and naive users. Policy and
mechanism are integrated in a monolithic kemel. Ideally, we want the kernel
to provide mechanisms to implement any reasonable policy. This separation

offers both flexibility as well as robustness.

Distributed systems offer the potential to balance the load across all the nodes.
For instance, it is reasonable to expect a heavily-loaded node to request a
lightly-loaded node to satisfy a user request. In a monolithic kernel, user
requests for system services are always satisfied locally, if available. Thus the

potential for load-leveling is lost with a monolithic kernel.

Monolithic kernels tend to be huge in size even for uniprocessors. Developing

and debugging such kemels is an arduous effort. The problem is exacerbated




for a distributed system. For example, 4.2bsd Unix kernel is over 300K Bytes
in size.

(4) There are a myriad of software engineering problems with monolithic kernels
such as keeping consistent versions across the nodes and installing new device

drivers.

1.1. Message Based Operating Systems

The shared memory model of a monolithic kernel does not extend to a distributed
system. For reasons pointed out in the previous section, it seems appropriate to
separate the system servers from the kernel. What remains in the kernel? Since there
is no shared memory between the nodes, message exchange is the basic mechanism
that needs to be provided in the kernel. This message passing kernel together with the
servers constitute the message-based operating system. RC 4000 [Brix.lc 701, CSP
[Hoare 78], and Thoth [Cheri 79] are early examples of message-based operating sys-
tems. With the advent of local area networking and distributed systems, message-
based operating systems have become an interesting research area as indicated by
several recent efforts [Baské 77, Cheri 83, Finke 83, IBM 83a, Kepec 84, Lee 84,
Rashi 81, Solom 79, Tanen 81]. With a distributed system as the stage, and a collec-
tion of processes that interact with one another via explicit messages as actors, each of
these research efforts has defined the semantics for message exchange between

processes, that is, InterProcess Communication (IPC).

There are two important figures of merit in this environment: round-trip time, and
message-throughput. Round-trip time is the elapsed time seen by an application
between sending a message and receiving a reply from the intended receiver. This

figure of merit affects an individual application’s performance. Message-throughput is



a global figure of merit that determines the performance of the entire system. Infor-
mally, it is the number of messages that the system is capable of handling per unit
time.

Defining the requirements of the user community in a distributed system, design-
ing IPC primitives to meet these requirements, defining a framework for comparing the
different IPC proposals, and designing the appropriate interface between distributed
programming languages and IPC primitives are very challenging issues. Connection-
oriented communication, message size and kemel buffering, process control,
multicast/broadcast communication, selective receipt, and asynchronous receipt are
some of the semantic issues involved in the design of IPC primitives. However, these
issues are beyond the scope of this dissertation. Other researchers have investigated

some of these issues [Andre 83, Lebla 82, Nelso 81, Scott 85].

1.2. The Problem

We first define the problem we are trying to solve in this dissertation. The
environment of interest in this research is a distributed system (Figure 1.1). A
message-based operating system executes in each node. Processes communicate with
one another via explicit messages — i.e., there is no shared memory for communica-
tion between processes. Communication between processes on the same node we refer
to as local communication. Communication between processes on different nodes we
refer to as non-local or remote communication. This view of computing has been
assumed by several of the IPC proposals we just mentioned. Access to system services
are requested via protected procedure calls in a traditional system, whereas in a
message-based operating system they are requested via message passing. While a pro-

cedure call costs just a few instructions, IPC costs a few thousand instructions in



several systems that we studied (see § 3.4). Since message exchange is the basic kernel
mechanism in message-based operating systems, the performance of the system
depends crucially on the rate of message exchange. The slowness of IPC is associated
with the high processing overhead that is incurred in message passing. By processing
overhead, we do not mean some underlying inefficient communication mechanism that
is slowing down the message-passing primitives. In fact, in each of the systems we
studied, the underlying communication mechanism is fine-tuned to best reflect the

message-passing primitives. The high processing overhead is in spite of this tuning.

While the problem is well-defined, there is a paucity of solutions specific to this
environment. There are commercial [ABLE 84, Inter 83] products that help off-load
the protocol processing for some standard protocols such as TCP/IP [Poste 81] and TP
[ISO 83]. In chapter 2, we survey some of the recent efforts toward providing
hardware support for network communication. Recently, there have been some model-
ing studies investigating the performance of front-end processor architectures
[Verno 86, Woods 84]. These studies have been concerned with off-loading communi-
cation protocol processing onto front-end processors, the performance benefits that
accrue from such off-loading as a function of the fraction of the total work off-loaded,
and the effects on the performance due to the relative speeds of the host and the front-

end processors.

The available hardware support and the modeling studies have one common
premise: It is worth off-loading communication protocols to front-end processors.
They implicitly assume “communication” to be the work that is performed by the
operating system to satisfy non-local requests. This assumption may be reasonable for
a monolithic kernel such as Unix, wherein system services are not requested by “mes-

sage passing” mechanism. However, we have shown through our profiling studies (see



§ 3.4) that there is a high processing overhead in both local and non-local communica-
tion in all of the systems we studied. Thus, while the above premise is true, it is also a
very simplistic approach to a much larger problem. Moreover, a protocol processor for
some standard protocol (such as TCP/IP) may not mesh well with the operating system

primitives. Therefore the problem needs to be addressed at a much higher level.

1.3. Goals

Given the fact that in distributed systems processes communicate with one
another via explicit messages, and given that there is considerable processing overhead
associated with message passing, there is tremendous potential for improving the
message-throughput of the system by providing concurrent processing support. With a
view to providing concurrent processing support, the organization we propose inside
each node is shown in Figure 1.2. There is a host in each node that executes the
message-based operating system and the applications. The shared bus, the shared
memory, the message coprocessor, and the network interfaces together function as a
single unit in assisting the host in message passing activities. The host, the message
coprocessor and the network interfaces interact and synchronize via the shared
memory. Note that this organization is similar to the ones assumed in the studies of
network front-ends such as Woodside [Woods 84], and in the commercial products
such as ABLE [ABLE 84]. However, what distinguishes our work from these earlier
proposals is the level of message-passing support envisioned in our proposal. In
chapter 3, we show that even local message-passing suffers from considerable process-
ing overhead. Therefore, in this research, we provide support for message-passing at
the level of the operating system primitives. Our solution to the problem suggests a

system architecture that has a software aspect and a hardware aspect.
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Our goal in this research is to determine a system architecture within each node
that improves the system performance over an organization that does not have such

hardware assistance. Our objective reduces to answering two main questions:

(1) How should the message-based operating system be partitioned between the

host and the message coprocessor?

(2) What kind of bus architecture is appropriate to support interaction between the

host, the message coprocessor, and the network devices?

For a given semantics of interprocess communication, round-trip time signifies a cer-
tain minimum processing overhead that has to be incurred to effect the message
transfer between the sender and the receiver. If there are exactly two processes com-
municating with each other in the entire system, clearly there would be an increase in

the processing overhead due to the interaction between the host and the message



coprocessor. However, we show that this increase can be kept very small by a careful

partitioning of the message-based operating system (see chapters 4 and 6). Moreover,

through our performance results, we show (see chapter 6) that the per-process round-

trip time improves as a result of improving the message-throughput when there are

several processes communicating with one another.

1.4. Description of Appreach

)

@

3)

4)

To further our understanding of the message-passing problem, we studied four
operating systems. We profiled these systems to get a breakdown of the
message-passing time into component operating system functions such as

short-term scheduling and kernel buffering.

These studies showed a trend that is common to the problem of message pass-
ing, and suggested a partiion of message-based operating systems. We
demonstrated the feasibility of this partition by implementing it on an existing

system.

The implementation gave us insight into the system data structures that are
manipulated in communication processing, the operations that are done on
them, and the overhead for these operations. Based on the implementation
experience, we have proposed a bus architecture that is appropriate to support
the interactions between the host, the message coprocessor, and the network

devices.

To evaluate the performance benefits of the software and hardware aspects of
our proposed system architecture, we took an analytical modeling approach.
By developing these models and analyzing them, we have demonstrated the

effectiveness of our solution to the message-passing problem.




1.5. Thesis Overview

We present a survey of the existing hardware support for IPC and discuss their
short-comings to solve the message-passing problem in chapter 2. In chapter 3, we
give a summary of the profiling results from our study of several operating systems,
and propose a partition of the message-based operating system between the host and
the message coprocessor. Chapter 4 contains implementation details of this software
partitioning of an experimental system. Our proposal for a high-level transaction bus
and an overview of the design of a shared memory controller that supports these high-
level transactions is described in chapter 5. We show through this design the feasibil-
ity of the bus primitives from the point of view of hardware implementation. Chapter
6 contains details of developing analytical models of several system architectures and
the performance results. We present a discussion of our design and conclusions in

chapter 7.
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Chapter 2
Related Work

2.1. Overview

Coprocessors are in use in a variety of situations. For instance, floating point

accelerators found in many commercial systems work in coprocessor mode. Motiva-

tion for our research stems from the fact that to date, the performance of monitor-based

operating systems has been superior to that of message-based operating systems.

LOCUS [Walke 83] and 4.2bsd Unix [Joy 83] are examples of successful monitor-

based operating systems. Existing hardware support for interprocess communication

takes the form of:

(1) Operations on structured data types in the instruction set architecture of the
processor (often through microcede).

(2) Network interfaces with direct access to host memory.

(3) Protocol processors that implement some form of transport level protocol for
off-machine communication.

(4)  Multiprocessor architectures with one processor performing message passing
functions, generally for a group of processors.

(5)  Bus architectures that support higher level operations.
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2.2. Processor Architecture

Intel’s iAPX 432 [Cox 81] chip architecture together with their iMAX [Kahn 81]
operating system is an effort to unify machine architecture with the operating system.
The processor architecture and the microcoded iMAX operating system, complement
-each other in providing a variety of interprocess communication mechanisms. The
processor architecture is object-oriented, and messages and processes are examples of
these objects. Intel’s 432 architecture implements a very general concept of ports.
“Communication ports” and “dispatching ports” are specific examples. The former
binds message objects to process objects while the latter binds processor-carrier
objects to process objects. In general, a port is the queueing point for objects. The
communication port is used for interprocess communication, and it provides the syn-
chronization between processes in addition to serving as the queueing point for mes-
sages. The hardware supports both blocking and non-blocking interprocess communi-
cation primitives. Mechanisms for process control and scheduling are implemented in
hardware. “Carrier object” is another object supported in hardware, and is a very use-
ful notion for implementing servers. While the 432 architecture is interesting, it pays a
severe performance penalty on account of providing too much functionality in the pro-
cessor architecture. We show in this dissertation that part of the solution for the

message-passing problem lies in providing concurrent processing support.

The System 38 [Berst 82, Dahlb 82, Hoffm 82, Pinno 82] architecture provides a
hardware-independent instruction interface to the user through the notion of objects.
Objects in the system 38 architecture are similar in concept to the idea of Simula class
[Birtw 731, in that the operations on the object are visible to the outside world but the
internal representation is not. The internal representation of the object is implemented

in hardware and the operations visible to the user are implemented in microcode.
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Processes communicate through queue objects. The operations send and receive are
defined on the queue object. Send is non-blocking while receive is blocking.
Hardware provides the necessary mutual exclusion and synchronization between
processes competing for the same resources through the queue object. Process
scheduling is implemented in microcode and hardware. The interprocess communica-
tion mechanisms are purely for processes on the same physical processor. There is no

notion of interconnecting multiple processors or networking in the system architecture.

ELXSI 6400 [Olson 83] is a bus-oriented shared-memory multiprocessor system.
The system consists of 1 to 14 processors with 4 to 192 Mbytes of shared memory.
The central system bus has a bandwidth of 320 Mbytes/sec excluding control bits.
EMBOS is a message based operating system which executes on ELXSI 6400 system,
providing demos-like [Baske 77] links. The processor architecture has twenty-six spe-
cial instructions for message handling, implemented in three thousand words of micro-
code. On a send-message instruction, the hardware and microcode perform all the
necessary verification checks for the existence of the target process, link-address vali-
dation, queueing of the message for transmission, and process switching to schedule
the target process. Each processor maintains a hardware table of fourteen process con-
text blocks, enabling the microcoded scheduler to perform a context switch in 10
microseconds upon message arrival. The system ensures message delivery even if the

process has migrated to a different processor.

Tandem 16 [Katzm 82] multiprocessor architecture together with Guardian
[Bartl 82] message-based distributed operating system is a fault-tolerant computing
system with explicit hardware support for non-local messages. The system architec-
ture includes a pair of high-speed inter-processor buses and hardware queues in each

processor module associated with each bus for queueing message requests. The




13

destination address for each message to be received is preset in special hardware tables
called bus-receive tables by the operating system kernel in the receiving processor.
The message transfer between processors takes place directly between the sending and
receiving processors’ memories without any additional copying. The processor archi-
tecture supports an atomic hardware send instruction which is blocking. Message
receipt is implicit and is done by the bus interface directly into the main memory in
parallel with program execution on the receiving processor. Note that the processor is
idle until the send is completed. The architecture minimizes the amount of data-
copying involved in non-local interprocess communication. However, we show in the
next chapter that the processing overhead involved in interprocess communication

overshadows the copying overhead for message sizes up to a 1000 bytes.

The VAX 11 [DEC 78] family of computers is a very popular architecture. While
it does not provide any explicit support for interprocess communication in hardware, it
does provide two hardware instructions to insert and remove from a queue data struc-
ture implemented in memory. The hardware does not guarantee the integrity of these
queues if these locations are accessed through other machine instructions. However
these instructions are atomic and thus guarantee mutual exclusion and synchronization

for interprocess communication in a controlled environment.

There is a fundamental limitation to the benefits that can be obtained by support
for message-passing within the processor architecture. Performance results on the V
kernel [Cheri 83] indicate that in a distributed environment, the processor bandwidth is
insufficient to match the network bandwidth. Ideally, the message passing support
should be in parallel with the host processor, so as to allow the host processor to per-
form other useful work. From the above discussion, it is apparent that, iAPX 432, Sys-
tem 38, and ELXSI 6400 all suffer from this limitation.
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2.3. Network Interfaces

Several recent researchers have argued that network interfaces should provide
more functionality [Kepec 84, Mocka 82]. Mockapetris proposed a special-purpose
piece of hardware (local network interface) [Mocka 77, Mocka 82] that provides
location-independent process naming, programmable process-name tables, hardware
recognition of multicast messages, associative-match hardware for looking up the des-
tination of a message, and assurance of data delivery through the use of match and

accept bits in the packet.

The interface message processor [Lee 78] gives a network architecture, protocol,
and interface processor specification for a high speed recirculating data network. Lee
discusses some interesting ideas for organizing the interface processor. The interface
processor is implemented as three processors communicating through shared memory.
The three processors respectively handle receiving, transmitting, and formatting mes-

sages.

Pronet [Prote 82], Deqna Ethernet [DEC 84], and Interlan [Inter 83] Ethernet are
some of the currently available local networking hardware products. Each of these
products offer an interface that performs the data-link and physical-layer functions of
the Ethernet-standard proposed by Metcalfe and Boggs [Metca 76]. The interfaces
handle source addressing, message framing, bit stuffing and de-stuffing and network
management and error recovery functions. All of these interfaces use direct memory
access to move data from the host memory to their packet buffers. The fixed-size
receive-buffers in the interfaces are intended to help the host processor to cope with
the bursty nature of network traffic. While such interfaces are essential for inter-node
communication, they are not a solution for the message-passing problem in distributed

systems. In fact, several researchers [Cheri 83,Gagli 85, Kepec 84, Lebla 82] have
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reported message transfer-rates between processes that are only a fraction of the avail-

able network bandwidth.

2.4. Protocol Processors

A single-chip product from Quanta Microtique [Quanta 83] supports a single TCP
[Poste 81] connection. The network filter proposed by Mockapetris [Mocka 82] can be
used together with a fast microprocessor and direct access to the host memory to

implement most of the TCP protocol.

The single-board protocol processor from ABLE [ABLE 84], implements NBS
level 4 [ISO 83] transport protocol. It uses the Intel 80186 [Intel 82] processor, and is
interfaced to the VAX Unibus. Intel markets a functionally equivalent product for the
Multibus. The protocol support is in proms mounted on-board, and provides the bot-
tom four levels of the ISO protocol hierarchy [Zimme 80]. The existing version sup-
ports NBS level 4 (TP) protocol for Ethernet-based local area network. ABLE also

supplies boards without proms for those who wish to develop their own firmware.

Intel [Stark 83] has announced a high-performance protocol coprocessor (182586)
for the Ethernet. The chip provides line control functions such as bit
stuffing/unstuffing, error detection, network management, collision detection and
back-off algorithms, and detailed timing functions for the Ethernet. The chip com-
municates via shared memory with the host processor. A linked list of commands can
be specified to the protocol processor, which handles the associated data transfer
without the need for host-processor intervention. The chip improves the utilization of
the host-processor’s memory by storing an incoming message-frame in a linked list of
buffers. The processing overhead associated with receive-buffer chaining is handled

by the chip, transparent to the user. The chip also provides faciltities for recognizing
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multicast addresses and broadcast addresses.

The TCP and TP interfaces discussed above, provide processing-support to the
host-processor at the transport-layer level of the ISO protocol hierarchy [Zimme 80].
Intel’s chip performs the data-link and physical-layer functions of Ethernet
specification in addition to command chaining and receive-buffer chaining. While pro-
tocol processors can be of assistance in off-loading standard communication protocols
such as TCP, they do not solve the message passing problem in distributed systems for

two reasons:
(1)  There is no assistance for local message passing.

(2) There is additional overhead in the form of host to front-end protocol.
2.5. Multiprocessor Architecture

2.5.1. Cm*

Cm* [Fulle 78] is a multi microprocessor computer system using LSI-11
[DEC 77] as the processing element. Each processing element has access to all of the
system memory. The system organization is as follows. Each processor has a 64Kbyte
local memory directly accessible through an internal bus. One to fourteen processors
are interconnected by a map-bus and constitute a cluster. The clusters are intercon-
nected by inter-cluster buses. A switch associated with each processor called Slocal
determines whether an address generated by the processor is a local memory reference
or an external memory reference. Local membry references are resolved on the LSI-11
bus. If the reference is external then Slocal passes it to the second level switch called
the Kmap. The Kmap determines whether the reference is within the same cluster or

outside the cluster. Intra-cluster references are routed to the appropriate Slocal on the
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map-bus. Inter-cluster references are routed by the Kmap to the appropriate Kmap on
the inter-cluster bus. The Slocal and Kmap have the address translation tables and are
microcoded to perform the necessary translation. In addition to the address translation
the Kmap provides microcode support for operating system functions such as sema-

phores called spinlocks, event queues, and message queueing points called mailboxes.

StarOS [Jones 79] is a message-based operating system that executes on Cm*,
Messages are queued in mailboxes awaiting reception. Interprocess communication is
implemented via mailboxes. The mailboxes can either queue capabilities or sixteen bit

data words. Mailbox functions are implemented partly in microcode.

2.5.2. Auragen 4000

Auragen 4000 [Borg 83] is a message-based multiprocessor system. The basic
processing unit is a cluster. The system has two high-speed inter-cluster buses and two
to thirty-two clusters can be connected on these buses. Each cluster c;ontains from
three to seven Motorola 68000’s [Motor 82b] and a large shared memory. One proces-
sor in each cluster is a dedicated message processor called the executive; the executive
handles all inter-cluster message traffic. Two processors in each cluster run user and
server processes, referred to as work processors. The remaining processors in the clus-
ter handle peripheral and communication ports. The operating system Auros which
executes on the system is a distributed version of Unix [Ritch 74]. Each cluster exe-
cutes an identical copy of the Auros kernel. Auros performs operating-system func-
tions local to each cluster such as scheduling runnable processes, memory manage-
ment, control of local peripherals, and message handling. Auros does not perform glo-
bal resource control. The message system is embedded in the operating system kernel.

Processes communicate via two way communication channels. An entry in a cluster-
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local table, the routing table, defines one end of a channel. A routing table entry con-
tains all routing information, message queues and status information for a channel. A
cluster’s routing table resides in main memory and is maintained by message-system
code executing either in the work or the executive processor. Some portions of the
Auros kernel, in particular those responsible for message transmission and delivery,
execute only on the executive processor. The message passing chore is divided
between the work and the executive processors. The work processor performs valida-
tion of the interprocess communication call, channel addressing, message construction
and queueing in the cluster’s outgoing queue. The executive performs transmission on
the inter-cluster bus and delivery of messages intended for processes in the associated
cluster. The main thrust of the Auragen system is fault tolerance. Every message from
a process is sent to three destinations namely, the primary receiver, the backup receiver
and the backup sender. Since the backup for any process is invariably in a different
cluster every message goes out on the inter-cluster bus. After the message is success-
fully delivered to the other clusters, it is delivered to any local destination, to guarantee
atomicity of each message. No attempt is made to distinguish between local and non-

local messages. The executive processor is similar to the Kmap of Cm*.

2.5.3. Butterfly Multiprocessor System

In the Butterfly Multiprocessor [Rettb 82] each processing node is a Motorola
68000 processor with access to 256Kbytes of on-board memory. The processor nodes
generate 32-bit virtual addresses. The entire physical memory of the system is accessi-
ble from all processing nodes through the butterfly switch. All the system memory is
located on processor nodes in the system. It is possible to have a maximum of 4

Mbytes of memory in each processor node. Each processing node has a coprocessor
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called processor node controller (PNC) [Rettb 81, Rettb 83], which is a custom-built,
microcoded processor using AMD 2901 [AMD 79] bit slice components. The PNC
performs the mapping from virtual to physical address for the associated processing
node, and also controls the finite state machines for transmitting and receiving on the
butterfly switch for non-local memory references. Chrysalis is an object-oriented
operating system for the butterfly multiprocessor. The PNC provides event blocks and
dual queues as operating-system support functions in micro-code. Dual queues can
hold either data or event blocks. They are simple bounded buffers when data items are
queued on them. Event blocks are binary semaphores with two exceptions: only its
owner can wait on it, and a 32-bit value is returned on the successful completion of the
wait operation. A post operation can be performed by any process that knows the
name of an event block. “Wait” and “post” are the equivalent of P and V semaphore
operations respectively. Process synchronization is implemented using event blocks
and dual queues as follows: A receiver dequeues the dual queue. If there is data on the
queue the receiver gets it; otherwise an event block that points to the receiving process
is enqueued on the dual queue. When the sender wants to enqueue data and finds event
blocks queued on the dual queue, it “posts” on the event block instead. The operating
system can use these micro-coded operations to implement short-term scheduling of

processes.

2.5.4. Discussion

Both Cm* and Butterfly are shared-memory multiprocessors (entire system
memory shared by all processors), while Auragen is a distributed system. There is a
dedicated processor to handle messages in each of these systems. However, the func-

tions provided by these processors are often low-level and limited. For instance, the
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Kmap of Cm* is mainly intended as a hardware-assist for memory mapping. In addi-

tion, it implements a few semaphore functions in micro-code.

The main thrust of the Auragen 4000 system is fault tolerance. The primary rea-
son for a dedicated message processor is to handle the excessive overhead imposed by
the fact that every message has to be delivered to three destinations. The “executive”
does not operate at the level of the operating system primitives. Instead, it serves as a
transport mechanism to deliver pre-formatted messages from one cluster to other clus-
ters. Validity checking, address translation, and kernel buffering of messages are done
by the “work” processors. The system does not make any special effort to optimize
Jocal message passing. In fact, to guarantee atomicity of message transmission, mes-
sages destined for the local cluster are delivered only after the other clusters have suc-
cessfully received them. There is no special hardware for accessing the shared “rout-
ing tables”. The “executive” is incrementally better than “protocol processors” (see §
2.4) in that it off-loads some of the short-term scheduling decisions from the “work”

Processors.

The processor node controller (PNC) of the Butterfly multiprocessor is an
AM2901 based microprogrammed processor. The PNC is functionally similar to the
Kmap of Cm*. The primary functions of the PNC are to recognize a non-local
memory reference generated by a local node, to validate the access, and to drive the
finite state machines of the switch interface in order to retrieve or store the remote
memory word. It also responds to remote references to local memory from other
PNC’s. Additionally, the PNC provides micro-coded support functions on event
blocks and dual queues to be used by the operating system for implementing short-
term scheduling. However, these short-term scheduling functions are not concurrent

with host activities. It is the same thread of the operating system kernel that executes
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these functions. We show through our performance results (see chapter 6) that con-

current processing support is one of the keys to solving the message-passing problem.

In the next chapter, we show that validity checking, address translation, control
block manipulation, and kernel buffering account for a substantial portion of the
message-passing overhead. Moreover, this overhead is incurred for both local and
non-local communication. There is no support for such functions in the Kmap of Cm*,

the executive of Auragen 4000, and the PNC of Butterfly.

2.6. Bus Architectures

Moving contiguous blocks of data between user and kernel space is one of the
chores performed by a message-passing kernel (see chapter 3). Similarly, network
interfaces move contiguous blocks of data between kernel or user buffers and the net-
work. Block transfer primitives are useful for efficiently implementing such chores of
the message-passing kernel. Several recent bus proposals such as VMEbus
[Fisch 84, Fisch 85], Multibus II [Intel 84, Muchm 86, Rap 86], Futurebus [Balak 84,
Borri 84, Taub 84], Nanobus [Encor 86], and SB8000 [Seque 85] provide block-mode
access to the memory system from the processor. In addition, some of the proposals
provide mechanisms for extended control of the bus to enable the current master to
perform a sequence of operations on the memory. Such extended processor-memory
interlocks are useful for implementing atomic operations of an operating system ker-
nel. In the following sub-sections, we survey these bus proposals focusing on three
issues relevant to this research: block transfer primitives, processor-memory inter-
locked operations, and arbitration. Borrill [Borri 85, Borri 86] and Kirmrmann
[Kirrm 85] have given a more complete comparison of the features offered by several

currently popular 32-bit bus systems.
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2.6.1. VMEbus

VMEDbus has separate 32-bit address and data lines. It employs asynchronous
handshake and supports both single and arbitrary-sized block transfers of data. The
width of the data transfer can be selected on a cycle by cycle basis to be one of 1, 2, or
4 bytes. The bus is held for the entire duration of a block transfer. However, VMEbus
provides a mechanism to preempt the next master-elect or inform the current master
that there is a higher priority master waiting for access to the bus. The bus allows two
types of requests: release when done (RWD) and release on request (ROR). While the
RWD mode is used for single transfers and block mode transfers by devices such as
direct memory access (DMA) controllers, the ROR mode is usually used by processors.
Using the ROR mode, a processor remains the master of the bus until some other mas-
ter requests the bus. This feature eliminates the need for, a processor to arbitrate for the
bus for every transfer. Further, ROR mode establishes a processor-memory interlock
thus enabling the processor to perform a sequence of operations on the memory sys-
tem. Arbitration for the bus is centralized. There are four levels of bus requests and
the grant lines are daisy-chained for each level. The arbitration logic can either assign

static priorities to each level, or implement a round-robin scheme among the levels.

2.6.2. Multibus IT

Multibus II with a 32-bit multiplexed address/data lines, employs synchronous
handshake for performing both single and arbitrary-sized block transfers of data. The
width of the data transfer can be 1, 2, 3, or 4 bytes. In addition to the block transfer
mode, Multibus II offers a message passing mode of data transfer. This mode allows
the bus-interfaces in the bus-modules to exchange up to 28 bytes of data without the

intervention of the module master. For example, a disk controller module could use
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this mode to transfer data to the processor module. In both block-transfer mode and
message-passing mode, the bus is held for the entire duration of the block transfer.
There is no mechanism in Multibus II to preempt the current master or the master-elect
in the event of a higher priority bus request. The lock line provided by the bus helps
establish a processor-memory interlock during which a processor can perform a
sequence of operations on the memory system. Bus arbitration is distributed, but has

to be initiated by a central service module.

2.6.3. Futurebus

Futurebus [Borri 84] is an attempt to standardize the bus protocol for 32-bit
multi-microprocessor systems. The specification proposes 32 multiplexed address/data
lines. Similar to VMEbus, Futurebus offers single and arbitrary-sized block transfers
using an asynchronous protocol. The block transfers hold the bus until completion.
Preemption is possible, however, if there is a higher priority request for the bus.
Futurebus supports a notion of “tenure” that gives extended bus mastership to the
requester. The current master can break up a high-level operation into a sequence of
operations, and execute these operations during this tenure. Arbitration in Futurebus is

fully distributed, and is initiated by the current master at the end of the master’s tenure.

2.6.4. Nanobus

Nanobus [Encor 86] has distinct 32-bit address and 64-bit data lines. It offers
primitives for reading and writing fixed-size blocks (8 bytes); there is no support for
arbitrary-sized block transfers. Data transfers on the bus are synchronous. Every tran-
saction has a “requester” and a “responder”. Usually, the processors are the requesters
and the memory modules are the responders. Nanobus decouples requests and

responses. This decoupling permits other unrelated requests and responses to occur on
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the bus before the responder for a particular request returns the data. Nanobus memory
modules accept fresh requests while processing the current one, and return the data in
the order of arrival of requests. Each Nanobus memory module has an individual FIFO
of outstanding requests; since requests and responses are decoupled, Nanobus tags
every address and data item on the bus with the requester’s identity. The only
processor-memory interlocked operation provided by Nanobus is “test and set”. There
is separate centralized arbitration for the address and the data buses. Address-bus arbi-
tration uses a round-robin scheme, while data-bus arbitration uses-a fixed-priority

scheme.

2.6.5. SB8000

SB8000 [Seque 85] has multiplexed 32-bit address/data lines. Requests and
responses (to reads) are decoupled in SB8000. Synchronous transfers of data packets
of 1, 2, 4, and 8 bytes are supported; the responses are returned in the order of arrival
of requests. There is a FIFO on the bus common to all memory modules that contains
the outstanding requests. The requesters monitor the bus and recognize the response to
their request by counting the number of requests outstanding. The SB8000 system
offers “atomic lock memory”. Each lock is a bit in memory that can be “read and set”
(locked) in a single atomic operation. The bus arbitration is centralized with each unit

requesting the bus at a pre-assigned priority level.

2.6.6. Discussion

Of the recent bus proposals, VMEbus, Multibus II, and Futurebus support “arbi-
trary” (within limits) sized block transfers. Arbitrary-sized block transfers lead to
simpler design of bus modules such as DMA device interfaces. In each case, the bus is

held for the entire duration of the block transfer. However, locking the bus for
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arbitrary time periods is infeasible. For instance, packet arrival from the net is an
asynchronous event. Failure to field and service network interrupts on a priority basis
could lead to “data overrun” problems. Therefore, such events require priority access
to the system bus. Some of the bus proposals have recognized this requirement. While
VMEbus and Futurebus offer mechanisms for preempting the current master or the
master-elect, Multibus II offers no such mechanism, but system designers circumvent
this problem by allowing bus modules to request only small-sized block transfers.
Though Nanobus and SB8000 decouple requests and responses, they do not provide
arbitrary-sized block transfers. While all of the bus systems we surveyed offer some
help to the processors in performing interlocked operations with the memory, these
operations tend to be fairly low-level. The onus of implementing any high-level syn-

chronization mechanism such as atomic queue manipulation is on the processors.

Preempting the current master during a block transfer results ir an “abort” of the
transfer, leaving the recovery from the abort to be handled by each unit that may make
block transfer requests. Proposals such as VMEbus and Futurebus are intended for a
versatile environment where there could be multiple memory modules, processor
modules, and device modules. In such an environment, it may be worthwhile and even
necessary that a processor be able to abort a transfer and restart it when a block transfer
spans multiple memory modules. However, in a limited environment where all
requests are directed to a single memory module, preemption places a considerable
burden on the requesting modules for recovery. It would substantially reduce system
complexity (and hence system cost) in such an environment for the memory module to
prioritize the requests and service them (as opposed to a system that requires each
module to possess recovery hardware). To achieve this capability the following condi-

tions need to be satisfied:
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(1) The bus should not be locked for arbitrary time periods, thus allowing access

for higher-priority requests.

(2) The memory module should save information regarding block transfer requests
(address and size) so that it can restart a lower-priority request after servicing a
higher-priority one.

In chapter 5, we propose block transfer primitives that have these characteristics. The
other innovative feature that we introduce in our proposal is atomic queue manipula-
tion primitives. However, note that we are not trying to define a new standard for sys-
tem buses in this research. On the contrary, these primitives are intended for use in a
limited and controlled environment. Further, we show that these primitives are reason-
able from the point of view of hardware implementation in such a controlled environ-
ment. The bus arbitration scheme we use in our bus proposal is inspired by Futurebus

[Taub 84] but is simpler owing to the limited environment.

2.7. Discussion

The available hardware support is based on the premise that it is worth off-
loading communication protocols to front-end processors. But the problem needs to be
addressed at a much higher level since research in this area indicates that there is con-
siderable overhead even for local messages. In the next chapter, we present the results
of studies we performed on four distributed systems to understand the bottleneck in

message passing.
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Chapter 3

Measurements of Existing Systems

3.1. Overview

We studied the design and implementation of four operating systems in detail:
Charlotte [Artsy 84, Artsy 86, Finke 83], Jasmin [Lee 84], 925 [IBM 83a], and Unix
[Ritch 74]. We profiled them to ensure that we are not discovering coding
inefficiencies of one operating system but see a trend that is common to all these sys-
tems. Our model of a distributed system assumes that processes communicate via
explicit messages and that system services are provided by trusted server processes (as
opposed to a monolithic kernel). Charlotte, Jasmin, and 925 belong to this model.
However, all of these systems are experimental research projects. We studied Unix to
see whether operating systems in extensive use suffer from similar problems, although
Unix does not fall into the mold of the kind of distributed system we are interested in

for this research.

Charlotte and Jasmin are descendents of Demos [Baske 77] operating system.
Charlotte is a continuing distributed operating system research project at University of
Wisconsin - Madison. It is written in Modula [Wirth 77] and is built on top a com-
munication package called the nugget [Cook 83] which provides reliable inter-machine
message exchange. Charlotte executes on a network of VAX 11/750 processors inter-

connected by Pronet (10M Bits/Sec) [Prote 82].
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Jasmin is a distributed message-based operating system research project at Bell
Communications Research. The operating system is written in C and executes on a
network of Motorola 68000 processors interconnected by S/NET (80M Bits/Sec)
[Ahuja 82].

The 925 system is a distributed message-based operating system intended as a
research vehicle for an office workstation project. The project is currently underway in
IBM Research, San Jose. PL.8 [IBM 83b] is the system programming language used
in developing 925 on a network of Motorola 68000 based multi-processors intercon-
nected by a 4M Bits/Sec token ring [Bux 81]. More recently, 925 has been ported to
the IBM PC/RT [IBM 86a] processor, and has been renamed “Quicksilver”.

Unix 4.2bsd [Leffl 83] is a monitor-based operating system with local area net-
working embedded in the operating system kernel. The version we studied is written
in C and executes on Microvax II workstation [DEC 86] interconnected by a 10M

Bits/Sec Ethernet [DEC 84]

3.2. IPC Semantics

In the next few sub-sections, we discuss the semantic characteristics that distin-

guish the IPC of the above systems from one another.

3.2.1. Connection Oriented Communication

Charlotte, Jasmin, and 925 require that processes that wish to communicate estab-
lish a channel for communication a priori as opposed to systems such as V kernel
[Cheri 83]. Processes in Charlotte create and use a two-way link for communicating
with other processes. The processes at the two ends of the link have equal rights over

the link for using, transferring, and destroying the link. In Jasmin, Processes create
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unidirectional paths for communicating with other processes. The path has two ends:
send end, and receive end. The creator of the path holds the “receive end” and
receives any messages sent along the path. The “send end” can be can be given away
by the creator to another process as a gift. The 925 system provides an abstraction
called service, which is a queueing point for messages. A process creates a service,
and other processes can install the service in their addressing domains and send mes-
sages to it. Unix provides a socker abstraction, and all interprocess communication
takes place via these sockets. Sockets are two-way communication channels between
any two processes and are the logical extension to the idea of pipes introduced in Unix.
The transport layer below the socket can be either Unix pipes for local processes or

TCP for non-local processes.

There is overhead involved in setting up and tearing down the communication
channel. However, communication channels provide an efficient mechanism for the
kernel to enforce authentication and security, and for the system to duplicate heavily
used services. In Jasmin, to simulate a remote procedure call, a process has to enclose
a gift path in the message. The kernel installs the new path which may be used by the
recipient only once to send the reply. The kernel incurs the same expense for setting
up and tearing down these one-shot connections as for more persistent ones. Based on
the assumption that most processes expect a reply for the message sent, Charlotte pro-
vides bidirectional communication channels. However, since both the processes have
equal rights over the link, checking the validity of a requested operation is very com-
plex in Charlotte. The 925 system offers a good compromise. Information about the
sender is held in the service for the duration of the rendezvous. Once the rendezvous is
complete all information about the sender is erased from the service. Unix sockets are

similar in functionality to Charlotte links, except that sockets (once bound) are static
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and involve less checking for validity of requested operations. Messages are addressed

to links in Charlotte, paths in Jasmin, services in 925, and sockets in Unix.

3.2.2. Message Size and Kernel Buffering

Messages (reliable datagrams) are not buffered in Charlotte and can be of any
arbitrary size. Messages can be either fixed in size or variable in size in both Jasmin
and 925. Jasmin and 925 provide kernel buffering for fixed-size messages. A Jasmin
process that holds the “send end” of a gift path can send fixed-size messages (reliable
datagrams) to the creator of the path using sendmsg. The message is buffered by the
kernel and delivered to the process that owns the “receive end”. Primitives to move
arbitrary-sized blocks of data (in either direction) exist in both Jasmin and 925 (iomove
in Jasmin and memory move in 925). This primitive is invoked by the holder of the
“send end” of the path in Jasmin, while in 925 it is invoked by the creator of the ser-
vice. In both the systems, the kernels check to make sure that the processes initiating
the data movement have the necessary access permissions. Hence these system calls
do not need the participation of the process at the other end. Both the kernels do not
buffer these arbitrary sized messages. Messages sent on Unix sockets can be arbitrary
in size and are buffered by the kernel. Kernel buffering imposes considerable house-
keeping overhead on the kernel. The system has to deal with situations when the
necessary resources are not available. Buffer management becomes a complicated
issue (due to internal fragmentation) especially when the kernel buffers arbitrary-sized

messages.

3.2.3. Process Control

The communication primitives in Charlotte (send and receive) can be either

blocking or non-blocking. Jasmin’s Sendmsg can block the sender if the system is
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short on resources. Rcvmsg is the system call in Jasmin to receive a message and can
block the caller if there are no outstanding messages on the path. Jomove blocks the
caller till the kernel completes the requested data movement. The 925 system provides
both blocking and non-blocking flavors of send, while Receive is always blocking. We
discuss 925 in greater detail in the next chapter. Unix communication primitives block
if system resources are not available. However, it is also possible to specify via socket

options that communication primitives on a socket should not block.

3.2.4. Send

Charlotte, Jasmin, and Unix implement no-wait send. Posting a Charlotte send is
synchronous while completion can be asynchronous. The sender can either poll the
completion status or explicitly wait. The send primitive of 925 can be either no wait
send or remote invocation send. The latter expects a reply from the receiver and has to
explicitly wait for the reply. V kernel provides multicast send allowing a message to
be addressed to several recipients. None of Charlotte, Jasmin, or 925 provide
multicast/broadcast capability. Multicast communication under 4.2bsd Unix has been

recently reported [Ahama 85].

3.2.5. Receive

Posting a Charlotte receive is synchronous while completion can be asynchro-
nous. Similar to send, the receiver can poll the completion status or explicitly wait.
Both 925 and Unix offer the facility to poll for message arrival. Jasmin has no such
polling capability.

Jasmin allows a process to specify a group of paths as the source of next message.
A Charlotte process can either specify any one link or all the links (that it is connected

to) as the source of next message. There is no mechanism for selective receipt in either
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925 or Unix.

At the time of creating a service, a 925 process can specify a handler. When the

process posts a receive on the service, the kernel copies the message to the buffer

specified by the process and invokes the handler. Control is returned to the process

when the handler eventually replies to the message request. Processes in Jasmin,

Charlotte, and Unix do not have the capability to specify a handler.

3.3. Measurement Techniques

We profiled the above operating systems to understand where time is spent in the

kernel while processing message passing requests. We conducted three kinds of tim-

ing measurements:

€y
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CPU-time profiling is a measure of the distance in time between two points in a
straight-line code segment. This measurement helps obtain statistics of
processor-time usage in different sections of the kernel code, “hot spots”, and

system bottlenecks.

Procedure-call profiling is a measure of the procedure-call sequence, the
number of times a kernel procedure is called, and the time spent in the pro-

cedure per visit.

Message-path profiling is a measure of the usage of kernel data structures. By
identifying the message-path from source to destination, and time-stamping the
message at “interesting points” such as queueing, dequeueing and copying, we
get useful statistics on the usage of kernel data structures, the type of opera-
tions that are performed on these data structures, and the amounts of time spent
by the message on different queues. This measurement identifies bottlenecks

(if any) in the message route. For example, if the network device is the




33

bottleneck, messages will probably spend most of the time on the device
queues.
Profiling involves instrumenting the kernel program with code to capture the timing
information into special data structures. For example, the following is the data struc-

ture we used for procedure-call profiling:

procedure_entry =
record
count : integer;
timer_value_at_entry  : integer;
elapsed_time : integer;
end;

statistics : array (procedure_names) of procedure_entry;

The “statigtics” data structure has an entry for each of the kernel procedure that is exe-
cuted while processing a communication request. This data structure is compiled in
with the kernel. A “kernel run” consists of executing a producer program that sends a
fixed number of messages, and a consumer program that receives the messages from
the producer. The “statistics” data structure is cleared before starting a kernel run. We
read the hardware timer on entering a kernel procedure and register the value (in a field
of the array entry indexed by the procedure name). Before exiting, the hardware timer
is read again. The difference between the value read and the value registered at entry
gives the time spent in the procedure (applying correction if the timer wraps around).
We add this to the time accumulated from previous visits to the procedure kept in
“elapsed_time”. The “count” field is incremented during each visit. On completion of
the kernel run, we analyze the “statistics” data structure to apportion the time spent in
the kernel to the individual procedures involved in the execution path. Suitable correc-

tions have to be made to remove the cost incurred due to the timing code itself.
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3.4. Measurement Results: Communication

For each system, the statistics were gathered by simulating a null remote pro-
cedure call. The sender executes a “send; wait for reply” loop, while the receiver exe-
cutes a “receive; reply” loop. The round-trip time for a 1000-byte local message in
Charlotte is 20 milli-seconds (0.5 MIPS VAX 11/750). The copy-time, i.e., the time to
move information back and forth between the processes in one round-trip is only 0.6
milli-seconds (3% of round trip). Table 3.1 gives the breakdown of the round-trip time
into component message-passing activities. The round-trip time for a 1000-byte non-
local message is 31.7 milli-seconds, of which 4.4 milli-seconds (13.9% of round trip) is

copy time. It is not until the (non-local) message size is 6000 bytes that the copy-time

VAX 11/750 (Speed = 0.5 MIPS)
Round Trip (Local Message) = 20 mill-seconds (1000 Bytes one way)
Copy Time = 0.6 mill-seconds

Activity Time Percent of
Name (milli-seconds) Roun.d-Tnp
Time

Kernel-Process
Switching Time 2 10
Copy Time 0.6 3
Entering and
Exiting Kernel 238 14
Protocol Processing
for Sender 10 50
and Receiver
Link Translation
and 4.6 23
Request Selection

Table 3.1 — Charlotte Profiling
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begins to dominate the round-trip time (over 50% of round-trip time). We discuss the

profiling results of Charlotte in more detail below.

Table 3.2 gives the breakdown of the round-trip time (local message) for Jasmin.
The copy-time is 15% of the round-trip time. Jasmin was not a stand-alone operating
system at the time of profiling. The test program was bound with the kernel and down-
loaded on to the processors. All three — the kernel, the sender, and the receiver pro-
grams execute in the same address space. The kemel procedures are invoked as sub-
routines — hence the surprisingly small round-trip time (0.72 milli-seconds on a 0.3
MIPS Motorola 68000). In Jasmin, non-local communication is implemented by a
“communication task”, that is periodically scheduled by the kernel to check the net-
work channels for incoming and outgoing messages. Note that this task accounts for
15% of the round-trip time in spite of the fact that we measured local messages. A -
process is blocked in Jasmin when its communication request cannot be satisfied
because of a temporary shortage of kernel resources. Short-term scheduling decisions
in Jasmin include dispatching processes waiting on path-queues for messages, and
processes blocked waiting for scarce kernel resources. 40% of the round-trip time is
devoted to the processing of events leading to short-term scheduling decisions. Path
management includes checking the validity of requests issued on the paths, and
addressing the relevant control blocks. Buffer management includes allocating and

releasing kernel buffers for copying messages from user space.

Table 3.3 gives a breakdown of the round-trip time (Jocal message) into
message-passing activities for 925. Interprocess communication in 925 follows a
client-server paradigm. Clients make requests on services and servers satisfy outstand-

ing requests on services. The scheduler in 925 is event driven. These events include



Motorola 68000 (Speed = 0.3 MIPS)
Round Trip (Local Message) = 0.72 milli-seconds (32 Bytes each way)
Copy Time = 0.108 milli-seconds

Activity Time Percent of
Name (milli-seconds) Roun.d-Trnp
Time

Actions Leading
to Short-Term 0.288 40
Scheduling Decisions
Copy Time 0.108 15
Buffer Management 0.072 10
Path Management 0.144 20
Miscellaneous
(Checking Network o 0.108 15
Channels, Communication
Task Execution, etc.)

Table 3.2 — Jasmin Profiling

Motorola 68000 (Speed = 0.3 MIPS)
Round Trip (Local Message) = 5.6 milli-seconds (40 Bytes each way)
Copy Time = 0.84 milli-seconds

Activity Time Percent of
Name (milli-seconds) Roun.d-Tnp
Time

Short-Term
Scheduling
(ncluding 1.96 35
event processing)
Copy Time 0.84 15
Entering and
Exiting Kernel 0.56 10
Checking, Addressing,
and Control Block 224 40
Manipulation

Table 3.3 — 925 Profiling

36
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rendezvous between client-server pairs, device interrupts, and rendezvous completion.
Short-term scheduling includes event processing, and accounts for 35% of the round-
trip time. Saving and restoring the process’ context on entry and exit into the kernel
accounts for 10% of the round-trip time. Checking the validity of a client request,
addressing the relevant control blocks, and allocating and releasing buffers for copying

from user space constitute 40% of the round-trip time.

From our profiling studies, we found that in each of these three systems a large
percentage of the time is spent in fixed processing overhead that is independent of the
size of the message. This overhead is 19.4 milli-seconds in Charlotte, 0.612 milli-
seconds in Jasmin, and 4.76 milli-seconds in 925. The message-size contributes a vari-
able overhead that is proportional to the size of the message. The fixed overhead
remains a significant component of the round-trip for fairly large-sized messages. For
instance, on the 925 system, when the size of the message is 1000 bytes the copy-time
is only 57% of the total round-trip time. Unfortunately, the fixed overhead for the
above three systems do not compare in the absolute for the following reasons: the
hardware configuration (in particular, processor speed and bus speed), the complexity
of the IPC primitives supported by each system, the language (indirectly) and the
efficiency of the compiler (directly) used in programming, and the coding efficiency.
For example, despite the fact that 925 and Jasmin have similar IPC primitives, and
both use Motorola 68000 processors, there are several dissimilarities in the two sys-

tems:

(1) Jasmin is coded in “C”, while 925 is coded in “PL.8”. The “C” compiler (for
AT&T System V Unix) produces more efficient object code than the “PL.8”
compiler for the Motorola 68000. Further, critical parts of Jasmin kernel are

coded in assembler.
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Jasmin uses Pacific [Pacif ] processor boards (12 MHz clock speed, and no
wait-states) and Multibus [Intel 83], while 925 is implemented on VersaMo-
dules (8 MHz clock speed, and two wait-states) and Versabus [Motor 82a].

Moreover, at the time of profiling the systems, 925 was a stand-alone operating
system, while Jasmin was not. Thus the cost of entering and exiting the kernel

is not incurred in Jasmin (10% of round-trip time in 925).

However, note that there is a similarity in the relative percentages for message-

passing activities in the two systems:

M

@

©)

In both systems, 15% of the round-trip time (for messages approximately equal
in size) is spent in copying.

Event processing overhead leading to short-term scheduling decisions account
for 35% of the round-trip time in 925 and 40% of the round-trip time in Jas-
min.

“Buffer management and path management” functions of Jasmin are together
functionally equivalent to “checking, addressing, and control block umanipula—
tion” functions of 925. These functions account for 30% of the round-trip time

in Jasmin, and 40% in 925.

The profiling figures for Charlotte differ in some respects and agree in other

respects from those of the other two systems. The following is an analysis of the

profiling figures for Charlotte in relation to Jasmin and 925:

(1)

Charlotte is implemented in Modula. The Modula compiler does not generate
highly optimized code as does Unix “C”. Further, the kernel is implemented as
a collection of Modula processes. The implementation pays a high price for

switching between these processes (roughly 2 milli-seconds). We do not see a
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similar penalty in either Jasmin or 925.

(2) Charlotte IPC primitives are “heavy-weight” compared to Jasmin and 925.
The two-way link with equal rights for the processes at the ends of a link, and
the variety of operations (aside from data transfer) that each process can per-
form on the link unilaterally such as “move”, “cancel”, and “destroy”, make
the link protocol very complex and time-consuming. The finite state automa-
ton (a modula process) that implements the “Charlotte link™ protocol consumes
10 milli-seconds. Note that this protocol is functionally similar to the “Buffer
management and path management” functions of Jasmin or “checking,
addressing, and control block manipulation” functions of 925. These relative

percentages for these functions are similar in the three systems.

(3)  There is no kernel buffering and hence the copy time is very small compared to
Jasmin and 925.

(4) VAX architecture provides atomic enqueueing and dequeueing instructions.
The scheduler (a modula process that is scheduled on timer interrupt) uses
these queueing instructions to schedule the next task from the run-queue. The
time for entering and exiting the kernel (14% of round-trip) includes these
queueing times. and is similar to the relative cost for entering and exiting the

kernel in 925.

A breakdown of the round-trip time for a 128-byte local message in Unix is
shown in Table 3.4. Validity checking and control block manipulation account for
53.4% of the round-trip time and is similar to the percentage figures in the other three
systems for performing similar functions. Similar to Jasmin and 925, the message is

copied exactly four times in a round-trip: sender to kemnel buffer, kernel buffer to
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receiver, receiver to kernel buffer, and kernel buffer to sender. The copy-time is
19.3% of the round-trip time and is similar to those of Jasmin and 925. We observe
that message-passing in Unix is has overheads similar to that seen in the other three

systems.

Table 3.5 gives a breakdown of the round-trip time for a 128-byte (non-local)
message in Unix. The copy-time (7%) is the sum of the times to copy the message
from the user space to the socket buffer and then into the IP (internet protocol) buffer.
Socket-level routines that translate socket names to addresses meaningful to the under-
lying transport mechanism account for 15% of ﬁe round-trip time. A large percentage

of the time is spent in protocol processing for TCP and IP.

As we mentioned earlier, Unix is a radically different flavor of operating system

compared to the other three that we studied. Despite that difference, we note that Unix

Microvax II (Speed = 0.8 MIPS)
Round Trip (Local Message) = 4.57 milli-seconds (128 Bytes each way)
Copy Time = 0.88 milli-seconds

Activity Time Percent of
Name (milli-seconds) Roun.d-Trlp
Time
Validity Checking
and Control 244 534
Block Manipulation
Copy Time 0.88 19.3
Short-Term
Scheduling 0.78 17.1
Buffer Management 046 _ 10.2

Table 3.4 — Unix Profiling (Local Message)
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too pays a high processing cost for interprocess communication (local and non-local).
Moreover, the kernel functions that account for the processing overhead are similar to

those of the other three systems.

Given the overhead for message-passing in Unix, it is fairly easy to see how
important it is to ensure that the rate of message-passing be good to ensure good per-
formance if all system services were to be requested via message passing. The impor-
tance of assuring a good message throughput for both local and non-local messages
under such circumstances reinforces our earlier observation (see § 2.4) regarding the
limitations of network front-ends and their applicability to the problem we are trying to

solve in this research.

Microvax II (Speed = 0.8 MIPS)
Round Trip (Non-local Message) = 6.8 milli-seconds (128 Bytes each way)
Copy Time = 0.5 milli-seconds

Activity Time Percent of
Name (milli-seconds) Roun_d-Trip
Time

Socket Routines 1.02 15
Copy Time 0.5 7
Checksum Calculation 0.6
Short-Term
Scheduling 04 6
Buffer Management 03 4
TCP processing 13 19
IP processing 1.6 24
Interrupt Processing 1.1 16

Table 3.5 — Unix Profiling (Non-local Message)
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3.5. Measurement Results: Computation

As we mentioned earlier (see § 1.1), a message-based operating system comprises
the message-passing kernel and the “system servers”. In the previous section, we
presented the “communication” profile of several message-passing kernels. In this sec-
tion, we present the results of our studies to measure the “computation” times of sys-
tem servers. We performed these measurements on Unix since it is in extensive use.
Note that Unix is not a message-based operating system. Unfortunately, the other
three systems are experimental research projects and do not offer extensive system ser-
vices. However, since we are interested in “computation” times for system services,
measuring Unix serves this purpose, and would be the expected times for “servers” to

provide similar services in a message-based operating system.

Table 3.6 gives times for performing typical Unix system services. All these ser-
vices are implemented in the kernel. Using a kernel with profiling data structures com-
piled in, we used “gprof” [Graha 82] to measure these service times. If system ser-

vices are implemented by “servers”, these are the “computation” times that they would

System Service . :I‘ime
(milli-seconds)

Open File 4.35
Close File 0.36
Make Directory 18.71
Remove Directory 14.28
Timer Service (Sleep) 3.453
GetTimeofDay 0.200

Table 3.6 — Unix Servers
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take to perform these functions. Table 3.7 gives the system times for performing file-
system read and write for different block sizes. We measured the system time for
reading/writing zero bytes. From the measured (read/write) times for different block-
sizes, we subtract this zero-byte measurement. These are the “computation” times that

a “file server” would take to provide the read/write service.

File system is the core of the Unix operating system. Opening, closing, reading,
and writing files, and timer services are the frequently requested system services in
Unix. We observe that on an average, the “computation” times for these services are
comparable to the “communication” time (see Tables 3.4, 3.6, and 3.7). Extend this
observation to message-based operating systems, our studies suggest that system time

is evenly split between the message-kernel and the servers.

Service Time

BlockSize (milli-seconds)
Read Write
128 1.0092 1.5464
256 1.0867 1.7633
512 12329 2.0982
1024 1.5999 2.7095
2048 1.7647 3.8082
3072 2.739 5.7908
4096 3.2442 6.1082

Table 3.7 — Unix Read/Write
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3.6. Characteristics
There are two important characteristics of distributed systems:

1. Communication overhead

For small messages, i.e., message-size smaller than 100 bytes, copy-time is less
then 20% of the total round-trip time. For large messages, i.e., message-size

larger than 1000 bytes, copy-time begins to dominate the total round-trip time.

2. Structure

Work gets done in a distributed system by a combination of computation and
communication. By computation we mean application processing. By communi-
cation we mean the system code that has to be executed to process a communica-
tion request. There is a fixed overhead incurred in communication (independent
of the message-size) that can be decomposed into components such as checking
the validity of an IPC call, addressing and manipulating control blocks, and
short-term scheduling. There is a variable overhead due to kernel buffering that
is dependent on the size of the message, and the number of times the message is
copied from source to destination. This combined overhead is present for both
local and non-local communication. For non-local communication there is addi-
tional overhead such as sending network packets, processing network interrupts,

checksum calculation, and retransmission.

3.7. Inference

In a distributed system, users request system services by communicating with the
servers. These servers compute to satisfy the requests possibly communicating with

other servers. Through our profiling studies, we have shown that a high processing
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overhead is incurred for both local and non-local communication in all of the systems
we studied. We have given a quantitative breakdown of the time spent in the kernel (in
a round-trip) into the different message-passing functions. In particular, we showed
that in the four systems we studied, a large percentage of the round-trip time can be
attributed to short-term scheduling and control block manipulation functions. These
kernel functions are performed for both local and non-local communication. There-
fore, it is clear that message-passing support should be provided transparently for both
local and non-local communication. Further, timing measurements for performing typ-
ical services on Unix, suggest that server computation times are comparable to com-
munication times incurred in the message kernel. The structure of the distributed sys-
tem and the results of our studies suggests the following partition of the message-based
operating system between the host and the message coprocessor: computation on the
host and communication on the message coprocessor. The shared memory is used for
synchronization and communication between the host, the message coprocessor and
the network interfaces. We implemented such a partition on an experimental system.

In chapter 4, we present the details of the implementation.
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Chapter 4

Software Implementation

4.1. Overview

We demonstrated our idea of partitioning the message-based operating system by
implementing it on an existing system. The intent here was not to invent yet another
set of IPC primitives. So any of the distributed systems we mentioned earlier would
have been an equally good test-bed. We chose the 925 system because it was readily
available for experimentation and because its hardware configuration was particularly
suitable: each node in 925 has multiple processors. We emulated the functionalities of
the message coprocessor on one of the processors, and measured the implementation to
obtain the processing times for the kernel activities involved in message passing. We
present these measured processing times in chapter 6, where they are used in modeling
several architectures for performance comparison. In this chapter, we describe the

features of 925 and details of our experimental implementation.

4.2. 925 System

925 is a multiprocessor, multi-tasking, window-based system. The processors
have local memory and common shared memory. Each processor executes a common
copy of the operating system kernel of 925 from the shared memory. Tasks can be
dynamically created and destroyed. A task (equivalent to what is called a process in

some other operating systems) is a unit of execution that defines an individual address
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space. Tasks communicate with one another via explicit messages. System services
such as file server and page server are provided by trusted server tasks. Communica-
tion between tasks follows a client-server model. The IPC kemel (Figure 4.1) serves
as a monitor to provide exclusive access to system data structures that need to be mani-
pulated to make the communication between tasks possible. For the sake of clarity, we
refer to the sending task as client and the receiving task as server. However, a task can

assume both roles in different communication dialogues.

4.2.1. Communication Paradigm

Messages are fixed in size and are 40-bytes long. However, 925 provides a
mechanism for moving large blocks of data between processes similar to the facility
provided by Demos [Baske 7‘7] and V kemel [Cheri 83]. Figure 4.2 shows a typical
scenario. An “Editor” needs a page of a file. It sends a fixed size message that
encloses a “memory reference” to “file server”. The memory-reference is a pointer to

some buffer in the editor’s address space. The file-server receives the message and

Figure 4.1 — Task-Kernel Interface
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SEND

memory
reference

MEMORY MOVE

REPLY

Figure 4.2 — Communication Scenario in 925

uses the enclosed pointer to perform the requested data movement. It then replies to

the editor completing the rendezvous between the processes.

A Service is a queueing point for messages and is similar to “free port” [Cashi 80]
or “mailbox” [Andre 83]. Clients send messages to a service. 925 provides no wait
send and remote invocation send [Lisko 79], with the client expecting a response from
the receiver in the latter case. Further, a client can choose the send to be either block-
ing or non-blocking. Following a non-blocking send, the client eventually does a wait
to get the response from the receiver. Services can be created and destroyed. Multiple
servers can advertize (to the kernel) their intent to receive messages on a service via
the system call offer. There is no asynchronous delivery of messages. Servers poll the
service for messages. Receive blocks the server until a message arrives on one of the
services for which it has filed an offer. Inquire is non-blocking, and can be used by
the server to query if any service (for which the server has filed an offer) has messages
waiting to be delivered. A message arriving on a service is delivered to the first server
(ordered by time) that is waiting to receive a message on that service. An “event” in
925 is the occurrence of one of the following: message arrival at a service, a comple-

tion notice to an outstanding non-blocking send request (that is expecting a response),
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or a device interrupt (see next section). A task can wait for a “group” of events. The
task is restarted when any one of the events in the group is satisfied. When a message
encloses a “memory reference”, the access rights (read, write, and/or copy, and size) to
the segment addressed by the memory reference is also specified. The server that gets
such a message executes memory move to read from or write into the segment. A
server replies to a (remote invocation) send. The server loses all access rights to any

enclosed memory reference after replying to the message.

4.2.2. Interrupts

In 925, device interrupts are mapped into the client-server paradigm as well. A
task that serves as a “device driver” installs a handler for interrupts from that device.
Further, the task offers a special “interrupt service” that is known only to the handler.
The kernel invokes the handler upon an interrupt from the device. The handler exe-
cutes in the context of the task that installed it, and performs any time-critical opera-
tions associated with the interrupt. The handler then sends a message to the “interrupt
service” via a special system call activate. The task may post a receive on the “inter-
rupt service” to perform the operations associated with the device interrupt that are not

time-critical. Activate is the only system call that is allowed in an interrupt handler.

4.2.3. System Status

As we mentioned earlier, 925 is a continuing office-workstation research project
at IBM Research, San Jose. We took a version of the system that executes on a
Motorola 68000 based multiprocessor workstation, and implemented the software par-

tition. This version of the system had the following features:

(1) Semantics were defined for local and non-local communication (see next sec-

tion) but only local communication was implemented.
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(2) All IPC data structures such as service, kernel buffers, and task control blocks
were in shared memory. On demand, each processor took from and returned to
this shared pool of system data structures using conventional locking tech-

niques for exclusive access.
(3)  Tasks were statically assigned to the processor on which they were created.

(4) A processor scheduled the tasks created on it.

4.2.4. Software Partition

In our implementation, we dedicated a processor in each node as the message
coprocessor. The IPC kemel is executed on the message coprocessor. The remaining
two processors in each node serve as hosts and execute tasks. The nodes are intercon-
nected by a local area network. We define communication between tasks on the same
node .as “local” and communication between tasks on different nodes (across the net-
work) as “non-local”. We implemented local and non-local communication using the
message coprocessor. Local and non-local communication requests are handled by the
message coprocessor transparently to the tasks making the request and independent of

the host on which the tasks execute.

4.3. Organization

Figure 4.3 shows the hardware organization used in the implementation. The host
and the message coprocessor are Motorola 68000 processors. Code and data for the
tasks are in the local memory of the host. The IPC kernel and its internal data struc-
tures are in the local memory of the message coprocessor. The network is a four Mbps
token ring similar to the IBM token ring [IBM 86b]. The message coprocessor con-

trols the network. All other devices (such as disk, terminal, and timer) interrupt the
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Figure 4.3 — 925 Implementation
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host. Task control blocks and kernel buffers are shared between the host and the mes-

sage COprocessor.

4.4. Processor States

There are two lists of task control blocks: the computation list and the comrmuni-

cation list, representing work to do for the host and message coprocessor, respectively.

The lists are ordered by task scheduling priority. Figures 4.4 and 4.5 show the states of

the host and the message coprocessor. The host interrupts and informs the message

coprocessor that the communication list is non-empty. Similarly, the message copro-

cessor informs the host that the computation list is non-empty via interrupt. When the
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NE - Non-Empty
E - Empty

Figure 4.4 — Processor States: Host

computation list is non-empty, the host gets the first task from the list and executes it
until the task makes a communication request. At that point, the host enqueues the
task on the communication list and starts executing the next task in the computation
list. The task control block contains the information needed to process the communi-
cation request. When the communication list is non-empty, the message coprocessor
gets the first task from the list and executes the communication processing code associ-

ated with that particular request. This processing will involve such chores as checking

E NE

INTERRUPT

Legend:

NE - Non-Empty
" E - Empty

Figure 4.5 — Processor States: MP
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the validity of the IPC call, addressing and manipulating control blocks, kernel buffer-
ing, short-term scheduling decisions, sending network packets for non-local messages,
and responding to network interrupts. As a result of this processing, a task that was
waiting for a message may become ready to execute on the host. Network interrupts -
are serviced by the message coprocessor on a priority basis and lead to similar short-
term scheduling decisions. A task can be in one of three states: computing, communi-
cating, stopped. A task is computing when it is either executing or ready to execute on
the host. A task is communicating when it is either executing or ready to execute on

the message coprocessor. A task is stopped when it is waiting for a message.

4.5. An example

As an example, let us consider a typical scenario: blocking remote invocation
send (Figure 4.6). The client computes for a while on the host. It then makes a send
request. The communication processing associated with send is executed on the mes-
sage coprocessor. The client goes to the stopped state at the end of this communica-
tion processing. Meanwhile, the server executes on the host for a while. It then makes
a receive request. The communication processing associated with receive is executed
on the message coprocessor. If the send and the receive match, a rendezvous occurs
between the tasks and the server is ready to execute again on the host. The server
eventually issues a reply request. The communication processing associated with
reply is executed on the message coprocessor. At this point the rendezvous between
the client and the server is complete and both are ready to continue execution on their
hosts. The scenario is the same for both local and non-local communication. For
non-local communication the message coprocessor sends and receives network pack-

ets.
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Figure 4.6 — Blocking Remote Invocation Send
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4.6. Non-local Communication

Message coprocessors (on different nodes) exchange network packets that mirror
the IPC calls of 925. There are no low-level acknowledgements. For example, a
round-trip involves exactly two network packets: one for send message, and another
for reply message. We assume that the network is reliable and thus our network han-
dling code does not implement any checksum calculation, retransmission or time-out.
We realize that this assumption is not very realistic. However, our goal was to show
the feasibility of partitioning the message-based operating system and glean experi-
mental numbers for modeling the kernel activities involved in message passing. If
need be, the cost (in time) of calculating checksums, retransmissions, and time-outs

can be easily factored into our experimental figures.

4.7. Interrupt Handling

As we mentioned earlier, 925 maps device interrupts into the IPC paradigm. The
interrupt handlers installed by the tasks execute on the host and signal the occurrence
of the interrupt to the task via activate. The message coprocessor performs the pro-

cessing associated with activate.

4.8. Measurements

Recall that a message-based operating system is composed of the message-kernel
and the servers. Clients request system services via messages sent to the servers. The
servers compute to satisfy client requests. The amount of computation that a server
performs depends on the type of system service requested (see § 3.5). The workload
we used to measure the performance of our implementation was designed to stress the
message-based operating system. The workload (see § 6.3 for more details) is the fol-

lowing: A client loops making blocking remote invocation send requests. A server
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loops posting blocking receives. A rendezvous occurs when there is a match. During
the rendezvous the server computes to process the request in the message from the
client. In our experiments, the server executed a “busy loop” to simulate server pro-
cessing. On completion of the computation phase, the server replies to the client thus

breaking the rendezvous.

We used a uniformly distributed random number generator to specify the duration
of the “busy loop” in each round-trip. The number of simultaneous conversations and
the mean server computation time are the workload parameters. The server and client
processes in the experiments had the same scheduling priority and the scheduling pol-
icy was FCFS among these equal priority processes. Our workload included local and
non-local communication. For non-local communication, we grouped the clients on
one node and the servers on the other node. This split resulted in stressing the host
containing the server processes since only servers computed in our workload. The host
containing the clients is relatively less-stressed. Hence, we expect similar results if we
had included some client-computation in the workload. These measurements served

two main purposes:

(1) It helped obtain processing times for the different components of message

passing (see chapter 6).

(2) It gave experimental results that served as data points for validating models of

communication system architectures.

4.9. Summary

Through the implementation, we established the feasibility of partitioning the
message-based operating system between the host and the message coprocessor. The

performance benefits with this approach are discussed in chapter 6. Another important
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fruit of this exercise was insight into the kinds of system data structures that are used in
communication processing, the operations that are done on them, and the overhead for
these operations. Buffers and lists of control blocks are the data structures that are
extensively manipulated in communication processing. Operations on these data struc-
tures include copying and atomic queue manipulation. With Motorola 68000 imple-
mentation it takes 220 micro-seconds of processing time to copy 40 bytes, and 74
micro-seconds of processing time to perform an atomic queueing operation. There are
four copy operations and sixteen queueing operations in one round-trip (non-local
communication). Hence these times are important since they constitute a significant
portion of the total round-trip time. In chapter 6, we present the processing times
measured from our implementation in greater detail and use them for modeling several

architectures for performance comparison.

These system data structures are in shared memory and are manipulated by all the
units inside each node. Hence it is appropriate to provide support for these operations
at the bus level. Based on our implementation experience we have a proposal for a
smart bus architecture and a smart shared memory design that supports high level bus

transactions which are discussed in the next chapter.
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Chapter 5

Hardware Organization

5.1. Motivation

One of our primary goals in profiling message-based operating systems and
implementing the software partition was to determine the kinds of hardware assists that
would help in reducing the processing overhead in message-passing kernels. We first
examine our specific implementation and extrapolate our findings to other similar
situations. There are primarily two types of data structures in shared memory: task
control blocks, and kernel buffers. During startup, these data structures are individu-
ally linked into singly-linked circular free-lists. The message coprocessor maintains
the free-list of kernel buffers and the host maintains the free-list of task control blocks.
There are well-known locations in shared memory that hold pointers to the tails of
these lists. In addition, there are two other well-known locations: computation list tail,
and communication list tail. These locations hold pointers to the tails of the computa-
tion list and communication list, respectively. Both the computation list and the com-
munication lists are singly-linked circular lists of task control blocks. We define three
primitives for manipulating these singly-linked lists. In each case, “list” refers to the

location in memory that points to the “tail” (last element) of the list (Figure 5.1).

(1) Enqueue(element, list): This primitive enqueues the “element” to the tail and
updates “list” to point to the newly enqueued element. The algorithm for this

primitive is the following:




59

First

Last

List

Figure 5.1 — Queue Data Structure

if list < NULL then
tail := list; )
first := tail->next;
element—next := first;
tail—next := element;
else
element—next := element;
end;

list := element;

/* check for distinguished value */
/* tail of the list */

/* first entry on the list */

/* element points to first entry */
/* old tail points to element */

/* only member in the list */

/* element is new tail */

(2)  First(list): The “first” element is dequeued, and a pointer to the dequeued ele-

ment is returned. “List” is set to a “distinguished value” when there are no

more elements; otherwise, it remains unchanged. The following pseudo-code

gives the algorithm for this primitive:
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if list <> NULL then /* check for distinguished value */
tail := list; /* tail of the list */
first := tail-—snext; /¥ first element */
if tail = first then /* last element in the list */
list := NULL; /* distinguished value */
else
tail—next := first—next;  /* dequeue first */
end;
return(first); /* return first element */
else
return(NULL); /* return distinguished value */
end;

(3) Dequeue(element, list): This primitive dequeues an arbitrary “element” from
the list. It results in a “no-operation” if element is not present in the list.

“List” is updated to point to the new tail if the dequeued element is the current

tail; it is set to a “distinguished value” when there are no more elements; other-

wise, it remains unchanged. The algorithm for this primitive is the following:

curr, tail := list;
repeat
pIev = Curt;
CUIT := prev—next;
if curr = element then
if curr = prev then
list := NULL;
else

/* tail of the list */

/* keep looking */

/* previous element */
/* current element */

/* element found */

/* singleton element */
/* distinguished value */

prev—next := element—next;

if tail = element then
list := prev;
end;
return;
end;
until (curr = tail);
return;

/* need to list */

/* successful */

/* back to the start? */
/* unsuccessful */
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We now use these primitives to explain the operations that the host and the message
coprocessor perform on the data structures in shared memory. Task creation is as fol-
lows: The host gets the first member from the free-list of task control blocks, sets up
the environment for the task in the control block, and enqueues the task in the com-
munication list (with a null request). To execute a task, the host gets the first member
of the computation list, and runs it. When a task makes a communication request, the
host enqueues the task on the communication list. Similarly, the message coprocessor
gets the first task from the communication list to execute the communication request of
the task. As a result of this communication processing, if a task becomes ready to exe-
cute on the host, the message coprocessor enqueues the task on the computation list.
When a task dies, the host enqueues the freed task control block on the free-list. When
a task is killed by another task, the host dequeues the killed task from the computation
list and enqueues the freed task control block on the free-list. By design, only one pro-
cessor enqueues on any one list. The operations performed on the list of kernel buffers
are similar. To obtain an empty buffer, the message coprocessor gets the first member
from the free-list of kernel buffers. The kernel buffer is enqueued by the message
coprocessor on the service queue for which this message is intended. The first message
on the service queue is delivered to a process that does a receive system call on a ser-
vice. Therefore, to free a kernel buffer after message delivery, the message coproces-
sor gets the first buffer queued on the service and enqueues it on the free-list of kernel
buffers. The message coprocessor performs kernel buffering by copying the user
buffer (contiguous locations in user space) to the kernel buffer (contiguous locations in
kernel space). During non-local communication, the network interfaces copy blocks of

data between the kernel buffers and the network.
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We observe that the operations on the data structures in shared memory can be
grouped into three categories: movement of blocks of data, queue manipulation, and
simple read/write. First and Enqueue are the queue manipulation primitives that are
used most often. While the previous discussion is specific to our implementation on
the 925, the above groups of operations are general and applicable for implementing
the semantics of interprocess communication of any operating system. In fact, these
are the only operations that are needed to maintain singly-linked circular lists. Hence
it is appropriate to support these operations on the shared memory at the bus level.
Several recent bus proposals support block transfer primitives (see § 2.6). However, as
we mentioned in chapter 2, these bus proposals are intended for a versatile environ-
ment with multiple memory modules, processor modules, and device modules. In our
environment, there is a limited shared memory holding task control blocks and kernel
buffers. The units that access this memory are the message coprocessor, the host, and
the network interfaces. Note that this memory does not a contain either “kernel pro-
grams” or “user programs”. On the contrary, it contains only protected kernel data
structures that are manipulated by trusted kernel code executing in the message copro-
cessor and the host. Each unit that accesses this memory has exactly one outstanding
request. We argued earlier (see § 2.6.6) that in a limited controlled environment it
would be more cost effective for the memory to handle multiplexed block transfers.
Moreover, none of the existing bus proposals support atomic queue manipulation prim-
itives. Hence, we propose a smart bus for message-passing support. To support the
high-level primitives in this proposal, we propose a smart shared memory in a later
section. To put our bus proposal in the proper perspective, we should point out that the
intent is not to invent a standard for system buses. In fact, we view the bus, the mes- '

sage coprocessor, the shared memory, and the network interfaces together as a single
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uniz that provides message-passing support to the host at the level of the operating sys-
tem primitives. This unit coexists with the rest of the node architecture that includes
the bus on which the host, the devices, and the host memory reside. In chapter 7, we
discuss extension of our work to a network of shared-memory multiprocessor nodes

with one message coprocessor serving a collection of hosts that share memory.

5.2. Smart Bus Overview

Smart bus connects the host, the message coprocessor, and the network interfaces
to the shared memory (Figure 5.2). Multiplexed block transfer and atomic queue
manipulation are the transactions supported on the smart bus. Smart bus decouples
requests for block transfers from the actual data transfers. The shared memory caches
information regarding block transfer requests (address and size) in an internal table, so

that it can restart a lower-priority request after servicing a higher-priority one. The bus

Shared Smart
Memory Bus
/ a AN //.
/ ~—
V4
Network
HOST MP Interface

Figure 5.2 — Smart Bus
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is never locked for arbitrary amounts of time, thus guaranteeing access for higher
priority requests in a finite time. As we mentioned earlier, a unit can have exactly one
outstanding block transfer request. Therefore, the shared memory does not have to
handle any flow control problems. Prioritized arbitration among competing units is
supported on the bus. Bus transfer rate is scalable with device technology due to the

asynchronous protocol.

Physically, the bus includes sixteen multiplexed address/data lines, four-lines for
commands, and four-lines for a tag. In addition, there are arbitration lines for access
control protocol lines to complete the asynchronous handshake, and a system reset line
for startup. Table 5.1 gives the correlation between the names for the wires on the bus

and their functional description.

Number
Signal Name of Description
Lines
AD 16 Multiplexed address/data
TG 4 Tag
CM 4 Command
IS 1 Information strobe
IK 1 Information acknowledge
BBSY 1 Bus busy
BR 3 Bus request
AR 1 Arbitration start
ANC 1 Arbitration not complete
CLR 1 System Reset

Table 5.1 — Smart Bus Signals
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The number of multiplexed address/data lines in our design is sixteen, stemming
from the fact that our experimental results were obtained from a sixteen-bit Versabus
[Motor 82a] implementation. To maintain compatibility with our experimental results
we used sixteen-bit address/data lines. However, there is no inherent assumption in

our design that would preclude extension to a wider bus.

The bus employs asynchronous handshake. We refer to a one to zero-transition
on a protocol line as assert and a zero to one transition as release. We quantify the
duration of a bus cycle by counting the number of transitions (edges) on IS and /K.
Normally, the protocol lines are in the released state. At the end of each transaction
the protocol lines return to the released state. We refer to the initiator of transaction as
the Master and the responder as the Slave. There are two kinds of overlapping activi-
ties on the bus: arbitration cycle, and information cycle. Arbitration cycle refers to
the asynchronous handshake to decide the bus master for the next information cycle.
Information cycle refers to the asynchronous handshake to complete a transaction
(information exchange) between a master and a slave. All transactions involve exactly
two units and shared memory is always one of them. Arbitration to decide the next bus
master overlaps the current information cycle. Section 5.3 describes the transactions

that we propose in information cycles and section 5.4 describes the arbitration strategy.

5.3. Transactions

The transactions we propose on the shared bus can be grouped into three
categories: block requests, queue manipulation, simple read/write. Table 5.2 gives

the coding of the command lines.
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CM, , Commands

0000 Simple Read

0001 Block transfer

0010 Block read data

0011 Block write data

0100 Enqueue control block
0101 Dequeue control block
0110 First control block
1000 Write two bytes

1001 Write byte

Table 5.2 — Smart Bus Commands

5.3.1. Block Requests

There are three transactions provided in this category: block transfer, block read
data, block write data. These primitives allow movement of blocks of contiguous
data between the shared memory and other units in each node. They allow the shared
memory to be multiplexed for handling simultaneous requests. Block transfer and
block write data are initiated by the CPUs and network devices. Henceforth, we refer
to either a CPU or a network device as a processor. The processor that initiates block
transfer specifies whether it is a read or a write. Block read data is initiated by the
shared memory. While block transfer is the primitive used by the processor to con-
vey the intent to the shared memory, block read data and block write data are the

primitives used to effect the actual data movement.

In block transfer, the processor sends the starting address of the block and a
count indicating the number of contiguous bytes of information to be transferred. The
command (read or write) is specified on the command bus. Shared memory stores

them in its internal table and responds by returning a tag that uniquely identifies the
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transaction. Since the tag bus is distinct from the address/data bus the entire
handshake can be completed in four clock edges. Figure 5.3 shows the information
exchange and Figure 5.4 is the timing diagram. On acquiring the bus (as a result of
winning the arbitration in the preceding information cycle), the processor asserts BBSY
to establish mastership for the current information cycle. It then places the address on
A/D and asserts IS. Shared memory (slave for this transaction) receives the address,
places the tag on TG, and asserts JK. The processor receives the tag, removes the
address from A/D, places the count on A/D, and releases IS. Shared memory receives
the count, and releases IK. The processor removes the count from A/D, and releases
BBSY to relinquish control of the bus. Note that all the protocol lines (BBSY, IS, and

IK) return to the released state at the end of the transaction.

Block read data and block write data are primitives that are issued following
the block transfer request. Both these primitives result in data transfer. Shared
memory executes block read data to send the data along with the tag that uniquely
identifies the processor of the block transfer request. The processor monitors the tag
bus. When there is a tag match, the processor receives the data from the bus. Figure
5.5 shows information exchange and Figure 5.6 is the timing diagram. Shared memory
on acquiring the bus, asserts BBSY, places the tag on TG, places the data on A/D, and
asserts IK. The processor (on a tag match) receives the data, and asserts IS. Shared
memory removes the data and places the next word on A/D, and releases /K. The pro-
cessor receives the data, and releases IS. The above handshake continues with infor-
mation transfer taking place on each clock edge until the count runs out. On termina-

tion the shared memory relinquishes control of the bus by releasing BBSY.

Information transfer is in the opposite direction for block write data. Following

a request to write a block of data, the processor executes block write data sending the
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ADDRESS
TAG
PROC Shared
Memory
COUNT

Figure 5.3 — Block Transfer

TG

Legend:
Shared Memory Controls IK, TG
Processor Controls BBSY, A/D, IS

Figure 5.4 — Block Transfer Timing
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DATA

Shared
Memory

TAG

Figure 5.5 — Block Read Data

BBSY ——§ {_
w Q\DAT#\\]}AT#\DAT%AT#\DATAK/\\DAT%
IK

Is
TG \ 7
Legend:
Shared Memory controls BBSY, A/D, IK, TG
Processor Controls IS

Figure 5.6 — Block Read Data Timing

data along with the tag to the shared memory. Shared memory receives them and uses
the tag as an index into its internal table to get the address where the data is to be
stored. The information exchange is shown in Figure 5.7 and the timing diagram is
shown in Figure 5.8. Note the similarity between Figures 5.6 and 5.8. The processor
signals valid data on A/D by causing an edge transition on IS. Shared memory signals

reception of data by causing an edge transition on /K.
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Figure 5.7 — Block Write Data
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Shared Memory Controls IK
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Figure 5.8 — Block Write Data Timing

Figures 5.6 and 5.8 show several data transfers back to back. In fact, the bus arbi-
tration protocol described below only grants the bus for two transfers at a time. How-
ever, since arbitration takes place concurrently with data transfer, a master can com-
plete an entire block transfer (without relinquishing the bus) provided no higher prior-
ity request intervenes. Note that the strobe and acknowledge lines return to released

state after an even number of data transfers. That is why the bus is granted for two
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transfers at a time. Since both master and slave know the length of a block, they can
recover gracefully from an odd-length block. We call the handshake shown in Figures
5.6 and 5.8 streaming mode, wherein data transfer transactions are issued back to back.
Each transfer can take place in two clock edges. There is no address cycle preceding

information transfer since the data is uniquely tagged.

5.3.2. Queue manipulation

There are three primitives provided in this category: enqueue control block, first
control block, and dequeue control block. Viewing the memory as a singly-linked
circular list of control blocks, these primitives allow atomic queueing operations to be
performed on these lists. The data structure in memory looks as shown in Figure 5.1.
When presented with a list address, the memory unit views it as the address of the

location in memory (“List” in Figure 5:1) that points to the tail of the list.

Enqueue control block: The processor sends the list address and the address of the
element to be enqueued to the memory unit. The memory unit performs the queueing
operation atomically. Figure 5.9 shows the information exchange and Figure 5.10
shows the timing diagram. The processor (on acquiring the bus) after asserting BBSY,
places the list address on A/D, and asserts IS. Shared memory receives the list address
and asserts IK. The processor removes the list address, places the element address, and
releases IS. Shared memory receives the element address, and releases IK. The pro-

cessor completes the transaction by removing the element address and releasing BBSY.

First control block: The processor sends the list address to the memory unit. The
memory unit dequeues the first member of the list, and retums a pointer to the

dequeued element. Figure 5.11 shows the information exchange and Figure 5.12
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LIST
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Figure 5.9 — Enqueue/Dequeue Control Block
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Legend:
Shared Memory Controls IK

Processor Controls BBSY, A/D, IS
Figure 5.10 — Enqueue/Dequeue Control Block Timing
shows the timing. The processor asserts BBSY (on acquiring the bus), places the list

address on A/D, and asserts IS. Shared memory receives the list address and asserts IK.

The processor removes the list address, and releases IS. Shared memory releases IK; it
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LIST
ADDRESS
Shared
Memory
ADDRESS

Figure 5.11 — First Control Block

LIST FIRST
A/D
ADDRESS ADDRESS
IS
IK
Legend:

Shared Memory Controls IK, A/D (FIRST ADDRESS)
Processor Controls BBSY, IS, A/D (LIST ADDRESS)

Figure 5.12 — First Control Block Timing
then places the first element address on A/D, and asserts /K. The processor asserts IS
after receiving the address of the first element. Shared memory removes the first ele-

ment address and releases /K. The processor releases IS and BBSY thus completing

this eight-edge handshake.

Dequeue control block: The processor sends the list address and the address of the
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element to be dequeued to the memory unit. The memory unit performs the dequeue-
ing operation atomically. The information exchange and the timing diagram for this
transaction are the same as that for Enqueue control block (Figure 5.9 and Figure

5.10). Both the transactions require four clock edges for completion.

5.3.3. Read/Write

In addition to the above transactions, the bus supports simple read/write primi-
tives at byte granularity. Figures 5.13 and 5.15 show the information exchange and
Figures 5.14 and 5.16 show the timing for read and write respectively. The timing for
read is similar to first control block (Figure 5.12), and the timing for write is similar to

enqueueldequeue control block (Figure 5.10).

5.4. Arbitration

The distributed algorithm we use for arbitration is based on the one proposed by
Taub [Taub 84]. There are three lines on the bus to specify the bus request priority
(named BR,, ,). AR and ANC are used to signify the start and end of arbitration respec-
tively. Figure 5.18 shows the arbitration sequence. The current master of the bus
asserts AR to signal the start of bus arbitration at the beginning of the information
transfer cycle (simultaneous with the assertion of BBSY). Potential requesters assert
ANC. Each unit has a unique three-bit bus request number which we denote by br,,
(note that bro is the most significant bit). To request access to the bus a unit places its

number on BR, ,. The recurrence relation that is used to place the request number on

the bus is the following:
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Figure 5.13 — Read
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Legend:
Shared Memory Controls IK, A/D (DATA)
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Figure 5.14 — Read Timing
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Legend:
Shared Memory Controls IK
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Figure 5.16 — Write Timing

OK, = 1 i=0)
= (=BR_,Ubr,)NOK;, (Vi=0)
BR, = OK;Nbr (Vi)

Figure 5.17 shows Taub’s circuit [Taub 84] that implements this recurrence relation.

Each contender for the bus places its corresponding bit on BR,, if it finds it
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Figure 5.17 — Taub’s Arbitration Circuit
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Figure 5.18 — Smart Bus Arbitration
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Figure 5.19 — Extended Bus Master

unasserted. After placing its br number on the bus, each contender releases ANC.

ANC is a wired-or signal. Hence, the slowest contender on the bus determines the time
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for ANC to reach the released state. On the state change of ANC, the current master
releases AR thus completing the arbitration cycle. The unit whose br number matches
the value on the bus is the winner of the current arbitration cycle and will be the master
of the bus for the next information cycle. Typically, the arbitration cycle will be con-
tained within the current information cycle. The current master releases BBSY only
after the completion of the arbitration cycle. The following rules ensure the absence of

any race conditions.

(1) A potential contender for the bus joins the arbitration cycle only after the asser-

tion of AR.

(2) The winner of the arbitration cycle starts the information cycle only after the

current master relinquishes the bus (BBSY released).

(3) The current master continues information transfer without releasing BBSY

(Figure 5.19), if it is the winner for the next cycle as well,

- BBSY

Figure 5.20 — Delayed Bus Request
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(4) The current master continues to be responsible for initiating the arbitration

cycle if there are no bus requests at the end of the current information cycle

(Figure 5.20).

5.5. Smart Shared Memory

We proposed a bus architecture that is appropriate within the functional unit com-
posed of the message coprocessor and the network interfaces. However, this proposal
implicitly assumes that the shared memory has the necessary “intelligence” to handle
the high-level requests of the smart bus. Fortunately, even though the bus transactions
are high-level, the nature of the environment make these transactions feasible from the
point of view of hardware implementation. Moreover, as we argued earlier (see §

2.6.6), the nature of the environment make it possible to provide these facilities at a

reasonable “cost’l. We demonstrate this feasibility through a detailed design of a
smart shared memory. The controller for the smart shared memory is micropro-
grammed, and has under 3000 bits of micro-code. The details of the design are
presented in Appendix A. Based on the complexity of the design, we also show that
the entire design can be packaged in two chips. The data path (without the memory
system) can be implemented as a single chip with roughly 6000 active components
(see Appendix A, Table A.1 for a breakdown of active-component count). The

sequencer can be implemented as a single chip with roughly 1000 active components.

The shared memory contains the task control blocks and the kernel buffers. In
our software implementation on the 925 (see chapter 4), the size of the memory

required to hold these system data structures was under 64K Bytes. Given that today’s

IWe measure “cost” by the “complexity” (component count) of the design.
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technology permits packaging up to 4M Bytes of memory on one module [Encor 86],
we expect all of the shared memory required to hold these system data structures (for
any implementation) to fit in one module. Requests on the smart bus are initiated by
trusted kernel programs executing either on the message coprocessor or the host.
Therefore, the smart memory controller does not have to deal with many error condi-
tions that could occur in a more general environment. In Appendix A (see § A.5), we
summarize possible error conditions and argue why the shared memory controller is

immune to all of them.
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Chapter 6

Performance

6.1. Overview

Our solution to solve the message-passing problem in distributed systems had two
parts: software partition and hardware organization. We introduced these system
architecture ideas in the previous chapters. While we implemented the software parti-
tion, we decided that building the smart bus and the smart shared memory was infeasi-
ble for three reasons: time involved in fabricating and testing the hardware, cost of
such an effort, and inflexibility of such a “hardware box”. On the other hand, simula-
tion and modeling afford the ability to parametrize the design, thus enabling individual
features to be evaluated. We chose to do an analytical modeling using Generalized

Timed Petri Nets (GTPN) for the following reasons:
(1)  The availability of a good modeling package.
(2)  The applicability of the Petri net model to our specific problem.

(3)  Turn-around time for problem-solving with analytical modeling was expected

to be much shorter than that for simulation.

(4) Simulation was perceived to be more error-prone since it involved software

development.

GTPN is a graphical modeling technique for describing and analyzing the time-

dependent behavior of a Markovian system. We used GTPN as a modeling tool to
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describe the different architectures and study their performances.

In this chapter, we present the details of modeling (using GTPN) several architec-
tures to compare the merits of our system architecture ideas. We show through
model-results that these ideas result in considerable improvement in performance over

a uniprocessor implementation.

MEMORY
VERSABUS

N

DMA DMA

Vo
IN ouT °ee
w= = = - Control ‘
Data

Figure 6.1 — Architecture I: Uniprocessor



6.2. Architectures

We compare four architectures. The first (Figure 6.1) is a uniprocessor imple-
mentation of a distributed system. The message-based operating system executes on

the host. The host is in control of the network interface.

The sécond architecture (Figure 6.2) is the organization we implemented on 923.
The servers execute on the host and the message-passing kernel executes on the mes-
sage coprocessor. The shared memory contains the task control blocks and the kernel

buffers. The message coprocessor is in control of the network interface.

SHARED
MEMORY
SHARED VERSABUS

[ T 1

¥ 4

DMA DMA 1o
LOCAL LOCAL IN our
MEMORY MEMORY
- — = Control
Data

Figure 6.2 — Architecture II: Message Coprocessor
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The third architecture (Figure 6.3) is similar to the second with the difference that
a smart bus interconnects the different units within each node and a smart memory

serves as shared memory.

The fourth architecture (Figure 6.4) is based on the fact that task control blocks
are a shared data structure between the host and the message coprocessor, whereas ker-

nel buffers are a shared data structure between the message coprocessor and the net-

SHARED
MEMORY
SMART BUS
SMI ( MPp |————— T |
¥
DMA DMA
IN ouT
LOCAL LOCAL
MEMORY MEMORY
Legend:
SMI - Smart Memory Interface
— — — Control
Data

Figure 6.3 — Architecture III: Smart Bus
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work interfaces. We partition the smart shared memory and the smart bus as shown in
Figure 6.4. The task control blocks are on a partition that interconnects the host with
the message coprocessor and the kernel buffers are on a partition that interconnects the

message coprocessor with the network interfaces.

TCB KB
SMART | BUS SMART | BUS
MP SMI
~

™ TN v v f— b — o e —— —— —— —

l l

D L
LOCAL LOCAL DMA DMA
MEMORY MEMORY IN ouT

Legend:
SMI - Smart Memory Interface
TCB - Task Control Blocks
KB - Kernel Buffers
- == — Control
Data

Figure 6.4 — Architecture I'V: Partitioned Smart Bus
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In discussing the performance results, we refer to the above architectures as

architectures I, II, I1I, and IV, respectively.

One important fruit of the implementation is that it gave us the timing values
needed for driving the different models. These timing values are the processing times
for the different components of message passing. In the four architectures we are com-
paring, we assume the processors to be identical. Hence the processing times we

obtained from our implementation are applicable to all four.

6.3. Workload Description

In this section, we describe the workload that we used as the basis for comparing
the different architectures. While this is not the only possible workload, it is a typical

workload in a distributed system.
A client loops making blocking send requests:

loop
end;

send;

A server loops posting receive system calls:

loop
receive;
compute;
reply;
end;

When the send and the receive match, a rendezvous takes place between the client and
the server. The server then computes for a while processing the request in the message
from the client. At the end of the computation phase, the server completes the request
from the client with a reply, completing the rendezvous between the client and the

server. We call this extended request-reply sequence between the client and the server
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a conversation. Our workload contains both local and non-local conversations. The
number of simultaneous conversations and the amount of computation specified in
each conversation are the two parameters we vary in the workload. Figure 6.5 shows
this client-server relationship. It is true that in a real system, clients compute as well.
However, we designed our workload to stress the performance of the message-based
operating system composed of the message-kernel and the servers. Therefore, for

these experiments we did not consider client-computation in our workload.

Offered load is a measure of the communication load that is presented to the sys-
tem by each conversation, defined as the ratio of communication time (in a round-trip)
to the sum of communication time and compute time. As we mentioned earlier (see §
3.6), by communication we mean the system code that has to be executed to process a

communication request. Intuitively, a compute-bound conversation is characterized by

CLIENT SERVER

Figure 6.5 — Workload
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an offered load tending towards zero, while offered load of a communication-bound

conversation tends toward unity.

6.4. Processing Times

In our implementation, we had an 8 MHZ CPU clock. At 8 MHZ clock speed,
Motorola 68000 has an instruction execution rate of roughly 0.3 MIPS [Motor 82b].
Versabus [Motor 82a] memory cycle time is on an average one micro-second. In our
models, we assume an instruction execution time of three micro-seconds and a Ver-
sabus memory cycle time of one micro-second. We also assume that the four-edge
handshake of smart bus equals Versabus memory cycle time and that the two-edge
handshake equals half the Versabus memory cycle time. We should point out that a
much higher speed is achievable for the smart bus with current technology. However,
these conservative times for smart bus primitives give a more realistic basis for com-
paring the different architectures. Table 6.1 shows a comparison of implementing
queue manipulation and block transfer operations for architectures II and III. For
architecture II, each of enqueue, dequeue, and first involves the following steps to be
performed by the message coprocessor: get semaphore, execute the queue manipula-
tion algorithm (see previous chapter), and release semaphore. The message coproces-
sor executes a program-loop for reading or writing a block in architecture II, The pro-
cessing time for this loop execution is shown in Table 6.1. The message coprocessor

in architecture ITI executes three instructions to initiate any of the smart bus primitives.

Tables 6.4, 6.6, 6.9, 6.11, 6.14, 6.16, 6.19, and 6.21 are a breakdown of the com-
munication time for one round-trip conversation into component message-passing
activities. The breakdown gives the processing time, the time spent in accessing

shared data structures, and the total time for both local and non-local conversations.
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Architecture I Architecture ITI
Time Time
Processing Spent Processing Spent
Operation In In Handshak
andshake
Time Memory Time Memory
Cycles Cycles
micro-seconds
Enqueue 60 14 1 Four-edge
Dequeue 60 14 1 Four-edge
First 60 14 2 Eight-edge
One
Block
oc four-edge
Read 180 20 9 11 followed
by
twenty
4
(40 Bytes) two-edge
One
Block
loc four-edge
Write 180 20 9 11 followed
by
twenty
(40 Bytes) two-edge

Table 6.1 — Comparison of Processing Times

The times for architecture II were obtained directly from our implementation. The

times for architecture I were obtained from architecture II by eliminating the overhead

for synchronization between the host and the message cOprocessor. The times for

architectures III and IV were derived from architecture II after factoring in the primi-

tives of the smart bus.
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6.5. GTPN Overview

A Perri net [Peter 81] is a graphical model to concisely describe the functional
behavior of asynchronous parallel systems. By introducing timing specification for
events in the net, and probability specification for alternative events, these models can
be used to analyze system performance. We used a performance-oriented Petri net,
Generalized Timed Petri Net (GTPN) [Holli 85, Holli 86] to model and analyze the

performance of our proposed system architectures.

Figure 6.6 represents a simple GTPN model. The net consists of places (circles),
arcs, transitions (horizontal lines), and rokens (dots). Arcs are directed edges from
places to transitions or transitions to places. A Petri net is a multigraph, since there

can be more than one edge from a given place to a given transition (or vice versa). A

TO
1,0.1,A)

T2
(20, 1)

Legend:
(Delay, Frequency, <Resource>)

Figure 6.6 — Petri Net Example
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transition represents an event in the system and is characterized by a set of input
places, a set of output places, and an artribute vector. The places with arcs to a transi-
tion constitute input places and the places with arcs from a transition constitute output
places for that transition. The initial distribution of tokens among the places in the net
constitutes the initial state of the net. The dynamic behavior of the system is modeled
by the movement of tokens through the net. Tokens move when transitions fire. The
rule for firing is as follows. A transition is enabled (for firing) when each of its input
places contains at least as many tokens as the number of arcs connecting the place to
the transition. When a transition is enabled, it szarts firing by renﬁoving the enabling
tokens from its input places. After a constant amount of time the transition ends firing
by placing as many tokens in each of the output places as the number of arcs connect-
ing the transition to the place. Tokens continue to move in this manner forever, or
until no more transitions can fire. In the example shown in Figure 6.6, the token in P1
cycles some arbitrary number of times back to place P1, and then moves to place P2.
From P2, the token moves back to place P1 to begin a new cycle. The attribute vector
for a transition has three elements?: delay, frequency, and resource. “Delay” is a deter-
ministic firing duration for the transition. Even though transitions have deterministic
firing times, GTPN is a stochastic process in that a probability distribution governs the
firing of transitions that share input places. “Frequency” is the attribute that governs
the firing probability of transitions that share input places. Both the “delay” and the
“frequency” attributes may be state-dependent expressions. “Resource” is an output

measure of the Petri net. It is a name that can be associated with a transition, and is “in

2There is a fourth element to the attribute vector called Cnt Combinations. This
attribute is discussed in detail in the literature [Holli 85, Holli 86].
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use” when the transition is firing. The GTPN analyzer calculates the mean number of
usages (over time) of each resource in steady state. The throughput of the system
modeled in Figure 6.6 is the fraction of time transition TO is in use. Thus the

resource-usage estimate for A gives the throughput of the system.

To study the behavior of a system described by a Petri net, it is possible to adopt
either a simulation approach or an analytical approach. The analyzer developed at
University of Wisconsin (for GTPNs) takes a description» of the petri net, builds the
reachable states for the net, solves the embedded Markov process, and gives exact esti-
mates for “resource” usage. We used this analyzer to evaluate the different architec-

tures (see § 6.7).

6.6. Reducing Model Complexity

One of the limitations of Markov chain analysis is the fact that the state-space
tends to grow very rapidly with the size and complexity of the system being modeled.
In the next few sub-sections we describe some techniques we employed to combat the

state-space problem.

6.6.1. Large Delays

The greatest common divisor of all the deterministic delays (in progress) in the
system determines the granularity of the time-interval between state changes in the
GTPN model. In modeling interprocess communication, we deal with large deter-
ministic times (several hundreds of machine instructions) for the various message-
passing activities. At the same time, system events such as network interrupts are
fielded and serviced on a priority basis, typically on single machine instruction boun-
daries. To overcome this problem, We modeled large constant delay by a geometri-

cally distributed delay with the same mean, as illustrated in Figure 6.7. We expect
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reasonable agreement for this approximation since the performance measure of interest
is mean throughput. Transition T2 in Figure 6.7a is the constant time delay we want to

model. Figure 6.7b is the approximate model. The throughput A measured in

Pl

T0
1,0.1,A)

T2
0,1)
(a) A large constant-time delay
Pi
TO
1,0.1,A)

T2
1, 1/20)

1, 1-1/20)

(b) A probablistic delay approximating
a constant delay

Figure 6.7 — Modeling Large Constant Delays
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transition TO is the same in either model. We established through experimentation that

this approximation results in very good agreement in our larger models as well.

6.6.2. Shared Memory Contention

We describe the models for the assumed workload under the different architec-
tures in a later section. Each model is a representation of the processing steps involved
in performing the message passing activities in a conversation. Each of these activities
has a certain measured delay which consists of two components: access to shared data
structures, and processing time including access to local data structures. Exact model-
ing of the contention for shared data structures increases the complexity of the model
very rapidly. Hence, we modeled this contention exactly in a separate low-level model
and computed the average delays for different activities that interfere with each other.
The result is a table that gives completion times for each activity that could potentially

overlap with others.

It is conceivable that we can then write frequency expressions for each activity in
the higher level model in terms of the currently active states and the completion times
derived from the exact model. However, such expressions result in making the model
unnecessarily complex. Fortunately, the spread of completion times for a given
activity (in the presence of all possible other overlapping activities) is fairly small.
Hence we decided to use the “contention” completion time for each activity (which
results when all possible other activities overlap) instead of state-dependent expres-
sions. For example, Table 6.2 gives the processing time and the time spent in access-
ing shared memory by four activities. “Best” is the sum of the two times and

represents the completion time for each activity in the absence of any contention.
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Time (microseconds)
Processor Activity . Shared memory Total
Processing
access Best Contention
Host SendProc 1140 150 1290 13149
DMA DMA out 200 30 230 235.2
DMA DMA in 200 30 230 2352
Host NetIntr 830 130 960 982

Table 6.2 — Architecture I: Non-local Conversation (Client Contention)

Figure 6.8 gives the low-level model that represents the contention for shared
memory. The resources associated with transitions T1, T6, T11, and T16 are shown in
Figure 6.8. Table 6.3 gives the delay and frequency attributes for the transitions in the
model. SendProc and NetIntr are activities that take place on the host that could over-
lap (in the “contention” case) with DMA out or DMA in. Solution of the model gives
the delay for each activity (under “Contention” in Table 6.2) which is applied to the

higher level workload model for the different architectures.

6.6.3. Iterative Solution

In reality clients and servers co-exist in each node. The servers at each node may
service both local and non-local requests from clients. However, to keep the model
complexity within manageable limits, we considered the local and non-local conversa-

tions separately.

For non-local conversations we split the model into two parts: One part models a
node executing all the client processes and the other part models a node executing all
the server processes. As we mentioned earlier (see 6.3), only servers “compute” in our

workload, since our workload is designed to stress the message-based operating system
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Figure 6.8 — Resource contention
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Transition L::t‘:;:f: (micrl::;l:cst'mds) Frequency
TO SendProc 0 1-1/1290
T1 SendProc 1 1/1290
T2 SendProc 0 150/1290
T3 SendProc 1 1-150/1290
T4 SendProc 1 1
T5 Netlntr 0 1-1/960
T6 Netlntr 1 1/960
T7 NetIntr 0 130/960
T8 Netlntr 1 1-130/960
T9 Netintr 1 1
T10 DMAout 0 1-1/230
T11 DMAout 1 1/230
T12 DMAout 0 30/230
T13 DMAout 1 1-30/230
T14 DMAout 1 1
T15 DMAin 0 1-1/230
T16 DMAin 1 1/230
T17 DMAin 0 30/230
T18 DMAin 1 1-30/230
T19 DMAin 1 1

Table 6.3 — Architecture I: Non-local (Client Contention Attributes)

composed of the message-kernel and the servers. This split results in stressing the host
containing the server processes. The host containing the clients is relatively less-
stressed. Hence, we expect model results would be similar if we include some client-

computation in the workload.

Figures 6.10 and 6.11 show the decomposition for architecture 1. We assume that
a request from a client can be serviced by any server. The number of clients and

servers are equal and determines the maximum number of simultaneous conversations
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in the system. The client model includes a “surrogate” round-trip delay for the request
at the server node. Similarly, the server model includes a “surrogate” client-delay that
signifies the mean waiting time for client requests. Note that the client and server
models can now be run independently, if the parameters for the surrogate delays are
known. At the beginning, these workload-dependent delays are not known. Therefore,
the combined system is solved by iteration as follows. The client model is solved
assuming an initial server delay equal to the sum of the communication time and com-
pute time for the given workload to get the throughput for client requests. The mean
waiting time for client requests as seen by the server is computed from this throughput,
which is then used to solve the server model to get a more accurate server delay. The
new server delay is applied to the client model to get a new estimate for the client
arrival rate. The iteration is continued until two successive runs of the server model
yield server delays that differ from each other within a certain tolerance limit. Once
the solution converges as per this criteria we have the throughput for the workload

defined by the two parameters: number of conversations and offered load.

6.6.4. Assumptions Regarding the Network

We assume that the network is not a bottleneck. Therefore, for the server model
we associate constant times with reading and writing network packets (no queueing
delay), which are added into the delay calculation outside the model. However, since
the client model is substantially less complex than the server model, we have explicitly

modeled contention for network activities in it.

6.7. Model Description

We present the details of the models we developed for the different architectures

in the next few sub-sections. In the following model descriptions, we tabulate the
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delay and frequency attributes of the transitions and show the resources (if any) associ-

ated with the transitions in the corresponding net diagram.

6.7.1. Architecture I: Local Conversation

Table 6.4 gives a breakdown of the processing steps involved in a conversation.
As we mentioned earlier (see § 6.4), the times for the processing steps were derived
from measurements of our implementation on the 925 system. Note that for local
conversation the “contention” completion times of activities are the same as the “best”.
The net for local conversation is shown in Figure 6.9. The delay and frequency attri-
butes for the transitions and the actions that are modeled by each transition are shown

in Table 6.5. A resource (A) is associated with transition T4 (see Figure 6.9).

The token in Host denotes the availability of the host processor. The tokens in

Clients and Servers represent the number of active client and server processes. Clients

Action Time (microseconds)
Processor | Initiator Shared Total
Number Description Processing | memory
access |Best| Contention
Host Client 1 Syscall Send 1040 150 1190
Host Server 2 Syscall Receive 650 120 7170
Host 3 xaﬂ‘fls‘e:‘:;‘t 1240 140 1380
Host Server 4 Compute Workload Parameter
Host Server 5 Syscall Reply 1020 210 1230
Host 6 Restart Server 140 60 200
Host 7 Restart Client 140 60 200

Table 6.4 — Architecture I: Local Conversation
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Clients Host Servers

T1 TO T3
Host
Send Receive
T5 \" T4 (A)

Figure 6.9 — Architecture I: Local

Transition Mo«?eled . . Delay Frequency
actions (microseconds)
TO 1,7 1 1/1390
T1 1,7 1 1-1/1390
T 2,6 1 1/970
T3 2,6 1 1-1/970
T4 345 1 1/(1380+X+1230)
T5 345 1 1-1/(1380+X+1230)

Table 6.5 — Architecture I: Local Conversation (Transitions)

and servers compete equally for the host. In the performance experiments on our 925
implementation (see § 4.8), we used an FCFS scheduling policy. The mean perfor-
mance results from modeling our workload with either FCFS or processor-sharing
yielded similar results. However, processor-sharing resulted in reduced model com-
plexity (due to fewer places and fewer transitions). Hence, in our models we use
processor-sharing and FCFS interchangeably. Clients get scheduled on the host and

make the system call send (TO and T1). Servers get scheduled on the host and post
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receive (T2 and T3). Transitions T4 and T5 model the processing time to effect the

matching between the client and the server, restart the server in the service routine to

perform the service for the client, and make the system call Reply. X in the frequency

expression for T4 and T5 is a workload parameter that signifies the amount of server

computation in each conversation. End of firing of T4 signifies the end of the rendez-

vous between the client and the server (tokens returned to Clients and Servers).

6.7.2. Architecture I: Non-local Conversation

Table 6.6 gives a breakdown of the processing steps involved in a conversation.

As we mentioned earlier, for non-local conversations we split the model into two parts:

Action Time (microseconds)
Processor | Initiator Shared Total
Number Descriptien Processing | memory
access | Best | Contention

Host Client 1 Syscall Send 1140 150 1290 13149
DMA Client 2 DMA out 200 30 230 2352
Host Server 3 Syscall Receive 650 120 770 790.7
pma  [ework | IpMAn 200 30 | 230 2352

interrupt
Host Network |, [Match client 1790 210 |2000] 20346

interrupt with server
Host Server 4b Compute Workload Parameter
Host Server 4c Syscall Reply 1060 220 1280 1318.5
DMA Server 5 DMA out 200 30 230 2352
pMA MO ¢ IDMAn 200 30 | 20 2352

interrupt

Network Cleanup and
Host interrupt 7 Restart Client 830 130 960 982

Table 6.6 — Architecture I: Non-local Conversation




103

one modeling the node with clients and the other modeling the node with servers. Fig-
ure 6.10 is the model for the client node. The places JoOut and Joln denote the availa-
bility of the network interfaces for sending and receiving network packets respectively.
A client is scheduled when Host is available (T0) and the client then makes the system
call Send (T1 and T2). On completion of firing of T1, the host is released for schedul-
ing other clients. When JIoOut is available, a network packet corresponding to send is
sent (T6 and T7) and the client waits for service from the remote server (T8 and T9).
When the response comes back from the server it is read in by the network interface
(T11 and T12) on the availability of JoIn (T10), and results in a network interrupt to
the host. The interrupt is processed (T4 and T5) resulting in the waiting client becom-
ing runnable (token returned to Clients). T8 and T9 model the server delay and are
modified between successive iterations until convergence. Table 6.7 gives the delay
and frequency attributes for the transitions. Transitions that have Host as an input
place cannot fire when the host is responding to a network interrupt as indicated by the
state-dependent frequency expressions for T1, T2, T3, T11, and T12 in Table 6.7. We
use the following notation to specify state dependent frequency expressions:
<expr> — a, b
The frequency is a if <expr> evaluates to “true”, b otherwise. For example, the
expression in Table 6.7
(Netlntr =0) & T4 & TS — 1/1314.9,0

should be read as follows. The frequency is “1/1314.9” when there are no pending
interrupts (NetIntr = 0) and the host is not busy processing an interrupt (T4 & T5). The

frequency is “0” otherwise.
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Figure 6.10 — Architecture I: Non-local (Client)
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Transition B::):s:d (micrlz):l::{m ds) Frequency
TO 0 1
T1 1 1 Nethtr=0) & W & TS
—> 1/13149,0
1 1 Wethtr=0) & H & TS
—> 1-1/1314.9,0
0 Netntr=0) & H & TS
- 1,0
T4 1 7 1 1/982
TS 7 1 1-1/982
T6 2 1 1/235.2
T7 2 1 1-1/235.2
T8 1 s,
T9 1 1-1/S,
T10 0 1
ethnr=0) & B & TS5
i 6 ! e 1/2)352. 0
etinr=0) & M & TS
2 6 ! 3 1-1/)2352,0

Table 6.7 — Architecture I: Non-local Conversation (Client)
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Solving the model gives an estimate of the usage of A, a resource associated with

T1. This estimate is the message throughput of the system. Using Little’s result

[Klein 75], the mean cycle time for each client is:

T = Clients/A

Let S, be the current estimate of mean server delay per conversation (T8 and T9). In

the node containing the clients, the mean communication time, including queueing

delays, for each client process is:

C,=T-S,

The mean waiting time for client requests in the server model is computed from C d'
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and is applied to the next iteration of the server model.

Figure 6.11 is the model for the server and Table 6.8 gives the delay and fre-
quency attributes for the transitions. When a Server is scheduled on the host (T0) it

executes Receive (T1 and T2), and then waits for a client request in ClientWait. We do

Servers Host

T

Receive

ClientWait
»

T3
Rendezvous

RequestService

Figure 6.11 — Architecture I: Non-local (Server)
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not know of any exact method to calculate the mean of this waiting time. An approxi-

mate method is the following: Assume that on the average a server waits for the same

client that it served last. That client is busy on its node for C d', on the average. The

time C d' is overlapped with the time the server is executing receive (S). Therefore,

the mean waiting time for client requests as seen by the server is given by the follow-

ing expression:

C,=C, -S,
The mean time spent in transitions T1, and T2 (modeled action 3 in Table 6.6) is equal
to this concurrent execution time. T3 and T4 represent the mean waiting time for
requests from clients. In our iterative procedure these are the transitions whose fre-
quencies are modified between successive iterations of the model for convergence.
The end of the firing of T3 signifies the arrival of a client request. In the actual system
a network interrupt will mark this arrival. T8 and T9 model the processing associated
with matching the client request with a waiting server on a network interrupt. TS5
ensures that network interrupts are disabled during this processing as indicated by its
frequency expression in Table 6.8. T6, T7, and Queue help measure mean number of
busy servers as explained below. Eventually, the server is scheduled on the host (T10)
and is restarted in the service routine to satisfy the client request. The server computes
for a while satisfying the client request, and then executes Reply (T11 and T12). X in
the frequency expression for T11 and T12 is a workload parameter that signifies the
amount of server computation in each conversation. All transitions that have Host as
an input place are inhibited when the network-interrupt processing is active (see Table

6.8).
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Transition Modeled Delay Frequen
actions (microseconds) quency
0 0 (RequestService =0) & T8 & TO
-3 1,0
1 3 1 (RequestService =0) & T8 & T9
—> 1/790.7, 0
- 3 , (RequestService = 0) & T8 & TO
—3 1-1/790.7, 0
E%) 1 1C,
T4 1 1-1/C,
s 0 (RequestService =0) & T8 & T
—>1,0
Hangup=0
16 ! —1,0
T7 0 1
T8 4a 1 1/2034.6
T9 4a 1 1-1/2034.6
(RequestService = 0) & T8 & TO
T10 0 Lo
(RequestService =0) & T8 & TO
m 4b.de 1 — 1/(1318.5+X)
(RequestService =0) & T8 & T
T2 4b.dc 1 —> 1-1/(1318.5+X)

Table 6.8 — Architecture I: Non-local Conversation (Server)

The delay measured inside the box bounded by the dotted lines represents the
server delay encountered by each client. We apply Little’s result [Klein 75] to the sys-

tem bounded by the dotted lines to calculate S ;:

N=AS,
A is the resource usage associated with T3, and represents the rate at which customers

(client requests) are entering the system. N is the average number of busy servers in
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the system in the steady-state. One way of calculating N is to sum up the utilization of
all the transitions inside the dotted box. Queue, T6, and T7 help compute N in a
simpler way. A token is put in Queue every time a token enters the system (end of
T3), and is released when the rendezvous between the client and the server is complete
(T7). The mean number of tokens in Queue in the steady-state represents the average
number of customers in the system and is measured by associating a resource to T6.
Note that firing of T6 firing is disabled if there are any tokens in Hangup. Using N and

A we compute the new server delay S,. We add the times for reading in the client’s

request packet (modeled action 4 in Table .6) and writing out the server’s reply packet

(modeled action 5 in Table 6.6) to S, before applying S, to the client model.

6.7.3. Architecture II: Local Conversation

Table 6.9 gives a breakdown of the processing steps involved in a conversation.
Figure 6.12 is the net for local conversation and Table 6.10 gives the delay and fre-
quency attributes for the transitions. The place MP denotes the message coprocessor.
Clients scheduled on the host execute Send (TO and T1). MP executes the code associ-
ated with Send (T4 and T5). Servers scheduled on the host execute Receive (T2 and
T3). MP executes the processing code associated with Receive (T6 and T7). Transi-
tions T8 and T9 represent the processing to be done on MP to perform the matching
between the client and the server. The server is restarted on the host to compute for a
while and execute Reply (T10 and T11). X in the frequency expression for T10 and
T11 is a workload parameter that signifies the amount of computation in each conver-
sation. Processing code associated with Reply is executed on the message coprocessor

(T12 and T13) thus completing the rendezvous between the client and the server.
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Action Time (microseconds)
Processor | Inmitiator Shared Total
Number Description Processing | memory
access | Best [ Contention

Host Client 1 Syscall Send 320 78 398 4049
MP Client 2 Process Send 900 104 1004 1030.2
Host Server 3 Syscall Receive 320 78 398 4049
MP Server 4 Process Receive 510 74 584 603
MP 5 :ﬁ‘fg‘:“ 1160 84 | 1244 12644
Host Server 6 Restart Server 60 50 110 1154
Host Server 6a  [Compute ‘Workload Parameter
Host Server 6b  [Syscall Reply 320 78 398 404.9
MP Server Process Reply 1060 182 1242] 1289.8
Host Restart Server 60 50 110 1154
Host Restart Client 60 50 110 1154

Table 6.9 — Architecture II: Local Conversation
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Figure 6.12 — Architectures II, ITI, IV: Local
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Transition Moc?eled . Delay Frequency
actions (microseconds)

TO 1,9 1 1/519.9
T1 19 1 1-1/519.9
T2 3.8 1 1/519.9
T3 38 1 1-1/519.9
T4 2 1 1/1030.2
T5 2 1 1-1/1030.2
T6 4 1 1/603
T7 4 1 1-1/603
T8 5 1 1/1264.4
T9 5 1 1-1/1264.4
T10 6,6a,6b 1 1/(520.3+X)
T11 6,6a,6b 1 1-1/(520.3+X)
Ti2 7 1 1/1289.8
T13 7 1 1-1/1289.8

Table 6.10 — Architecture II: Local Conversation (Transitions)

6.7.4. Architecture II: Non-local Conversation

Table 6.11 gives a breakdown of the processing steps involved in a conversation.
As in the case of architecture I, the model for non-local conversation is split in two
parts. Figure 6.13 gives the net for the client and Table 6.12 gives the delay and fre-
quency attributes for the transitions. The net is very similar to the client net for archi-
tecture I. The main difference is that all the message passing activities execute on the
message coprocessor. The host is released when the client completes execution of

Send (T0).

The message coprocessor handles network interrupts. Netlntr, T6, and T7
represent the processing associated with network interrupts. Transitions that have MP

as an input place are inhibited from firing when the message coprocessor is handling
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Action Time (microseconds)
Processor | Initiator Shared Total
Number Description Processing | memory
access | Best { Contention

Host Client 1 Syscall Send 320 78 398 426.8
MP Client 2 Process Send 1000 104 1104 11452
DMA Client 2a |DMA out 200 30 230 240.9
Host Server 3 Syscall Receive 320 78 398 4219
MP Server 4 Process Receive 510 74 584 628.2
DMA i‘:;wrzﬁ 5 |[pMAn 200 30 | 230 2478
MP Em’: 5 fﬂ‘f:e:‘;‘“ 1650 104 |1754| 18125
Host Server 6 Restart Server 60 50 110 128.6
Host Server 6a |Compute Workload Parameter

Host Server 6b  |Syscall Reply 320 78 398 4219
MP Server 7 Process Reply 920 128 1048 1124
DMA Server 7a |DMA out 200 30 230 247.8
Host 8 Restart Server 60 50 110 128.6
DMA E‘::rgs: 9 |[PMAin 200 30 | 230 2409
MP i‘:;ﬁ;‘: 9a  |Cleanup client 750 74 | 824 8532
Host 10 Restart Client 60 50 110 118.0

Table 6.11 — Architecture II: Non-local Conversation
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Figure 6.13 — Architectures II, III, IV: Non-local (Client)




o Modeled Delay
Transition actions (microseconds) Frequency

TO 1,10 1 1/544.7

T1 1,10 1 1-1/544.7

T2 1 1
(Netlntr = 0) & T6 &TI

3 2 1 —> 1/1145.2,0
(NetIntr=0) & T6 & T7

T4 2 1 —> 1-1/1145.2,0
Netintr=0) & T6 & T7

T5 0 —1,0

T6 9a 1 1/853.2

T7 %a 1 1-1/853.2

T8 2a 1 1/240.9

T9 2a 1 1-1/240.9

T10 1 s,

T11 1 1-1/8,

T12 0 } 1
Metntr=0) & 6 & T7

| T13 9 1 —> 112409, 0

(NetIntr=0) & T6 & T7

Ti4 9 1 —3 1-1/240.9,0

Table 6.12 — Architecture IT: Non-local Conversation (Client)

network interrupts as seen in the frequency expressions (Table 6.12).

115

Figure 6.14 is the net for the server and Table 6.13 gives the delay and frequency

attributes for the transitions. The net is very similar to the server net for architecture L.

Servers signify the number of servers executing at a node. In the light of the similarity

of the net to the server net for architecture I, we think the net and the Tables are self-

explanatory.
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Transition 1‘:22;::: (mic?ozl::y;m ds) Frequency
0 4 1 (RequestService =0) & T/ & T8
—> 1/628.2,0
1 4 1 (RequestService =0) & T7 & T®
—> 1-1/628.2,0
T2 1 11C,
T3 1 1-1/C,
uestService =0) & T7 & TB
T4 0 Req gy 0)
Han
TS 1 __)g‘;f’:o
T6 0 1
7 5 1 1/1812.5
T8 5 1 1-1/1812.5
T9 6,6a,6b 1 ' 1/(550.5+X)
T10 6,6a,6b 1 1-1/(550.5+X)
uestService=0) & T7 & T8
T 7 ! e — 11 124), 0
uestService=0) & T7T & T8
T2 7 1 e —>1-1/1 1221, 0
T13 3.8 1 1/549
Ti4 3,8 1 1-1/549

Table 6.13 — Architecture II: Non-local Conversation (Server)

6.7.5. Architectures III and IV

The models we developed for architecture II are applicable to architecture III and
architecture IV as well. The difference is in the delays for the message-passing activi-
ties that are éalculated from the low-level models (see § 6.2 and § 6.4). For architec-
ture III, Table 6.14 and Table 6.16 give a breakdown of the processing steps involved
in a round trip for local and non-local conversations respectively. For architecture IV,

Table 6.19 and Table 6.21 give a breakdown of the processing steps involved in a
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Action Time (microseconds)
Processor | Initiator , Shared Total
Number Description Processing | memory
access | Best| Contention

Host Client 1 Syscall Send 220 52 272 278
MP Client 2 Process Send 612 71 683 700.9
Host Server 3 Syscall Receive 220 52 272 278
MP Server 4 Process Receive 451 61 512 527.6
MP 5 ﬁf:;f;“ 922 61 |o983| 9977
Host Server 6 Restart Server 60 50 110 117.2
Host Server 6a Compute Workload Parameter
Host Server 6b  [Syscall Reply 220 52 272 278
MP Server 7 Process Reply 475 113 588 619
Host 8 Restart Server 60 50 110 117.2
Host 9 Restart Client 60 50 110 117.2

Table 6.14 — Architecture III: Local Conversation




Transition Mo«?eled . Delay Frequency
actions (microseconds)

TO 1,9 1 1/394.6
T1 1,9 1 1-1/394.6
T2 3,8 1 1/394.6
T3 38 1 1-1/394.6
T4 2 1 1/700.9
TS 2 1 1-1/700.9
T6 4 1 1/527.6
T7 4 1 1-1/527.6
T8 5 1 1/997.7
T9 5 1 1-1/997.7
T10 6,6a,6b 1 1/(395.2+X)
T11 6,6a,6b 1 1-1/(395.2+X)
T12 7 1 1/619
T13 7 1 1-1/619

Table 6.15 — Architecture III: Local Conversation (Transitions)
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Action Time (microseconds)
Processor | Initiator Shared Total
Number Description Processing | memory
access | Best | Contention

Host Client Syscall Send 220 52 272 284.5
MP Client 2 Process Send 712 71 783 805
DMA Client 2a  |DMA out 200 15 215 2194
Host Server 3 Syscall Receive 220 52 272 281.8
MP Server Process Receive 451 61 512 540
DMA ﬁfxﬁ 5 |[pMA 200 15 | 215 2221
MP E‘:e“r”rz;]: 5 ?N’Iffs‘ef_‘ll‘:;“ 1362 71 | 1433 1461
Host Server 6 Restart Server 60 50 110 1215
Host Server 6a Compute Workload Parameter

Host Server 6b Syscall Reply 220 52 272 281.8
MP Server 7 Process Reply 573 82 655 690
DMA Server 7a DMA out 200 15 215 222.1
Host 8 Restart Server 60 50 110 1215
DMA zf;“’m";l: 9 |DMAin 200 15 | 215] 2194
MP ifgﬁ;‘: 9a  |Cleanup client 462 a1 | s03| 514
Host 9 Restart Client 60 50 110 115.1

Table 6.16 — Architecture III: Non-local Conversation




o Modeled Delay

Transition actions (microseconds) Frequency

TO 1,10 1 1/399.6

T1 1,10 1 1-1/399.6

T2 1 1
Netlntr=0) & T6 & TT

e 2 1 —> 1/805,0
(Netlntr =0) & T6 & T7

T4 2 1 —> 1-1/805, 0
Metlntr =0) & T6 & T7

» 0 —1,0

T6 9a 1 1/514

T7 9a 1 1-1/514

T8 2a 1 12194

T9 2a 1 1-1219.4

T10 1 ys,

T11 1 1-S,

T12 0 1
(Netlntr=0) & T6 & T7

13 ? 1 —> 1/2194,0
Netntr=0) & 6 & T7

T4 2 1 —> 1-1/219.4,0

Table 6.17 — Architecture III: Non-local Conversation (Client)
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Transition Moc!eled . Delay Frequency
actions (microseconds)
0 4 1 (RequestService = 0) & T7 & TS
—> 1/540,0
1 4 ] (RequestService =0) & T/ & T8
—> 1-1/540,0
T2 1 1/C,
T3 1 1-1/C,
4 0 (RequestService = 0) & T7 & T8
—>1,0
Han,
TS 1 _)gx;;:;o
T6 0 1
T7 5 1 1/1461
T8 5 1 1-1/1461
9 6,6a,6b 1 1/(403.3+X)
T10 6,6a,6b 1 1-1/(403.3+X)
uestService = 0) & T7 & T8
i 7 1 e — 1/690,)0
equestService=0) & T7 & T8
Ti2 7 1 e —d 1-1/693, 0
T13 38 1 1/402.1
T4 3.8 1 1-1/402.1

Table 6.18 — Architecture IIl: Non-local Conversation (Server)

round trip for local and non-local conversations respectively. Tables 6.15, 6.17, and
6.18 give the delay and frequency attributes of the tramsitions for architecture .
Tables 6.20, 6.22, and 6.23 give the delay and frequency attributes of the transitions

for architecture IV.
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Action Time (microseconds)
Processor | Initiator KB | TCB Total
Number | Description Processing
access | access | Best| Contention

Host Client 1 Syscall Send 220 0 52 {272 273.7
MP Client 2 Process Send 612 50 21 | 683 687.9
Host Server 3 Syscall Receive 220 0 52 | 272 273.7
MP Server 4 Process Receive 451 40 21 | 512 516.9
MP 5 'zl’aﬂf:ei‘::“ o2 | e | 1 |93 2
Host Server 6 Restart Server 60 0 50 {110 112
Host Server 6a  Compute - Workload Parameter
Host Server 6b  [Syscall Reply 220 0 52 | 272 273.7
MP Server 7 Process Reply 475 80 33 | 588 595.9
Host 8 Restart Server 60 0 50 | 110 112
Host 9 Restart Client 60 0 50 1110 112

Table 6.19 — Architecture IV: Local Conversation



Transition Mo?eled . Delay Frequency
actions (microseconds)

TO 1,9 1 1/385.6
T1 1,9 1 1-1/385.6
T2 3.8 1 1/385.6
T3 338 1 1-1/385.6
T4 2 1 1/687.9
T5 2 1 1-1/687.9
T6 4 1 1/516.9
T7 4 1 1-1/516.9
T8 5 1 1/983.2
T9 5 1 1-1/983.2
T10 6,6a,6b 1 1/(385.7+X)
Ti1 6,6a,6b 1 1-1/(385.7+X)
T12 7 1 1/595.9
T13 7 1 1-1/595.9

Table 6.20 — Architecture IV: Local Conversation (Transitions)
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Action Time (microseconds)
Processor | Initiator . KB | TCB Total
Number | Description Processing
, access | access | Best | Contention
Host Client 1 Syscall Send 220 0 52 272 273.2
MP Client 2 Process Send . 712 50 21 783 789.8
DMA Client 2a DMA out 200 15 0 215 216.3
Host Server 3 Syscall Receive 220 0 52 272 273.5
MP Server 4 Process Receive 451 40 21 512 5202
DMA [ | 5 IbMAn 200 | 15| 0| 219 2163
interrupt .
MP Network | 5 [Match client 1362 | 40 | 31 |1433 1443
interrupt with server
Host Server 6 Restart Server 60 0 50 110 111.8
Host Server 6a [Compute Workload Parameter
Host Server 6b  Syscall Reply 220 0 52 272 273.5
MP Server 7 Process Reply 573 50 32 655 666.6
DMA Server 7a |DMA out 200 15 0 215 2163
Host 8 Restart Server 60 0 50 110 111.8
DMA  Leok | g IbMA 200 | 15| 0| 218 2163
interrupt
MP petwork | 9. Icleanup client 462 | 40 | 1| 503 s064
interrupt
Host 9 Restart Client 60 0 50 110 110.5

Table 6.21 — Architecture I'V: Non-local Conversation



eee Modeled Delay
Transition actions (microseconds) Frequency

TO 1,10 1 1/383.7

Tl 1,10 1 1-1/383.7

T2 1 1
(NetIntr = 0) & T6 & T7

3 2 1 —> 1/789.8,0
(NetIntr = 0) & T6 & T7

T4 2 1 —> 1-1/789.8,0
(Netlntr = 0) & T6 & T7

T5 0 —1,0

T6 9a 1 1/506.4

T7 9a 1 1-1/506.4

T8 2a 1 1/216.3

T9 2a 1 1-1/216.3

T10 1 s,

T11 1 1-1/8,

T12 0 1
(NetIntr = 0) & T6 & T7

13 o 1 —> 1/216.3,0
etlntr =0) & T6 & T7

Ti4 ? 1 — 1-1/216.3,0

Table 6.22 — Architecture IV: Non-local Conversation (Client)
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Traunsition Moc?eled . Delay Frequency
actions (microseconds)
o 4 1 (RequestService =0) & T/ & T8
—> 1/520.2,0
- 4 1 (RequestService = 0) & T7 & T8
—> 1-1/520.2,0
T2 1 1C,
T3 1 1-1/C,
T4 0 (RequestService = 0) & T7 & T8
- 1,0
Han
TS 1 _)g‘;l,’zo
T6 0 1
T7 5 1 1/1443
T8 5 1 1-1/1443
T9 6,6a,6b 1 1/(385.3+X)
T10 6,6a,6b 1 1-1/(385.3+X)
uestService=0) & T7 & T8
B 7 ! s 1/666.2,0
equestService =0) & T7 & T8
T12 7 1 e - 1-1/666?6, 0
T13 3.8 1 1/385.2
T14 3.8 1 1-1/385.2

Table 6.23 — Architecture IV: Non-local Conversation (Server)

6.8. Validation

Our experimental implementation on the 925 system (see chapter 4) differed from

architecture II in two ways:

(1) There were two hosts in each node instead of one.

(2) The network interfaces required an additional copy from the kernel buffers to

the memory-mapped network buffers in shared memory.
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We used the workload described in § 6.3 for performance measurements of the imple-
mentation. We validated a model for non-local conversations of our experimental
implementation against these performance measures. The model was similar to Fig-

ures 6.13 and 6.14 with the following two differences:
(1)  The places Host had two tokens in both models.

(2) A few parameters were changed in the two models to account for the additional
copy imposed by the network interfaces.

Figures 6.15 (a), (b), and (c), show the agreement between the experimental and model
results. We note that for one and two conversations (Figure 6.15 (a)) the agreement is
very good (within 3% for one and 10% for two). For three and four conversations
(Figure 6.15 (b) & (c)), the model results are within 10% of the experimental results at
high offered loads, while at low offered loads the deviation is within 25%. One reason
for the optimistic prediction in the case of low offered load (high computation) is the
following. There is a load-leveling effect in the model, not present in the experimental
implementation. In the implementation, a process is bound to a particular host,
whereas in the model, a request can be serviced on any available host. When the load
is more computation intensive, server processes spend more time on the host and as a
result the throughput predicted by the model is higher. However, despite this effect,

the model results show good overall agreement with the experimental results.

6.9. Results

In this section, we present the results of solving the models for the four architec-

tures for the workload we described earlier.
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Figure 6.15(a) — Model Validation
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Figure 6.15(b) — Model Validation
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Figure 6.15(c) — Model Validation

6.9.1. Maximum Communication Load

Figures 6.17 (a) and (b), compare the throughput of architectures I, II, and III,
under conditions of maximum communication load for local conversations and non-
local conversations. For architecture I, the throughput for local conversations is the

same irrespective of the number of conversations, a fairly intuitive result. For architec-



132

40 -
36 4
32 4
28 - [P o Architecture ITI
IB """"""
24 . rd
Message e
Throughput 20 J °
(Kbytes/Sec) o a—— 8 Architecture II
AT
6 o’
16 - = = & 8 Architecture I
&
12 4
8 -
4 J
0 i 1 ] 1 t ]
0.0 1.0 2.0 3.0 4.0 50 6.0
Number of Conversations

Figure 6.17(a) — Maximum Communication Load (Local)
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Figure 6.17(b) — Maximum Communication Load (Non-local)

ture II, the throughput for one conversation is slightly less than that for a architecture L.
The loss represents the overhead involved in the information transfer between the host
and the message coprocessor. However, note that this loss is very small (= 10%).
Increase in throughput with the number of conversations is less than linear due to the

finite bandwidth of the message coprocessor. Note that architecture III is significantly
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better than both architectures I and II. The smart bus reduces the overhead in com-
munication processing by providing high-level bus transactions. These transactions

are significantly faster than a software implementation (see § 6.4).

Figure 6.17b illustrates the results for non-local conversations. The tendency to
saturate with number of conversations is less pronounced for non-local conversations
when compared to local conversations, since the processing load is spread across two
nodes. Once again we note that architecture III performs significantly better than

architectures I and I1.

We note that architecture II does not do significantly better than architecture I
(both local and non-local conversations). However, these graphs are for maximum
communication load. Under these conditions the host is idle most of the time since
there is no computation in any conversation. However, the premise behind partitioning
the software is that load in a distributed system consists of a good mix of computation
and communication. In the next section we will discuss our results under such typical

load.

6.9.2. A More Realistic Workload

The workload is more realistic when the server does a certain non-zero amount of
computation before replying to the client. In this section, we compare architectures I,
11, and ITI, under such load conditions, plotting message throughput versus offered load
for different numbers of conversations. Architecture IV is compared in the next sec-

tion.




Server Time Offerei: Load
Architecture
(milli-seconds)
I I 111 v
0 1.0 1.0 1.0 1.0
0.57 0.897 0.905 0.867 0.866
1.14 0.813 0.827 0.769 0.764
1.71 0.744 | 0.761 0.689 0.684
285 0.635 0.656 0.571 0.565
5.7 0.466 0.488 0.399 0.393
114 0.304 0.323 0.249 0.245
17.1 0.225 0.241 0.181 0.178
22.8 0.179 0.193 0.142 0.139
28.5 0.148 0.160 0.117 0.115
342 0.127 0.137 0.100 0.097
399 0.111 0.120 0.087 0.084
45.6 0.098 0.107 0.077 0.075
Table 6.24 — Offered Loads (Local)
Server Time Offereiz Load
Architecture
(milli-seconds)
I 4 m v
0 1.0 1.0 1.0 1.0

0.57 0920 0.924 0.900 0.898
1.14 0.852 0.859 0.818 0.815
1.71 0.793 0.802 0.750 0.747
2.85 0.697 0.709 0.643 0.639
57 0.536 0.549 0474 0469
114 0.366 0.379 0.311 0.306
17.1 0.278 0.289 0.231 0.227
22.8 0.224 0.233 0.184 0.181
28.5 0.187 0.196 0.153 0.150
342 0.161 0.169 0.130 0.128
399 0.141 | 0.148 | 0.114 | 0.112
456 0.126 0.132 0.101 0.099

Table 6.25 — Offered Loads (Non-local)
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As we mentioned earlier (see § 6.3), offered load is defined as:

=
where C is the communication time (in a round-trip) for one conversation and S is the
server computation time. C is dependent on the architecture while S is a workload
parameter. Tables 6.24 and 6.25 give the -offered loads for different server-
computation times in the four architectures for local and non-local conversations
respectively. Note that the offered load for a given server-computation time is the least
for architecture IV since it has the least C. It is nearly the same for architecture IIl, and
slightly higher for architecture II. The value of S for a given service is the same for
each of the four architectures. In chapter 3 (see § 3.5), we presented measured times

for typical services on Unix. Using Tables 6.24 and 6.25, we can read off the offered

loads for each architecture given the server-computation time.

We want to be able to compare the performance of the four architectures for
given server-computation times. In Figures 6.18, 6.19, 6.22, and 6.23, we have plotted
the message throughput for the four architectures against offered load computed for
architecture I, thus enabling such a comparison. Figure 6.18 is for local conversations
and Figure 6.19 is for non-local conversations. We discuss Figures 6.22 and 623 in the

next section.

For architecture I, with local conversation, the results are independent of the
number of conversations. Architecture II does slightly worse than architecture I for
one conversation due to the overhead in passing information between the host and the
message coprocessor. However, as the number of conversations is increased, the
throughput improves considerably over architecture I. With a message coprocessor

equal in processing speed to the host, the upper bound for throughput improvement
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Figure 6.18 — Realistic Workload (Local)

(with no overhead between the host and the message coprocessor) is a factor of two.
Architecture II approaches this limit over a range (0.5 to 0.9) of values for offered
load. When the load is more computation intensive there is no significant gain in parti-
tioning the software. The graph defines a region of operation of the distributed system

in terms of mixture of computation and communication for which the message copro-
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cessor is viable. By providing high-level bus primitives, architecture III does better
than both architecture I & II and over a wider range (0.4 to 0.95) of offered load. The
tendency to saturate for three and four conversations is also less pronounced for archi-

tecture III.

Figure 6.19 shows a comparison of results for non-local conversation. For archi-
tecture II, the improvement in throughput with offered load over architecture I is less
pronounced for the number of conversations that we have modeled. However, note
that for four conversations we see an improvement (= 20%) over architecture I in the
range of offered loads 0.7 to 0.9. Thus the graphs do show a trend in predicting the
improvement that is attainable for much larger systems. Unfortunately, given the limi-
tations of existing modeling tools, we were unable to model larger systems. We note
once again that architecture III shows a marked performance improvement over the
first two architectures. Over the range of offered loads 0.6 and 1.0, architecture III
does significantly better than both architectures I and Il. The graph suggests that smart
bus primiﬁves are as important for improving the performance of the system for non-

local conversations as software partitioning.

6.9.3. Partitioned Smart Bus

Recall that architecture IV differs from architecture III in that it has a partitioned
smart bus, as shown in Figure 6.4. In Figures 6.20, 6.21, 6.22, and 6.23, we compare
the performance of this partitioned organization with architecture III for maximum
communication load and realistic workloads. We find in all cases that the partitioned
organization does not perform significantly better than architecture III. We would
expect such an improvement in performance if there was a considerable contention for

the shared memory. These performance results indicate that access to the shared
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memory is not the bottleneck in limiting the performance. For the same reason, for a

given architecture, we do not expect a multiported shared memory to perform better

than a single-ported shared memory for any of the four architectures that we analyzed.
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6.10. Summary

)

@

©)

©)

In summary, the graphs show the following:

The graphs show that over ranges of offered loads (0.4 to 1.0 for local and 0.6
to 1.0 for non-local), partitioning the message-based operating system and pro-
viding high level bus primitives result in improvement in performance over a
uniprocessor implementation. They define a region of operation in terms of a
mix of computation and communication over which using a message coproces-
sor is appropriate for improving the perforfnance of the system. In chapter 3
(see § 3.5), we observed that the times for typical system services (measured
on Unix) such as timer, and reading/writing files, range from 0.2 milli-seconds
to 6.1 milli-seconds. With a local-message communication time of 4.57 milli-
seconds on Unix (see chapter 3, Table 3.4), these service times represent an
offered load ranging from 0.96 to 0.43; with a non-local communication time
of 6.8 milli-seconds (see chapter 3, Table 3.5) the corresponding offered loads
range from 0.97 to 0.53.

For one conversation there is a loss in performance due to software partition-
ing, but the loss is very small. Improvement in performance with the number
of conversations is less than linear due to the finite bandwidth of the message

COpProcessor.

Smart bus primitives improve the performance of the system significantly for

both local and non-local conversations.
Software partitioning, and high-level bus transactions (mirroring operating sys-
tem functions) are a promising approach to solving the message-passing prob-

lem in distributed systems. Multiported memories do not help significantly
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since processing-time and not access to shared memory that is a bottleneck in

limiting the performance.
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Chapter 7

Discussion and Conclusions

7.1. Overview

We proposed a partition of message-based operating systems, an organization of
each node that implements such a partition, a high-level bus architecture, and a shared
memory controller that supports these high-level bus primitives in this dissertation. In

this chapter, we discuss the rationale for our design decisions.

7.2. Functional Dedication versus Symmetric Multiprocessing

The organization we proposed (and implemented) in each node dedicated a
coprocessor to message-passing chores. This raises an obvious question: Why not use
both the processors interchangeably for computation and communication as opposed to
our functional dedication? At first glance, a symmetric organization seems more flexi-
ble since each processor can handle either chore. However, a closer scrutiny reveals
that functional dedication is better in the environment of interest in this research. We
first argue that functional dedication is not bad in this environment, and then go on to

show that in fact it is better.

As we mentioned earlier, we distinguish processing work in a distributed system
into two categories: computation and communication. In a distributed message-based
operating system, applications “communicate” their requests for system services via

messages to the servers. Servers “compute” to satisfy the requests. Therefore this dis-
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tinction is appropriate in this environment. Through our measurements of existing dis-
tributed systems (see § 3.4), we showed that “communication” imposes a considerable
processing overhead: typically this overhead is of the order of 1K to 2K instructions on
architectures such as VAX [DEC 78], IBM PC/RT [IBM 86a], and Motorola 68000
[Motor 82b]. Since Unix is a popular operating system, we expect that the services
provided by it are typical. We showed that the times for typical operating system ser-
vices (measured on Unix) such as timer, and reading/writing files (see § 3.5) range
from 0.2 milli-seconds to 6 milli-seconds. On a 0.8 MIP MicroVax II, these times
represent a few hundred instructions (for timer service) to a few thousand instructions
(for reading/writing files). In a message-based operating system, these services would
be provided by servers. Therefore, in such an environment we expect in the very least
that neithér “computation” nor “communication” dominates the other; more impor-
tan'tly, our measurements suggest that processing time would be evenly divided
between the two. In chapter 6, we showed that a functionally dedicated organization
can achieve a significant performance improvement over a uniprocessor over a range

of offered loads.

Given that the processing load is evenly divided between “computation” and
“communication” and based on thé strength of our performance results, we conclude
that the “flexibility” of a multiprocessor to handle either chore does not really result in
any performance benefit over functional dedication. In fact, functional dedication is

better in this environment than a multiprocessor for three reasons:

(1) The host architecture is determined by the problem area being addressed. On
the other hand, the message coprocessor is intended for a very specific func-
tion, namely, communication processing. Therefore, it does not need hardware

units such as floating point, memory management, and caches. Moreover, it is
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likely that a narrower processor word-width would suffice. The program and
data memory for communication processing is itself small. It is envisaged that
the message coprocessor will be much cheaper than the host and has the poten-
tial for a cheap high-performance VLSI implementation. Hence we expect our

proposed organization to be more cost effective than a general multiprocessor.

Functional dedication leads to ease of organization of the hardware. The net-
work device is controlled by the message coprocessor and interrupts the mes-
sage coprocessor on packet arrival. All other devices such as the disk, terminal
multiplexers, and displays are controlled by the host. The hardware organiza-
tion becomes more complex in a multiprocessor since each processor has equal

access to all the hardware units.

Functional dedication simplifies the software organization. In a multiproces-
sor, there are system data structures that need to be shared between the proces-
sors. Since all processors have equal access to these shared data structures,
correctness is ensured by locking the data structures that are currently accessed
by a processor. Deciding the granularity of locking becomes a crucial factor in
determining the performance of the system. Too coarse a level of locking
reduces concurrency and thus impairs performance. Too fine a level of locking
may have unacceptable overhead. Systems such as StarOS [Jones 79] on Cm*
[Fulle 78] and Hydra [Wulf 81] on C.mmp [Wulf 81] demonstrate that fine
granularity of sharing is achievable in a multiprocessor with a painstaking
design and implementation. However, given that there is an even division of
processing load between computation and communication in a distributed sys-
tem, functional dedication is an easier path to achieve the goal of good perfor-

mance. With the functional partition, only the message coprocessor
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manipulates the free-lists of system data structures. Hence there is no need for
locking system data structures. For instance, the message coprocessor puts
task control blocks to the tail of the computation list and the host gets the next
task to run from the front of the same list. Thus due to the partition, access to

shared data structures is well ordered and less error prone.

With two identical processors in each node, one serving as a host and the other as a
message coprocessor, the upper limit for throughput improvement is a factor of two
over a uniprocessor. We show through our performance results (see chapter 6) that for
“realistic” loads, our proposed organization approaches this limit. We observe that
functional dedication already exists in most uniprocessor computer systems. For
example, “disk controllers” are invariably implemented with some kind of a processor
chip. It is accepted that there is enough work to keep the disk controller busy. Hence
nobody considers executing application programs on the processor of the disk con-
troller. Our argument is that in the environment of interest in this research, functional
dedication via a dedicated message coprocessor is reasonable, and leads to a better sys-

tem organization than a symmetric multiprocessor.

While we advocate functional dedication, we are not limiting the “number” of
such functional units. For example, it is perfectly reasonable to have an organization
that designates a single message coprocessor to serve multiple hosts sharing a common
memory. In fact, our implementation on the 925 system uses a similar organization.
However, there are several interesting problems that arise in applying our system
architecture ideas to shared-memory multiprocessors such as Balance 8000 [Seque 85]
or Multimax [Encor 86]. Solution to these problems are beyond the scope of this

dissertation. We defer the discussion of these problems to § 7.6.
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7.3. Smart Bus

In the following sub-sections, we justify our design decisions related to smart bus.

7.3.1. Instruction-Set Architecture and Smart Bus

Several instruction-set architectures [DEC 78,IBM ] include “block move
instructions” in their repertoire. However, message-passing activities involve the host,
the message coprocessor and the network interfaces. In particular, both the message
coprocessor and the network interfaces perform block transfer operations on the shared
bus, so it is appropriate that block transfer be provided as a bus primitive. Moreover,
since block transfers are in and out of contiguous memory locations it is wasteful of
bus bandwidth to precede every information transfer with an address cycle. Smart
memory alleviates this by saving the address and the count information of block

transfer requests.

Both the host and the message coprocessor perform atomic queueing operations
on the shared bus. VAX [DEC 78] incorporates atomic queue manipulation instruc-
tions in its architecture. However, since conventional bus architecture does not support
queue manipulation, implementation of these queueing instructions becomes more
complicated in a multiprocessor situation. For instance, VAX provides instructions for
manipulating queue data structures implemented in memory. In a multiprocessor sys-
tem, the instruction has to “test and set” a location assumed to be part of the control
block being manipulated before performing the queueing operation. Our queue mani-
pulation primitives provide an efficient and uniform mechanism to achieve the atomi-
city that is required for these operating system functions in a multiprocessor environ-

ment.
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7.3.2. Multiplexed Requests

Priority is statically assigned in smart bus, and the bus arbitration ensures that the
current master is the highest-priority contender for the bus. This static priority assign-
ment is appropriate in smart bus since it is designed with a specific purpose — i.e.,
synchronization and communication between the host, the message coprocessor, and
the network interfaces. We argued earlier (see § 2.6.6) that it is infeasible to hold the
bus for arbitrary time periods. Thus the ability to multiplex simultaneous block
transfers is essential. Smart shared memory has the abiﬁty to multiplex simultaneous
block transfer requests that may be prioritized based on the latency of the requesting
unit. It registers the priority of the requester of a block transfer transaction in an inter-
nal table. To send the data to the requester, the smart shared memory subsequently
competes for the bus at the priority of the requester. This feature ensures that it can
field and service higher priority requests, while in the middle of satisfying a block

transfer request.

To prevent arbitrarily long access delays, smart bus and other bus proposals such
as Futurebus [Borri 84] offer different solutions: smart bus uses multiplexing, while
Futurebus uses preemption. Multiplexing guarantees immediate access (for free) to the
shared memory for higher priority requests and is simpler to implement. However, the
ability to handle multiple block transfer requests could lead to flow-control problems.
Fortunately, as we mentioned earlier (see § 5.1), each unit on the bus can have exactly
one outstanding block transfer request. Therefore, in this controlled environment the

smart shared memory does not have to handle any flow-control problems.
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7.4. Conclusion

Local area networking has enhanced the interest of researchers in experimenting
with  distributed message-based operating  systems. Current  research
[Artsy 84, Cheri 83, Gagli 85] and our own measurements of several operating systems
(see § 3.4) show that interprocess communication (message-passing) is roughly two
orders of magnitude slower than a simple procedure call. Since system services are
requested via message passing, the performance of message-based operating systems
depends crucially on the rate of message passing. Our goal in this research was to
study the problem of interprocess communication in a distributed system, and suggest
a system architecture that improves the performance in this environment. In working

toward this goal, we made several major contributions:

(1) Through our profiling studies (see chapter 3), we increased the understanding
of the message-passing problem. In particular, we showed that for short mes-
sages only a small fraction of the round-trip time is spent in copying the mes-
sage, and that there is a large fixed overhead in message-passing (independent
of the message-size) that can be broken down into components such as check-
ing the validity of an IPC call, addressing and manipulating control blocks, and

short-term scheduling.

(2) We suggested a partition of the message-based operating system, and imple-
mented it on an experimental system (see chapter 4). The implementation
demonstrated the feasibility of this pértitioning, while our measurements of the
implementation gave us the processing times for the different message-passing
activities. We used these processing times to model several architectures for

performance comparison (see chapter 6).
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(3) The implementation gave us an insight into the kinds of hardware assist that
would reduce the message-passing overhead. We called our proposal “smart
bus” (see chapter 5), and demonstrated that the proposal is reasonable from the

point of view of hardware implementation.

(4) We used GTPN to model different architectures and showed the performance
benefits that accrue from partitioning message-based operating systems and
providing hardware assist in the form of smart bus and smart shared memory

(see chapter 6).

(5) The modeling studies of the four architectures are interesting in their own
right. Previous studies [Verno 86, Woods 84] have modeled only non-local
conversations. Moreover, they have not modeled the interaction of the devices
inside nodes in communication architectures. We showed how these interac-
tions could be cast into a Petri net model; the techniques we used and the les-
sons we learned are a useful guide for system designers for evaluating GTPN

as a tool for modeling large systems.

7.5. Directions for Future Research

Any interesting research answers a few questions and raises several more. Ours is

no exception. In the following sub-sections we identify directions for future research.

7.5.1. Instruction-Set Architecture

In our implementation of the software partition, we showed that an off-the-shelf
processor is adequate to support the functionality of the message coprocessor. How-
ever, the message coprocessor is intended for a very specific purpose, namely, per-

forming the different components of communication processing. The message copro-
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cessor mostly manipulates structured data types such as lists of control blocks and
buffers in performing its chores. The instruction-set architecture of the message copro-

cessor promises to be an interesting area of future research.

7.5.2. Interaction with Host Architecture

Interaction of our system architecture with other system architecture features such
as virtual memory and cache is another interesting and important future area of

research.

Virtual memory introduces a number of interesting problems. In our implementa-
tion, processes execute from the local memory of the host. The message coprocessor
can access host’s local memory from the shared bus. It uses this access path to per-
form data transfer between a process’ address space and kernel buffers in the shared
memory. Since the host architecture did not support virtual memory this implementa-
tion was feasible. However, applicability of our software architecture to a more gen-
eral environment would require re-evaluation in the presence of virtual memory. For
instance, if we assume that the host maps process virtual addresses to physical
addresses in local memory, we see at least two choices for handling the kernel buffer-
ing problem: the host handles the kernel buffering chore; or the host locks the relevant
pages in local memory to enable the message coprocessor to perform kernel buffering.
The first choice places a considerable processing burden on the host. Moreover, the
buffer management algorithms become more complex and error-prone, since now both
the host and the message coprocessor access the kernel buffers. The second choice
seems more feasible. However, the message coprocessor would require some mechan-

ism to inform the host that it is ‘done’.
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A related problem is a cache for local memory on the host. Fortunately, the prob-
lems with multiprocessor caches are well understood [Goodm 83, Katz 85]. “Bus mon-
itors” [Goodm 83] are a possible solution to the problem that we plan to study in the

specific context of our environment.

7.5.3. VLSI Implementation

The hardware assists we proposed in this dissertation lend themselves to high per-
formance VLSI implementation. For example, we mentioned in chapter 5 (based on
the design presented in Appendix A) that a shared memory controller for the smart bus
could be built with a couple of chips of reasonable complexity. From our performance
results, we are convinced that realizing these subsystems in chip-form is worthwhile.
Building and studying the performance of such network front-ends is another impor-

tant research area to be pursued.

7.5.4. Modeling Tools

Experience with using GTPN analyzer has given us insight into the nature of
Markov chain analyzers. In particular, we realized that the complexity of the models
tends to grow very rapidly with the size of the system. We employed several approxi-
mation techniques to combat the “state-space” problem. It would be interesting to
explore whether any of these techniques could be automated in the existing tools, mak-
ing these tools more readily usable for the system designer. Building such “pre-

processors” for the analyzer promises to be another fruitful research area.

7.5.5. Shared Memory Multiprocessors

Systems such as Balance 8000 and Multimax are just a few examples of the

newly emerging class of computing structures — “multis” [Gordo 85]. As we men-
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Figure 7.1 — Shared Memory Multiprocessors

tioned earlier (see § 5.1), we view the smart bus, the message coprocessor, the smart

shared memory, and the network interfaces together as a single unit that provides

message-passing support to the host at the level of the operating system primitives. In

the “multis” environment, it is conceivable that this unit provides message-passing

support to all the processors in each node (see Figure 7.1). The organization shown in
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Figure 7.1 raises several interesting issues such as the semantics of interprocess com-
munication, the interaction of the smart bus with the system bus, and the problems of

cache coherency, and promises to be an exciting area of future research.
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Appendix A

Design of Smart Shared Memory Controller

A.l. Overview

This appendix is a paper design of the smart shared memory controller and does
not represent an actual implementation. However, the design presented in this appen-
dix correctly implements the smart bus primitives described in chapter 5, and could be
used as a guide by an implementer. A central synchronous clock (Figure A.1) triggers
each micro-step. All the selection (multiplexer) inputs and enabling (read) inputs are
synchronized with the leading edge of the clock, while clocking (writing) inputs are
synchronized with the trailing edge of the clock.

TRAILING
EDGE
+—HIGH—
+«LOW~>
LEADING
EDGE

Figure A.1 — System Clock
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The key elements in the data path (Figure A.2) are the register file, the tag stack,

the tag generator, the tag register, the arithmetic logic unit, and the memory system.

In describing the data path, we use “roman” to name data and “italics” to name

control. For example, MDR is a data signal, while BYTE is a control signal. A/D, TG,

BR, ,, and CM,, are bi-directional wired-or smart bus signals, while all the other input

signals (except CONST) in the data path emanate from the micro-instruction (see
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4’ f addr J \L ’ l
TG “\TGEN REGISTER
T FILE
R
ADDR | COUNT
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4 116
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3 f‘ 16,
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BRSAVE A/DEN
BR,,
5
cm;

Figure A.2 — Data Path
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Figure A.3). CONST is a hardwired constant value (two in our implementation).
EMPTY is an output signal for use by the sequencer (see § A.3). The priority at which
the controller competes for the bus is determined by br, , (see § 5.4 for an explanation
of the arbitration strategy). This priority number is the same as that of the processor
currently being serviced by the controller. The register file consists of sixteen thirty-
two bit wide elements. Each element has two sixteen-bit wide components: address
(ADDR) and count (COUNT). ADDR holds the address and COUNT holds the
number of bytes to be moved in a block transfer request. The register file is indexed by
a four-bit tag register (TR). The desired component of the register element is selected
(for read or write) by the signals CS_,, and CS_ . The register file has a sixteen-bit
data input path from FMUX and a sixteen-bit data output path to LATCH. The signal
WRITE specifies that the selected component of the register element (indexed by TR)
should be written in the current micro-step. In every micro-step, the selected com-
ponent of the register element is gated into the LATCH. The LATCH gates the data
when the clock is “high” and holds the value during the “low” period of the clock
cycle. Thus the selected component of a register element can be read, modified, and

written back in the same micro-step.

At the end of every arbitration cycle, the controller saves the three-bit bus request

number (BR, , from smart bus) corresponding to the winner of the arbitration cycle in

BRSAVE register. Since arbitration proceeds in parallel with data transfer on the
smart bus, there is a need to save the bus request number. This saved value is used

later when the block transfer request is processed by the controller (see § A.4.2).

The tag stack is fifteen deep and holds information on all outstanding block read
requests. Each stack-entry is composed of a tuple: four-bit tag value and a three-bit

bus request number of the requester. It supports two operations: PUSH and POP, and
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provides one status output: EMPTY. The top of the stack can be read without “pop-

ping” the stack, and the tag register is the input for the “push” operation.

The tag generator consists of a PRIORITY ENCODER and a tags in use register
(TIU). TIU is a bit-mask of the tag values currently in use; each bit can be individu-
ally set and cleared under microprogram cc.)ntrol. PRIORITY ENCODER generates
the four-bit code of the first zero bit in TIU.

The tag register holds the’ index of the register element that corresponds to the
block transfer request currently serviced by the controller. The input to the tag register
(controlled by TRMUX multiplexer) can be one of PRIORITY ENCODER, TAG
STACK, or TG (from smart bus).

The arithmetic logic unit (ALU) has a sixteen-bit wide data path and supports
three functions: add, subtract, pass A. and pass B. The inputs to the ALU are supplied
by two multiplexers (AMUX and BMUX). AMUX selects one of LATCH, MDR,
LIST, or TAIL as the “A” input, and BMUX selects one of TAIL, ELEMENT, TEMP,
or CONST as the “B” input to the ALU. There are four registers in the data path to
hold intermediate values: ELEMENT, LIST, TAIL and TEMP. CONST specifies a
constant value (two in our design). FMUX selects one of “F”’ (ALU output) or A/D
(from smart bus) as input to the register file and intermediate registers. A one-bit
status flag (Z) is set to “1”, if the result of the ALU operation in the current micro-step

is zero.

The memory system consists of 64K Bytes of random access memory (RAM), an
address multiplexer (RAMUX) to select the source of memory address, a data multi-
plexer (RDMUX) to select the source of data for writing into memory, and a memory

data register (MDR) to hold the data read from the memory. RAMUX selects one of
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FMUX, LATCH, LIST, or TAIL as the memory address. RDMUX selects either
FMUX, or MDR as data to be written into memory. There are two control inputs to the
RAM: R/W and BYTE. The former selects either “read” or “write” operation and is
specified from the current micro-instruction. The latter is used to specify that the
“write” should be performed at byte granularity and is derived directly from the com-
mand lines of the smart bus (CM, 5).

We arrived at the above data path to support the algorithms (to be described in a

later section) to implement the high level bus transactions.

A.3. Control

The micro-instruction is forty-six bits wide. Figure A.3 illustrates the micro-
instruction format. The fields specify the state ( “0” or “1” ) of the named signals in
the current micro-step. “Next Address Coritrol” determines the next micro-instruction
to be executed (Figure A.4). “Bus Control” triggers the beginning of the asynchronous
handshake for information transfer and bus arbitration. All the other bits in the micro-
instruction control the data path (Figure A.2). There are bits in the micro-instruction
for controlling the TAG STACK and clocking (writing) the miscellaneous registers in
the data path. Note that some of these signals are not shown in the data path. How-
ever, the naming convention used in the micro-instruction format clearly brings out the
correspondence between the names and the units in the data path. For example, CLK

TR is clock control input for TR.

“Address A” and “Address B” specify the locations of the two possible next
micro-instructions. The three bit field ( “Sequencer” ) specifies the branching condi-
tion to be tested by the micro-sequencer (Figure A.4). Based on the outcome of this

test, the micro-sequencer selects either “Address A” (if the condition is “true”) or
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2 bits 2 bits 2 bits 1 bit 2 bits 2 bits 1 bit

ALU AMUX | BMUX | FMUX | TRMUX | RAMUX | RDMUX
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—————— BUS CONTROL — — — — — — — »- — — REGISTERS — — >
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- — - NEXT ADDRESS CONTROL —_——

Figure A.3 — Micro-Instruction Format
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Figure A.4 — Micro-Sequencer and Control

“Address B” (if the condition is “false”) as the next micro-instruction address. There

is one exception to this rule which we will describe shortly.

In the flow charts (to be presented in the next section) we use the branching con-

ditions extensively. We now describe the meaning of the conditions that are tested by
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the micro-sequencer (Figure A.4). The “Sequencer Control” field in the micro-

instruction selects one of the following eight conditions.

(D

@)

©)

“

&)

(6)

)

“REQ” is an internal flag that is set when a processor starts a new information
cycle by asserting BBSY. The flag is cleared when the condition is tested by

the sequencer.

“IS” is an internal flag that is set when a processor asserts /S on the bus. Test-
ing the condition clears the flag. A processor asserts IS to indicate valid com-

mand on the command lines CM,, , and/or valid information on the A/D lines.

“CM?” is the condition that causes the exception to the normal rule for deter-
mining the next address. When this condition is specified the next address gen-
erated by the micro-sequencer is CM,, , with zeros appended in the last two
bits. The generated address thus results in control being transferred to the

microroutine responsible for handling the requested command.

“EMPTY” is the status output of the TAG STACK. When “EMPTY” is

“true”, there are no outstanding block read requests.

“ANC” is an internal flag that is set when ANC is released upon completion of
the arbitration cycle. This condition indicates that units competing for the bus
have placed their bus request priority numbers as per the algorithm we
described in the chapter 5. When smart memory is the current bus master, it

monitors ANC to determine the completion of the arbitration cycle.

“WIN” is an internal flag that is set when the bus request priority number on

the bus matches the local value. Testing the condition clears the flag.

“Z” is the output of the zero-detect flag in the data path. The flag is clocked

every micro-step, and thus reflects the result of the ALU operation in the last



166

micro-step.
(8) When “NONE” is specified as the micro-sequencer control input, the

sequencer simply uses “Address A” as the next micro-instruction address.

A.4. Micro-routines

We present the micro-routines for implementing the high-level bus transactions in
the next several sub-sections. We present the hardware algorithms in the form of
flow-charts. Each rectangular box in the flow-chart corresponds to the actions per-
formed in one micro-step. The decision boxes (diamonds) in the flow-charts
correspond to micro-branch test conditions, and may often be a part of the actions in
the (preceding or succeeding) rectangular box. Appropriate multiplexer switch settings
and selection of ALU pass function are implicitly assumed whenever there is no direct
path to perform the operation indicated in each micro-step. To avoid cluttering the
flow-chart, we do not show these switch settings explicitly. We use the following

notations in the flow-charts:
(1) ADDR/; to mean the address component of the register element indexed by

the value in TR

(2) COUNT,, to mean the count component of the register element indexed by
the value in TR

3) TIUTR to mean the bit in TIU indexed by the value in TR

(4) PUSH to mean a “push” operation on the TAG STACK

(5) POP to mean a “pop” operation on the TAG STACK

(6) ACKNOWLEDGE to mean assertion of IK at the end of the current micro-step
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(7)  PE to mean the output of the PRIORITY ENCODER in the data path
(8) X €— Y tomean that X gets the value in Y at the end of the current micro-step

(9 X ¢~ MEMORY AT Y to mean that X gets the contents of memory at loca-

tion Y at the end of the current micro-step

(10) MEMORY AT Y <¢— X to mean that memory at location Y gets the value in X

at the end of the current micro-step.

(11) IK s asserted whenever data is placed on A/D.

A.4.1. Main Routine

Figure A.5 shows the flow-chart for the main loop of the control program. Work
for the memory controller can be either a fresh request (decision box “REQ”) or an
outstanding block read request (decision box “EMPTY™). The controller remains in a
loop polling the two flags in that order. When there is a bus request (REQ = Y), the
controller waits for the command lines to become valid (IS = Y), and branches to the
micro-routine that services the request. When the tag stack is non-empty (EMPTY =
N), the controller competes for the bus, simultaneously loading the top of the stack into
TR. On gaining mastership of the bus (WIN = Y), control is transferred to the block
read routine. Failure to win the bus returns control to the main loop to service the new
bus request. As we mentioned earlier (see A.2), each stack-entry contains the four-bit
tag, plus the three-bit bus request number of the requester. The controller uses this

number to compete for the bus at the priority of the requester.

A.4.2. Block Transfer

The block transfer request can be either to read a block or write a block. Figure

A.6 (a) shows the flow-chart for block transfer request to read a block. A unique tag
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Figure A.6 — Block Transfer Flow-Chart

value is generated by the PRIORITY ENCODER and loaded into TR. The tag indexes

into the register file and stores the address and count information sent by the processor
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into the selected element. The bit that corresponds to this tag value is set in TIU. The
tag is returned on TG to the processor for future reference. The tag value is pushed
onto the TAG STACK before returning to the main loop. Figure A.6(b) is the flow-
chart for block transfer request to write a block, and differs from the flow-chart for

read in that the tag value is not _pushed on the stack.

A.4.3. Block Read Data

At the time of transfer of control to this micro-routine from “main”, the shared
memory already has possession of the bus. The appropriate tag value has also been
loaded into TR from the TAG STACK. Figure A.7 shows the flow-chart for this tran-
saction. The controller places the tag value on TG, reads the memory location at the
current value of the block address, and increments the address. In the next micro-step,
the data (read from memory) is placed on A/D, and the running count is updated. On
acknowledgement of receipt of data (IS = Y), the controller transfers two more bytes.
A “zero” running count signifies the completion of the block read request. The con-
troller recycles the tag value by popping it from the TAG STACK, and clearing the
corresponding bit in TIU. Control is then transferred back to the main loop. On a
non-zero running count, the controller competes for the bus (at the priority of the pro-
cessor being serviced) and returns to the read loop (B_RD) if it is successful. Failure

to win the bus returns control back to the main loop.

A.4.4. Block Write Data

Figure A.8 is the flow-chart for this transaction. The tag value transmitted by the
processor is received in TR in the first micro-step. In the second micro-step, the
memory location at the current value of the block address is written with the data on

A/D, and the address is incremented. The receipt of data is acknowledged, and the
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running count is updated in the following micro-step. When the processor signals the

presence of new data on the bus (IS = Y), the controller receives the next two bytes and

writes them into memory. Before returning to the main loop, the running count is

tested to verify the completion of the block write request. When the running count

becomes zero, the controller recycles the tag value by clearing the corresponding bit in

TIU.

A.4.5. Enqueue Control Block

As mentioned in chapter 5 (see Figure 5.1), the shared memory views a list

address as the address of the location in memory that points to the tail of a singly-
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linked circular list. A distinguished value (zero in our implementation) in this location
signifies an empty list. We assume that reading the memory at zero address yields
zero. This assumption is crucial for the correctness of the implementation of the first
primitive (see Figure A.10). The algorithm implemented by the controller to enqueue

an “element” is the following:



if list <> NULL then
tail := list;
first := tail—next;
element—next := first;
tail—next := element;
else
element—snext := element;
end;
list := element;
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/* check for distinguished value */
/* tail of the list */

/* first entry on the list */

/* element points to first entry */
/* old tail points to element */

/* only member in the list */

/¥ element is new tail */

Figure A9 is the flow-chart for this transaction. MDR is “first” in the flow-chart

representation. The flow-chart is self-explanatory.

A.4.6. First Control Block

The operation performed by the controller to return the first element of a list is the

following:

if list <> NULL then
tail := list;
first := tail-»>next;
if tail = first then
list := NULL;
else
tail-snext := first->next;
end;
return(first);
else
return(NULL);
end;

/* check for distinguished value */
[* tail of the list */

/* first element */

/* last element in the list */

/* distinguished value */

/* dequeue first */
/* return first element */

/* return distinguished value */

Figure A.10 is the flow-chart for this transaction. MDR is “first” in the flow-chart

representation. The controller sends the first element to the processor and on getting

the acknowledgement dequeues the element from the list.
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A.4.7. Dequeue Control Block

The algorithm implemented by the controller to dequeue an “element” is the fol-

lowing:



curr, tail := list;
repeat
prev := cuir;
cuIT := prev—next;
if curr = element then
if curr = prev then
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/* tail of the list */

/* keep looking */

[* previous element */
/* current element */
/* element found */

/* singleton element */

list := NULL; /* distinguished value */
else
prev—next := element—>next;
if tail = element then /* need to list */
list := prev;
end;
return; J* successful */
end;
until (curr = tail); /¥ back to the start? */
return; /* unsuccessful */

Figure A.11 shows the micro flow-chart that implements the above algorithm. MDR is
“curr” and TEMP is “prev” in the flow-chart representation. Note that the bus
handshake (from the point of view of the shared memory) is complete with the recep-
tion of the element address from A/D. However, the shared memory is busy (and can-
not accept fresh requests from the bus) until the dequeue algorithm terminates. The
transaction results in a “no-operation” if the element is not in the list.

We included this transaction since system programs occasionally require “dequeueing”
arbitrary control blocks. However, this is a very expensive transaction. One hopes
that in most cases, “first control block™ can be used instead. Moreover, the algorithm
may never terminate if an arbitrary address is specified as the list address. A real
implementation would have to include a test against a maximum-iteration count. Oth-
erwise, a programming error would put the device into a state that could only be

cleared by a system reset.
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A.4.8. READ/WRITE

Figure A.12 is the flow-chart for “read” transaction. The controller reads the
location at the address specified on A/D. After the completion of the handshake to sig-
nal that the processor has removed the address from A/D, the controller places the data
on A/D. Control is returned to the main loop on termination of the handshake to indi-

cate reception of the data by the processor.

Figure A.13 is the flow-chart for “write” transaction. The controller receives the
address into LIST. Subsequently, when the processor places the data on A/D, the con-
wroller writes the data into the memory location specified by the address in LIST.
“Byte” write is specified via the signal BYTE (see Figure A.2) derived directly from the

command lines of the smart bus.
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A.S. Error Conditions

The controller does not handle any error conditions. We summarize below possi-

ble error conditions and argue why the shared memory controller is immune to all of

them.
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A.5.1. Block requests

1)

)

€)

The shared memory could be flooded with too many block transfer requests,
leading to an overflow of its internal table that buffers these requests. Such
flow control problems would need to be addressed in a more general environ-
ment where the number of units on the bus and the number of requests that
each unit could make are unbounded. Fortunately, this situation could never
occur since the host, the message coprocessor, and the network interfaces are
the only units on the bus, and each unit can have exactly one outstanding block

transfer request.

A block transfer request could commit an addressing error by specifying a) an
address and count that exceeds the size of the shared memory, or b) specify an
address to a non-existent memory location. In our environment, such errors
directly relate to the allocation and release of system data structures. As we
mentioned earlier, the system data structures in shared memory are managed
by trusted kernel programs executing in either the message coprocessor or the
host. Similarly, the block transfers initiated by the network interfaces are
between pre-assigned shared memory buffers and the network. Thus such

addressing errors could never arise.

The design assumes that every block transfer be a multiple of four bytes and
aligned on a two-byte boundary. While the modification to the micro-code to
allow arbitrary-sized block transfers is fairly straightforward, it could also be
substantially more complex. Once again, given that the shared memory con-
tains only system data structures, it seems perfectly reasonable to stipulate that

these data structures be aligned and be multiples of four bytes.
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A.5.2. Queue manipulation

(1)

o)

While the shared memory implements the singly-linked circular list data struc-
ture, the responsibility for maintaining the integrity of these lists rest with the
kernel programs executing in the host and the message coprocessor. For
example, the “dequeue” algorithm may never terminate if an arbitrary address
is specified as the list address. A real implementation would have to include a
test against a maximum-iteration count. Otherwise, a programming error
would put the device into a state that could only be cleared by a system reset.
One hopes that in most cases, “first control block” can be used instead. For-
tunately, we observed in § 5.1 that “first” and “enqueue” are the transactions
that are used most often in our software implementation. In fact, in our imple-

mentation “dequeue” was used exactly once in the entire kernel code.

Program generated addressing errors in “first” and “enqueue” transactions
could obviously lead to erroneous results. However, due to the semantics of
these transactions such errors do not have any adverse effect on the memory

controller.

A.5.3. Non-programming Errors

The errors that we discussed above relate to programming errors. Assuming that

the kernel programs are correctly written, the controller becomes immune to these

errors. However, the controller does have to handle electronic errors (such as parity

and soft errors) that are routinely handled in most memory systems.
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Subsystem Active Components
Register File 3584
ALU 640
Tag Stack 784
Multiplexers 240
Registers 400
&ic:ganeous 500

Table A.1 — Data Path Chip: Component Count

A.6. Summary

We realize that there is scope for improvement of the design from the point of

view of performance and compaction of micro-code. For example,
(1) by providing appropriate system-clock control in the micro-instruction, we
could use a shorter clock cycle for register transfer operations operations and a

longer clock cycle for ALU operations to achieve better performance;

(2) by providing only a single “next address” field and a more complex sequencer

control, we could achieve micro-code compaction.

However, the purpose of the design exercise was to show the feasibility of the smart
bus primitives from an implementation view-point. We followed a very simple “next
address” strategy to preserve the clarity of the control algorithms. The data path
(without the memory system) can be implemented as a single chip with roughly 6000
active components. Table A.1 shows a rough breakdown of active-component count
for the data path chip based on the Mead-Conway approach [Mead 80]. The sequencer

can be implemented as a single chip with roughly 1000 active components.
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