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Abstract
This note develops the basic B-spline theory without using divided differences. In-
stead, the starting point is the definition of B-splines via recurrence relations. This ap-

proach yields very simple derivations of basic properties of spline functions and algorithms.
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1. Basic Properties

Let t :=---, t_y, to, t1, - be a nondecreasing, biinfinite sequence of real numbers
with lim, .41 t; = *oo. The B-splines corresponding to the “knot sequence” t are
defined by the recurrence relation

Bik :==wikBik-1 + (1 —wit1,k)Biv1,k1 (1a)
with )
R P -
wualt) = { i s
This gives B; i in the form
itk—1

Bir= Y bjxBy1, (2)

J=1

with each b; ; a polynomial of degree < k since it is the sum of products of k — 1 linear
polynomials. ;From this we read off that B, is a piecewise polynomial of degree < k
which vanishes outside the interval [t;,{,; x| and has possible breakpoints ¢,,---,t;1%. In
particular, B, is just the zero function in case t; = t,.x. Also, by induction, B,y is
positive on the open interval (t,,;1x), since both w, x and 1 — w;; x are positive there.
But it is a bit of a miracle that the recurrence relations produce smooth functions. We
discuss this question in Theorem 2 below.

A spline of order k£ with knot sequence t is, by definition, a linear combination
of the B-splines B; ; associated with that knot sequence. Let

Skt = { Z a;Bix 1 a; € R} (3)
1=—00

denote the collection of all such splines. We now explore this space.

We deduce from the recurrence relation that
Y @B = Z (@iwik + ai—1(1 — wik)) Bijk—1. (4)
On the other hand, arguing as in [2], for the special sequence
a; = P p(7) = (tig1 — 7) - (bigh—1 — T)
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(with 7 € R), we find for B, ;-1 # 0, i.e., for t; < t,.x_; that

AWy k + 01_1(1 - Wl,k) = wz,k—l (T) <(i1+k—l - T)wz,k + (tz - 7)(1 " wi,k))
= Yik-1(7)(- = 7)

since f(tiyk—1)wik + f(t:)(1 — w4 ) is the straight line which agrees with f at ¢,.x_; and
t;. This shows that

Y k() Bik = (-~1) > $ik-1(r)Bik-1,

hence, by induction, that

Y $ik(r)Bik = (= 1)1 i1 (7)Bis.

This proves the following identity due to Marsden.
Theorem 1. Forany 7€ R,

((—n)f = Z¢i,k(7)Bz,k> (5)

with ’lpi’k(T) = (t1_|_1 - T) ce (ti+k_] - T).
Since 7 in (5) is arbitrary, it follows that Sk ¢ contains all polynomials of degree < k.

More than that, we can even give an explicit expression for the required coefficients, as
follows.

By differentiating (5) with respect to 7, we obtain the identities

R— AT _MNk—1—v (T
L = e RPN "

i

with Df the derivative of the function f. On using this identity in the Taylor formula

k—1 (= 1)
p=Y_ D"p(r)

v!

for a polynomial p of degree < k, we conclude that any such polynomial can be written in
the form
p= z Aikp Bik, (7)
:

with A; k. given by the rule

k—1

. k—1—v T
)\i,kf = Z ( D)(k_l;fz’k( ) Duf(’f). (8)

v=0
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Here are two special cases of particular interest. For p = 1, we get

1= ZBi’k (9)

since D¥=1¢, , = (=1)¥=1(k — 1)!, and this shows that the B, ; form a partition of
unity. Further, since Dk_zz[)i,k is a linear polynomial which vanishes at ¢ := (¢;41+---+
tivk—1)/(k = 1),
¢ = ZE(tf)Bi,k for every linear polynomial £. (10)
1

The identity (5) also gives us various piecewise polynomials contained in Sk If
T = 1;, then 9; (7) vanishes fori = j—k+1,---,7 —1. Since B; x(t) =0fori < j—k+1
and t < t;, it follows that

(=) =) $oklt;) Bk (11)
1=

with a; := max{a,0} the positive part of the number a. The same observation applied
to (6) shows that

(- — t])]f:“ € Sk for 1 <p < H#t;:=#{t;:t;,=1;}. (12)

Theorem 2. If t; < ti1k, then the B-splines B, ; are linearly independent and
the space Sk ¢ coincides with the space S of all piecewise polynomials of degree < k with
breakpoints ¢, which are k — 1 — #t, times continuously differentiable at ¢;.

Proof. It is sufficient to prove that, for any finite interval I := [a, b], the restriction
glf of the space S to the interval I coincides with the restriction of Sk,t to that interval.
The latter space is spanned by all the B-splines having some support in I, i.e., all B,
with (t;,t,4%) N T # 0. The space S~'11 has a basis consisting of the functions

(—a)f v, v=1,k; (- ti)’jf", v=1,---,#t,, for a <t; <b. (13)
This follows from the observation that a piecewise polynomial function f with a breakpoint

at ¢; which is k — 1 — #t, times continuously differentiable there can be written uniquely
as

#1
f=p+) a(—t)E,
v=1

with p a suitable polynomial of degree < k and suitable coefficients a,. Since each of the
functions in (13) lies in Sk ¢, by (6) and (12), we conclude that

5}]] C (Sk,t)lj- (14)

On the other hand, the dimension of 5’11, i.e., the number of functions in (13), equals the
number of B-splines with some support in I (since it equals k + Za<ti<b #t;), hence is an
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upper bound on the dimension of (Sk ¢)j;. This implies that equality must hold in (14),
and that the set of B-splines having some support in I must be linearly independent over
1.

Corollary 1. All B-splines having some support on a given interval are linearly
independent over that interval.

Corollary 2. If t is a refinement of the knot sequence t, then Sk C Sy ¢

Corollary 3. Ift; < t,4k—1, then the derivative of a spline in Skt is a spline of
degree < k — 1 with respect to the same knot sequence, i.e., DSy = Sk—14.

The identity (7) can be extended to all spline functions. For this, we agree, consistent
with (1b), that all derivatives in (8) are to be taken as limits from the right in case 7
coincides with a knot.

Theorem 3. If 7 in definition (8) of A, x is chosen in the interval [t;,;1%), then

,\Z,k<zajBJ,k> = q,. (15)

J

It is remarkable that 7 can be chosen arbitrarily in the interval [tiyt.+k). The reason
behind this is that A; xf does not depend on 7 at all if f is a polynomial of degree less
than k.

Proof. Assume that 7 € [t),1;4;) C [t;,ti4x) and let p; be the polynomial which
agrees with B; x on (¢;,t;41). Then

Ak By k= A kp;.

On the other hand,
!
p; = Z Az',lcpj Pis
1=l4+1—k

since this holds by (7) on [t;,¢;41), while, by Corollary 1 or directly from (7), pjy1_%,- -,
are linearly independent. Therefore necessarily A; xp; equals 1 if ¢ = j and 0 otherwise.



2. Algorithms

In this section, the basic algorithms for computing with the B-spline representation
are derived. Unless otherwise stated, all algorithms refer to the spline function

s = Za‘B"k' (16)

In the following, the subscript & is omitted whenever possible, e.g. B, := Bi g, ¥i =ik,
etc.

The spline s can be evaluated using the recurrence relation. By (4),

Z a;B; = Z <W'L,kai + (1 - Wi,k)ai——]>B1,k—1 =: Z a;Bi k1.
:

1 1

Iterating this identity one finally arrives at
s = Z G,ic_lBlJ
i

and, by the definition of B, ;, the right hand side equals a;c'l on [t;,t;4+1). This yields

Algorithm 1. On the interval |t;,t,41), s = af’"l, with the polynomials a/ com-

puted as follows:
al = a,

r+1

al

== wi,k-ra: + (1 — wi,k._r)a:_l, J—k+r+1<2<y.
For the relevant range of indices, w; x—,(t) € [0,1] so that s(¢) is computed by repeat-
edly forming convex combinations of the B-spline coefficients.

It follows from Theorem 2 that the derivative of s is a spline of degree < k — 1 with
respect to the same knot sequence, i.e.

Ds =: ZagBi,k_l. (17)

By Theorem 3,
a; = Ay k-1(Ds) (18)

if 7 is chosen in the interval (¢;,¢,45—1). To relate a’ to a, we express Aik—1D as a linear
combination of the functionals A, x, making use of the fact that A; k. depends linearly
on 7; ;. and that

(Bitk—1 = t)Yik—1 = Yik — i1k (19)
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¢From the definition (8),

k—1 . k—1-—v — i T
(Ai,k _ Az’—-l,k)f(T) _ ZO ( D) (l(;/)i,kl)' (R ,k)( )Duf(’l')

and

=2 pyke2ewy k= (_DYE-lmng L (r
Aik1Df(r) = Z (=D) = ;b)z!,k——l( )DV.Hf(T) - Z (=D) = ;/)!J» ( ).D“f(T),

the last equality by setting i := v+1 and using the fact that Dk“lwi,k_l = 0. Comparison
of these two lines shows with the aid of (19) that

k—1
" ()\z,k - A1-1,1&7)-
Livk—1 — t,

Aik—1D =

Assuming that B; .1 # 0, ie., that t; < #,44_;, we can choose r € (tistizk—1) =
(L1, tigk—1) N (tistiyx). By Theorem 3, this yields

Algorithm 2. Compute the coefficients for >alBig-y:=D > a;B; by
’ a; —a;

a = , it <tik_q.
YT (tivkor — t)/(k— 1) e

By Corollary 3, Sy C S; for any refinement t of the knot sequence t, and therefore
any spline s € Sy can be written as a linear combination > @;B; of the B-splines B, which
correspond to the refined knot sequence. The computation of the new coefficients a; from
the a, constitutes the knot insertion or subdivision algorithm used in CAGD [1,4].
For this, we need to express G; in terms of the a,. By Theorem 3, this is equivalent to
comparing the corresponding ); with A,. Since A. depends linearly on 4);, this requires
nothing more than to express

1/;1‘ = (fz+1 - ')"‘({i+k~1 -)

as a linear combination of the ;.
This is particularly easy when t is obtained from t by adding just one knot, say the
point { € [t;,¢;41) so that

~

i, =

ti, if ©+ < g;
£, ife =741,
tiiy, ifi>7+1.
Then
T 1<g—-k+2
b= {wz—la > .].7



hence there is some actual computing necessary only for j — k + 2 < v < 7. For this case,
observe that fi+1 <{i= fj+1 < £i+k<1, hence

b+ By = (bgr =) (brnez = ) [altinms — ) + (1, — )]
-4,

~

provided a(tiyk—1 — )+ B(t; — ) = (f - ), e,
a=w(t)and = (1 - w, (1)).

Sincet; 1 < { < f]~+2 < {; 1k, we can choose 7 in the definition (8) in the interval (;, fiyr) =
(tic1,tigk—1) N (ts;tisk). This proves

Algorithm 3. If the knot sequence { is obtained from the knot sequence t by
addition of the point f € [tj tj+1), then the coefficients a, for the spline s with respect to
the refined knot sequence are given by

o, ifi<j— k2
& =S wilf) a; + (1 - wi(f))a,_s, ifj—k+2<0<y; (20)
a1, if 1> 7.

Observe that w(f) € [0,1] for the relevant range of indices and thus the coefficients &
are convex combinations of the coefficients a.

Ifr=d4i<k-1, then, after just (k —1 — r)-fold insertion of £, we obtain a knot
sequence t in which the number § occurs exactly k — 1 times. This means that there is
exactly one B-spline for that knot sequence which is not zero at {. Hence it must equal 1
at 7 and its coefficient must provide the value of s at f. This makes it less surprising that
the calculations in Algorithms 1 and 3 are identical.
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