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ABSTRACT

In this paper we introduce the PaRing, a token ring architecture. The PaRing
ring is distinguished from earlier ring architectures by its ability to concurrently
support multiple communication paths on a single loop in an efficient and fair
manner. This is accomplished by allowing more than one station to transmit a
packet at a time. The result is higher throughput and shorter response time than is

the case for the standard token ring or the register insertion ring.

1. INTRODUCTION

The ring and the bus! today comprise the two major categories of the local area
network (LAN). Unlike the bus architecture, in which only one station is allowed
to transmit at a given instance, the ’store and forward’ characteristic of the ring
architecture can support multiple stations transmitting on a single loop at a given
time. This concurrent multiple transmission property can produce high data
throughput and short response time. However, in current ring architectures such as
Distributed Loop Computer Network (DLCN)2,3 taking advantage of this property
excludes two other important features: automatic acknowledgement and short station
latency time. Automatic acknowledgement, i. e., packet reception acknowledgement

performed by the destination station without having to send another packet carrying



the acknowledgment information, lets interface hardware detect a undeliverable
packet and packet destruction promptly, so it reduces the overhead of error detection
and recovery and improves protocol performance. Short station latency time leads
to good throughput-delay characteristics.

In order to take advantage of the concurrent multiple transmission capability
without losing automatic acknowledgement or short station latency time, we
introduce a new ring architecture, the PaRing. The PaRing utilizes a token for
medium access control as in the case of the standard token ring architecture. The
important difference from earlier work is the combination of the following
characteristics. First, the stations of the PaRing may initiate transmission not only
upon receipt of a token, but also upon receipt of a data packet that is addressed to it.
Second, the PaRing uses a destination removal mechanism, in which packets are
removed by their destination stations rather than by source stations.

If a transmission opportunity, i.e., the arrival of either the token or a data
packet, comes to a station and the station does not have a packet to send, it either
forwards the incoming token' or generates a token and then transmits the token while
removing the incoming packet. When a station is transmitting its own packet and,
at the same time, another packet arrives, the station keeps transmitting and either
removes the arriving packet if it is a packet destined for the station or delays it,
otherwise. After the station’s transmission is completed, the station forwards delayed
packets onto the ring. Since a station can remove an incoming packet which is
transmitted by another station and transmit its own packet simultaneously, the
PaRing supports concurrent multiple transmission. Because of the concurrent
multiple transmission, the PaRing has a higher throughput and shorter delay time
than the standard token ring architecture.

A packet transmitier knows whether or not its packet has been removed

according to whether or not it receives the token or a different packet within an




anticipated time after its transmission. This feature leads (o automatic
acknowledgment. In the PaRing, each station only introduces a single bit latency
time (as compared to the DLCN, which needs twenty four bit latency time.)

In this paper we present the medium access protocol and performance
simulation studies of the PaRing. The paper is organized as follows. Section 2 gives
details of the protocol, which includes packet formats, medium access and packet
removal algorithms. Section 3 describes the automatic acknowledgment and a
medium access priority assignment method that ensures a fair sharing of the
medium bandwidth among all stations and enables the PaRing to be used for real
time applications. Section 4 explains error detection and recovery mechanisms as
well as system initiation. Section 5 is a brief description of the hardware
organization of interfaces. Section 6 presents performance simulation studies, which
compare the PaRing with two other ring architectures: the DLCN (a register
insertion ring), and the PRONET* (a token ring). In the simulation, there is a
distributed file server system, which is built on top of each of the three
architectures. The comparison is based on how well each architecture supports the

server. Section 7 provides conclusions.

2. MEDIUM ACCESS PROTOCOL

Two types of packets constitute the traffic of the PaRing - access control packets
and data packets. Unlike the standard token ring where only an arrival of an access
control packet carrying a free token can enable a data packet transmission, the
arrival of either one of these packets may trigger the transmission of a packet in the
PaRing. Thus in the PaRing, each packet has the potential to provide a station with
the right to access the shared communication medium. All the information needed
to determine whether transmission may be initiated is included in the header of the

packet. A PaRing packet may consist of up to three fields - Header, Body and Tail.



An access control packet consists of only a header whereas all three fields have to
be included in a data packet. Figure 1 illustrates formats of the header, the token,
and the data packet. The PaRing access control scheme utilizes three types of access
control packets - token, invalid packet, and error recovery packet. The packet header
has four sub-fields: flag, identifier, priority, and type. The flag is a unique bit
pattern that marks the beginning of the header. The type field distinguishes the
three different control packets. The type field along with the identifier distinguishes
between control packets and data packets. If both the identifier and type fields are
"zeros”, the packet represents a token. The priority sub-field is used for access
control. More details on this sub-field will be given later.

For a data packet, the identifier of the header contains its destination address.
The body part has four sub-fields: monitor, source address, data, and data end. The
monitor sub-field (one bit) is used for error detection. The source address is the
packet transmitter’s address. The data sub-field can be of variable length but cannot
exceed an upper bound. The data end, which is another unique bit pattern, marks
the end of data. The tail par"t has two sub-fields, error check and acknowledgement.

Both fields are for error detection.

FLAG | IDENTIFIER | PRIORITY | TYPE

Type:
00 Token or Data Packet
11 Error Recovery Packet

01 or 10 Invalid Packet

(a) Packet Header Format




FLAG 00...... 00 PRIORITY 00

(b) Token Format

P M D
F | DA | R O | SA D A | EC
L | ED I | 00| N | OD A T | RH | A
A | SD | O 1 uD T A | RE | C
G| TR | R T | RR A OoC | K
I O | C E | RK
T R | E N
Y D
HEADER BODY TAIL

(¢) Data Packet Format

Figure 1 Formats of Packet Header, Token, Data Packet

A station with a ready data packet cannot make an attempt to transmit the packet
until the arrival of a packet header in which the identifier contains either all "zeros”
or the station’s address, the priority level is lower than the station’s level, and the
type field is "00”. A header that meets the above conditions is either the token or
the header of a data packet that is addressed to this station. If an arriving header is
addressed to the station but the priority level is not lower than the station’s priority
level, a new token is generated by the station and transmitted. In both cases, the

header is removed before the transmission starts. If it is the header of a data packet,



the other parts of the data packet are removed during the transmission. If the
station is too busy to remove an arriving data packet, it forwards the packet and sets
its acknowledgement bit on the fly. When the arriving header does not meet the
above conditions, the entire packet is forwarded by the station.

In order to have good throughput-delay characteristics, the latency introduced
by a PaRing station is only one bit time. Since a station can hold only one bit of a
transient packet, when a station recognizes an arriving header, the whole header
except the last bit has left the station. If the station intends to use the header for
transmission, the station must remove it before the transmission starts. Instead of
physically removing the whole header, the station just changes its last bit and
converts it into an invalid packet. (See Figure 1 (a)) The invalid packet will be
removed from the ring when it is delayed by a station.

The PaRing access protocol can be described by a state diagram that consists of
eight states, eight events, and three conditions. The events and conditions are
summarized in Tables 1 and 2 and the state diagram is presented in Figure 2. Eight

states are briefly described as follows.

Repeat:

A station directly forwards a packet arriving from the medium.
Trans:

A station transmits its own data packet.
Remove:

A station removes an arriving data packet which is destined for it.
Dump:

A station forwards a delayed packet.
Trans.Rmv:

A station transmits its own data packet and, at the same time, removes an




arriving data packet which is destined for it.

Trans.Delay:
A station transmits its own data packet and, at the same time, delays a
packet.

Dump.Rmv:
A station forwards a delayed packet and, at the same time, removes an
arriving data packet which is destined for it.

Trans.Delay. Rmv:
A station transmits its own data packet, removes an arriving data packet

which is destined for it, and, at the same time, delays a packet.

In the introduction, we indicated that a station delays arriving packets not destined
for it upon the transmission of its own packet and forwards the delayed packets after
the transmission. This corresponds to the state transition sequence from Trans state
via Trans.Delay state to Dump state with events (A + C) (the arrival of either the
token or a data packet not addressed to the station) and E (the completion of
transmission of a data packet), respectively. The transition from Trans state to
Trans.Delay. Rmv state is done by event B, arrival of a data packet that is addressed
to the station, as follows. Upon the arrival, the station keeps transmitting its own
packet, removes the incoming packet, generates a token, and delays (or buffers) the
token. In order to simplify the diagram, we assume that once a station detects a
delayed invalid packet, it eliminates the packet immediately. Thus the arrival of an

invalid packet does not change the state of a station.
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Figure 2 State Diagram for Protocol




Table 1 Events of State Diagram

Arrival of the token

Arrival of a data packet addressed to the station
Arrival of a data packet not addressed to the station
Arrival of an invalid packet

Completion of transmission of a data packet

Completion of removal of a data packet
Completion of forwarding of a delayed data packet
Completion of forwarding of the delayed token

~|o|m|m|o|o|w|>

Table 2 Conditions of State Diagram

H. Station has a packet ready to transmit

1. Station has a higher priority level than incoming
packet

J.  There is more delayed packet(s) in the station

3. AUTOMATIC ACKNOWLEDGMENT, ACCESS PRIORITY ASSIGNMENT,
AND FAIRNESS

In the PaRing, we regard the communication loop together with the facilities
that store all delayed packets as an integral environment. Call this environment the
system. Call the header of the token and that of a data packet a valid header. When
the system is initiated, there is only one valid header. (See 4. ERROR
DETECTION, RECOVERY, AND SYSTEM INITIATION) According to the
medium access and packet removal algorithms, a station cannot transmit a valid
header into the system without removing the existing valid header from the system,
so there is no more than one valid header in the system at any time. This single

valid header keeps circulating around the system. When the transmitter of a data



packet sees a valid header arriving in the period after the transmission of its packet
and finds that the header is either the token or the header of another data packet,
the transmitter knows that its packet has been removed. If it sees the transmitted
packet returning, the transmitter, by checking the acknowledgement bit of the
packet, can know why the packet has not been removed. This feature leads to the
automatic acknowledgment.

As for the medium access priority assignment, first we discuss how a station is
dynamically assigned a priority level, then explain how a data packet and token
obtain their priority levels. Once a station has a data packet ready to transmit, it is
assigned a medium access priority level, and waits for a transmission opportunity to
come. The priority level is determined by the time constraint of the application the
packet is used for. In addition, each station has a timer called a priority timer.
Whenever the station is assigned a priority level, it initializes the timer. If the station
cannot transmit its own packet before the timer times out, it raises the priority level
and reinitializes the timer. When the station starts transmission of the packet, it
stops the timer and decreases the priority level. Therefore the stricter time
constraint a station has or the longer the station waits for transmission, the higher
priority level the station has.

When a data packet that is not addressed to a station is passing through, the
station compares its priority level with that of the packet. If the station has a higher
level, it records the packet’s level, enters its own level into the packet’s priority
sub-field, and sets the packet’s monitor bit. All these actions are done on the fly.
The recorded level is called the original level of the packet at this station. By doing
this, a station may enter its priority level into an invalid packet. However, that does
not cause any trouble. When a station removes an arriving valid header, either the
header of a data packet or the token, and transmits its own packet, the monitor bit of

the transmitted packet is not set. The priority level of the transmitted packet is
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decided as follows. If the transmitting station entered into the previous valid header
the same priority level as the removed packet has, i. e., no other station has
increased the priority level entered by this station in the previous header, the new
transmitted packet inherits the original level of the previous header. Otherwise, the
transmitted packet copies the priority level of the removed header. The same
principle is used to decide a token’s priority level when it is generated by a station.
For a station, entering its priority level into a passing packet is, in effect, a request
for the next transmission right. Generally, the station entering the highest priority
level obtains the next transmission opportunity unless the destination station of the
passing packet has a higher priority level than the highest entered level. Along with
the medium access and packet removal algorithms, the medium access priority
assignment method ensures a fair sharing of the medium bandwidth between all
stations and allows satisfaction of time constraints for accessing the medium by

different applications.

4. ERROR DETECTION, RECOVERY, AND SYSTEM INITIATION

In the PaRing, there are five error cases: packet destruction, valid header loss,
multiple valid headers, undeliverable data packet, and system break. The error
detection and recovery are completely distributed.

Upon removing a packet, a destination station computes parity value of the
packet and éompares the value with the packet’s parity bit. A mismatch between
these two values represents a destruction error. The second and third error cases
can be detected by the fact that the single valid header circulates around the ring
periodically. Each station keeps track of the valid header with the aid of a timer
called a round trip timer, in which the time limit is equal to the period. Whenever a
station sees a valid header, it initializes the round trip timer and waits for the next

arrival of the header. If the valid head comes too early, there is a multiple valid
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header error. If it does not arrive until the timer times out, there is a valid header
loss error. As for the undeliverable data packet, there are two ways to detect it.
First, if the transmitter of a data packet sees its own packet returning without the
acknowledgement bit set, the packet is undeliverable. Second, if a station that
overwrote the priority sub-field of a data packet and set its monitor bit sees a data
packet coming with the same sub-field values as the station entered, this packet is an
undeliverable packet as well. The system break error is discussed below.

Upon detecting an error, a station transmits an error recovery packet (Figure 1
(a)), in which the address sub-field contains the station’s address and the type is
"11", and initializes its round trip timer. After transmission of the error recovery
packet, the station keeps removing all incoming packets until its own error recovery
packet returns. When the station receives its own error recovery packet, all
undeliverable packets and other access control packet(s) have been eliminated from
the system if they were there. Then the station can transmit a new valid header,
which is either a token or its own data packet. At this point, the system starts to
operate normally. If the station cannot get back its own error recovery packet until
the round trip timer times out, there is a system break error and some actions from
operators should be taken. After seeing an error recovery packet, stations that have
not transmitted an error recovery packet wait for the system to be recovered.

If more than one station detects an error and transmits an error recovery packet
simultaneously, there is a collision problem. In order to solve the problem, a
station with a higher address removes error recovery packets with lower addresses.
Here, removing an error recovery packet is also done by changing its last bit and
turning it into an invalid packet. Thus eventually the transmitter with the highest
address will get the ring recovered.

The system initiation case is the same as the case of the valid header loss since

the system does not have a valid header at initiation time.
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5. HARDWARE ORGANIZATION

The PaRing consists of a single loop of the communication medium and a
number of stations. A station comprises a host and an interface. Through the
interface the host is connected to the loop. Like the PRONET, the interface of the
PaRing consists of modem, input machine, output machine, register unit, and buffer
unit. However, in addition to an input buffer and an output buffer, the buffer unit
of the PaRing has a delay buffer, which is used to store incoming packets when the
interface is transmitting its own packets. In this section, we compute only the size
of the delay buffer. The delay buffer is at least as big as is the untransmitted
portion of the packet when the incoming packets arrive at the interface. Therefore
the size of the delay buffer, SDB, depends on the number of interfaces, N, the
interface latency time, LT, and the upper bound of data packet sizes, UB. Define
the shortest round trip time, SRT, to be the time for the valid header to complete a

circulation around the loop without being buffered by any interface. We have

SRT = LT * N
and
—_— {(l)JB = SRT it UB > SRT

6. PERFORMANCE SIMULATiON STUDIES

This section presents a perfofmance simulation comparison of three ring
architectures: the PaRing, the DLCN, and the PRONET. In the simulation, each
architecture supports an identical distributed file server system, respectively. The
protocol details of the DLCN and the PRONET can be found in the references.
Table 3 illustrates their interface latency times and packet overheads, which are

equal to the total length of nondata fields.
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Table 3 Packet Overhead and Interface Latency Time

Packet Interface
Overhead | Latency Time
(bits) (bits)
PaRing 40 1
DLCN 49 16
PRONET 27 1

For the PaRing, the flag, identifier, address, and data-end sub-fields are eight
bits long. Priority sub-field is three bits long. Error check sub-field is one bit long.
For simplicity, assume the absence of the priority scheme in the simulation. For the
DLCN, the error check field of packets is one bit long and the interface latency time
is sixteen bits long, instead of twenty four bits, so that a fair comparison can be
carried out. Delay buffers are as big as the maximal packet size is. Packets in
delay buffers have higher priorities to enter the medium than packets in output
buffers. '

In the system there are several identical file servers and many disc-less users,
which must get files from the file servers. All users have the same request
generation rate to get files from servers. After receipt of a file, an user sends an
acknowledgement to the server. A server does not start to send the next file until it
receives the receipt acknowledgement for the previous file. A user does not send
the next request until it receives the previous file. Packet size is 512 bytes, which is
the upper bound of the DLCN packet. A file needs more than one packet to carry.
On the other hand, a request or an acknowledgement only needs one packet to
carry. Each station comprises two layers: a client layer and a datalink layer. The
user client layer generates both requests and acknowledgements. The server client

layer generates files and divides files into frames, each of which fits a packet.
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Datalink layers obtain packets from their client layers and transmit them onto the
medium or remove packets from the medium and deliver them to the client layers.
In addition, the stop-and-wait method is used at the datalink layer, i. e. a transmitter
will not send the next packet until it receives the receipt acknowledgement for the
previous packet from the recipient. Thus, for the DLCN, a recipient has to
generate a separate packet as an acknowledgment because it does not have the
automatic acknowledgement feature. Each user gets files from the closest upstream
server and each server serves the same number of users (if possible). Figure 3
illustrates the distributed file server system. Users 1 up to n get their files from

server 1 and users i up to i+n get their files from server k.

> | server | > | user 1 ] > | user n i >

< [useri+n | < | user i | < | serverk | <

Figure 3 Distributed File Server System

In the simulation, three architectures have the same workload. At user sites,
request generation interval times are exponential distributed with the same mean
values. Files have the same length. The medium bandwidth is 1Mbit per second
and its transmission error rate is "zero”.

In the simulation, we study the effect of the size of files, the number of stations,
and the number of servers on the response time. The response time is defined to be

the time interval between the request generation at the user client layer and the
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acknowledgement receipt at the server client layer. The simulators are written in
DISS>.

Figures 4 through 7 are results of the simulation. By P/N/S/F, we denote the
PaRing system in which there are N stations, S servers, and each file consists of F
packets. Similarly, the D/N/S/F and T/N/S/F denote the DLCN and the PRONET
systems, respectively. Figures 4 and 5 show the characteristics of response times
versus request arrival rates of the three systems. For a further comparison between
the PaRing and the DLCN, figures 6 and 7 display the characteristic of response
times versus server numbers and file sizes, respectively. The simulation results
indicate that the PaRing provides the system with a shorter response time than the
other two architectures because of the concurrent multiple transmission, the

automatic acknowledgement, and the short station latency time.

7. CONCLUSION
This paper presents the architecture of the PaRing and its performance simulation

studies. The main advantages of the PaRing are the following.

(1) Good throughput-response time characteristic accomplished by concurrent
multiple transmission, automatic acknowledgment, and short interface latency
time.

(2) Access fairness and adaptability to different applications obtained through
the medium access priority assignment method.

(3) Reliability achieved through completely distributed error detection and

recovery mechanisms.
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Response Time vs. No of Servers (20 Stations, 4 packets/File 4 Requests/sec)
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