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§ 1. Introduction.

The motivation for this paper comes from two sources: the distributional definition of a
polyhedral spline, [1,4] and polynomial interpolation obtained from lifting distributions [2] (see De-
finition 2.2). In this paper we unify these ideas, extend their range of applicability and show their

relationship to the fundamental function for hyperbolic equations.

In general terms we are concerned with inversion of the Radon transform of a distribution. Spe-
cifically, we will identify certain univariate distributions of approximation theoretic interest which can
be lifted. This method has led to several interesting multivariate versions of important univariate
methods of approximation theory. Definitions, main results and numerous examples will be given
later. For the moment, we describe two particularly important examples of lifting distributions.

Suppose ¢ € CSC(IRI) and /3, ..., !, are any real numbers. We let p(fy, ...,%,)¢ be the
polynomial of degree < n which interpolates ¢ and all its derivatives at each ¢ up to order
| {i:tj = t;} | — 1 that is, Hermite interpolation to ¢ . This distribution ¢+ (p(zg, ... , t,)¢)(1) has a
multivariate lift to any R¥. The lifted distribution has compact support, is of order n and gives a
natural extension of Hermite interpolation to IRk, [8] . Next, we let M(t |ty ...,1,) be the

univariate B-spline of degree < n — 1 with knots at ¢, ..., 1, . It also has a lift to any R¥ which

n-

is called the multivariate B-spline and has been actively studied, [4] .

These examples are special cases of a class of univariate distributions which can be lifted by using
the method used by F. John, [6] for the construction of the solution to a hyperbolic equation. This
connection will be explained in Section 3. In Section 2, we will classify distributions on entire func-

tions which can be lifted. Finally, in the last section we will give several more examples of our results.



§2. Lifting Distributions on &.
We begin by recalling the following definition.

Definition 2.1. Given a kxn matrix A, the multivariate B-spline M 4 is the functional defined by

M,,¢:=f yod, ye CRY @2.1)

n—1

n
where S,_;: ={(,...,4):1,20, X r,=1}. We willuse yof to indicate composition of

Vv
=1

functions, ¢(f(x)), and integrals are always taken relative to Lebesgue measure. When
vol ,A(S,_y) > 0, M, can be realized as a piecewise polynomial on R*. In this case, we sometimes
denote it by M(x | x', ..., x") where x!', ..., x" are the columns of A. For k=1 it reduces to the
univariate B-spline of Curry and Schoenberg [3] . For a function ¢ of one variable and {,z ¢ a
we set (¢po{)(2): = ¢({z). Here {z: = él {;is the inner product of { with z. Thus we see that the
functional M, has the striking property that it reduces to the univariate B-spline when acting on the
plane wave functions ¢ oz . Specifically, we have M (¢°z) = M, ¢ . This equation motivates the
following definition. Denote by &, the space of entire functions in k complex variables with the

topology of uniform convergence on compact sets.

Definition 2.2. A family of continuous linear functionals A,,z € C", on &, is liftable whenever for any
kxn matrix A there exists a functional A 4 € (S"k (& denotes the dual space of & .) with the property

that
AA(¢OZ) = AzA¢y ¢' € gl, Z € d‘k. (2.2)

Note that (2.2) defines the functional (if it exists) uniquely since linear combinations of the homo-

geneous polynomials ez, g,-('r) = 7/, are dense in & .



The concept of lifting is useful for constructing multivariate extensions for various univariate

polynomial projections, [2] .

Not all distributions are liftable. As a simple example consider the divided difference of ¢ € &,

atz=(z;,...,2,) € a’

[zlo: = [z, ..., 2,]¢. (2.3)
From the Hermite-Genocchi formula
[2)¢ = "oz (2.4)
Syt
it follows that
MV = (1o (2.5)

This distribution is not liftable even if n=2. To see this, suppose otherwise that A , lifts the divided

difference. Let ¢ = ¢; and observe that (2.2) implies
Aq(o0) = {413 = 1
forany ¢{ € @* . On the other hand, by linearity,
A4($°(20)) = Ay(2(¢08)) = 2A 4(¢°¢)

which yields a contradiction. To present our first result we begin by pointing out that

A, € &, z e @" can be represented in the form

Ag =D a6, 2.6)
j=0 7'

Alternatively, we have



1

A = e B G(z, ©)p(&)dm;, R >R, (2.7)
where
©  a(z)
Gz H) = (2.8)
Jj=0

and 0, (R) = {{:8 =y, ..., &) | ¢ Iz: = | { l2+ S S I l2=R2} . For instance, for the

divided difference

o

o= S, 7‘; (12106 (0)

=0

and

3
27R a1(R) (¢ —21) (¢ _Zn)

[zl = e(&)dmy,  z=(zy,...,2,),

where R > R =lr§?<xn | z; | . In general, (2.7) gives a representation for A,¢ on 4(s,(R)), i.e.

functions analyticon {£: | ¢ | < R}

Theorem 2.1. A, z¢ a* is liftable if and only if the coefficients a; in (2.4) are homogeneous

polynomials of degree j which satisfy
| aj@) | <c(lz|RyY (2.9)

for some constants ¢, Ry > 0. In this case, for y € &,



SR (& N
AA\I/—IEO i (a(V A)(0),  Vpb: = ( PP ’79'2,:') (2.10)

or
(k- 1D! A
A = w fok(R)Lk(?)‘l/(f)dmg (2.11)
where
k-1
(-1 k-1 G(z,1)
Lk(z) = 7}—{—:—6'—6, ( ) ') l,__:] (212)

Proof: Assume first that A, is liftable. From (2.2) with k=n, ¢ = e; and A4 = I, the identity

matrix we obtain

afz) = Agj= Ajejoz) = 2 za(i)A,Ea
le|=j

where E (§) = ¢ =¢7... ¢ &= -y 81), a=(ay, ..., a). This shows that a; is a homo-

geneous polynomial of degree j. The estimate (2.9) follows from the continuity of A,

| Afeor) | < 1Ay | max | ezl
I Vel <R,

where R, dependson A;.

For the converse we suppose a; in the representation (2.6) of A, are homogeneous polynomials

of degree j satisfying (2.9). We define A ¢ by (2.10) and observe that from the representation



(k — ! z$
- Jq dm, yeé&
= fak(m (Rz) Ydm, Y < &,

where
—k = ;
K®)=(1-8 = (+E-1) ¢
j=0 /
(the Cauchy-Szego kernel for H,(o,(R))) that

k — ! =~ . 74
Ay = —-—"""_ + k- Na; | == ) v(@2)dm,. (2.13)
AT k2 fak(R) ,g) (/ ) )/( Rz) Zam

Choosing R > Ry | A | we get

[{1=R

= | ARy J
A ] <c J+k—1 (-—-—'-—*) max_ | ¢({) |
8 2%( 571 R

which shows that A4 e &;. Since
0]
ai(V)(¢oz) = ajzA)(¢ " °z) (2.14)

it is easy to check that (2.2) holds. To verify the last assertion we see from (2.13) that

L.(0) = k+j—-1 (&),
£ EO( 1= 1) ()

Since

6



(2.12) becomes clear.

Remark 2.1. Note that when A, e Fd LZE @”" can be lifted, G(, £) is an analytic and homogeneous

function on the domain {(z,§) : R | z | < | £ | }. Moreover, for £ € ¢;(R) it has the form

Observe also that z—~ A,¢ must be entire when ¢ is entire.

Example 2.1. For the multivariate B-spline, the kernel G(z, £) is the Stieltjes transform

d
Geo=¢ [ &
n—1 g - Xz
Using (2.4) we get
1 1
B = ;
H (1 ~2zx)
i=1
which can be used to represent M(x | xl, ..., xM on A(o,(R)).

Next we give two applications of Theorem 2.1. For this purpose, we let « (]Rk) be the space

m

of polynomials of total degree < m on R .

Definition 2.3. A family of projections P,,z € C" from &, onto 'n'm(lRl) is liftable if and only if for

any integer k and any kxn matrix A € C*" there exists a projection P4 onto Tl’m(IRk) for which



P(poz) = (Pyp)ez, zeC ped (2.15)

Theorem 2.2. Suppose that P, z € €" is a family of projections from &, onto (IRk). Then the fol-
z 1

m

lowing are equivalent:
i) P, is liftable
ii) The family of functionals A, e = (Pp)(8), (z,8) € a'xq is liftable

n . e . .
iii) (P,9)(£) = IEO (A{,¢('))£’ where the functionals AJZ, J=0,1,...,m are liftable.

Proof:

(i) » (ii): Let B = (4,{) bea k xn+1 matrix whose last column is {. Define
then it follows from (2.15) that for ¢ € &,

Apg(poz) = (Py(¢°2))({)
= (P,4¢)(z{)
= A4, )¢
= A,pd

which shows that A(, 4 is liftable.

(ii) = (iii) . By Theorem 2.1 we have

m

Ao ob= O a6 ©)
=0

where aj(z, £) is a homogeneous polynomial satisfying (2.8). Therefore,



J
j— 1
aiz, §) = 2 qp_,-(Z)£'
=0
where each g, (z), 0 < ¢ < jis homogeneous of degree e. Furthermore, if we define

m

J ()
Nip =D, gg D¢ (0)
j=t
then the representation claimed in (iii) holds. Moreover, each A‘ﬁ is liftable because the estimate

(2.8) for gy, j(z) follows from the estimate which holds for aj(z; 8).

(iii) = (i) Define for any kxn matrix A

M , ,
(Pa)@) = > Ay (VW) (2.16)

J=0

where A"i, lifts A{; to&, Thenforany ¢ ¢ & and {,z ¢ @* we have

m

Pison)(®) = D Ny(52/s” on)
j=0

= Sa/n oY
j=0
= (Py#)(t2)

= ((Py¢)°2)({)
Thus P4¢ lifts P, to &,. Furthermore, the linear functionals A{;; “W, | a ] =j, 0<j< mdefined

by

Ngve =Y o we

fal=/



determine the polynomial P,y uniquely by the conditions
MYy =Py, Tal=j, 0<j<m (2.17)

To see this, we will show that for any p € & (IRk) such that

m
J J . k
AV p)=0, 0<Zj<m, (e,

p must be identically zero. For this purpose we decompose p into its homogeneous parts, that is,
p=py+p + - +p, where each pjisa homogeneous polynomial of degree j. Thus we have for

all ¢ eaf

n

0= Ay (V)" p,) = mlp, (OA41 = p, ().

Similarly, each p;= 0, 0 <j < m, from which we conclude that p=0.

Example 2.2. Let z = (zy, ... ,2,) € €} and P,¢ be Hermite interpolation to ¢ € & We introduce
0 n z 1.

Pj¢ = (Pz¢(—'))(')n Then using the Newton form for P,¢ we have

Plo= (g v 216 (e =2) e (o =2

j=r

=3 (f MUz 58 0N =) o (o =z ).
J=r IR

Setting

r

gt =2t mz) . (1= 2,y
! dr

then the left of P, to & is

r z 0 j 0 i—1
P(x) = 2 f kM(y | x ... ,xj)qj(ka,x Vis oo ,x/ Vi (n)dy
j=r YR



where xo, ..., x" are the columns of A. The case r=0 was studied in [ 8 ] and the case r=k-1

appearsin [ 5].

We now give another application of Theorem 2.1.

For every z € €", let p(£,z) and ¢(¢,2) be polynomials of degree r, s, respectively in £ € !
r s

normalized so that g(§,z) = £ + --- . We define the kernel
A&, 2)
G(z,¢) = (2.18)
q,(¢, z)

and observe that for r < s, G(z, £) is analyticin ¢ at .. Thus we may expand it in a neighborhood

of o,

= q(z)
G = = || 2R, (2.19)
j=0
and conclude that the functionals
x afz) )
A= ’j' 6P, ¢cé (2.20)
j=0 I

are in &', for eachz € @".

We assume without loss of generality that r=s and for some z € ([‘",Pr(g’ z), q,(¢, z) have no

common factors as functions of £ .

Theorem 2.3. Suppose p,,q; are as above. Then the functional A, can be lifted if and only if
pfz, &) and qfz, £) are homogeneous polynomials of degree T, s, respectively, in the variables

(&) e T



Proof:

Expanding p, , g, as

r r

e = pd, = g

j=0 j=0

we see that (2.19) is equivalent to the equations

Py = apq,
Pr—y = apgy.1 + 414,
: 2.21)
Po=apqy + - +aq,
and
agot+ - +a,,,q=0 v=1273 ... (2.22)

First assume p,(£, z), ¢,(¢, z) are homogeneous of degree r in (¢, z), so that p_j(z), qj(z) are ho-

mogeneous of degree r-j, j=0,1,...,r. Since g,(z) = 1 we see from (2.21) and (2.22) by induction that

each a; is a homogeneous polynomial of degree j, j=0, 1, ..... To prove the estimate (2.8) we
choose R > 0 such that | qj(z) | <R}z | )'_j, J=0,1,...,r and again use induction. Thus
we suppose

la@ | <cR1z1), vep (2.23)

with p > r. Then it follows from (2.22) that



g, @ | <D | a4, |
p=r

~

ptl—p

<> R Iz1) (R1z1)

p=1

<c® |z

We now conclude from Theorem 2.1 that A, is liftable. Conversely, suppose that A, is liftable.

We then solve any 1 consecutive equations from (2.22) to obtain for any » > 1 that
H,(2)q,(z) = B,(2), /=0,1,...,r—1

where H,(z) is the Hankel determinant ,

a,(z) Y S ¢4

Ayyr-1 (@ ... Ay 2(r-1 )(Z)v

a homogeneous polynomial in z, and B,(z) is some homogeneous polynomial of degree
deg H,+r— (. The only way H/(z) =0, forallv=1,2,...isfor aj,ap ... to satisfy some

nontrivial difference equation

Vod, + Vid, 1+ Ve = 0

of degree m-1. If this were the case it would follow that p.(§; 2)/q,(&; z) can be represented as a
rational function with a denominator of degree < m . Hence, by hypothesis for at least some z there
is a p such that H#(z) # 0. But g,(z) is finite for all z and so H# must divide each
BM’ ¢/ =0,1,...,r— 1, which shows ¢, is a homogeneous polynomial of degree r — ¢ . Finally
using equations (2.20) we easily see that each p, is a homogeneous polynomial of degree r — /

thereby completing the proof of the theorem.

§ 3. Extension to 'if{)(le)



In this section we give conditions on the family of distributions (2.20) defined by (2.18), (2.19)

to have a lift which has an extension to some %S(IRI() (all functions with Z continuous derivatives on

R* with compact support). We consider the functionais in the form

1 P(‘f, z) m
A,p = — dg, , —
4=t f|g;=R|z|Q($,z)¢(£)g 06, ="+

© aln) ., 3.1)

=I§ jj! ¢(l)(0)-

where
gp(g’Z)-:ia’()g"" |61 >R |z |
Q(g,Z) j=0 /‘ ' '

(3.2)

By Theorem 2.3, A, is liftable, if P and Q are homogeneous polynomials of some degree m-1

and m respectively in (§,z) € "1 we begin with

Lemma 3.1. Let p, q be polynomials of degree -1 and m, respectively, with no common zeros. Suppose

also that q is free of zeros in | ¢ | > R and has leading coefficient one. Then the linear functional

1 pé)

- 25 (o)dt, &
?= 2w |.s|=1u1(£)qb(£)£ e

is bounded on €™~ (R") if and only if q has real zeros.

Proof: Suppose that there is a constant ¢ > O such that | A¢ | < csup | ¢(m~])(a) |. Let zy be

oe R!
, 2
a zero of q so that p(zy) # 0 and for 7 € IR, set ¢(¢) = ¢~ Htmz ~~-€~(—€——-e- ¢ Then there is a con-
stant M > O such that for t sufficiently large



2

- Z t|Imzy | m—1
le “pzp) le "

=|A¢ | <M|1]

which proves z; is real. Conversely, if xj, ... ,x,, € R' are the zeros of q, then

A¢ = [x]’ ,xn](p( * )4)( . ))

where [x;, ..., x,]¢ is the divided difference of ¢ at xy, ..., x,,. Thus by equation (2.4) we have

m

(m—1)
T A dN,,, g€ 8
i=1

o= [, o
A =1
i=1

which gives an extension of A¢ to €5 (R).

Remark 3.1. The proof of Lemma 3.1 also shows that when A¢ can be extended to some %S(IRI)
then q must have real zeros. Moreover, if q has real zeros with multiplicites all < 7 then A¢ has

an extension to %g"l(lRl).

Theorem 3.1. Assume A,,z € C" has the form (3.1). Then it can be lifted to some %[I(IRk) if and only
if P(&,z), Q(&, z) are homogeneous polynomials of degree m - 1, m respectively and Q(¢, x) has only

real zeros for each x € R", i.e.
0, x)#£0, xeR', Imt#0. (3.3)

Proof: Suppose first the A,,z ¢ € can be lifted for each k to some €' (R, Let A 4 be its lift to

@'(R"). Then for any x e @" we have
Axd) = A1(¢°x)

which shows that A,¢ has an extension to ?f[(lRl). From Remark 3.1 and Theorem 2.3 Q(¢, x)

has only real zeros.



For the converse we require some information on initial-value problems for hyperbolic equations.
Denote by Q(9,, V,,) the differential operator corresponding to the polynomial Q(r, xy, ..., x,). Then

(3.3) implies that Q(3,V,) is hyperbolic, i.e. the initial value problem

0, V)ult,x) =0, xe R',1>0,

?
3u(0,x)=0, £=0,1,...,m—=2, xeR, (3.4)

ni—1

9, u(0,x)=y(x),xe¢ R"
is well-posed. We write
u=0" (8, Vv (3.5)
so that by standard regularity results on any finite time interval I = [0, T}
lutt, Dl grm?y S CH g rry (3.6)

for some /, depending on n,m. The choice / = n + m + 1, will always suffice, [ 7]1. Recall that,

for a kxn matrix A we use the notation
(WoA)) = ¥(42), z¢ @ e 8

and V, 4 means the (vector) differential operator whose columns are directional derivatives in the

direction of the columns of A

Now, suppose P(£,z), Q(&,z) are homogeneous polynomials of degree m-1, m respectively such

that Q satisfies ( 3.3).

Fory € %S(IRI() we define
A= P(3, 7,0Q (8, V(e 4) | 1) (3.7)

or equivalently



~1
Agh = P(3, 9,40 (B, V¥ | (10 (3.8)
Let us prove that A lifts A,z e €" to &' (R"). Thus it is sufficient to prove for any y € R”,
Aqgoy) = A8 (3.9)

where g(o) = ¢'° o ¢ R. From (3.1) we get

1 fp(g’m) % gt (3.10)

€= %0 J ot ¢

On the other hand, the solution of the initial-value problem (3.4) with = (goy)oA4 = goyA is given

by the formula

i(&t+xpA4)

1 e
u(t, x) = oy f 06t ) dt, (3.11)

[7]. Therefore the left hand side of (3.9) by definition (3.7), agrees with (3.10) as claimed.
§ 4. Examples.

In this section, we give several examples of Theorem 3.1. All our examples have the common
feature that the polynomial P(¢,z) is independent of £ so that henceforth it will be denoted by P(z).
In this case, some simplification takes place. We begin by observing that the solution to (3.4) can

be represented as

m—1

u(t,x) =t Qs + 1x)) (4.1)

where Q is the distribution defined by

Y = Q_l(ap V¥ 1,0y (4.2)

17



Since P and Q_l commute (3.7) and (4.1) give

A = QP )(YoA)) 43)
or equivalently
A = My(P(V,A)0) 4.4)

where M is the distribution on €h(R") defined by
Q
My = Q(foA). (4.5)
To identify Q we observe from (4.3) with k=n, x ¢ IR” that
(m-1)
Afpox) = PG Vo). (4.6)

On the hand, using the lifting equation (2.2) and the defining equation (3.1) we get for x € IR”

(2,6, .. 2,016 = 26" o) .7

where z;(x), ... (x) € R are the real zeros of Q(¢, x).

’ Zm

We consider two classes of examples of (4.3) in detail:

In the first case, we suppose Q(¢, x) is orthogonally invariant in x for all £ . Thus we require
0(&, Ux) = Q(£, x) for every isometry U on IR”. In this case, there is a univariate polynomial q(z)

of degree m with real zeros xy, ..., x,,, symmetric about the origin such that

o, x)=1x1"q¢&/ 1 x1). (4.8)

Thus equations (4.6) and (4.7) take the equivalent form

(m—1) o

[y oo X6 = Qo e), e=(1,0,...,0). (4.9)



Since § is also orthogonally invariant we may express it in the form
Qf = oI, (4.10)

where

(TH() = 1 fux)dm,, m, = f{ - dmx___Zﬂ'N/2 | T(n/2) 4.11)

my, |x|=1

is the spherical mean of f, [7,8]. Combining equations (4.9) and (4.10) we get

—m+1
oT(0oe) = . oo 1™ =f MG Xy, )60 (4.12)
R

For even functions ¢ ¢ %S(IR])

t
—(n—2) 2m,_ 2 -
Tgoe)ny =1 2 2n=L f % = "% 4(0)do. (4.13)
n 0
[ 6 1. This integral transform has an inverse given by
2"—] d n—1 ! n—1 2 2. (n-3)/2
(So)(1) = t f o (U —o0o) ¢(o)do (4.14)
(n — 2 dt2 0
[ 61, and therefore we get ,
W = fo M@ | xq, ..., x,)(Se)(0)dt (4.15)

for ¢ even. Obviously (4.15) is also valid for odd ¢ since then S¢ = 0 which is consistent with (4.12).

Note that o is a positive distribution on plane waves, that is w(¢ox) 2 0, for x € R" whenever

19



¢ > 0, see (4.7). In spite of this, even when  is bounded on i?(IR') it does not correspond to

measure.

We mention two specific choices of the above computation:

i If

n=20+3, />0

then

[+1_20+1
1) 2 g l
w(x) = (=D X +2<——4—) +1M(x | Xp5 ooy Xp)-

27 + ! a2 o

Thus « has compact support and is continuous for 0 < / < m — 3. When n=3 and m > 3 it is also

positive but not otherwise.

i) If
n=20+2, (>0

then

14 2

2( 1)/+1 2 (7 2 2.-1/2 £41
@ (x) = —x f o(e” =x)" ( d ) Mo | xy, ..., x,)do.
x do

Again, v is continuous when 0 < / < m — 3 and positive for n=2, m > 3.

Our next example corresponds to the choice that Q(¢, x) is of affine lineage. This means that

we may globally factor Q in the form

20




N

ot x) =[] ¢ - Vo
j=1

for some v', ..., v" e IR". In this case equation (4.7) for the fundamental distribution becomes

1

-1
[vx, ... ,vmx] ¢ = Q(q)(m Vo

x).

Using equation (2.4) we also have

i n (m-—1) uh i
e = 8" (@ v,y,)x)dyl -,
S i=1

which becomes, in view of Definition 2.1,

= [ o1y Ve
R

Therefore equation (4.1) shows in this case that

nw— | m

K, x) =1t M(x/t | vl,,..,v ), >0

is the fundamental function for the hyperbolic equation

m

H (—gt— - viV")u(t, x)=0, r>0,x¢ IR"

i=1

6£u(0,x)=0, i=0,1,...,m-2

m-1

9, u(0,x) = ¢(x).

21
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