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Abstract

We have designed an interactive tool, called IPS, for performance measurement and
analysis of distributed programs. IPS is based on a hierarchical model of distributed compu-
tation which maps the program’s behavior to different levels of abstraction. The hierarchical
model unifies performance data from the whole program level down to procedure and state-
ment level. Users are able to maneuver through the hierarchy and analyze the program
measurement results at various levels of details. IPS allows the programmer to interactively
evaluate the performance history of a distributed program. Because of the regular structure
of the hierarchy, IPS can provide information to guide the programmer to the cause of per-
formance bottlenecks. Critical path analysis is used, in conjunction with simple perfor-
mance metrics to direct the programmer in identifying bottlenecks.
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Research Grant, and the Defense Advance Research Projects Agency (DoD) Contract No. N00014-82-C-2087.






1. Introduction

A program can be designed as a group of cooperating processes distributed across several (or
many) machines. The reason for distributing a program may be to increase reliability, availability,
or performance of the program. If increased performance is our goal for writing a distributed pro-
gram, then we need a way to measure and evaluate the program’s performance. We need a measure-
ment tool that will allow us to evaluate the performance of a program and to evaluate the effect of
changes that we make to the program. With this tool, we should be able to inquire about our
program’s performance at varying levels of detail. Furthermore, the performance tool should pro-

vide sufficient information to guide the programmer to location of performance bottlenecks.

Much of the research on performance measurement of distributed systems and pro-
grams{1, 2, 3,4, 5,6, 7] shows that we can describe a program’s behavior at many levels of detail and
abstraction. These levels include the hardware architecture, operating system, single process, and
user program. Often, we need information from several of these levels and need some way of coor-

dinating the information received from these various levels of abstraction.

Several studies on performance measurement of distributed programs worked at the level of
message communication and interprocess events{2,4,7]. This level of detail provides information
about the complex interactions in between the processes in a distributed computation but provides lit-
tle information about the internal workings of the processes. The results obtained from measure-
ments are at a coarse-grained level, measuring such things as speed-up and communications levels.
Traditional performance measurement tools provide information about individual processes (such as
page fault frequencies or subroutine call frequencies)[8,9, 10, 11] but provide no information about

the interactions between the processes that constitute a distributed program.

We unify the levels of detail by describing a distributed program as a hierarchy. Our hierarch-
ical structure extends from the whole distributed program down to the finer-grained procedure and
statement level. At each level of the hierarchy, we can describe the distributed program in increas-

ing detail.



Along with the program hierarchy, we have defined a hierarchy of metrics to describe the
program’s performance. At each level of the program hierarchy, there are metrics to describe the
program’s performance at that level of detail. The programmer can use this hierarchy of perfor-

mance data to examine the different aspects of program behavior.

We have developed a measurement system, called IPS, that implements our measurement
hierarchy. this system allows the programmer to interactively examine the execution history of a dis-
tributed program at various levels of detail. The programmer can traverse the hierarchy, zooming in

to focus on more details, or zooming out to see larger trends.

Important goals of a performance measurement tool are to provide facilities for aiding the user
to understand program behavior, to locate trouble spots, and to improve the efficiency of programs.
Our efforts are devoted to integrating the performance tool with program tuning techniques. For this
reason, IPS also provides guidance in the locating of performance bottlenecks. It provides informa-

tion to the programmer to help determine where to look in the hierarchy.

We are considering a distributed environment with a large number (dozens to hundreds) of
machines, so have chosen a decentralized structure for our measurement tool. Most of the function
of the tool is distributed over individual machines in the system, attempting to maximize local pro-
cessing and minimize communications overhead caused by IPS. The pilot implementation of the tool

is being done on the Charlotte distributed operating system[12].

In Section 2, we will describe our hierarchical model of distributed computation and then
describe the corresponding measurement hierarchy in Section 3. Section 4 presents some of the
implementation details of IPS. We discuss data analysis techniques and methods for directing the
programmer to performance problems in Section 5. Section 6 reports the current status of IPS and

conclusions.



2. Hierarchical Program Model

A hierarchical model is useful for solving complex problems. The objects in a hierarchical
model are organized in well-defined layers, and the interfaces between different layers can insulate a
layer from the implementation details of the other layers. The hierarchical model provides the ability
to view a complicated problem at various levels of abstraction. We can move vertically in the hierar-
chy, increasing or decreasing the amount of detail that we see. We can also move horizontally in the

hierarchy, viewing different components at the same level of abstraction.

IPS considers a distributed program to be a hierarchy. This hierarchy consists of components
on different machines, and the machines are each running individual processes. A process itself
consists of different levels of activities[13] such as procedures, statements and machine instructions.
An overview of our computation hierarchy is illustrated in Figure 1. This hierarchy can be con-
sidered a subset of a larger hierarchy, extending upwards to include local and remote networks and

downward to include machine instructions, microcode, and gates.
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(A) Program Level

This level is the top level of the hierarchy, and is the level in which the distributed system
accounts for all the activities of the program on behalf of the user. At this level, we can view a dis-
tributed program as a black box running on certain system to which a user feeds inputs and gets back
outputs. The general behavior of the whole program, such as the total execution time is visible at

this level; the underlying details of the program are hidden.
(B) Machine Level

At the machine level, the program consists of multiple threads that run simultaneously on the
individual machines of the system. We can record summary information for each machine, and the
interactions (communications) between the different machines. All events from a single machine can
be totally ordered since they reference the same physical clock. The machine level provides no

details about the structure of activities within each machine.

The machine level is not strictly part of the programmer designed hierarchy (as are the process
and procedure levels). The structure at the machine level can change from execution to the next, or

even in a single execution as is the case in process migration [14].

We include the machine level in our hierarchy for two reasons. First, in the systems that we
commonly use, we can either directly specify or have explicitly visible the allocation of processes to
machines. Second, the performance of a distributed program can be changed dramatically depending

on this allocation. For these reasons, we chose to incorporate machines in our hierarchy.
(C) Process Level

The process level represents a distributed program as a collection of communicating processes.
At this level, we can view groups of processes that reside on the same machine, or we can ignore

machine boundaries and view the computation as a single group of communicating processes.

If we view a group of processes that reside on the same machine, we can study the effects of

the processes competing for shared local resources (such as CPU and communication channels). We



can also compare intra- and intermachine communication levels. If we ignore machine boundaries,

we can abstract the process’s behavior away from a particular machine assignment.
(D) Procedure Level

At the procedure level, a distributed program is represented as a sequentially executed
procedure-call chain for each process. Since the procedure is the basic unit supported by most
high-level programming languages, this level can give us detailed information about the execution of

the program. The procedure level activities within a process are totally ordered.

The step from the process to the procedure level represents a large increase in the rate of com-
ponent interactions, and a corresponding increase in the amount of information needed to record
these interactions. This can be seen by noting that procedure calls typically occur at a higher fre-

quency than do message transmissions (see Section 4).
(E) Primitive Activity Level

The lowest level of the hierarchy is the collection of primitive activities in the program. We
consider the activities which are reflected in the upper levels of the hierarchy. Our primitive activi-
ties include process blocking and unblocking by the scheduler, message send and receive, process
creation and destruction, procedure entry and exit. Each event includes the type of the event,
machine, process, and procedure in which it occurred, a local time stamp, and event type dependent

parameters. The events are listed in Table 1.

The primitive events can be mapped to the upper levels of the hierarchy. For example, a mes-
sage send event could be mapped to the program level as part of the total message traffic in the pro-
gram, to the machine level as part of the message traffic between machines, or to the process level as

part of the message traffic between individual processes.



betare s Process starting time bond- Process ending time
Wlock: Process blocking time Yesume - Process un-blocking time
torer Procedure entering time Yoxit: Procedure exiting time
Lsend: Message sending time byt Message receiving time
beev—call - Attempt to receive time lqueve - Message arrival time
Table 1: IPS Primitive Events

Np: Number of processes. Ny Number of machines.

T: Total execution time (real time). | Tgp,: Total CPU time.

Tpair:  Total waiting time. Tyait g Total CPU wait time (scheduler waits)

R: Response ratio, R = T/ Ty, L: Load factor, L = (Tepy + Toair o) / Tepu

P: Parallelism, P = T, / T. p: Utilization

My Message traffic (bytes/sec) C: Procedure call counter

M,,: Message traffic (msgs/sec)

T, Ny, Nus Tops Twairs Twait cpu s R, L,p, My, M,,, and C are metrics which will be applied to dif-
ferent levels of the measurement hierarchy (see Table 3).

Table 2: Performance Metrics

3. The Measurement Hierarchy

If we wish to understand the performance of a distributed computation, we can observe its
behavior at different levels of detail. These levels correspond to the levels in our hierarchy of distri-
buted programs. At each level of the hierarchy, we define performance metrics to describe the
program’s execution. For example, we may be interested in parallelism at the program level, or in
message frequencies at the process level. We can look at message frequencies between processes or
between groups of processes on the same machine. This selective observation permits a user to focus
on areas of interests without being overwhelmed by all of the details of other unrelated activities.
The hierarchical structure matches the organization of a distributed computation and the associated
performance data.

Table 2 lists several of the performance metrics that can be calculated by IPS. Some of these
metrics are appropriate for more than one level in the hierarchy, reflecting different levels of detail.

Table 3 summarizes the use of these metrics.



(A’Y Program Level

All of the metrics listed in Table 2 are valid at the program level. At this level, these metrics

provide a summary of the total program behavior.

Most of the metrics are simple to compute. A few of the other metrics are more complex and
can be computed in several ways. For example, utilization, p, can be computed as the sum of the p’s
for each machine. Alternatively, it can be derived from the parallelism (speed-up)[15] metric,
p = P/N,,. The parallelism can be computed in two ways. If our program is the only program run-
ning on the machines, we can compute T, the total execution time, to be the elapsed real time. If
our program must share the machines on which it executes, we must build a graph of the program

execution history (as described in [15] ) and use the longest path through this graph as T.
(B’) Machine Level

Metrics at the machine level are computed in a similar manner as those at the program level.
We can compute metrics such as utilization in several ways. If we are not sharing the machine with
other programs, p can be computed as ratio of the total CPU time to the elapsed real time. If other
programs are running on the same machine, we cannot use the elapsed real time, and must again

construct a program execution graph.

The machine level provides more detail about message traffic than at the program level. The
metrics for message rates (and quantities) are computed for each pair of machines. This forms a

matrix whose marginal values are the total traffic into or out of an individual machine.
(C’) Process Level

At the process level, the metrics reflect the load generated by individual processes. Message

traffic at this level is computed for each pair of processes.
(D’) Procedure Level

The procedure level provides information to examine the performance effect of parts of a pro-

CESS.
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Program | Machine | Process | Procedure
Level Level Level Level
N X
N, X X
T X X X
T o X X X X
I wait X X X
Twait_cnu X X X
L X X X
M, X X X X
M, X X X X
P X
p X X X
C X X X X

Table 3: Performance Metrics for Different Hierarchy Levels

We can obtain more specific information from IPS by restricting the data that it uses to calcu-
late the performance metrics. the simplest restriction is to place time bounds on the selected data.
This allows us to examine program behavior during a particular phase of program execution, to use a
special workload, or to follow the performance effect of a particular transaction. More sophisticated

restrictions might be used, such as those suggested in [16].

4. IPS Implementation

IPS is implemented as a distributed program. This section describes the details of the IPS
implementation.

There are two phases in the operation of IPS — data collection and data analysis. During the
first phase we execute the user program and collect the raw trace data. All of the necessary data are
collected automatically during the execution of the program. There is no mechanism provided (or
needed) for the user to specify the data to be collected. The program execution and trace data collec-

tion is done under the Charlotte distributed operating system.

During the second phase, the programmer can interactively access the measurement results.

The -metrics described in Section 3 and the critical path data described in Section 5 are available to
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the programmer.

4.1. The Charlotte Distributed Operating System

IPS is being implemented on Charlotte operating system[17, 12]. Charlotte is a message-based
distributed operating system designed for the Crystal multicomputer network[18], which currently
connects 20 homogeneous node computers (VAX-11/750s) and several host computers using a
Pronet token ring (80MB/sec)[19]. The Charlotte kernel supports the basic interprocess communi-
cation mechanisms and process-management services. Other services such as memory management,
file server, name server, connection server, and command shell are provided by utility processes.

Charlotte interprocess communication primitives are non-blocking, synchronous, and unbuffered.

4.2. Basic Structure

IPS (Figure 2) consists of three major parts: agent, the data pool, and analyst. A distinct
feature of this structure is that all three parts are distributed among the individual machines in the
system. The basic structure of our measurement tool is similar to the structure of METRIC[20] and

to the structure of DPM[71.

The Agent is a collection of probes implanted in the operating system kernel and the language

run-time routines for collecting the raw data when a predefined event happens.

The data pool is a memory area in every machine for the storage of raw data and for caching

intermediate results of the analyst.

The analyst is a set of routines for analyzing the measurement results. There will be at least
one master analyst which acts as a central coordinator to synthesize the data sent from the different
slave analysts. The master analyst coordinates the results from one or more slave analysts and pro-
vides an interface to the user. The slave analysts sit on the individual machines for local analysis of

the measurement data.

There are some major differences between our structure and the structures of METRIC and

DPM. In our scheme, the raw data is kept in the data pool on the same machine where the data was
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Figure 2: Basic structure of measurement tool

generated. The slave analysts exist on each machine, instead of a single global analyst.

For some data analyses, the master analyst will make a request to a single slave analyst. This
is the case when we request the message traffic, M, or M,,, between two processes that are on the
same machine. Other analyses require the master analyst to coordinate multiple slaves to produce a

result. This occurs for metrics computed at the program level of the hierarchy.

The local data collection and (partial) analysis has several advantages. The raw data is col-
lected on the machine which it was generated. This has the advantage that it should incur less meas-
urement overhead than transmitting the traces to another machine. Sending a message between
machines is a relatively expensive operation. Local data collection in IPS will use no network
bandwidth and little CPU time. If the number of the machines in the system becomes large, the

transfer of the collected raw data will not be limited by the communication lines.
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A second advantage to local data collection is that we can distribute the data analysis task
among several slave analysts. Low level results can be processed in parallel at the individual
machine and sent to the master analyst where the higher level results can be extracted. It is also pos-
sible to have the slaves cooperating in more complex ways to reduce intermachine message traffic

during analyses (see Section 5).

4.3. Raw Data Collection

Local data collection requires that each machine maintain sufficient buffer space for the trace
data. The question arises whether we can store enough data for a reasonable analysis. To study
this, we measured the message and procedure call frequencies on several programs. These programs
were run on the Charlotte or 4.2BSD UNIX operating systems. The measurement results are sum-
marized in Table 4.

Data gathering for interprocess events will be done by agents in the Charlotte kernel. Each

time that an activity occurs (most of them appear as system calls), the agent in the kernel will gather

related data in an event record and store it in the data pool buffer.

Program Name |Description Messages |Procedure Call| System
Checkers (Master) 0.60/sec 0.67/sec Charlotte
Checkers (Mid)  |Checkers game, using o/} search 0.22/sec 18.5/sec  |VAX/750
Checkers (Slave) 0.15/sec 1230/sec

Pconnector (run 1)|Initially connected system processes during| 9.1/sec 190/sec Charlotte
Pconnector (run 2)|Charlotte OS bootstrap 1.2/sec 30/sec VAX/750
TSP (10 cities) Traveling Salesman solver 1890/sec UNIX
TSP (20 cities) g >ales ' 1760/sec__|VAX/780
Simulation (run 1) . . 530/sec UNIX
Simulation (run 2 |Ros0uree/deadlock simulation 190/sec |[VAX/780
vmc (run 1) . . . 2150/sec UNIX
vme (run 2) Wisconsin Modula Compiler 3020/sec VAX/780
make (run 1) - 4380/sec UNIX
make (run 2) |0 AX make facility 4180/sec__ |[VAX/T80

Table 4: Message and Procedure Call Frequencies
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Procedure call events happen at a much higher frequency than interprocess events. Event trac-
ing for procedure calls could produce an overwhelming amount of data. We see this in Table 4, with
procedure call rates of over 4000/second — three orders of magnitude greater than interprocess
events. Because of this high frequency, we use a sampling mechanism combined with modifying the
procedure entry and exit code. Because we are using sampling at the procedure level, results at this
level will be approximate. Sampling techniques have been used successfully in several measurement

tools for sequential programs, such as the XEROX Spy[11] and HP Sampler/3000([9].

We set a rate (ranging from 5 to 100 ms) to sample and record the current program counter
(therefore the current running procedure) We also will keep a call counter for each of procedure in
the program[10]. Each time the program enters a procedure, the counter of that procedure is incre-
mented. At the sampling time, a record which includes time of day, CPU time, procedure ID, and
the call counter. The sampling frequency can be varied for each program execution. We are

currently experimenting to determine a minimum value that will provide sufficient information.

5. Critical Path Analysis

IPS can measure the performance of the different parts of a distributed program and at different

levels of detail. This information is used to guide the programmer to find performance bottlenecks.

In its simplest form, the programmer starts at the top (program) level of the hierarchy. Using
the available metrics, the programmer decides where to look in the next (machine) level of the
hierarchy. The decision may be affected by choosing the machine with the smallest utilization or
highest procedure call rate. At the machine level, the programmer can examine the performance
metrics for each process on the machine and choose the process that appears to have the largest per-

formance effect. This descent can be continued to the procedure level.

The execution of a distributed program can be quite complex. Often, individual performance
metrics will not reveal the cause of poor performance. It may be that a sequence of activities, span-
ning several machines or processes, is responsible of the slow execution. It is also possible that the

scheduling or planning of activities[21] on the different machines will have a large effect on the
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performance of the entire program. It is useful to find the path through the execution history of the
program that has the longest duration. This critical path [22] identifies where in the hierarchy we

should focus our attention.
We can view a distributed program as having the following characteristics:
(a) Itcan be broken down into a number of separate activities.
(b) The time required of each activity can be estimated.
(¢) Certain activities must be executed serially, while other activities may be carried out in parallel.

(d) Each activity requires some combination of resources as CPU’s, memory spaces, and 1/0 dev-
ices etc. There may be more than one feasible combination of resources for an activity, and

each combination is likely to result in a different estimate of activity duration.

Based on these properties of a distributed program, we can use the critical path method
(CPM)[22, 23] from network analysis in our performance analysis. We can find a path in the pro-
gram which takes the longest time to execute. This path and all the events along this path, identifies
the place(s) where the execution of the program delays the longest time. The knowledge of this path
and the bottleneck(s) in this path will help us focus on the performance problem. As noted in the

previous section, results obtained at procedure level will be approximations (because of sampling).

Figure 3 shows a program history graph for a distributed program with 3 processes. This
graph shows the program history at the process level. The critical path (identified by the bold line)

quickly shows us the parts of the program with the greatest effect on performance.

Each slave analyst contains a graph describing part of the program history. The vertices in a
slave’s subgraph correspond to the events done by processes on that slave’s machine. All of these
graphs together form a complete event history graph of the program. We are initially using a rela-
tively simple method for calculating the critical path. In parallel, each slave analyst tries to reduces
the size of its graph by finding connected subgraphs whose vertices and edges are all contained in a

slave’s machine. The reduced graphs are then sent to the master analyst for final processing.
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Figure 3: Example of Critical Path -- Process Level
We will experiment with algorithms that transfer graphs between slave analysts to attempt a

greater reduction of vertices before the final set of graphs is sent to the master.

6. Conclusion

The hierarchical model is a natural way to describe distributed programs and their perfor-
mance. This model allows us to incorporate several types (levels) of performance data into a single
structure. the programmer is provided with a uniform view of program behavior.

The hierarchy also allows the programmer to vary the amount of information and the level of
detail needed to solve a problem. The regular structure of the hierarchy makes it easier for the per-

formance tool to provide guidanceto the programmer.
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We are currently implementing IPS on the Charlotte distributed operating system. The basic
structure and the probes for raw data collection have been put in the Charlotte kernel and the pro-
gramming language run-time routines have been modified. Current efforts are concentrated on study-
ing and developing various algorithms for different techniques of data analysis and results presenta-
tion. We are conducting several experiments on the measurement of different distributed programs

using IPS.
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