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ABSTRACT

The MGR[V] algorithm of Ries, Trottenberg and Winter, Algorithm 2.1

of Braess and Algorithm 4.1 of Verfilirth are all algorithms for the numerical
solution of the discrete Poisson equation based on red-black Gauss-Seidel
smoothing iterations. In this work we consider the extension of the MGR[ 0]
method to the general diffusion equation -V +pvu = f . In particular, for
the three grid scheme we extend an interesting and important result of Ries,
Trottenberg and Winter whose results are based on Fourier analysis and hence
intrinsically limited to the case where Q is a rectangle. Let & be a

0

general polygonal domain whose sides have slope +1, 0 and « . let €

be the error before a single multigrid cycle and let 61 be the error after
2 I,

h
energy or operator norm. When p(x,y) = constant, then K = 0.

this cycle. Then ||s-:1]|L < denotes the
h

(1+Kh)l|so||L where ||
h



1. Introduction

The MGR[v] multigrid algorithms of Ries, Trottenberg and Winter [4],
the Algorithm 2.1 of Braess [1], [2] and Algorithm 4.7 of Verflirth [5]
are all algorithms for the numerical solution of the discrete Poisson
equation (the usual 5-point difference equations with Ax = Ay = h) based
on red-black Gauss-Seidel smoothing iterations. The analysis of [4] is
based on Fourier Analysis and is restricted to the case where the basic
domain € is a square. The analysis of [1], [2] and [5] is for a bounded
polygonal domain § whose sides have slope + 1,0 and <« and is based on
certain energy estimates and a particular interpretation of the matrix equa-
tions. While this is not explicitly stated, this interpretation can be
E, IE, gh’ Iﬁh etc, the operators which

carry on the communication between the grids.

viewed as a particular choice of I I
Recently, Kamowitz and Parter [3] considered a generalization of the
algorithms of Ries, Trottenberg and Winter and Braess. They consider the

general diffusion equation

-V o p(x,y)vu = f in @,

(1.1) !

0 on 239

p(x,y) > py > 0,

h .H
y Ih than Braess,

i.e. imagining a different interpolation structure in the space 3

in general domains © . Using a different choice of 1

T they

employ other "Energy Estimates" to obtain the basic estimate - for a two

grid scheme: let eo denote the error before a single multigrid cycle and

let e] denote the error after that complete multigrid cycle, then



(1.2) 1 < Lm0
el <m0l

where the constant K depends only on p, and || vpll,» the <« norm

of the gradient of p(x,y) and I [|Lh denotes the operator or energy
norm. However, it is important to remark that despite the different
interpretation of the problem, in the case of constant diffusion coefficient
p(x,y) =1 we are dealing with exactly the same problem and the same itera-

tive method. The estimate (1.2) is thus a generalization of the estimates
1 1
(1.3) o(MG) < 7. p(MER[O]) = 7

of [1] and [4].
Another remarkable estimate of Ries, Trottenberg and Winter [4] is the
fact that, in the case of Poisson equation in the square, if a third grid

is introduced and one uses the MGR[0] method one obtains

(1.4) o (MGR[O], 3 grid) = .

In this report we obtain this estimate in the form (1.2) for the general dif-
fusion equation (1.1) in bounded polygonal domains § whose sides have slope
+1, 0 or «. We also require that the corners of © belong to the coarsest
mesh. The constant K is a constant depending only on Po> and the e« norm
of the first and second derivatives of p(x,y). Moreoever, if p(x,y) = const.
then K = 0. In general, throughout this paper K will denote such a constant.

In section 2 we formulate the problem and the basic three-grid multigrid
iteration. In particular we introduce the coarse grid operators LH, EH’ L2h’

L2h' In section 3 we develope more notation and recall some basic estimates



of [3]. In this section the reader is introduced to a number of additional

. 1) (1 1) (1 - .
difference operators Lé ), Lﬁ ) Lgh)’ Léh), Qx’ Mx’ LX .  This plethora

of operators gets a bit confusing. However if one first concentrates on the

£

case p(x,y) =1 (i.e., the Poisson equation) the situation simplifies. In
: _, (1) _, (1) A () 17

this casi )LH = LH s Loy = L2h and (we always have) LH --ELH + 2LH ,

~o 1,00 1p() : )

L2h = 2LZh + 2LZh . Moreoever, in this case

Son

[QZh is the coarsest grid] and

1)

_
M, = LH

/o,
[QH is the intermediate grid]. Another observation which should be useful
is the fact that, in this case E(1) is the same difference operator as

H

L2h except for points in QH which are next to the boundary. Moreover,

these exceptional points are in QH/QZh not in QZh' This perturbation of
ﬂé]) causes a technical difficulty in the proof of lemma 5.2 even in this
simplest case. In all cases the introduction of the variable diffusion
coefficient p(x,y) introduces perturbation of the basic operators. However,
the essence of the proof of the main result [Theorem 5.1 or the estimate

(1.2)] is contained in the constant coefficient case. The analysis of the

algorithm is given in two parts, sections 4 and 5.

Remark: The purpose of this work is to study and develope methods of multi-
grid analysis that may Jead to actual numerical estimates on convergence rates.
We are not suggesting that this particular algorithm is the optimal MGR[v]

algorithm.



2. The Problem
Given a (small) value h >0 Tet {(xk,yj) = (kh,jh); k,j =0,+1,+2,...

be the associated mesh points in the x -y plane. Let

(2.1) Ry = {(xk,yj); k+j = 1(mod 2)}
(2.2) RB = {(xk,yj); k=3z=0 (mod 2)}
(2.3) RG = {(xk,yj); k=3j=T1 (mod 2)}.

Let § be a bounded polygonal domain in the plane whose sides have

slope +1,0, or =, and every corner point (x,y) of 3R belongs to RB'

Define

(2.4a) Q, = (ROLJRB\JRG) N Q
(2.4b) 3%y, = (ROLJRBLJRG) N 30
(2.5a) Q, = (RBLJRG) nQ
(2.5b) 3, = (RBLJRG) N 3%
(2.6a) f,, = Ry neQ

(2.6b) 3%, = RgMNAN .

For any function F(x,y) defined on 0 we write:



(2.7a) Fr.s = Fxays) s

= 1
(2.7b) Fray, 5 = FUkPILY )
(2.7¢) Fr gy = FOxs(3#alh)

The algebraic problem to be solved is: Find a mesh function U = {Ukj}

defined on & U ofy which satisfies

(2.8a) [LhU]kj = ij , (Xk’yj) e Qp

(2.8b) Ukj =0, (Xk’yj) € BQh

where

(2.8¢)  [LyUly; = ;%'{pk-%,j[uk,j Ut P, 5 7 Y, Y
;%'{pk,j-%tuk,j U 5013 7 P etV g Y8

We turn to solution of these linear algebraic equations by a three-
grid method.

Let Sh’ SH,

h h? QH v BQH

respective boundaries 3%

S be the Tinear spaces of mesh functions defined on

2h

Q, U o and oy ) a2y respectively which vanish on the

BQH, BQZh . We set up communication between

h)
these spaces. Specifically we define the linear interpolation and pro-

jection operators IE, Igh’ Ig, Iﬁh as follows. The interpolation

operator 1" (see the definition of Ig of [3]) is given by

y



h)

(2.9a) IH' SH -> Sh

where
hoo .

(2.9b) [IHU]kj = ukj, if (xk,yj) e QU o,

and, if (Xk’yj) € Qh/QH, then

(2.9¢) iy, = = ¢ U ip U "

' HOkG T e Pk d ke1ud T TR Tk

P, -0k, 51 Pk, g

where

(2.5d) S = P *Pros,g PR3- PR

Of course, if (xk,yj) € 9, /30,  then
(2.9€) (1M1, . = 0
. Uk 5 .

The projection operator Ig is defined by

H o 1,.hT
n =2ty

N —

(2.10) I

Remark: The factor %~ in (2.10) is included merely to keep the method

consistent with the MGR[v] methods of [4].

The interpolation operator Igh is defined in a similar manner by

(2.11a) IZh:



with

H -
(2.11b) [IZhU]kj = U,

j » if (Xk,yJ) € QZh UBQZh .

and, if (xk,yj) € O/ then

Hyr ol
(2.11¢) [IZhU]kj = {pk+%,j+%U

Cki k+1,j+1 +pk+g,j—%uk+1,j—1 *

Py, ke, 541 Pl 3lk-1, 317

where

(2.00d) S5 = TP gu PPy, 5o FPioy, s TPk, 33

and, if (Xk’yj) e 39,/38,, then

H -
(2.17e) [IZhU]kj = 0.
. . 2h . .
The projection operator IH is given by
2h _ 1 H\T
(2.12) Iy =5 (1) .
Finally we define the "coarse grid" operators LH’ LZh . These are
(2.13a) LH: SH > SH

where, if (Xk’yj) e

] - -
(2.13b) [LyUly; = 2 18y Y%, 5 ™ Pratg, j1lKn , 541

- Pray, joilka T, -1 " Phe, o)

k-1,3+1 " Piatg, 3-10k-1, -1

}



and
(2.14a) LZh: SZh - SZh
where, if (Xh’yj) e Q,, then

S _ _ :
O AL SR AL R NI R R

L

* 07 P35 V-] P an i gae ~Ue,st
We are now ready to describe the three grid methods. Let Bh be a
non-singular linear operator defined on Sh
(2.15) Bh: Sh > Sh.

Let the smoothing operator G, be defined by

(2.16a) G, =1

and assume that

(L Ghu,Ghu>

h <1, ¥YuesS

(2.16b) ruw S

e U 0,

Algorithm

Step 1: Given u0 € Sh’ form

(2.17) U =Gu +B



Step 2: Perform one odd relaxation step. That is, construct u via

~N -~

(2.18a) ukj = ukj . (Xk’yj) € QH
(2.18b) [Lhu]kj = ij , (xk,yj) € Qh/QH
Ups = 0, (Xk’yj) e 30y, .

step 3: Set r=F- LG, r, = Iﬁr.

Step 4: Let @ be obtained as follows.

(2.19a) wij =0, (Xi’yj) € QZh
(2.19b) [LHw]ij =Ty (Xi’yj) € QH/QZh'
Step 5: Set Py =1y - L, v, = I12%
2L€p 9: H™TH - SY > 2n ™ *H "W
Step 6: Solve

Lopd = rop

]

Step 7: Set LI IE[@ + Igh¢] .

Step 8: Set u1 _— and return to step 1.

Observe that the red-black or odd-even nature of the basic equations means
that (2.18b) and (2.19b) are explicit equations for the determination of

ukj and wij respectively.
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3. Some Notation and Facts

Let u,v € Sh or SH or S2h . Then

(3.1) Cusv = a3

where the sum is taken over all indices (k,j) so that (Xk’yj) € Qh , or
QH or QZh respectively. Whenever it seems that further clarity is required

we will indicate the space by writing
(u,v)a », a=h or H or 2h.

Since Lh’ LH and LZh are positive definite operators we have the

inner products

(3.2) [u,v]a = (Lau,v>a », a=h or H or 2h.
Let

(3.3a) Ny: = Mullspace I'L C's,

(3.3b) R,:= Range I} Cs,

(3.3c) NH: = Nullspace IfthH C SH

(3.3d) Ry: = Range 1 Cs,

Lemma 3.1: We have

(3.4a) Sh = Nh@]Rh, SH = NH@IRH .



h h
orthogonal. That is, if ne Na’ W e H{a, a=nh or

In fact, N, and R are Lh orthogonal; NH and

(3.4b) [n,m]a = <Lan,w)a =0 .

A function u e Sp is in ]Rh if and only if

(3.5a) [Lhu]kj =0, (Xk’yj) € Qh/QH.
A function Ve Sh is in Nh if and only if

(3.5b) Vi3 =0, (xk,yj) € -

A function U e SH is in Rki if and only if

(3.6a) [LHu]k,j =0, (Xk’yj> € QH/QZh'

A function Vv e Sy is in Ny if and only if

(3.6b) vkj =0, (xk,yj) € QZh'

11

RH are LH

H, then

proof: The assertions (3.5a) and (3.6a) follow from the definition of

IE, Igh etc. given by (2.9)-(2.12). The assertions
(3.6b) now follow immediately. See [3]. ]
Let
~ _ H h
(3.7a) Lyo = Thply o
(3.7b) =2

2h’ H "H 2h "~

(3.4a), (3.4b), (3.5b),

Using the basic relations (2.10), (2.12) we see that
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hon2 - ho <hy - ¢l
(3.7¢) 111Hv1|Lh = (L TvsTpvoy = 2¢L v,V 0y,
. Hyn? - H oy ¢H _ 240
(3.7d) HIZhuilLH = (LI, U1, U0, = 2 (Lo UsUdyy

The formulae (2.9), (2.10), (2.11), and (2.12) together with (3.5a) and

(3.6a) imply

(3.8a) Lu =

(3.8b) Lov =

The analysis of [3] is based on the following facts about LH’ L2h .

i (1) ~(1) () (1) )
Lemma 3.2: There are operators LH . LH , L2h R L2h such that:
~ o1 (), ()
(3.9a) LH =5 LH t LH ,
Py 1)
(3.9b) Lop =72 Lon” *2tan >

(1) : .
The operator L; 7 is based on the five points (xk,yj), (Xk+1’yj+1)’
(Xk-1’yj+1)’ (Xk—1’yj-1)’ (Xk+1’yj-1)‘ These are the same points on which

LH is based. The operator [51) is based on the five points (xk,yj),

(xk+29yj)a (Xk-Z’yj)’ (Xk,yj+2)’ (Xk,yJ_Z) If k j =0 (mOd 2), these are

the same points on which L2h is based. Similarly, if k = j = 0 (mod 2),
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D e N
N, RN
(k) (k)

mand
—

The five point star for LH,Lé

| ]
(3) | ] u
]
m denotes a point in RB
. o denotes a point in R
G
(k)

The five point star for LH R L2h’ oh

Figure 1



Lél) is based on these same points. The operators L§1)’ Lél) are

"almost" the operators LH’ L2h' To be precise, we have: let

(3.10a) s 1 Pross, Pk-1,3-% |, Phoi-sPket, -1
%1% Ck-],j Ck,j-]

(3.100) byys ix = P, i1 ks, 3-1 . Prss, iPk+1, 55
e “Kod-1 k41,5

3.10c d, . = )

(3.300)  dyg = Tayon 5o * P, gy * Do * Pl oo

If (k+j) = 0 (mod 2), then
(M .1
(3.1 Ty Wl =g G janlien g Ttk i kel gl
- by 3okt -1 7 Plos, g1, kgl

An easy computation shows that
1281 5,503 ™ P, gl <

124453 7 Poasg, gyl

Hence, for every U ¢ SH,

(3.12a) (LU, - i Puu | < kn? L,
(3.12b) (LU, - (iMoo | < kn’ <L£|”u,u> :



A basic estimate is: for every U e SH,

(3.13) o < <iMu,uy < (1ekn) L Mu,uy

(
H H

Hence, if we write

o2l 17(2)
(3.14a) LH =5 LH + 3 LH ,
then
(3.146)  ~kn <L < <EPuuy < () LU
Similarly, let
(3.152) A ;- P, iesPicr %, g4, Pt 3Pk ,55 |
>J k1,341 “k+1,4-1
(315b) B ] - pk+;5:j+;5pk+;§sj+3/2 ¥ pk';f:j+;§pk‘l§5j+g/2
k,3+1 Cra1, 341 Ck-1,341
(3.75¢) Dks = PAnns Ak, * B T Brgga

If, k=3j=0 (mod 2),

(1) _ 1
(3.]6) L2h = th —Ak+],ljk+2’3 - Ak_] ,jUk-z,j - Bk,j+1ukaj+2

- B D

k,j-1%,j-2 * k,j”k,j} :
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An easy calculation shows that

(3.17a) Kh® ,

12Ak+1,j 'pk+1,j]

(3.17b) | 28 Kh

34 Pyl <

Hence, for all U e SZh

(1) 2
(3.17¢) €Ly Us0D,p = Ly U0, | < KRS KLy U, U0

2h 2h 2h -~

The analog of the basic estimate (3.13) holds. That is

(1) (1)
(3.18) 0 < (Ly U0 < (T4kh) (Ly "ULUD .

Hence, if we write

~ ] 1+(2)
(3.19a) LZh = §'L2h + 5 L2h
then
_ ~(2)
(3.19b) (-Kh) <L2hU,U) < (L2h u,u? f;(1+Kh) <L2hU,U) .

0f course, if p(x,y) =1, then

_ (1M _ o (1)
(3.20) LH = LH , LZh L2h
Proof: The construction of Lﬁ]) and the basic estimate (3.13) is found
in [3]. The construction of Lél) and the estimate (3.18) then follows

from the same arguments. The estimates (3.11), (3.17) are direct computa-

tions. ]
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Qur next result looks at the operator L

~(1)
N

(1)

Lemma 3.3: The operator LH is of the form

~(]) _ ;L. - - -
(3.21) E‘H kg T 7z e, ite,g At,3%-2,5 = Bi,5+1%, j+2

u

- B j-1Y,g-2 * Dk,j”k,j} :

The coefficients, A, B, D are given by

1 2

_ Pk, Pkl + 7 Prasg) CleLg
(3.22a) A . = c
k+],J k+1,j
] 2
- Py, i Pke%,g + 7 Pty g) Bt
(3.22b) Ay .= -
k-],J k*],j
1 2
- PP + 7 Py 8L
(3.22¢) B, ..4 =
k,J+1 Ck,j+1
1 2
- P iPie % T 7 P g Bk g
(3.22d) B, . =
k,3-1 “k,j-1
(3.22¢) Pg T A T Reng B By
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where
L (xy) e oy
(3.23) GU,U =
Proof: These coefficients were computed in [3]. ]
Remark: If
eki1,j + 0, then Ukiz,j =0,

1]
(e]

ek,ji1 £ 0, then Uk,jiz

Lemma 3.4: Let (Xk’yj) €y - Then all 4 of its h grid neighbors

(in1,yj), (Xk,yji]) € Qh . Hence

P15 T P T 0
Proof: (See Figure 2). This result follows immediately from the fact
that all corner points of 3Q lie in RB. B

It is useful to write [ﬁ]) as the sum of two operators, one essentially

based on QZh and the other on QH/QZh .
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o ™
o . o " o - o = o
/
w o o
/
n o n o
/
o o o o
l////o n o n
o o o o o Q
[ o n o n
o o o o o
n o n o ™
o o o o o
n o . o u

Reentrant Corner

o denotes a point in R
® denotes a point in R

O denotes a point in R

Figure 2



Definition: Let Mx’ QX: SH -> SH be defined by

(3.24a) [QXU]k,j =0, (xk,yj) e Qu/, >

(3.24) LN BRI AR CARR R S
(3.25a) (MU, 5 = [Iﬁ])ujk’j L (Xeys) @ R
(3.25b) [qu]k,j =0, (Xk’yj) € QZh

Lemma 3.5: Let v e SZh . Then

Houy (L

H
(3.26) [€QLopvsTopv ly = (Lo

V’V>2hl i_KhZ( L2hv,v> .
Proof: The lemma follows from Lemma 3.4 and the estimates
B3 = P, 3l < K0P
|4ék,j+1 = Py 541l f,Kthk,j+1'

Remark: When p(x,y) =1, then K=0.

20

Finally, we "Tift" L2h (an operator defined on SZh) as follows:

LX: 52h - SH be defined by
- H _
(3.27a) [L ()]s = 05 (xpays) e /%)
- H _
(3-27b) [LX(IZhV)]k,j - [LZhVJk,j ’ (Xk,y\}-) € QZh .

Remark: Using this definition we may rephrase (3.26) as

H H H

H -
(3.28) ]<qQ 12h vy - (LI onVsTop

AL IZhv>H] < Kh? (L vy

let
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4. Analysis I.

tet €0 =u - u¥ be the initial error. Then & =u - U is the error

after step 1, the smoothing step. Assumption (2.16) asserts that

~2 ~ o 0 0 042
(4.1) lell| =(Le.e><(Le’e™) = I e []L
h h
Using the decomposition (3.4a) we have
(4.2) € =mn, + Ihw n. e N WwesS
: h H™? h h’ H-"

From step 2 [i.e. (2.18)] of the algorithm and Lemma 3.1 [i.e. (3.5b)] we

see that
/\_ /\_ h
(4.3) e=u-l=1Iw
Hence, using (3.4a) we see that
T h 2 2 h 2 ~ 2 0,2
(4.4)  JJelF = llInwll < lnp it + Nigwlly = llelly < Mletlly -
Lh H Lh - h Lh H Lh Lh Lh

Using (4.3) and (3.7a) and step 3 of the algorithm we see that

~  ,.H h B
(4.5) LHw = (IthIH)w =Ty -

See [3] for a more complete discussion of the significance of this fact.

Lemma 4.1: Let v ¢ SH he the solution of

(4.6) LHv =ry = LHW .
Let
H
(4.7) V=, ot IZhV , ny € NH , Ve SZh
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Let  be the function in S, constructed in step 4 [i.e. (2.19)] of

H
the algorithm. Then

(4.8) P = Ny -

Proof: Observe that (2.19a) and (3.5b) imply that § ¢ N Also (2.19b)

H-®
and (4.6) yield

[Ly =01y 5= 05 (xoy5) € /9, -

That is
~ - Ay N
(4.9a) (v-9) = [(ny-v) +1, V] € Ry,
while
(4.9b) (T]H—lp) e NH 5
Using (3.4a) and (3.4b) we see that (4.8) holds. [

Consider the function ¢ which is constructed in step 6 of the algorithm.

We have

_ +2h ~y _ .2h H
(4.10) L2h¢ = IH L, (v-y) = IH LHIZhV‘
thus
(4.11) L2h¢ = LZhV

From (4.3), (4.11) and step 7 of the algorithm we see that
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(4.12) el =y - u1 = Ig[(w—&) »Igh¢] e R, -

Thus, if we seek an eigenfunction EO, it must have the form

As we shall see, the generality of G, and the estimate (4.1) implies

that it suffices to consider the case where Gh = Ih . In that case

~ 0 he= LoH o -
(4.13) £ =g = IH[nH +IZhU] ;oM e NH , Ue SZh'

If e] = ueo (4.12) becomes

1 o hrp= o~y Lo H _ he= L H
Thus

(4.14) b=y, 0=, A= (T-n)

Returning to Lemma 4.1 we have

A OH LN =
Ly +T,0v) = Ly(ny +15,0)
(4.15)
LoGa +10v) = LGy +10 0)
HYVAH ™ 2k MY T 2p”/

From (3.8b), (3.6a), (4.11) and (4.14) we see that

A

H - = =
(4.16a) LHIZhV‘Q = 2L2hv = 2L2h¢ = ZALZhU
2h

H

(4.16b) LHIZhvl =0.

2/%,
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Thus, (4.16) and the definition of Ex[i.e. (3.27)] allows us to rewrite

(4.15) as
- = Hoa D= L H
(4.17) A[LHnH +2LX12hU] = LH[nH +12hU].

To simplify the eigenvalue problem (4.17) we define

#, ,

L% SH > SH
as follows: let v e SH . Then there is a unique representation

_ H
(4.18a) V=gt 12hw R Ty € NH » We SZh'
Then
# = .H

(4.18b) L'v = LHCH + ZLXIZhw'

The eigenvalue problem (4.17) now becomes

(4.19a) Aty = Ly -
.
(4.19b) RIS L

Observe that both L# and LH are symmetric positive definite operators.

Therefore, there is a complete set of eigenfunctions {vk} which satisfy
# _ 7 _ .

(4.20) (L Vk’vj) = <LHVk’Vj> =0, ki#+3j.

Then (3.7c) implies that

1
| e IIL
—— < max |1-A] = max |u| .

4,21
e 1, -
h
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Thus, in view of (4.1), the general three-grid iteration (Gh $ Ih)

also satisfies (4.21).



5. Analysis II

Consider the basic eigenvalue problem (4.19).
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Let us now focus our

attention on the right-hand-side of (4.19a). Using (3.9a) and (4.19

have
~o o1 ()= 1,(1).H 17(1)= 170
(5.1a) LHv =3 LH Nyt 3 LH IZhU t LH ny, *+ E'LH
and
Ty o= (1)= 1 (1)H 1,-
(V,LHV> =5 (nH,LH nH) + 5 { H,LH IZhU> + §'<nH

1,= 7
(5.7b) tg gl Ty 2nYoby

+
o~
|

The basic estimate (3.12a) allows us to replace

we accept error terms of the form

0+ L ] (i, L(])nH) + 1y

2hU)

_ H H 5
(5.2a) 81 = Kh [(LH 2hU I U) (LHn ,nH)]
_ 2 H H
(5.2b) 62 = Kh™( LHIZhU’IZhU>’
- Rl - -
(5.2¢) 63 = Kh (LHnH,nH).
Thus we may rewrite (5.1b) as
Dy =L 1
(v,LHv) =3 {(n Ny HnH) + 5 <12hU LHI
(5.3)
L1 ~(1)- ~(1) . H
+ 5 {(n Ny LH nH> + (nH LH I

2h!

b)
) H
Lopl >
~(1)=
’LH nH>
H (1)
TopUsky "TopU0

we

by L, provided

Ul + l(IH U [“)

2 "2h7°7H

H
IZhU> + 0(8)



(5.4) 0(8) = 0(8, +8, +8

1 72 3)'

From (3.6b) of Lemma (3.1) we see that

Hence
ol - ~(])" _ - b
(5.0&) <T]H9LH T]H> = <nH9MXnH> H
- (D) H gy sy
(5.6b) (nH,LH IZhU) = (nH,MXI2 Ul .

Thus, we may rewrite (5.3) as

L= L GLgo Ll 1
(v,LHv> =5 (nH,LHnH> + =< U LHIZhU> 5

2h ’

; H 1 H
(5.7) + (nH,M IZhU> + =1 Iop

__l

U Q I U) + 0(8) .

et us consider the term

1

L

(5.8a) u,L 1 ud

(=i}

From (2.12), (3.7b) and (3.9a) we have

_u 1
(5.8b) 3= (UL, U0y = 5 (UL, U 4

2 "2h7’TH2hT H T

u, M I hU) +

,\,(2)
(U,L2h u?

oM iy

2h °
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Thus, using the definition of [x and (3.17c) we obtain

1 ~(2)
y + 5-(U,L u?

(5.8c) J = on Udoy -

The estimate (3.28) allows us to replace Qx by LX provided we accept

errors of the form

H 2

H H
on (LHIZhU,IZhU).

- 2 - H )
(5.9) § = Kh" (L I U,IZhU> Kh

Thus, we rewrite (5.6) as

N

(v,L #

v>+J2_<u,E(2)u>

21
Y=l 2n Yo

n
(5.10)

1 -
+ __2_(V’MXV> + 0(6) + 0(6) .

The eigenvalue problem (4.19) becomes

(5.11) (ey) (vl = %<u,[§ﬁ)u>2h LMY+ 0(s43)
Hence
1
A - ‘2“3 -Kh
and

(5.12) A > 5 (1-Kn) .
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The complete proof of our basic estimate requires a further analysis

of the terms which appear in (5.11). Let

3 -y 1 (2)
(5.13) J = €U, Ly U,

+ (v,MXv>H
Using the basic estimate (3.19), Lemma 3.5 and the estimate (3.28) we obtain

(5.14) Cu,L82yy

S Wy < (1R (150,015, 0%, + 0(3) .

Expand the second term in J. We now have

J < (1+Kh) < U ,Q 12h Wt 0(8) +
(5.15)
Goomny + 2¢r o m 1t o, +<ifum it oy
N2y Y H*>"'x"2h" 'H 2h2"x2n" 'H
Using (5.5) we see that
(ysQuny Yy = (nysQ I2h w=0-
Since (3.24) and (3.25) yield
~(1) _
LH - Qx * Mx
we may rewrite (5.15) as
- (1) H - (1) - ~(1).H
J < (1+Kh){<I2h , 12hU>H + <nH,LH nH>H + 2<nHLH IZhU)H}

+ 0(8) .

That is

J < (1+Kh) (v, Ly vy +0(8) .
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Using the basic estimates (3.12), (3.13) and (5.9) - the definition of § -

we now have

(5.16a) J < (1+kh) Cv,Lyvdy
or

5 - - H H
(5.16b) J < (T+kh) [ngsLyngdy + (I UL T, U

From (3.8) (the representation of EZh)’ (3.9) and the basic estimate (3.19b)

we have
(5.17) J f_(1+Kh)[(nH,LHnH)H + 2<U’L2hu>2h] .
However, using the definition of [X (3.27) and the definition of L (4.18)

we may rewrite (5.17) as

#

(5.18) J < (1+kh) Cv, L)
Lemma 5.1: let v ¢ SH . Then
(5.19) (v, Eyvoy < (iekn) <L,

Further, let (A,v) be an eigenpair for the eigenvalue problem (4.19).

Then

1

(5.20) % (1-Kh%) < X < (1+h) .

Moreover, if p(x,y) = const > 0, then K =0.
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Proof: From (5.10), (5.18) and using the fact that both & and § are
dominated by (v,L*y),, we obtain (5.19). The left hand inequality of
(5.20) was established in (5.12). The right hand inequality of (5.20)

follows immediately from (5.11) and (5.18). 1
This result and (4.21) yields

Theorem 5.1: Consider the three grid iterative scheme described in section

2: steps 1-8. Let
1 1
E =u-u , € =Uu-u

There is a constant K > 0, depending only on p(x,y) and its first and

second derivatives, such that
1 1 0
(5.21) e ith <5 (T+kh) |l e Ith

Moreover, if p(x,y) = const >0, then K=0.
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