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ABSTRACT

In 1920, G. Szegd proved a basic result concerning the distribution of the eigenvalues i\ J(”)}
of the Toeplitz sections T,[f] where f(©) € L, (—m,m) is a real-valued function. Simple examples
show that this result cannot hold in the case where f(O) is not real valued. In this noté, we give an
extension of this theorem for the singular values of T,,[f] when f(©) = f(©) Ro(©) with f((®)
real-valued and R¢(®) continuous, periodic (with period 2w) and |R(®)| = 1. In addition, we apply

the basic theorem of Szegd to resolve a question of C. Moler.

1. INTRODUCTION

The results in this note were motivated by a question raised by Cleve Moler at the Second SIAM

Conference on Linear Algebra, Raleigh, NC, 1985. Consider the matrix

A= (a) 1.1

with
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i,j=12,...,N (1.2)

with N a number ~30. Using Matlab, Moler computed the singular values 0, = 09 = *+* = 0Oy = 0 of this

matrix. The remarkable result is most of these singular values (say, the first 20 when N = 30) were equal to

m — € with € yery small. In the case N = 20 the singular values (to four decimal places) are

o (1) = o(j) = 3.1416 j=1,2,..14 .
o(15) = 3.1415
o(16) = 3.1407
o(17) = 3.1323
o(18) = 3.0631
a(19) = 2.6463

o(20) = 1.1705

In Section 2, we give a qualitative explanation of this phenomena. This discussion is based on a theorem of
Szeg® [6] concerning the asymptotic distribution of the eigenvalues of the Toeplitz matrices T,,[f] where f ®) is
a real-valued bounded measurable function which is periodic with period 27. Simple examples show that a
similar theorem for the case where f(®) is not real valued is impossible. In Section 3, we prove an interlacing
theorem for singular values. While this theorem is stated in more general terms than one finds in the literature
(see [2], page 286) the proof is essentially the proof of the interlacing theorem for Hermitian matrices. We
include the proof for the sake of completeness. In Section 4, we apply this theorem to obtain extensions of the

Szeg® theorem to the singular values of T,[f] when f is nota real-valued function.

Let f(®) € L(—m,m) and have the Fourier expansion

FO~ 3 e (1.3)

Let T,,[f] denote the (n + 1) X (n + 1) matrix



T,f1= () , i,j=01,..n (1.4a)
with

Observe that when f(©) is a real-valued function

€ = C—p (1.5
and T, [f] is a hermitian matrix.

A basic result, which is easily verified, is the following formula for the computation of inner products. Let

x = (X0,X1, .. - ’xn)T , ¥y= oy Yn)T . (1.6a)
Set
L kO . e
£(©) = $ wee k0 @) = % ye” %O, (1.6b)

Let 7*(©) denote the complex conjugate of §(®), that is

y*(©) = b Vee™® . (1.6¢)
Then
YTl lx = 5 [ 5*©1@#©)d0 . (1.72)
Of course
y*x = —2—I~ f F*(@)%(0)d0 . (1.7b)

When f(O) is real valued, this formula yields the basic estimate; let A = A < o= A =\ {" be the



eigenvalues of T,,[f], then

m=xT=M (1.8)

where
m = inff(©® , M= supf(©) . (1.8b)
Another basic result is the following distribution theorem.

Theorem I (Szegé). Let f(©) € L. [—m,m] be real valued. Let m, and M be as in (1.8b). Let F(\) € C[m,M].

Then

Lim
n-wc N

1 n+1 (n) 1 1T
F(\ = . .
T 3, M = 5 S FU©Nde (1.9)
Moreover, for any fixed j = 1,
MMM, Niygoj-m as n- . (1.10)
Proof: See [3], Chapter 5, pp. 64-65. O

Remarks. Theorems on the rate of convergence in (1.10) are given in [4], [5].

In Section 4, we prove an extension of this theorem.

Theorem II. Let f(©) € L, [—w,w]. Let

o zaf)= o ofh=0,

be the singular values of T,,[f]. Suppose f (0) can be written as

F(©) = fo(O)Ry(O) (1.11a)

where f(0) is a real-valued function and R((©) is a continuous periodic function with period 2m which also



satisfies

Ro®) = 1 (1.11b)
Let
M = sup|f (O) 1.12)
and let F(\) € C[0,M]. Then
] 1 n+1 (n) 1 K
Lim — % Fof) = - _f“ F(f ©)d0O . (1.13)

2. MOLER’S PROBLEM

Let A be the N X N matrix given by (1.1), (1.2). Let B be the (2N) X (2N) hermitian matrix given by

B:L[" A], VT

o I 2.1)

Since B is a hermitian matrix, its singular values are merely the absolute values of its eigenvalues. At the same

time, the singular values of B are the singular values of A -- each with multiplicity 2.

Let P be the permutation on {1,2,...,2N } given by

PGYy=2j-1, j=12,..,N,

(2.2a)
PIN+ j)=2j, j=12,..,N . (2.2b)

Let P be the associated permutation matrix. Let
}’BP =D 2.3)

Then a direct, but detailed, calculation shows that



D = Ton-1lg) (2.4a)

where

z 1 i€
Q) = — 2k—1)i®
8(©) kz);w @k - i e (2.4b)

and, in fact, g(©) is the ‘‘square wave’’ given by

-m, —m<®<0 24
£©) = m, 0<O<m (2.4c)

Remarks. To obtain (2.4a), (2.4b), it is easiest to make the change of variables

xj = y2j"l ’ J = 1:2’-":N

XN+ = Y25 J = 1;2,"-1N .

To obtain (2.4c), one can calculate or check any elementary text, €.g., see problem 3, page 64 of [1}. Then for

any € > 0 we see that only o(N) of the eigenvalues of Ton-—1lg] satisfy

W\JQN'”‘— ml>e .

To see this, we merely need apply Theorem I with F \) = A Then

WEN-D=<m . (2.5a)
and
N T (2N-1)
fzaw BN @39

Thus, “‘most’’ of the singular values of A are “‘close’” to . Another remark which is relevant to the limit
relations (1.10): the estimates of [5] show that, for fixed j and every integer r = 1, there is a constant C; ; such

that



C .
b\J(zN—l) + 7= -152—1 (2.6a)

r »

_ Cr
Y, - al= 5 (2.6b)

3. AN INTERLACING THEOREM

Let B = B* be an n X n hermitian matrix. Let By be the (n — 1) X (n — 1) hermitian matrix obtained

from B by deletion of the kth row and column. Let B, =PBy= --- = B, bethe eigenvalues of B and let
by = by = --- = b,_ be the eigenvalues of B,. Then, as is well known,
By=by=By=by= - b1 By .

For our current purpose, we prefer to restate this theorem as foliows.

Theorem 3.1. Let S = €, be a (n — r) dimensional subspace of C,,, the complex n dimensional vector space.

Let P be the orthogonal projection onto S. Let

B' = PBP . 3.n

Then B’ is an hermitian matrix and, viewed as an operator from S to S has eigenvalues

by<by= -+ =b,_,,and

Bk = bk = Bk+n > k = 1,2,...,n - r . (3.2)

Proof: The proof follows exactly as the proof of the well-known theorem cited above. We merely observe that §
is characterized by r linearly independent vectors yy, y2 --- ¥r which are orthogonal to S. Then the proof follows

the argument given in [7; section 47, page 103]. O

Corollary 1. Let A be a m X n complex matrix. Let m = min (m,n) and let



g1=0p " 20

v
=]

31

be the singular values of A. Let P be the projection above and let

A’ = AP .
Then A4’ is an operator from S to ¢, and has singular values a; = ay = -+ = @ = 0 where
{ = min (m,n — r). Finally
L= =0y, k=12,.m—r . 3.3)

Proof: The values (o k)2 are the eigenvalues of A*4 while the values (ak)2 are the eigenvalues of

(A")*(A4") = P*4A*AP. The corollary now follows from the theorem. 0O

Corollary 2: Let A and P be as in Corollary 1. Let T D ¢, be an m — p dimensional subspace of ¢,,. LetQ

be the orthogonal projection of ¢, onto T. Let

B = QAP .

Then B is an operator from S to T and has singular values by = by= > --- = b, = 0where

p=min(n — r, m — p). Let

ro = max (r,p) .

Then

Ty = bk = 0k+r+p , k = 1,2,.,.,;;1 - 2r0 . (3.4)

Proof: The singular values of A* are the singular values of A. In particular, the values (ay)? are also the
eigenvalues of (4')(4')* while the values (bk)2 are the eigenvalues of (Q4") (Q4")*. That is, the values (b,c)2

are the eigenvalues of Q[A'(4')*]10*. Hence, applying Corollary 1,

a = by = Gy - (3.5)



Then, using (3.3) we have

Op = = by = Gpip = Opaptr

which proves the corollary. O

4. THE DISTRIBUTION THEOREM

The asympotic distribution of the singular values of Toeplitz matrices can be expressed in the terminology

of the theory of ‘‘equal distribution’” (see [3, chapter 5]).

Definition: for each n = 1, we consider sets of (n + 1) real numbers a(n) = {a(n), k = 1,2,...,(n + 1)} with

a(n) = ap41(n). Letb(n) = {by(n)} be another set of the same kind. Assume that for all k and n

mmi=k , b(nl=K @.1)

where K is a constant independent of k and n. We say that {a(n)} {b(n)}, n - = are “‘equally distributed’’ in
the interval [— K, K] if the following holds: Let F(z) be an arbitrary continuous function defined on the interval

[—K,K]; then

Lim 1
n-e n+ 1

S [f(@(n)) = F(be(n))] =0 . 4.2)

In our case, we may assume that g;(n) = 0. In this case, it can show that the limit relation (4.2) holds for

all continuous functions F(2) if it holds for all F() € C110,K] which also satisfy F L(1) = 0 (see [3]).

Lemma 4.1: Let {a(n)}, {b(n)} be two sets of real numbers which satisfy the following interlacing and positivity

conditions

Kz gnzqn - 1= @ (n)=0, 1=k=n, (4.3a)

K=bn)=b(n =1z b(n)=0, 1=k=n; (4.3b)



and for some fixed ro > 0

bu(n) = a(n = ro) = byyr(n) , k=12,..(n+1=ro), (4.3c)
Then {a(n)} and {b(n)} are equally distributed.
Proof.

Let F € C[—K,K] with Fl(z) = 0. Then it is an easy matter to show that

Lim inf S [F(by(n)) — F(a(n)) = 0 (4.42)
N n+ 1,2
Lim sup —— 3 [F(bi(m) = F(am)) =0 (4.4b)

Let f(©) € Lo[—m,7] and have the Fourier expansion

FO ~ 5 e™® . (4.5)

k=—w

Let T,, ,[f] be the (m + 1) X (n + 1) matrix

Tm,n[f] = (tlj) » i = 0;1y"-)mv J = 01172;'":” ’ (4'63)

where

t,'j = Cj—j -+ (4.6b)

If (m — n) = ry, a fixed integer, then the results of Sec. 3 and Lemma 4.1 imply that the singular values of

T, n[f]are equally distributed as the singular values of T,, ,[f] = Tyl f1. Indeed, we can even allow
lm : n! -0
m

where m = min (m,n), that being the case, we limit ourselves to the singular values of the square matrices

10
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Let p(0), ¢(©) be two fixed trigonometric polynomials with non-negative indices of the same order. That is

r—1

p©) = = pie™® (4.7a)

r=1

g(©) = s gje*® . (4.7b)
=

LetP € ¢,41, @ € €41 be subspaces described by the conditions.

x € P <> 2(0) = p(©) 5,+1-,(®) (4.8a)

y€Q <> §©) = q©) th41-,(©) (4.8Db)

where S,,41-,(0) and 1,4, ,(0) are of the form

n—r

s E;eV9 . (4.8¢)
=0

As in Sec. 3, let P, Q denote the orthogonal projection onto P and Q respectively. Let

B,lf,p,q] = QT,[f1P . 4.9)

Remark: We have not required that p,_; # 0, g,—; # 0. Nevertheless, P and Q C €, and are both of

dimension (n + 1 — r).

We now turn to the following question. What is the relationship between the singular values of B,[f,p,q]

and the singular values of T, . [gfp]? We begin by recalling

Lemma4.2: Let A be an n X n complex matrix with singular values 0y = 03 > * -+ 0y = 0. Then
e Mi HlAxlh
o, = Max Min v .

11



Proof: See [2, chapter 8]. O
Corollary: Let

M = suplf ©) ,

and let o ", j = 1,2,...n + 1 be the singular values of T,,[f]. Then

O<ofM=M. (4.10a)

Proof: This estimate follows from (4.10) and the basic formulae (1.7a), (1.7b) together with the fact that

_ suply*T, (£
I, (F1xlh = B

Letk = n + 1 — r. There is a one-to-one correspondence between the k dimensional subspaces S’ of €, and
the k dimensional subspaces S’ of P. For every vector x € S, the vector x’ € S’ is determined by the

relationship

£'(0) = p(Mx(©) . (4.11)
For each such x € S, we have
i = 51;- [ k©Pdo , (4.12a)
lbe'llf = —2—11-7— [ p(©F e (©)Rd0 . (4.12b)
We define
ell2 = e'llg . (4.13)

Similarly, each y € Cp,41-, is in a one-to-one correspondence with a y’ € @ determined by

12



¥'(©) = 9(©)7(©) .

As above, we have

Iyl = 31; _} FORaO .

We define

b2 =B = S [ la@F @fae .

For everysuch x € S, y € ¢,_, we set

y,x] = y*T,—r [afplx = 511; 2f 7*(©)g(©)f (©)p(©)£(0)d0 ,

We observe that [y,x] can also be interpreted as

y,x] = (y')*B,[f,p,ql(x") .

Therefore,
1B.1f.2, @)W [y,x]
Wl 570 Tl Tel,
while
I, tafpde _ iy

Il = 8 T,

Lemma 4.3: Let £(©) € L,[—m,m] be of the form

f©) = fo(®OR(O) ,

where fo(©) is real valued and R(0) is a continuous periodic function with period 27 which satisfies

13

4.14)

(4.153)

(4.15b)

(4.16a)

(4.16b)

(4.17a)

(4.17b)

(4.18a)



Ro@)=1 . (4.18b)

Lete, 0 < € < 1 be given. There are polynomials p(0), g(0) of the form (4.9a), (4.9b) which satisfy

l-e=sph@l=1+¢, lg@=1. (4.19)

Let {a (n — r); k = 1,2,...,n + 1 — r} be the singular values of T,,_, [gfp] while {By(n — r),

k= 1,2,...,n + 1 — r}are the singular values of B, [f,p,q]. Then

B By
1+€S()Lk51~€ (4.20)
Finally, let {y,(n — r), k= 1,2,...(n + 1 — r)] be the singular values of T,,—, [fol. Then
by — yid=eM (4.21a)
where
suplf @) = M (4.21b)
Proof.
Applying Fejer’s Theorem [8, pp. 89, 90] we find a trigonometric polynomial.
rl )
g@ =3 ge*® (4.22)
Jj=- ry
such that
k@©®) - Rg '@l <€ .
Or, since (4.20b) holds
Ro(@®)g©) — Ul < e . (4.23)

Let

14



P@) = %@ , 9@ =", r=2r . (4.24)

Then (4.19) holds. Applying Lemma 4.2 (4.17a), and (4.17b), we have (4.20). Finally

fo— afoRop = foll — gRx] .

Hence

Ifo — afoRopl= Me .

Thus, (4.21) follows from standard perturbation arguments, see [21. O

Proof of Theorem II:

Let {o,(n), k = 1,2,...,n + 1} be the singular values of T,,[f). By Corollary 2 of Theorem 3.1 and Lemma

4.1, the set {o,(n)} and {B,(n)} are equally distributed. By (4.20) and (4.21) we see that

Ni(n) — Bu(n)l = 2Me . (4.25)

Lete > 0 be given. Choose the appropriate p(0), ¢(8). Let F() € C'[0,M] and [Fi(t) < 5. Then

[F(ox(n)) — FOy(n)] = [For(n)) = F@x(nN] + [F@w(n) = FOu(n))} .

Hence
L5 (Foxn) — FOra(l= 2mbe + 7,
where
L5 (o) = FBu = 7, -0 as n o
therefore

15



0= Lim 54— i S IF© () = FOranll = 205 .

Hence, {o,(n)}and {y,(n)} are equally distributed. The Theorem now follows from Theorem 1. O

5. REMARKS

Lemma 4.3 has some striking consequences. Let {o/,k = 1,2,...,n + 1} be the singular values of T,,[f]-

Suppose |f (©) = fo(©) and

0<m=<|f@OI=M . 6.1

Applying Corollary 2 of Theorem 3.1, we see that

ofzB(n)=ofiy , k=n+1-2r. (5.2)

From (4.25) we see that

o' + 2Me =y (n) = oy, —2Me , k=n+1-2r . (5.3)

However, (1.10) implies

msy,(n)s=M .

Hence, since o' = M [see (4.10a)], we have

m=-2Me=ol j_ypsosM. 5.4

That is, all but a finite number, at most 2r, of the singular values of T,,[f] are within 2Me of the range of |f (O)

- Example: Let g(0) be a real valued continuous function with period 2m, (g(—) = g(m)). Let

F©) = ¢8® | (5.5)

Let € > O be given. Then for all n = ny, all but a finite number of the singular value o J'(f) of T,,[f] satisfy

16



bp—-1tl<e . (5.6)

One can easily verify that

-1

9
2

f(®)=~7;—e -sgn® , —1=0=m

is the function used by Moler. That is

kO
k + %

fO~3

i9
However, because ¢ 2

is not continuous, we are unable to apply Theorem II or the remarks above. Hence,
the trickery’’ used in Section 2. It seems reasonable to conjecture that one can weaken the hypothesis of
ry i) yp

Theorem II. We do not see how to do this at this time.
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