DESIGN AND IMPLEMENTATION OF
A DISTRIBUTED SYSTEMS LANGUAGE

by
Michael Lee Scott

Computer Sciences Technical Report #596

May 1985

DESIGN AND IMPLEMENTATION OF
A DISTRIBUTED SYSTEMS LANGUAGE

by

MICHAEL LEE SCOTT

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1985

© Copyright by Michael Lee Scott 1985

All rights reserved

ABSTRACT

In a distributed environment, processes interact solely through the
exchange of messages. Safe, convenient, and efficient communication is of vital
importance, not only for the tightly-coupled components of parallel algorithms,
but also for more loosely-coupled users of distributed resources. Server
processes in particular must be able 1o communicate cffectively with clients writ-
en at widely varying times and displaying largely unpredictable behavior. Such
communication requires high-level language support.

Interprocess communication can be supporied by augmenting a conven-
lional sequential lunguage with direct calls to operating system primitives, but the
result is both cumbersome and dangerous. Convenience and safety are offered
by the many distributed fanguages proposed to date, but in a form too inflexible
to support loosely-coupled applications. A new language known as LYNX over-

comes the disadvantages of both these previous approaches.

The name of the language is a play on its use of duplex communication
links. Links arc a mechanism for the naming, protection, and abstraction of dis-
tributed resources. They allow the connections between processes to be
inspecled and aitered dynamically. Additional language features support the divi-
sion of processes into multiple threads of control. The interaction of threads and

links facilitates the construction of servers.

Experience with LYNX indicates that the language is a significant improve-
ment over existing notations for interprocess communication. An implementation
on top of the Charlotie distributed operating system presented several interesting
problems and yielded unexpecied insights into the natwre of the

language/operaling system interface. A paper design of an implementation for

the SODA distributed operating sysiem was in some ways considerably simpler.

The Charlotie implementation is completc and performs well.

ACKNOWLEDGMENTS

Many people can contribute 10 the success of a document with only one
name on the title page. This section serves to acknowledge my debi to all those

many others.

The most personal thanks are of course non-technical. The contributions
of my parents, Dorothy Scout and Peter Lee Scott, to my education, values, and
general well-being are beyond estimation. Equally great is the debt to my dear
wife Kelly Flynn, who taught me that the important things in life have nothing to
do with computer science.

Credit for much of the work described herein belongs to my tireless advi-
sor, Associate Professor Raphael Finkel. 1f 1 ever learn to think off-line as well
as Raphacl does in real tme, 1’1l be doing very well. Close behind Raphael
comes his colleague, Marvin Solomon. As a principal investigator for the Char-
fotte project and as the teacher of several of my formative courses, Marvin has
had a major role in shaping my ideas. Members of my final commitice deserve
thanks, too, for their patience and constructive criticism: Bart Miller, Udi

Manber, Terry Millar, Mary Vernon, and Larry Landweber.

Behind the Charlotte and Crystal projects stands a brave and motley crew.
Yeshayahu Arisy and Hung-Yang Chang built the current Charlote kernel.
Cui-gqing Yang mainiains the servers. Nancy Hall put in long hours on the vir-
wal terminal package and the modula compiler. Tom Virgilio built our com-
munications driver and Bob Gerber built its buddy on the hosts. Prasun Dewan,
Aaron Gordon, and Mike Litzkow shared my hapless tour of duty as initial users
of a untried operating system. Bill Kalsow and Bryan Rosenburg were the pro-

jects” knights-errant, keeping us all on our toes. Bryan also built several of the

original servers and Bill saved me countless hours of effort by suggesting that my
compiler generate C as an *‘intermediate language.”

Generous financial support for my work came from the Wisconsin Alumni
Research Foundation (by way of the UW graduate fellowships office), the Gen-
eral Eleciric Corporation (through their ‘‘forgivable loan’ program), the
National Science Foundation (grant number MCS-8105904), the Defense
Advanced Research Projects Agency (contract number N0014/82/C/2087), and

AT&T Bell Laboratories {through their doctoral scholarship program).

Chapter | was originally written for an independent study course supervised
by Raphael Finkel. Intermediate drafts benefited from the written comments of
Marvin Solomon and Prasun Dewan. A version very similar to the one included

here was pubiished as UW Technical Report #563.

CONTENTS

ABSTRACT
ACKNOW FWUOZWZ%m

Introduction ...

Chapter 1: A Survey of Existing Distributed Languages ...

I.

2. The Framework

INroduUCHION ..viviiviiieeiiiiireeeaaes

2.1.
2.2.
2.3.
2.4,
2.5,
2.6.

Processes and Modules

Implicit and Explicit Message w@ eipt ..o
Details of the Receive Operation
2.6.1.

Synchronization

Communication Paths
Naming

2.6.2. Muiltiple Rendezvous ...
2.7. Side Issuesoooiieiniins

Several Languages

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11L.
3.12.
3.13.
3.14.
3.15.

Path Expressions .

Monitor Languages
Extended POP-2oocennen

Communicating Sequential Processes .

Distributed Processes

Gypsy-
PLITS and ZENO ..

MeSSage SCIELNE ..oovvvevrvennirnra e

Extended CLU and Argus .
Communication Port e RUUUTRURPPRN .

Edison

StarMod

ITP el

Ada
Synchronizing Resources s e

Linda

10
10
11
12
13
16
17
19
20
21
23
24
27
27
29
34
35
37
38
39
40
41
42
43
44
45
46
48

3.16. NILns

4.1. Concurrent Languagesc.....oe e e

4. Related Notionsoooeees e RUUUURIO s

4.2. Nelson’s Remote Procedure Call
4.3. Distributed Operating Systems

4.3.1. Links e e
4.3.2. SODA

5. Conclusionccvevennn e

Chapter 2: An Overview of LYNX ...

1. Introduction

w o

noB

ENtries ..oovvevvveeeeeenns

Exceplionsc.ene .
. Blocking Statements

o X e

9.1. Producer and Consumer s
9.2. Bounded Buffer P

9.3. Priority Scheduler
9.4. Readers and Writers ...

Chapter 3: Rationalecocociviiiiiiiies

1. Introductionoooeees
2. Major Decisions

Main Concepts e
Links ..., e
Sending Messages ROUUURTOP e

Receiving Messages Explicilly

Examples ...oooooiviniiiiiii

2.1, Links ..o e B e e e

2.2. Threads of Control
3. Minor Decisions
3.1. Synchronization

3.2. Expiicit and Implicit Message Receipt e
3.30 SYMIAX oo

3.4. Exceptions
4. Experiencecoeeeeennn

56
56
57
58
59
59
60
62
63
64
64
65
67
69

73
73
74
80
83
83
85
91
92
94

Chapter 4: Implementation
1. Introductionocoiils
2. Overview of Charlotte
3. The Charlotte Implementation

3.1. Threads of Control

3.2. Communication
3.3. Type Checking
3.4. Exceptions
4. Problems ...l s .
4.1. Unwanted Messages
4.2. Moving Multiple Links
4.3. Semantic Complications

5. A Paper Implementation for SODA

S.1. A Review of the SODA Primitives ..

5.2. A Difterent Approach to Links
5.3. Comparison to Charlotte
6. Mecasurements RO
6.1. Size ... s .

6.2. Threads of Control

6.3. Communicalioncovviiieeevannnnnnn.

6.4. Predicted Values for SODAo i

Conclusion TR ..
Directions for Future Research

Appendix: LYNX Reference Manual

1. Lexical Convenuions
2. Types e
2.1, Pre-defined Types
2.2. Enumecrations
2.3. Subranges e e
2.4. Array Types
2.5. Record Types ..oooovvvinniinnennns .
2.6. Set Types e e
3. Declarations R
3.1 TYPES coiiiiii e

96

96

96

98

98

99
100
103
104
104
108
111
112
112
113
117
120
120
121
123
125

130

134
134
137
137
138
138
139
139
141
141
142

3.2. Constants
3.3. Variables ...l
3.4. Exceplions
3.5, Subroutines e .

3.6. Entries

3.7. Modules ...l
Expressions
5.1. Atoms e
5.2. Set Expressions
5.3. Function Calls
5.4. Operalors

5.4.1. Operator Precedence

5.4.2. Operator Semantics .
Statements
6.1. Assignment Statement

6.2. Procedure Call e

6.3. If Statement ...l
6.4. Case Swutement e
6.5. Loop Statements
6.5.1. Forever Loop
6.5.2. While Loop
6.5.3. Repeat Loop
6.5.4. Foreach Loop
6.6. Exit Swatement
6.7. Return Statement ...
6.8. With Statement
6.9. Bind and Unbind Statemen
6.10. Await Stalement

6.11. Compound Statementooviiiiiiiiiiinn.. .

6.12. Raise Statement
6.13. Input/Output Statements

6.14. Communication Statements e
6.14.1. Connect and Call Statements

6.14.2. Accept Saatement ...

S o, eraeienien Cereeaaa

6.14.3. Reply Statement ...
6.14.4. Send Statement ...
6.14.5. Reccive Statement ...
6.14.6. Communication Rules

6.14.7. Enclosures

7. Execulionc.oooioen .

7.1. Blocking Swtements
7.2. Exception Handling .

7.3. Message Type Checkingo..oone

8. Pre-defined ldentifiers
9. Collected Syniax

REFERENCES

167
167
168
169
169
170
173
174
177
178
179

184

Introduction

The first task of an introduction is to establish definitions. 1 begin with the

words in my title,

1 use the adjective distributed to describe any hardware or software involv-
ing inleracting compulations on processors that share no physical memory. Dis-
tributed algorithms usually entail concurrency, that is, they require the simul-
taneous existence of more than one thread of control. If these threads can exe-

cute simultancously we say they proceed in parallel.

The subject area of distributed compulting is exceedingly broad. Distributed
hardware always consists of nodes connecled by a communication medium,
but beyond that very litle is fixed. The nodes may be homogeneous or hetero-
geneous, They may be uniprocessors or multiprocessors. The communication
medium can be almost anything, so long as it remains connected. To stay within
the realm of feasibility, this dissertation addresses a very narrow subject: a sys-
tems programming language for a multicomputer.

As discussed here, a multicomputer is a connected network of homogene-

ous uniprocessors, used as a single machine.

PRy Y Yy

A multicomputer is an atiractive hardware option-for any organization whose

computing load is easily divided inlo a large number of independent jobs.
Interactive timesharing is an obvious example. So long as there are enough jobs

10 keep its nodes busy, a multicomputer timesharing system offers the advantages

of low response-lime variance, graceful degradation in the event of failures,
incremental upgrades, and essentially linear gains in throughput with increasing

CoslL.

A multicomputer requires a distributed operating system. Several such
operating systems have been buill or are under construction
[1,2,25,30,41, 69,92, 94, 101, 102, 109]. Most employ a relatively small ker-
nel, replicated on each node, that cooperates with the hardware 10 provide the
most basic services: communication, low-level device control, and protection.
Such traditional operating system functions as resource and device management,
routing and directory maintenance, and medium- and long-term scheduling can
be provided by server processes that run in the same environment as user pro-
grams.

There are several reasons for separating servers from the kernel. To the
extent that the kernel provides mechanisms while the servers set policy {120},
separation yields the traditional advantages of clarity, case of maintenance, and
the avoidance of mistakes. In addition, considerable amounts of memory can be
saved by installing servers on a relatively small number of nodes. Finally, a
server responsible for the management of an entire neighborhood of nodes can
often make better decisions on the basis of regional information than it could with
purely local data.

Together, the kernel and servers constilute the operating system of the mul-
ticomputer. They are systems programs in the sense that they exist to make the
system useful. The kernei runs on a barce machine and implements a new,
abstract machine that is safer and easier to use. The servers run on the kernels

and tie their machines together. The kernels live in the familiar world of devices

and interrupts on a uniprocessor. They can be written in a conventional systems

language. The servers, however, posc new and different probiems.

_ applications

servers

kernel

M T
i O R

The design of servers is a complicated issue. How many nodes should be
covered by a single server? How should the servers in separaic neighborhoods
interacl? How do we balance reliability against redundancy? Such questions are
beyond the scope of this dissertation. For my ,ucﬁomnw, it suffices to note that
the systems programs for a multicomputer will be critically dependent on safe,
convenient, efficient, and reliable facilities for interprocess communication.
Both servers and utilities (command interpreters, compilers, loaders, and so
forth) can be expected to rely on complicated protocols for interprocess commun-

ication. Moreover, they must cope with a complicated web of connections to

other processes, a web whose topology changes frequently at run ume.

One can consider the interconnections among processes on a multicom-
puter to be a generalization of files. In facy, files themselves may be represented
by connections. Where a traditional operaling system provides {ile operations as
primitive services, a distributed operating sysiem will provide communication
primitives instead. The primitives of existing systems vary quite a bit, particu-
farly with regard to naming, addressing, m:av error semantics. All, however,

allow a user program lo request that a message be sent or 10 wait for a message o

arrive.

it is tempting to suppose that a systems language for a multicomputer could
provide communication facilities that translate as directly into operating sysiem
primitives as do the file operations of traditional languages. While such a trans-
lation might be possible for processes whose communication is limited to file-like
operations, it is not possible for processes in general or for servers in particular.
The extra compiexity of interprocess communication can be attributed to several

issues.

(1) Convenience and mmmmcu
Interprocess communication is more structured than are file operations.
The remote requests of servers and multi-process user programs resemble
procedure calls more than they resemble the transfer of uninterpreted
streams of bytes. Processes need to send and receive arbitrary collections
of program variables, including those with structured types, without sacrif-

icing type checking and without explicitly packing and unpacking buffers.

{2) Error Handling and Proteetion’
interprocess communicalion is more error-prone than are file operations.
Both hardware and software may fail. Soitwarc is a particular problem,
since communicating processes cannot in general trust cach other. A tradi-
tional file is, at least logically, a passive entily whose behavior is determined
by the operations performed on it. A connection 1o an arbitrary process is

much more non-deterministic.

! Safety involves detecting invalid actions on the part of a single process.
Protection means preventing the actions of one process from damaging another.

Fault-tolerant algorithms may allow a server to recover from many kinds of
failures. The server must be able to detect those failures at the language
level. 1t must not be vulnerable to erroneous or malicious behavior on the
part of clients. Errors in communication with any one particular client

must not affect the service provided to others.

Concurrent Conversations

While a conventional sequential program typically has nothing interesting to
do while waiting for a file operation to complete, a server usually does have
other work to do while waiting for communication to complete. Certainly,
a server must never be blocked indefinitely while wailing for action on the
part of an untrustworthy client. As described by Liskov, Herlihy, and Gil-
bert [81, 83], and discussed in chapter 3, it 1s often easiest 0 struciure a
server as a dynamic set of tasks, one for each uncompleted request. Effi-
ciency constraints preclude scheduling these tasks in the kernel. Unfor-
tunately, a straightforward translation of the communicalion primitives pro-
vided by most operating systems will include operations that block the cal-
ling process, in this case the entire server.

Practical experience testifies to the importance of these issues. The Char-

loue distributed operating sysiem {7,41] is a case in point. As a member of the

Charlotie group | have had the opportunity to study the construction of servers

firsthand: a process and memory manager (the siarter), a command interpreter, a

process inter-connector, two kinds of file servers, a name server (the switch-

board), and a terminal driver. Until recently, all were written in a conventional

sequential language [40] peppered with calls to the operating system kerncl. As

work progressed, serious problems arose. The problems can be attributed to the

issues just described.

Charloue servers devote a considerable amount of effort to packing and
unpacking message buffers. The standard technique uses type casts to
averlay a record structure on an array of bytes. Program variables are
assigned to or copied from appropriate fields of the record. The code is
awkward at best and depends for correctness on programming conventions
that are not enforced by the compiler. Errors due to incorrect interpreta-

tion of messages have been relatively few, but very hard to find.

Every Charlotte kernel call returns a status variable whose value indicates
whether the requested operation succeeded or failed. Different sorts of
failures result in different values. A well-written program must inspect
every status variable and be prepared to deal appropriately with every possi-
ble value. 1t is not unusual for 25 or 30% of a carefully-written server to

be devoted 1o error checking and handling.

Conversations between servers and clients often require a long series of
messages. A typical conversation with a file server, for example, begins
with a request to open a file, continues with an arbitrary sequence of read,
write, and seck requests, and ends with a request to close the file. The
flow of control for a single conversation could be described by simple,
straight-line code except for the fact that the server cannot afford 1o wait in
the middle of that code for a message to be delivered. The explicit inter-
leaving of separate conversations is very hard to read and understand.

The last problem is probably the most serious. In order to maximize con-

currency and protect themselves from recaleitrant clients, Charloue servers break
the code that manages a conversation into many small pieces, separated by

requests for communication. The servers invoke the pieces individually so that

conversations interleave. Every Charlotte server shares the following overall
structure:
begin
initialize
loop
wait for a communication request to complete
determine the conversation to which it applies
case requesl.type of
A
restore state of conversation
compule
start new request
save stale
B:

end case
end loop
end.
The flow of control for a typical conversation is hidden by the global loop. Sav-
ing and restoring stale serves two purposes: it preserves the dala structures asso-
ciated with the conversation and it keeps track of the current point of execution in
what would ideally be straight-line code. Both these tasks would be handled
implicitly if the conversation were managed by an independent thread of control.
Data struclures would be placed in local variables and the progress of the conver-

sation would be reflected by ils program counter.

The complexity of interprocess communication has motivated the design of
a large number of distributed programming languages. Many of these languages
are described in chapter 1. Most of the designs are convenient and safe. Their
communication stalements refer directly to program variables and they insist on
type security for messages. Many provide special mechanisms for error handling

and recovery. Several allow a process to be subdivided into more than one

thread of control.

Unfortunately, none of the languages surveyed was designed with servers in
mind. Most were intended to support communication within a single distribuied
program, nol bemween separaic programs. The issue of protection is never
addressed. The network of interconnections is often statically declared. More-
over, without exception, each language proposal either ignores the question of
implementation entirely, or else assumes that everything running on the machine
will be written in one common language and that the ianguage implementor will

have complete control of that machine down to the hardware level.

For servers, a language must maintain the flexibility of explicit kernel calls
while providing extensive features to make those calls safer and more convenient.
A language that accomplishes these aims is introduced in chapler 2. Known as
LYNX, the language is specifically intended for the loosely-coupled processes
supported by the kernel of a distributed operating system. The name of the

language is derived from its use of communication channels called links.

Links are provided as a built-in data type. A link is used to represent a
resource. The ends of links can be moved from one process to another. Type
security is enforced on a message-by-message basis. Servers are free 10 rear-
range their interconnections in order 10 meet the needs of a changing user com-
munity and in order 1o control access lo the resources they provide. Muliiple
conversations are supported by integrating the communication facilities with the

mechanism for creating new threads of control.

The thesis of this dissertation is two-fold: first, that the LYNX program-

ming language is a significant improvement over existing notations for certain

kinds of distributed computing; and second, that it can be effectively implemented
on top of an existing operating system. The ?ﬁ half of the thesis is defended in
chapter 3. Example programs demonstrate the use of LYNX for problems not
solvable with existing distributed languages. Comparisons to equivalent sequen-
tial code with direct calls 10 operating system primitives show that LYNX is safer,

easier to use, and casier to read.

The second claim is defended in chapier 4. Two implementations of LYNX
are described, one for Charlotte and one for a system called SODA [69]. The
implementation effort encountered several interesting problems and yielded some
unexpected insights into the nature of the language/operating sysiem interface.
Though the design of LYNX was based largely on the primitives provided by
Charlotte, the SODA implementation is in some respects considerably simpler.
The SODA implementation exists on paper only. the one for Charlotie is in

actual use.

10

Chapter 1

A Survey of Existing Distributed Languages

1. Introduction

It has been recognized for some time that certain algorithms (operating sys-
tems in particular) are most elegantly expressed by concurrent programs in
which there are several independent and, at least in theory, simulianeously active
threads of control. On the assumption that the threads interact by accessing
shared data, a whole body of research has evolved around methods for synchron-
izing that access {19, 20, 28, 35, 36, 52, 56, 57]. Even on a conventional unipro-
cessor, effective synchronization is crucial in the face of context swiiches caused

by interrupts.

With the development of multicomputers it has become practical 0 distri-
bute compulations across multiple machines. This prospect has lent a new
urgency to the study of distributed programs — concurrent programs in which
separate threads of control may run on separate physical machines. There are

two reasons for the urgency:

(1) On a multicomputer, a distributed program may solve a problem substan-
tially faster than could its sequential counterpart.

(2) The sysiems programs for a mullicomputer must by their very nature be

distributed.

Unforwnately, there is no general consensus as to what language features
are most appropriate for the expression of distributed algorithms. Shared dala is

no longer the obvious approach, since the underlying hardware supports message

11

passing instead. The alternatives proposed to date show a remarkable degree of
diversity. This survey attempts to deai with that diversily by developing a frame-
work for the study of distributed programming languages. The framework allows
existing languages to be compared for semantic (as opposed to purely cosmetic)
differences. 1t also facilitates the exploration of new and genuinely different pos-
sibilities.

Section 2 presents the framework. Section 3 uses that framework to
describe a number of existing languages. No atempt is made to survey tech-
niques for managing shared data. (Good surveys have appeared elsewhere [6].)
The evaluations are intentionally biased towards languages that lend themselves o
implementation on top of a distributed operating system, where message passing

is the only means of process interaction.

2. The Framework
This section discusses major issues in distributed language design:

processes and modules
-- communication paths and naming
- synchronization
implicit and explicit message receipt
- message screening and mulliple rendezvous
- miscellany: shared data, asynchronous receipl, timeout, reliability

The list is incomplete. The intent is to focus on those issues that have the most
profound effects on the flavor of a language or about which there is the most

controversy in the current literature.

12

2.1. Processes and Modules

A process is a logical thread of control. It is the working of a processor,
the execution of a block of code. A process is described by a state vector that
specifies its position in its code, the vatues of its data, and the stats of its inter-
faces o the rest of the world.

A module is a syntactic construct that encapsulates data and procedures. A

module is a closed scope. It presents a limited inlerface to the outside world and

hides the details of its internal operation.

In a sense, a module is a logical computer and a process is what that com-
puter does. Several language designers have chosen 1o associale exactly one pro-
cess with each module, confusing the difference between the two. It is possible
to design languages in which there may be more thun one process within a
module, or in which a process may travel between modules. Such languages
may pretend that the processes within a module execule concurrently, or they
may acknowledge that the processes take turns. In the latter case the language
semantics must specify the circumstances under which excecution switches from
one process to another. In the former case the language must provide some
other mechanism for synchronizing access 1o shared data.

Modules are static objects in that they are deflined when a program is writ-
ten. Some languages permit them to be nested like Algol blocks; others insist
they be disjoint. In some cases, it may be possible to create new instances of a
module at run time. Separate instances have separale sets of data.

Some languages insist thal the number of processes in a program be fixed
at compile time. Others allow new processes 1o be created during execution.

Some languages insist that a program’s processes form a hierarchy. Special

13

rules may govern the relationships between a process and its descendants. In
other languages, all processes are independent equals. A process may be permit-
ted to terminate itself, and perhaps 1o terminate others as well. It will usually

terminate automatically if it reaches the end of its code.

2.2. Communication Paths

The most important questions about a distributed language revolve around
the facilities it provides for exchanging messages. For want of a better term, |
define a communication path 10 be something with one ¢nd into which senders
may insert messages and another end from which receivers may extract them.
This definition is intentionally vague. It is meant to encompass a wide variety of
language designs.

Communication paths establish an equivalence relation on messages.
Senders assign messages to classes by naming particuiar paths (see section 2.3).
Receivers accept messages according to class by selecting particular paths (see
section 2.6.1). Messages sent on a common path enjoy a special relationship.
Most languages insert them in a queue and guarantee receipt in the order they

were sent. Some languages allow the queue 1o be reordered.

One important question is most easily explored in terms of the abstract
notion of paths: how many processes may be atlached to each end? There are

four principal oa:o:mum

* These four options correspond, respectively, to the distributed operating
system concepts of input ports, output ports, free poris, and bound ports. [have
avoided this nomenclature because of the conflicting uses of the word ‘‘port’” by
various language designs.

(hH

2)

(3

14

Many Senders, One Receiver

This is by far the most common approach. 1t mirrors the client/server rela-
tionship found in many useful algorithms: a server (receiver) is willing to
handle requests from any client (sender). A single server caters to a whole
community of clienis. Of course, a server may provide more than one ser-
vice; it may be on the receiving end of more than one path. Separate paths
into a receiver are commonly called entry points. In theory, one could get
by with a single entry point per server. The advaniage of multiple entries is
that they facilitate message screening (sce section 2.6.13 and allow for strict
type checking on each of several different message formats. From an
implementor’s point of view, multiple entry points into a single recciver are
handled in much the same way as multiple senders on a single communica-
tion path.

One Sender, Many Receivers

This approach is symmetric to that in (1). It is seldom used, however,

because it does not reflect the structure of common algorithms.

Many Senders, Many Receivers

This is the most general approach. In its purest form it is very difficult to
implement. The problem has to do with the maintenance of bookkeeping
information for the path. In the one-receiver approach, iniormation is con-
veniently stored at the receiving end. In the one-sender approach, it is kept
at the sending end. With more than one process at cach end of the path,
there is no obvious location. If all information about the status of the path
is stored on a single processor, then all messages will end up going through
that intermediary, doubling the total message traffic. If the information is

distributed instead, there will be situations in which either a) a sender must

15

(at least implicitly) query all possible recgivers (0 see if they want its mes-
sage, or b) a receiver must query all possible senders 1o see if they have
messages to send.

Neither option is particularly desirable. Protocols exist whose communica-

tion requirements are linear in the number of possible pairs of

processes [12,26], but this is generally 100 costly. One way out is 1o res-
trict the model by insisting that muliiple processes on one end of a path
reside on a single physical machine. This approach is taken by several
languages: messages are senl (o modules, not processes, and any process
within the module may handle a message when it arrives.

{4) One Sender, One Receiver

This approach is the easiest o implement, bul is acceptable only in a

language that allows programmers (0 refer conveniently 1o arbitrary sets of

paths. In effect, such a language allows the programmer to ‘‘tie”’ a

number of paths together, imitating one of the approaches above.

The preceding descriptions are based on the assumption that each individual
message has exactly one sender and exactly one receiver, no matler how many
processes are atached to each end of the communication path. For some appli-
cations, it may be desirable to provide a broadcast facility that allows a sender 10
address a message 1o all the receivers on a path, with a single operation. Several
modern network architectures support broadcast in hardware {104]. Unfor-
wnately, they do not all guaraniee reliability. Broadcast will be complex and
slow whenever acknowledgmenis must be returned by each individual receiver.

Several language and operating system designers have atlempted to imple-

ment send and receive as symmelric operations (sec in particular sections 3.4 and

16

4.3.2). Despite their cfforts, there remains an inherent asymmetry in the
sender/receiver relationship: data flows one way and not the other. This asym-
metry accounts for the relative uselessness of one-many paths as compared 10
many-one. 1t also accounts for the fact that no one even discusses the symmetric
opposite of broadcast: a mechanism in which a receiver accepts identical copies

of a message from all the senders on a path at once.

2.3. Naming

In order to communicale, processes need 1o be able (0 name cach other, or
at least to name the communication paths that connect them. Names may be
established at compile time, or it may be necessary lo create them dynamically.
Naming is closely related to processes, modules, and communication paths.

Several comments should be made:

® In the typical case of many senders/one receiver, it is common for the
sender 1o name the receiver explicitly, possibly naming a specific path
{entry) into the receiver if there is more than one. Meanwhile the receiver
specifies only the cniry point. It accepts a message from anyone on the
other end of the path.

L Compiled-in names can only distinguish among things that are distinct al
compile time. Multiple instantiations of a single block of code will require
dynamically-created names.

e In languages where messages are sent to modules, it may be possible for
names (of module entry points) to be established at compile time, even
when the processes that handle messages sent to the module are dynami-

cally created. Processes within a module may be permitted lo communicale

17

with each other via shared data.

Several naming strategies appropriate for use among independent programs
on a distributed operating system are not generally found in programming
language proposals. Finkel [43] suggests that processes may refer to each other
by capabilities, by reference 1o the facilities they provide, or by mention of names
known 1o the operating system. The link mechanism described in chapier 2 is a
similar approach [100]. It is intended 1o support communication between
processes that are designed, compiled, and loaded al widely disparate umes. It
allows much later binding than one would usually need for the pieces of a single

program.

2.4. Synchronization

Since all interprocess interaction on a multicomputer is achieved by means
of messages, il is neither necessary nor even desirable for a language to provide
synchronization primitives other than those inherent in the facilities for commun-
ication. The whole question of synchronization can be treated as a sub-issue of
the semantics of the send operation [29,43, 79]. There are three principal possi-
bilities:?

(1Y No-Wait Send

In this approach the sender of a message continues execution immediately,

even as the message is beginning the journey lo wherever it is going. The

operating system or run-time suppori package must buffer messages and

*in any particular implementation{ the process of sending a message will re-
quire @ large number of individual steps. Conceivably, the sender could be un-
biocked after any one of those steps. In terms of programming language seman-
tics, however, the only steps that matier are the ones that are visible lo the user-
level program.

2)

(3)

18

apply back-pressure against processes that produce messages 100 quickly. If
a communication error occurs (for example, the intended recipient has ter-
minated), it may be difficult 1o return an error code to the sender, since
execution may have proceeded an arbitrary distance heyond the point where

the send was performed.

Synchronization Send

In this approach the sender of a message waits until that message has been
received before continuing execution. Message traffic may increase, since
the implementation must return confirmation of receipt lo the sender of
cach message. Overall concurrency may decline. On the other hand, it is
easy lo return error codes in the event of failed transmission. Further-
more, there is no need for buffering or back-pressure (though messages
from separale processes may still need o be queued on each communica-

tion path).

Remote-Invocation Send

In this approach the sender of a message wails until it receives an explicit
reply from the message's recipient. The name ‘‘remote invocation™ is
meant 1o suggest an analogy to calling a procedure: the sender transmits a
message (inpul paramelers) lo a remote process that performs some opera-
tion and returns a message (oufpu! parameters) to the sender, who may then
continue execution. The period of time during which the sender is
suspended is referred 1o as a rendezvous. For applications in which it
mirrors the natural structure of the algorithm, remote-invocation send is
both clear and efficient. Both the original message and the (non-blocking)

reply carry useful information; no unnccessary confirmations are involved.

As Liskov [79] points out, however, many useful algorithms cannot be

19

expressed in a natural way with remote invocation.

The choice of synchronization semantics is one of the principal areas of
disagreement among recent language proposals. Section 3 includes examples of

all three strategies.

2.5. Implicit and Explicit Message Receipt

Lauer and Needham [75] and Cashin [29] discuss a duality between
“*message-oriented”” and ‘‘procedure-oriented” interprocess communication.
Rather than semantic duals, I maintain that the two approaches are merely vary-
ing syniax for the same underlying functionality. What is at issue is whether
message receipl is an explicitor an implicit operation.

In the former case, an active process may deliberately receive a message,
much as it might perform any other operation. In the latter case, a procedure-
like body of code is activated automatically by the arrival of an appropriate mes-
sage. Either approach may be paired with any Of the three synchronization
methods.

implicit receipt is most appropriate when the functions of a module are
externally driven. An incoming message iriggers the creation of a new process 10
handle the message. After the necessary operations have been performed, the
new process dies. Alternatively, one may think of the message as awakening a
sleeping process that performs its operations and then goes back to sleep, pending
arrival of another message. There may be one such *'sieeping process’’ for each
of the module’s entry procedures, or it may be more convenient Lo imagine a sin-
gle sleeper capable of executing any of the entries. If remote-invocation send is

used, it may be intuitive 1o think of the “tsoul’’ of a sender as traveling along

20

with its message. This soul then animates the receiving block of code, eventually
reurning 1o its original location (along with the reply message), and leaving that
code as lifeless as before. Each of these options suggests a different implemenia-

tion.

Implicit receipt is a natural syntax for the client/server model. It is beuer
suited than the explicit approach to situations in which requests may arrive at
unpredictabie times or in which there is no obvious way to tell when the last mes-
sage has arrived. Explicit receipt, on the other hand, is more appropriate for
situations that lack the clicnt/server asymmetry. It is useful for expressing com-
munication among active, cooperating peers, where both parties have useful work
1o do between interaclions. An obvious example is a producer/consumer pair in
which both the creation of new data and the consumption of old are time-
consuming operations. (See section 9.1 of chapter 2.)

The choice of syntax for message receipt is a second major area of
disagreement among recent language proposals. (Synchronization was the first.)
StarMod (section 3.11) and NIL (section 3.16) provide both implicit and explicit

receipl. Most languages, however, provide a single option only.

2.6. Details of the Receive Operation

As noted above, mosl languages permit multiple senders bul only one
receiver on each communication path. In addition, they typically allow a process
1o be non-deterministic in choosing which entry point 1o serve next; instead of
having 1o specify a particular path, 4 receiver is free 1o accept messages from any

of a varicty of paths on which they may be v:uma:r.,_ With remote-invocation

4 Among the languages discussed in section 3, CSP/80 alone [64] provides
similar degree of flexibility for senders. Though it permits only a single sender

21

send, a receiver may even accept new messages before replying to old. This sec-
ion discusses lechniques for choosing between available messages and for

Bm:mmmsm more than one concurrent rendezvous.

2.6.1. Message Screening

Assume for the moment that a process may form the receiving end of
several communication paths. Further, assume that each of these paths may
carry a variety of messages from a variety of senders. In a completely non-
deterministic situation, a receiver might be expected to cope with any message
from any process on any path. This burden is usually unacceptable. A process
needs to be able to exercise control over the sorts "of messages it is willing 10
accept al any particular time. It needs to qualify its non-deterministic options

with guards that specify which options are open and which are currently closed.

Semantics

There is a wide range of options for message screening semantics. Every
language provides some means of deciding which message should be received
next. The fundamental question is: what faciors may be considered in reaching
the decision? The simplest approach is 10 ‘‘hard-code™ a list of open paths. In
effect, this approach allows the decision to be made al compile time. Most
languages, however, allow at least part of the decision 1o be made at run time.
Usually, the programmer will specify a Boolean condition that must evaluate (o

“qrue’” before a particular message will be accepled. The question now

and receiver on each communication path, the language allows both senders and
receivers 1o choose among several alternative paths, depending on whether any-
one is listening on the other end. This added flexibility entails implementation
problems similar to those discussed in section 2.2 (3). For a more complete dis-
cussion of CSP, see section 3.4.

22

becomes: on what may the condition depend? It is not difficult to implement
guards involving only the local variables of the receiver. Complications arise
when a process tries 10 base its choice on the contents of the incoming messages.
In most languages, messages arriving on a particular communication path are
ordered by a queue. In a few cases, it may be possible o reorder the queues. In
any case, a simple implementation is still possible if path selection or queue ord-
ering depends on some particular weli-known slot of the incoming message.
PLITS and ZENO for example, allow a process [0 sCreen messages by sender

name (path) and transaction slot (sce section 3.7).

In the most general case, a language may permit a receiver 1o insist on
predicates involving arbitrary ficlds of an incoming message. The implemenia-
tion has no choice but to go ahead and receive a message sight unseen, then look
at its contents to see if it really should have done so. Unless unwanted messages
can be veturned to their sender, the receiver may require an arbitrary amount of

buffer space.

Syntax of Guards
The precise way in which guards are specified depends largely on the
choice between implicit and explicit message receipt. With implicit receipt, there
are two basic options:
(1} The language may allow the execution of an enlry procedure o be
suspended until an arbitrary Boolean expression becomes true.
(2) The language may allow the procedure (o be suspended on a condition
queue or semaphore, with the assumption thal action in some other pro-

cedure will release it when it is safe to continue.

23

The first approach is the more general of the two. The second is easier 1o
implement and is generally more efficient. Brinch Hansen discusses the trade-
offs involved { [23], pp. 15-21). Both approaches assume that execution of an
entry procedure can be suspended afier examining an incoming message. Since
messages will differ from one instance of the procedure to the next, separate
activation records will be required for each suspended entry. Campbell and
Habermann [28] suggest the simpler.{and more restrictive) approach of allowing
guards to involve local data only, and of insisting they occur at the very begin-
ning of their entry procedures. A lunguage that ook such an approach would be

able (o avoid the separate activation records. 1t would also be less expressive.

Guards are more straightforward with explicit receipt. The most common
approach looks something like a Pascal case statement, with separate clauses for
each possible communication path. Each clause may be preceded by a guard.
The physical separation of clauses allows messages of different types to be
received into different local variables. In a language with looser message typing
(for example PLITS and ZENO, of section 3.7), there may be a statement that
specifies receipt into a single variable irom m.:v\ of a set of open paths. An ordi-
nary sequential case statement then branches on some f{ield of the message just

received.

2.6.2. Multiple Rendezvous

In a language using remote-invocation send, it-is often useful for a receiver
to be in rendezvous with more than one sender at a time. One ingenious applica-
tion involves a process scheduler [22, 87]. The scheduler has two entry points:
schedule_me and I'm_done. Every process with work to do calls schedule_me.

The scheduler remains in rendezvous with all of these callers but one. While

24

that caller works, the scheduler figures out which process P has the next-highest
priority. When the worker calls I'm_done, the scheduler ends its rendezvous

with P.

In & language with both remote-invocation send and implicit message
receipl, a module may be in rendezvous with several senders at one time. If each
entry procedure runs until it blocks, then the module is a monitor {57}, If the
implementation time-siices among entries, or if it employs a multiprocessor with
common store, then the language must provide additional mechanisms for con-

trolling access to the module’s common data.

Multiple rendezvous is also possible with explicit message receipt. Several
languages require the receive and reply statements to be paired syntactically, but
allow the pairs to nest. in such languages the senders in rendezvous with a sin-
gle receiver must be released in LIFO order. If senders are to be released in
arbitrary order, then the reply (or disconnect) statement must be able to specify
which rendezvous 10 end. Mutual exclusion among the senders is not an issue,
since only one process is involved on the receiving end. Mao and Yeh [87] note
that careful location of a disconnect statement can minimize the amount of time a
sending process waits, leading to higher concurrency und beuter performance.
Similar wning is not generally possible with implicit receipt; senders are released
implicitly at the end of entry procedures. 1t would be possible 10 provide an
explicit disconnect with implicit receipt (1 do so in chapter 2), but it would tend to

violate the analogy to sequential procedure calls.

2.7. Side Issues

The issues discussed in this section are fess fundamental than those

addressed above. They fall inlo the category of convenient “‘extra features’—

25

things that may or may nol be added 10 a language after the basic core has been

designed.

(1

(3

Shared Dala

In order 10 permit reasonable implementalions on a multicomputer, a distri-
buted language must in general insist thal inleraction among processes be
achieved by means of messages. For the sake of efficiency, however, a
language may provide for shared access to common variables by processes
guaranteed 1o reside on the same physical machine. It may be necessary o
provide additional machinery {semaphores, monitors, critical regions, elc.)

1o control *‘simulianeous’’ access.

Asynchronous Receipt

Several communication schemes place no bound on the length of time that
can pass before a message is noticed at the receiving end of its communica-
tion path. There is certainly no such bound for explicit receipt. There are
times, however, when it is desirable to receive data as soon as it becomes
available. One solution is to equip a receiving module with so-called
immediate procedures [43] — special entry. procedures that guarantee
prompt execution. Immediate procedures imply the existence of shared
data, since multiple processes may be active in the same module and since
execution may swilch from one process to another at unpredictable times.
Timeout and Related Issues

In most proposals employing synchronization or remole-invocation send,
the sender of a message may be suspended indefinitely if no one is willing
to listen 10 it. Likewise a process that atempts 1o receive a message may

have 1o wait forever if no one sends it anything. Such delays may be

4)

(5)

26

acceptable in a distributed program where communication patterns are care-
fully defined and each process is able 10 assume the correctness of the oth-
ers. In certain real-ime applications, however, and in language systems
that auempt to provide for reliability under various sorts of hardware
failure, it may be desirable to provide a mechanism whereby a process that
wails ‘‘too long’’ times out and is able to take some sort of corrective

action.

One particular sort of timeout is especially useful, and may be provided
even in cases where the more general facility is not. By specifying a
timeout of zero, a process can express its desire to send or receive a mes-
sage only when such a request can be satisfied immediately, that is when
some other process has already expressed its willingness to form the other
end of the interaction.

Robustness

When persistent hardware failures are a serious possibility, or when a pro-
gram is expecied to respond in a reasonable fashion to unpredictable real-
time events, it may not be possible to hide all errors from the application
layer. Programming languages may need to provide special mechanisms
for high-level recovery. Liskov's Extended CLU and Argus (section 3.8)
are noteworthy examples. The problems involved in providing for reliabil-
ity in distributed programs have not been adequately investigated. Like
many researchers, | ignore them.

Unreliable Send

In certain applications, particularly in the processing of real-time data,

speed may be more important than reliability. It may be more appropriate

27

10 send new data than to resend messages that fail. For such applications, a
language may provide fast but unreliable messages. Unreliable broadcast
is particularly interesting, since it can be provided on some archilectures at

no more cost than point-to-point communication.

3. Several Languages

This section surveys more than two dozen distributed language proposals.
For cach, it describes how the language fits,into the framework of section 2 and
then mentions any features that are particularly worthy of note. Languages are
considered in approximate order of their publication. For those without the pati-
ence of a saint, ! particularly recommend the sections on monitor languages,

CSP, Distributed Processes, Argus, and Ada.

3.1. Path Expressions

Path Expressions {28, 53] are more of a mechanism than a language. They
were invented by Campbell and Habermann in the early 1970°s o overcome the
disadvantages of semaphores for the protection of shared data. Rather than trust
programmers 1o insert P and V operations in their code whenever necessary, the
designers of path expressions chose 0 make synchronization rules a part of the

declaration of cach shared object.

The path expression proposal makes no mention of modules, nor does il say
much about the nature of processes. 1l specifies only that processes run asyn-
chronously, and that they interact solely by invoking the operations provided by
shared objects. Like the monilors described below, path expressions can be
forced into a distributed framework by considering a shared object to be a passive

entity thal accepls requests and rewrns replics. Under this model, the proposal

28

uses remote-invocation send with implicit message receipt. Communication paths
are many-one. There may be several identical objects. Processes name both the

object and the operation when making a request.

The declaration of a shared object specifies three things: the internal struc-
wre of the object, the operations that may be invoked from outside and thal are
permitied to access the internal structure, and the path expressions that govern
the synchronization of invocations of those operations. There is no convenient
way to specify an operation that works on more than one object at a lime.

A path expression describes the set of legal sequences in which an object’s
operations may be executed. Syntactically, a path expression resembles a regular
expression. ‘‘(A, B); {C}; D, for exampie, is a path expression that permits a
single execution of either A or B (but not both), followed by one or more simul-
taneous executions of C, followed in wrn by a single execution of D. There is
no restriction on which executions may be performed on behall of which
processes. Reference [28) includes a proof that path expressions and semaphores

are equally powerful; each can be used to implement the other.

Path expression solutions to such problems as access control for readers
and writers [33] can be surprisingly subtle and complex. Robert and Verjus [95]
have suggested an allernative syntax. Like Campbell and Habermann, they dis-
like scatiering synchronization rules throughout the rest of the code. They prefer
lo group the rules together in a control module that authorizes the executions of
a set of operations. Their synchronization rules are predicates on the number
of executions of various operations that have been requested, authorized, and/or
sompleted since the module was initialized. Their solutions to popular problems

ire both straightforward and highly intuitive.

29

3.2. Monitor Languages

Monitors were suggested by Dijkstra |36}, developed by Brinch Han-
sen [20], and formalized by Hoare [57] m:. the carly 1970s. Like path expres-
sions, monitors were intended to regularize the access 0 shared data structures
by simultaneously aclive processes. The first languages lo incorporale monitors
were Concurrent Pascal {21], developed by w::n:.:msmm:, and SIMONE [67}],
designed by Hoare and his associates at Queen’s University, Belfast. Others
include SB-Mod [13], Concurrent SP/k [59, oo.f Mesa [74, 89], Extended
BCPL [86], Pascal-Plus [112], and Modula :_E“ Of the bunch, Concurrent
Pascal, Modula, and Mesa have been by far the most influential. SIMONE and
C-SP/x are strictly pedagogical languages. Pascal-Plus is a successor 1o
SIMONE. SB-Mod is a dialect of Modula. C-SP/k has been succeeded by a
production-quality language called Concurrent Euclid [61].

In all the languages, a monitor is a shared object with operations, internal
state, and a number of condition queues. Only one operation of a given monitor
may be active at a given poinl in tme. A “.:onamm that calls a busy monilor is
delayed until the monitor is free. On behalf of its calling process, any operation
may suspend itsell by wairing on a queuc. An operation may also signal a
queue, in which case one of the wailing processes is resumed, usually the one
that waited first. Several languages extend the mechanism by allowing condition
queues to be ordered on the basis of priorities passed to the wait operation.

Mesa has an even more eiaborate priority scheme for the processes themselves.
Monitors were originally designed for implementation on a conventional

uniprocessor. They can, however, be worked into a distributed framework by

considering processes as aclive enlities capable of sending messages, and by con-

30

sidering monilors as passive entities capable of receiving messages, handling
them, and rewrning a reply. This model agrees well with the semantics of Con-
current Pascal and SIMONE, where monitors provide the only form of shared
dawa. 1t does not agree as well with other languages, where the use of monitors
is optional. Distributed implementations would be complicated considerably by

the need to provide for arbitrary data sharing.

Concurrent Pascal, SIMONE, E-BCPL, and C-SP/k have no modules. In
the other four languages surveyed here, monitors are a special kind of module.
Modules may nest. In Modula and SB-Mod, the number of modules is fixed al
compile time. In Pascal-Plus and Mesa, new instances may be created dynami-
cally. Pascal-Plus modules are called envelopes. They have an unusually
powerful mechanism for initialization and finalization. Modules in SB-Mod are
declared in hierarchical levels. Inter-module procedure calls are not permiued
from higher 1o lower levels, SIMONE, C-SP/k, and Pascal-Plus provide built-in

mechanisms for simulation and the manipulation of pseudo-time.

Concurrent Pascal and C-SP/k programs contain a fixed number of
processes. Neither fanguage allows process declarations to nest, but Concurrent
Pascal requires a hierarchical ordering (a DAG) in which each parent process
lists explicitly the monitors to which its children are permitied access. In the six
other languages, new processes can be created at run time. Process declarations
may be nested in Pascal-Plus. The nesting defines an execution order: each
parent process starts all its children at once and waits for them 1o finish before
proceeding. In Mesa, process instances are crealed by forking procedures.
Mesa compounds the problems of shared data by allowing arbitrary variables (o
be passed o a process by reference. Nothing prevents an inner procedure {rom

passing a local variable and then rewrning immediately, deallocating the variable

and trning the reference into a dangling pointer.

Under the distributed model described above, monitor languages use
remote-invocation send with implicit receipt. Communication paths are many-
one. In languages that permit muliple monitors with identical entries (Con-
current Pascal, Pascai-Plus, and Mesa), the sender must name both the monitor
and entry. It also names both in SIMONE, but only because the bare entry
names are not visible under Pascal rules for lexical scope. In E-BCPL the
sender calls the monitor as a procedure, passing it the name of the operation it

wishes to invoke.

The precise semantics of mutual exclusion in monitors are the subject of
considerable dispute [6, 54, 62, 68, 71, 85,91, 114]. Hoare’s original propo-
sal [57] remains the clearest and most carefully described. It specifies two book-
keeping queues for each monitor: an entry queue and an urgent queue. When
a process execules a signal operation from within a monitor, it wails in the
monitor’s urgent queue and the first process on the appropriate condition queue
obtains control of the monitor. When a process ieaves a monitor it unblocks the
first process on the urgent queue or, if the urgent queue is empty, it unblocks the

first process on the entry queue insiead.
These rules have two unfortunate consequences:

(1) A process that calls one monitor from within another and then waits on a
condition leaves the outer monitor locked. I the necessary signal operation

can only be reached by a similar nested call, then deadiock will result.

(2) Forcing the signaler to release control to some other waiting process may
result in a prohibitive number of context switches. It may also lead to

situations in which the signaler wakes up to find that its view of the world

32

has been altered unacceplably.

One solution o the first problem is to release the locks on the outer moni-
tors of a nesied wait. This approach requires a means of restoring the locks
when the waiting process is finally resumed. Since other processes may have
entered the outer monitors in the intervening time, those locks might not be
available. On a uniprocessor, the problem can be solved by requiring all opera-
tions of all monitors to exclude one another in time. Outer monitors will thus be
empty when an inner process is resumed. Most of the languages mentioned here
use global monitor exclusion. The exceptions are Concurrent Pascal, Mesa, and
SB-Mod.

Concurrent Pascal and Mesa provide a separate lock for each monitor
instance. Nested calls leave the outer monitors locked. SB-Mod provides a lock
for each set of monitors whose data are disjoint. There are two forms of inter-
monitor calls. One leaves the calling monitor locked, the other leaves it
unlocked. Neither affects monitors higher up the chain. A process that rewurns

from a nested monitor call is delayed if the calling monitor is busy.

The second problem above can be addressed in several ways.
Modula [116], SB-Mod, E-BCPL, and C-SP/k all reduce the number of context
switches by eliminating the urgent queuets). Careful scheduling of the unipro-

cessor takes the place of mutual exclusion. In general, process switches occur

only'at wait and signal operations, and not at module exit.” When the current

5 E-BCPL timeslices among the runnable processes. Clock interrupis are
disabled inside monitor routines. SB-Mod reschedules processes in response (o
hardware interrupts, but the interrupts are masked at all levels below that of the
current process. Interrupled processes are resumed when the current process al-
tempts o return o a lower interrupt level.

33

process signals, execution moves to the first process on the appropriate condition

queue. When the current process waits, execution may move to any other pro-

cess that is not also im:mzm.o A process that would have been on one of Hoare's
entry queues may well be allowed to proceed before a process on the correspond-

ing urgent queue.

Signal operations in Concurrent Pascal cause an automatic return from
monitor routines. There is thus no need for an urgent queue. To simplify the
implementation, Concurrent Pascal allows only one process at a time to wait on a
given condition. Mesa relaxes these restrictions by saying that a signal is only a
hint. The signaler does not relinquish control. Any process suspended on a con-
dition queue must explicitly double-check its surroundings when it wakes up; it
may find it cannot proceed after all, and has to wait again. Wetistein [114] notes
that if signals arc only hints then it is indeed feasible to release exclusion on all
the monitors involved in a nested wait {though Mesa does not do so). Before
continuing, a signalled process could re-join each of the entry queues, one by

one. After regaining the locks it would check the condition again.

Kessels [71] suggests a different approach to the semantics of conditions. I
every queue is associated with a pre-declared Boolean expression, then the signal
operation can be dispensed with altogether. When a process leaves a monitor,
the run-time support package can re-evaluate the Boolean expressions to deter-

mine which process to run next.

® The next process to run after a wait is always the next runnable process on
a circular list. All processes stay on the list in Modula, SB-Mod, and E-BCPL.
Their order is fixed. Process switches are siowed unnecessarily by the need to
skip over waiting processes. Waiters in C-SP/k are removed from the lisi, even-
tually to be re-inserted behind their signaler.

34

SB-Mod expands on Kessel’s proposal. The Boolean expressions for condi-
tion queues are optional. Wair suspends the caller if the expression is false or
was not provided. Send (signal) transfers control to the first process on the qucue
if the expression is true or was not provided. A new operation called **mar i
seis a flag in the first process on the queue. When the current process leaves its
monitor, the queue is re-examined. If the expression is true or was not provided,

then the marked process is moved to the ready queue. No process swilch occurs.

Of all the languages surveyed, SIMONE is truest to Hoare. It does not
provide separate entry queues for every monitor, but it does provide an urgent

stack, with processes resumed in LIFO order.

3.3. Extended POP-2

Kahn and MacQueen [66] have implemented a small bul elegant language
based on a generalization of coroutines. Their language has much in common

with CSP (section 3.4, below) but was developed independently.

Process declarations in Extended POP-2 look very much like procedures.
There are no modules. Processes share no data. They are instantiated with a
cobegin construct called ‘'doco.”” The doco statement uses a series of channels

1o connect inpul and output ports in the newly-created processes.

Once running, processes can communicate by means of put and ger opera-
tions on poris. Given the binding to channels achieved by doco, communication
paths are one-one. Send is non-blocking and buffered. Receive is explicit, and
names a single port. There is no provision for non-deterministic or seleclive
receipt. Processes with a single input and a single output port may be instan-

tiated with a special functional syntax.

3.4. Communicating Sequential Processes

CSP 58] is not a full-scale language. Rather, it is an ingenious proposal
by C. A. R. Hoare for the syniactic expression of non-determinism and interpro-
cess communication. CSP/80 [64], Extended CSP 8], occam [88], and a name-
fess language by Roper and Barter [96] are all attempls to expand Hoare’s syntax
into a usable language. 1 will refer to Extended CSP'as E-CSP and to Roper and

Barter’s language as RB-CSP.

Processes are the central entities in CSP. There are no modules. Regular
CSP, E-CSP, occam, and RB-CSP all allow new processes to be created at run
time with a modified cobegin construct. CSP/80 provides for a fixed number of
independent processes, statically defined. Subprocesses in E-CSP and RB-CSP
are not visible to their parent’s peers. Messages from outside are addressed to
the parent. The parent redirects them to the appropriate child. To avoid ambi-
guity, the E-CSP compiler guaraniees that no two subprocesses ever communi-
cate with the same outsider. RB-CSP performs the equivalent checks al run

time. None of the CSP languages supports recursion.

Disjoint processes in CSP do not share daia; all interaction is by means of a
generalization of the traditional concepts of mz.v_: and output. In regular CSP,
and in CSP/80 and occam, the result is equivalent 1o explicit receipt and syn-
chronization send. E-CSP provides both synchronization and no-wait send.

RB-CSP uses only no-wait send.

Communication paths in CSP are one-one; both sender and receiver name
the process at the other end. Forcing the receiver to name the sender prevents
the modeling of common client/server algorithms. 1t also precludes the use of

libraries. The four implementations mentioned here address the problem in dif-

36

ferent ways. CSP/80 lets processes send and receive through ports. Sender
poris and receiver ports are bound together in a special linking stage. Occam
processes send and receive messages through channels. Any process can use
any channel that is visible under the rules of lexical scope. E-CSP and RB-CSP
provide processname variables. An E-CSP receiver siill specifies a sender, but
the name it uses can be computed at run time. An RB-CSP receiver does not
specify the sender at all. It specifies a message type and must be willing to

receive from any sender with a matching type.

Communication is typeless in regular CSP and in occam. Types are associ-
ated with porls in CSP/80. They are associated with individual communication
statements in E-CSP. Individual input and output commands match only if their
types agree. RB-CSP provides a special type constructor called message with
named slots, much like those of PLITS (section 3.7). A given process need only

be aware of the slots it may actually use.

CSP incorporates Dijkstra’s non-deterministic guarded commands [37]. A
special kind of guard, called an input guard, evaluates to true only if a specified
input command can proceed immediately. In regular CSP, and in E-CSP and
RB-CSP, there is no corresponding oulput guard 10 test whether a process is wail-
ing to receive. Hoare notes that the lack of output guards makes it impossible to
transiate certain parallel programs into equivalent, sequential versions. CSP with
input guards alone can be implemented by the usual strategy for many-one com-
munication paths (see section 2.2): information is stored at the receiving end.
The provision of outpul guards as well leads to the usual problems of many-many
paths. (For a discussion, see the appendix of Mao and Yeh’s paper on commun-
ication ports [87].) Moreover, as noted by the designers of CSP/80, the

indiscriminate use of both types of guards can lead to implementation-dependent

37

deadlock. Nonetheless, CSP/80 does provide both input and output guards. The
linker prevents deadlock by refusing 1o connect a sender with outpul guards to &

receiver with input guards.

3.5. Distributed Processes

In the design of Distributed Processes [22], Brinch Hansen has unified the
concepts of processes and modules and has adapled the monitor concept for use

on distributed hardware.

A Distributed Processes program consists of a fixed number of modules
residing on separate logical machines. Each module contains a single process.
Modules do not nest. Processes communicate by calling entry procedures (called
common procedures) defined in other modules. Communication is thus by
means of implicit receipt and remote-invocation send. Data can be shared

berween entry procedures, but not across module boundaries.

An entry procedure is free to block itsell on an arbitrary Boolean condition.
The main body of code for a process may do likewise. Each process alternates
between executing its main code and serving external requests. 1L jumps from
one body of code to another only when a blocking statement is encountered. The
executions of entry procedures thus exclude each other in time, much as they do
in a monitor. Nested calls block the outer modules; a process remains idle while
waiting for ils remote requests to complete. There is a certain amount of imple-
mentation cost in the repeated evaluation of blocking conditions. Brinch Hansen
argues that the cost is acceptable, particularly if every module resides on a

separate physical machine.

38

3.6. Gypsy

Gypsy [51] was designed from the start with formal proofs in mind. Pro-

grams in Gypsy are meant 1o be verified routinely, with automatic tools.

Much of Gypsy. including its block structure, is borrowed from Pas-
cal [65]. There is no notion of modules. New processes are started with a cobe-
gin construct. The clauses of the cobegin are all procedure calls. The pro-
cedures execute in parallel. They communicate by means of buffer variables,
passed 1o them by reference. Since buffers may be accessible to more than one
process, communication paths are many-many. Sharing of anything other than
buffers is forbidden. There is no global data, and no objects other than buffers

can be passed by reference to more than one process in a cobegin.

Buffers are bounded FIFO queues. Semantically, they are defined by his-
tory sequences that facilitate formal proofs. Send and receive are buffer opera-
tions. Send adds an object 1o a buffer. Receive removes an object from a buffer.
Send blocks if the buffer is full. Receive blocks if the buffer is empty. In the
nomenclature of section 2, Gypsy uses no-wait send and explicit receipt, with the
exception that back-pressure against prolific senders is part of the language defin-
ition. Declared buffer lengths allow the synchronization semantics to be

independent from implementation details.

A variation of Dijkstra’s guarded commands {37] allows a process to exe-
cule exactly one of a number of sends or receives. The await statement contains a
series of clauses, each of which is guarded by a send or receive command. If
none of the commands can be executed immediately, then the await stalement
slocks until a buffer operation in some other process allows it to proceed. |If

more than one of the commands can be executed, a candidaie is chosen at ran-

39

dom. There is no general mechanism for guarding clauses with Boolean expres-

sions.

3.7. PLITS and ZENO

PLITS {39] is an acronym for ‘‘Programming Language in the Sky,”’ an
ambitious attempl at advanced language design. In the area of distributed com-
puting, it envisions a framework in which a’computation may involve processes
writien in multiple languages, executing on heterogeneous machines. ZENO [9]
is a single language based heavily on the PLITS design. Its syntax is borrowed
from Euclid [73].

A ZENO program consists of a collection of modules that may be instan-
tiated to create processes. Processes are assigned names at the time of their crea-
tion. They are independent equals. A process dies when it reaches the end of its
code. It may die earlier if it wishes, but it cannot be killed from outside. There
is no shared data. Receive is explicit. Send is non-blocking and buffered. There
is only one path into each process, but each message includes a special trans-
action slot to help in selective receipt. A sender names the receiver explicitly.
The receiver lists the senders and transaction numbers of the messages it is wil-
ling 1o receive. There is no other means of message screening — no other form
of guards. As in CSP (section 3.4), forcing receivers 1o name senders makes it
difficult 1o write servers. A ‘‘pending’ function allows a process to determine
whether messages from a particular sender, about a pariicular transaction, are
wailing to be received.

The most unusual feature of PLITS/ZENO is the structure of its messages.
In contrast to mosl proposals, there is no strong typing of interprocess communi-

cation. Messages are constructed much like the property lists of LISP [93].

40

They consist of name/value pairs. A process is free to examine the message slots

that interest it. 11 is oblivious to the existence of others.

In keeping with its multi-language, multi-hardware approach, PLITS prohi-

bits the transmission of all but simple types. ZENO is more flexible.

Recent exiensions to PLITS {38] are designed 1o simplify the organization
of large distributed sysiems and to increase their reliability. Cooperating
processes arc tagged as members of a single activity. A given process may
belong to more than one activity. 1t enjoys a special relationship with its peers: it
may respond automatically 10 changes in their siaws. Activities are supported by

built-in atomic transactions, much like those of Argus (section 3.8).

3.8. Extended CLU and Argus

Extended CLU [79, 80] is designed to be suitable for use on a long-haul
network. It includes exiensive feawres for ensuring reliability in the face of
hardware failures, and provides for the transmission of absiract data types
between heterogeneous machines [55]. The language makes no assumptions

about the integrity of communications or the order in which messages arrive.

The fundamental units of an Extended CLU program are called guardians.
A guardian is a module; it resides on a single machine. A guardian may contain
any number of processes. Guardians do not nest. Processes within the same
guardian may share data. They use monitors for synchronization. All interac-
tion among processes in separate guardians is by means of message passing.

Receive is explicit. Send is non-blocking and buffered. Each guardian pro-
vides ports to which its peers may address messages. New instances of a guard-

ian may be created at run time. New porl names are created for each instance.

41

The sender of a message specifies a port by name. It may also provide a reply
port if it expects to receive a response. The reply port name is really just part of
the message, but is marked by special syntax to enhance the readability of pro-
grams. Within a guardian, any process may handle the messages off any port;
processes are anonymous providers of services. A facility is provided for non-
deterministic receipt, but there are no guards; a receiver simply lists the accept-
able ports. In keeping with the support of reliability in the face of communica-

tion failure, a timeoul facility is provided.

Argus [82, 84] is the successor to Extended CLU. Argus uses remote-
invocation send and implicit message receipl. Instead of ports, Argus guardians
provide handlers their peers may invoke. Processes are no longer anonymous
in the sense they were in Extended CLU. Each invocation of a handler causes
the creation of a new process to handle the call. Additional processes may be

crealed within a guardian with a cobegin-like construct,

Argus programs achieve robustness in the face of hardware failures with
stable storage and an elaborate action mechanism. Actions are atomic; they
either commit or abort. If they commit, all their effects appear 1o occur instan-
taneously. If they abort, they have no effect at all. Actions may nest. A remote
procedure call is a nested action. Built-in atomic objects [110] support low-

level actions, and may be used within a guardian to synchronize its processes.

3.9. Communication Port

Like CSP and Distributed Processes, Communication Port [87] is less a
full-scale language than a concept on which a language might be based. A Com-
munication Port program consists of a fixed collection of processes. There are

no modules. There is no shared data. Processes communicate with remote-

42

invocation send and explicit message receipt.

Each process provides a variety of ports to which any other process may
send messages. Ports provide strict type checking. Senders name both the
receiver and its vo.:. There may thus be several receivers with the same internal
structure. The receive stalement is non-deterministic. Guards may be placed on
its cnaoz,m. The guards must refer to local data only. Receiving a message and
returning a reply are independent operations; it is possible for a receiver (o be in
rendezvous with several senders at one time. The senders may be released in
any order. Careful placement of release statements is a useful twning technique

that can be used to minimize the length of rendezvous and increase concurrency.

3.10. Edison

Edison [23,24] is a remarkable language in a number of ways. Based
loosely on Pascal, Concurrent Pascal, and Modula, it is a considerably smaller
language than any of the three. It seems to be an experiment in minimal
language design.

Processes in Edison are created dynamically with cobegin. Modules are
used for data hiding. Communication is by means of shared data, and mutual
exclusion is achieved through critical regions. There are no separate classes of
critical regions: the effect is the same as would be achieved by use of a single,
system-wide semaphore. Entry to critical regions may be controlled by arbitrary
Boolean guards. It is possible to foliow a programming strategy in which all
shared data is protected by monitors created out of critical regions and modules.

It is equally possible to avoid such rules.

43

Despite its title {**a multiprocessor language’’), 1 question the suitability of
Edison for use on muliiple processors. The use of critical regions that all
exclude each other could periodically halt all processors save one. On a muli-
computer, shared data is an additional problem. Unless a careful programming
style is imposed above and beyond the rules of the language itself, Edison does

not fit into the framework of section 2.

3.11. StarMod

StarMod {31, 32] is an exlension o Modula that attempls to incorporate
some of the novel ideas of Distributed Processes. It provides additional features
of its own. Modules and processes are distinc{. Modules may nest. There may
be arbitrarily many processes within a module. Processes may be created
dynamically; they are independent equals. Processes within the same processor
module may share daia. The programmer may influence their relative rates of

A3
progress by the assignment of priorities.

StarMod provides both explicit and implicit message receipt and both syn-
chronization and remote-invocation send. The four resulling combinations
employ a common syntax on the sending end. Communication paths are many-
one. A sender names both the receiving module and its entry point. Entries may
be called ecither as procedures or as functions. A procedural send allows the
sender o continue as soon as its message is received. A funcrional send blocks
the sender until its value is returned. Remote-invocation send is thus limited to
rewrning a single value.

On the receiving end, a module may mix its two options, using explicit
receipt on mcam of its communication paths and implicit receipt on the others.

The sender has no way of knowing which is empioyed. A receiver can be

44

changed from one approach to the other without any change to the sender.
Librarics can be changed without invalidaling the programs that use them.
When a message arrives at a implicit entry point, a new process is created (0
handle the call. When a message arrives al a explicit entry poin, it waits uniil
some existing process in the module performs a receive on the corresponding
port. There is no mutual exclusion among processes in a module; they proceed
in (simulated) parallel. They may arrange their own synchronization by waiting
on semaphores. The explicit receive is non-deterministic, but there are no
guards on its options. A single receiver can be in rendezvous with more than
one sender at a time, but it must release them in LIFO order. Separate calls to
the same implicit port will create separate, possibly parallel, processes. Separate

processes in a module may receive from the same explicit port.

StarMod was designed for dedicated real-time applications. The SiarMod
kernel behaves like a miniature operating system, highly efficient and tuned to
the needs of a single type of user-level program. Simplicity is gained at the
expense of requiring every program to specify the interconnection topology of its
network. Direct communication is permitied only between modules that are

neighbors in that network. The programmer is thus responsible for routing.

3.12. ITP

The Input Tool Process model [18] is an extension of van den Bos’s Input

Tool Method {17], an unconventional language for input-driven programs.

An ITP program consists of a collection of processes. There ar¢ no
modules. Processes do not nest. They share no data. Each process consists of a
hierarchical collection of tools. A tool looks something like a procedure. 1t is

made available for activation by appearing in the input rule of a higher-level

45

tool. (The root tools are always available.) A tool is actually activaied by the
completion of lower-level tools appearing in its own input rule. Leaf tools are

activated in response o inputs from other processes, or from the user.

Input rules allow message screening. They resemble path expressions (sec-
tion 3.1). They specify the orders in which lower-level tools may be activated.
Unwanted inputs can be disallowed at any layer of the hierarchy.

ITP uses synchronization send with implicit message receipt. Within a pro-
cess, any tool can send data to any other process. The naming mechanism is
extremely flexible. At their most general, the communication paths are many-
many. A sender can specily the name of the receiving process, the receiving
1ool, both, or neither. It can also specify broadcast 1o all the members of a pro-
cess set. A receiver (leaf tool} can accept a message from anyone, or it can
specify a particular sender or group of senders. A global communication arbiter

coordinates the pairing of appropriate senders and receivers.

The current ITP implementation runs on multiple processors, bul does not
allow the most general many-many communication paths. Syntax for the sequen-

tial part of the language is borrowed from C [70].

3.13. Ada

The adoption of Ada {108] by the U. S. Department of Defense is likely to
make it the standard against which concurrent languages are compared in future

years.

Processes in Ada are known as tasks. Tasks may be statically declared.
They may also be created at run time. The code associated with a task is a spe-

cial kind of module. Since modules may nest, it is possible for one task to be

46

declared inside another. This nesting imposes a strict hierarchical structure on a
program’s tasks. No task is permitied to leave a lexical scope until all that
scope’s nested tasks have terminated. A task can be aborted from outside. Tasks
may share data. They may also pass messages.

Ada uses remote-invocation send. The sender names both the receiver and
its entry point. Dynamically-created tasks are addressed through pointers. Com-
munication paths are many-one. Receive is explicit. Guards (depending on both
local and global variables) are permitted on each clause. The choice between
open clauses is non-delerministic. A receiver may be in rendezvous with more
than one sender at a time, but must release them in LIFO order. There is no
special mechanism for asynchronous receipt; the same effect may be achieved
through the use of shared data. Ada provides sophisticated facilities for timed
pauses in execution and for communication timeout. Communication errors
raise the TASKING_ERROR exception. A programmer may provide for error

recovery by handling this exception.

Since data may be shared at all levels of lexical nesting, it may be necessary
for separate tasks to share (logical) activation records. That may be difficult
across machine boundaries. More subtic problems arise from the implicit rela-
tionships among relatives in the process tree. For example, it is possible for a
task to enter a loop in which it repeatedly receives messages until all of its peers
have terminated or are in similar loops. The implementation must detect this

situation in order to provide for normal termination of all the tasks involved.

3.14. Synchronizing Resources

SR {4, 5] is an auempt to generalize and unify a number of earlier propo-

sals. 1t appears to have grown out of work on extensions to monitors [3].

47

An SR program consists of a collection of modules called resources. A
resource may contain one or more processes, and may exporl operations those
processes define. Operations are similar 1o ports in Extended CLU and entries in
Ada. The processes within a resource share data. Neither resources nor
processes may nest. There is special syntax for declaring arrays of identical
resources, processes, and operations. A procedure is abbreviated syntax for a

process that sits in an infinite loop with a receive statement at the 1op and a send

at the bottom.

Receive 1s explicit. Its syntax is based on Dijkstra’s guarded com-
mands {37]. Input guards have complete access to the contents of polential mes-
sages. Morcover, messages need not be received in the order sent. A receiver
may specify that the queue associated with an operation should be ordered on the
basis of an arbitrarily complicated formula involving the contents of the messages
themselves. It is possible for a process to be in rendezvous with more than one

sender at a time. 1t must release them in LIFO order.

SR provides both no-wait and remote-invocation send. Messages are sent to
specific operations of specific resources. Thus each communication path has a
single receiving resource and, potentially, multiple senders. Operations can be
named explicitly. They can also be referenced through capability variables. A
capability variable is similar 10 a record; it consists- of several fields, each of
which points to an operation of a specific type. Within a resource, a particular

operation must be served by only one process.

There are no facilities for asynchronous receipt or timeout. Each opera-
tion, however, has an associated function that returns the current length of its

queue. This function may be used to simulate a receive with timeout zero: the

48

receiver simply checks the queue length before waiting.

3.15. Linda

Linda [47, 48, 49] provides the full generality of many-many communica-
tion paths. Processes interact in Linda by inserting and removing tuples from a
distributed, global tuple space (TS).7 Tuple space functions as an associative

memory; tuples are accessed by referring to the patierns they contain.

Published papers on Linda do not dwell on the language syntax. It seems
1o resemble C [70]. Processes are created with a cobegin-like construct and can
share data in addition 10 TS. The data can be protected with some sorl of mutual

exclusion mechanism. There is no mention of modules.

Linda combines no-wait send with explicit message receipl. Tuples are
added to TS with the non-blocking out() command. They are removed with the
in() command. A read() command (originally called in*{)) allows tuples to be
read without removing them from TS. All three commands take an arbitrary list
of arguments. The first is required lo be an actual value of type name. The rest
may be actuals or ‘‘formals.” An in(} command succeeds when it finds a wple
in TS that matches all its actuals and provides actuals for all its formals. In out()
commands, formals serve as ‘*don’t care’’ flags; they match any actual. In in()

commands, formals are slots for incoming data.

The matching of wples according to arbitrary patierns of actuals provides a
very powerful mechanism for message screening. 1t also leads to serious imple-
mentation problems. Much of the work on Linda involves finding tractable algo-

rithms for managing TS. The language was originally intended for the Stony

7 also called structured memory (STM) in early papers.

51

execute one at a time. New processes are created by a built-in procedure that
accepts a procedure name and an array to be used as stack space and returns the
id of a newly-created process. There is no preemplion; a given process conlin-
ues to run until it explicitly relinquishes control and names the process to be run

in its stead.

One goal of Modula-2 is o permit a large variety of process-scheduling
strategies to be implemented as library packages. By hiding all coroutine
transfers in a library, the programmer can imitate virwally any other concurrent
language. The imitalions can be straightforward and highly efficient. For a
uniprocessor, Modula-2 provides the richness of expression of muliiple threads of

control at very little cost.

4.2. Nelson’s Remote Procedure Call

Nelson’s thesis {90] is devoted to the development of a transparent mechan-
ism for remote procedure calls. A remote procedure call combines remote-
invocation send with implicit message receipt. Transparency is defined 1o mean

that remote and local procedure calls appear to be the same; they share the same

— atomicily semantics,

- naming and conliguration,

- type checking,

~ parameler passing, and

— exception handling.

Nelson describes a mechanism, called Emissary, for implementing remote

procedure calls. Emissary attempis to satisiy all five of the “‘essential properties”’
listed above, together with one ‘‘pleasant property’”: efficiency. The attempt at

ransparency is almost entirely successful, and the performance resulis are quite

impressive.

52

Emissary falls short of true transparency in the area of parameler passing.
Not all dala types are meaningful when moved to a different address space.
Unless one is willing to incur the cost of remote memory accesses, poiniers and
other machine-specific data cannot be passed to remote procedures. Moreover,
in/out parameters must be passed by value/result, not by reference. In the pres-
ence of aliasing and other side effects, remote procedures cannot behave the
same as their local counterparis. So long as programmers insist on pointers and

reference parameters, it is unrealistic to propose a rruly transparent mechanism.

4.3. Distributed Operating Systems

The borderline between programming languages and operating systems is
very fuzzy, especially in hypothetical systems. Interprocess communication lies
very near the border. 1t is often difficult to tell whether a particular mechanism
is really part of the language or part of the underlying system. Much depends on
the degree to which the mechanism is integrated with other language features:
type checking, variable names, scope rules, protection, exception handling, con-
currency, and so forth. The mechanisms described in this section, at least in
their current form, are fairly clearly on the operating system side of the line.

This dissertation is a first attempt at incorporating them into the language level.

4.3.1. Links

Links were introduced in the Demos {10] operaling system. They have
been adopted, in one form or another, by several descendant systems: Arachne

{Roscoe) |44, 102], Charloute {7,41], and DEMOS/MP [92].

Links are a naming and protection mechanism. In Demos, and in Arachne

and DEMOS/MP, a link is a capability to an input port. li connects an arbitrary

49

Brook microcomputer Network, a wrapped-around grid (1orus) architecture.

3.16. NIL

NIL [27, 105] is a language under development at IBM’s T. J. Watson
Research Center. It is intended for use on a variety of distributed hardware.
The current implementation runs on a single IBM 370. Processes are the funda-
mental program unils; there is no separate module concept. There is no shared
data; processes communicate only by message passing. The designers of NIL
suggest that a compiler might divide a process into parallel picces if more than

one CPU were available to execute it.

Communication paths are many-one. They are created dynamically by con-
necling output ports to an appropriate input port. Any process can use the
publish command to create capabilities that point to its input ports. It may then
pass the capabilities in messages to other processes that can use them in connect

commands. All type checking on ports is performed at compile time.

NIL provides both no-wait and remote-invocation send. Remote-invocation
sends may be forwarded. The process receiving a forwarded message is respon-
sible for releasing the sender. No-wail sends are buffered and destructive; vari-
ables sent in messages assume an uninitialized :an.m::n: and can no longer be

inspected.

Receive in NIL is explicit. It has two varieties, one to correspond to each
type of send. Exceptions are used to recover from communication errors.

There are elaborate rules for propagaling exceptions when a process terminates.

4. Related Notions

Each of the proposals described in section 3 has been described in the
literature (at least in part) as a high-level language for distributed computing.
For one reason or another, the proposals in this section have not. They all con-
tain useful ideas, however, and are worth considering in any discussion of inter-

process communication and concurrency.

The survey in section 3 is meant lo be reasonably complete. No such claim
is made for this section. 1 have used by own personal tastes in deciding what lo

include.

4.1. Concurrent Languages

Several early high-level languages, notably Algol-68 [106], PV/I [11], and
SIMULA [i4], provided some sort of support for concurrent processes, or al
least coroutines. These languages relied on shared data for interprocess interac-
tion. They were intended primarily for uniprocessors, and may have been suit-
able for multiprocessors as well, but they were certainly not designed for imple-
mentation on multicomputers. Recently, Modula-2 [117, 118] has re-awakened
interest in coroutines as a practical programming tool. In designing Modula-2,
Wirth has recognized that even on a uniprocessor, and even in the absence of
interrupts, there are still algorithms that are most elegantly expressed as a collec-

tion of cooperating threads of control.

Modula-2 is more closely related 1o Pascal {65) than to the Modula of sec-
tion 3.2. For the purposes of this survey, the principal difference between the
Modulas is that the newer language incorporates a much simpler and more prim-

itive form of concurrency. Processes in Modula-2 are actually coroutines; they

53

number of holders t0 an owner. The owner can receive messages from the
link. It owns the input porl. A holder can send messages to the link. It holds
the capability. A holder can create copies of its capability, and can send them in
messages on other links. The owner can exercise control over the distribution of

capabilities and the rights that they confer.

Where Demos links are many-one, Charlotte links are one-one. Their
ends are symmetric. Each process can send and receive. There is no notion of
owner and holder. Only one process can access a given end of a given link at a

given point in time.

The protection properties of links make them useful for applications that are
somewhat loosely coupled — applications in which processes are developed
independently and cannol assume that their partners are correct. Typically, a
link is used to represent a resource. (In a timesharing system, a link might
represent a file.) Since a single process may implement a whole collection of
resources, and since a single resource may be supported by an arbitrary number
of operations, links provide a granularity of naming somewhere in between pro-

cess names and operation names,

4.3.2. SODA

SODA {69] is an acronym for a *‘Simplified Operating system for Distri-
buted Applications.” It might betier be described as a communications protocol
for use on a broadcast medium with a very ._mqmm number of heterogeneous

nodes.

Each node on a SODA network consists of two processors: a client proces-
sor, and an associated kernel processor. The kernel processors are all alike.

They are connected 10 the network and communicate with their client processors

54

through shared memory and interrupts. Nodes are expecled to be more

numerous than processes, so client processors are not multi-programmed.

Communication paths in SODA are many-one, but there is a mechanism by
which a process can broadcast a request for server names that maich a certain
pattern. All communication statements are non-blocking. Processes are
informed of interesting events by means of software interrupls. Interrupts can be

masked.

From the point of view of this survey, the most interesting aspect of the
SODA protocol is the way in which it decouples control flow and data flow. In
all the languages in section 3, message transfers are initiated by the sender. In
SODA, the process that initiates an interaction can arrange to send data, receive
data, both, or neither. The four options are termed, respectively, put, get,
exchange, and signal. Synchronization in SODA falls outside the classification

system described in section 2.4.

Every interaction between a pair of processes has a requester and a
server. The server feels a software interrupt whenever a requester attempts 1o
initiate a transfer. The interrupt handler is provided with a (short) description of
the request. Al its convenience, the server can accept a request thal triggered its
handler at some point in the past. When it does so, the transfer actually occurs,
and the requester is notified by an interrupt of its own. The programmer is
responsibie for writing handlers and for keeping track of outstanding requests in
both the server and requester. In simple cases, the bookkeeping may be

managed by library routines.

5. Conclusion

There is no doubt that the best way 1o evaluale a language is o use it. A
certain amount of armchair philosophizing may be justified (this chapter has cer-
tainly done its share!), but the real test of a language is practical experience. It
will be some time before most of the languages in section 3 have received enough

use to make definitive judgments possible.

One very useful tool would be a representative sample of the world's more
difficult distributed problems. To evaluate a language, one could make a very
good slart by coding up solutions to these problems and comparing the results to
those obtained with various other methods. Much of the success of any language
will depend on the elegance of its synlax — on whether it is pleasant and natural
lo use. But even the best of syntax cannol make up for a fundamentally unsound

design.

Section 2 has discussed some major open questions. The two most impor-
tant appear 1o be the choice of synchronization semantics for the send operation
and the choice between implicit and explicit message receipt, | have argued else-
where [98] that a reasonable language needs 10 provide a variety of options. Just
as a sequential language benefits from the presence of several similar loop con-
structs, so can a distributed language benefit from the presence of several simiiar
constructs for interprocess communication. It is worth noting that thirty years of
effort have failed 10 produce an ideal sequential language. 1t is unlikely that the

next thirty will see an ideal distributed language, either.

56

Chapter 2

An Overview of LYNX

1. Introduction

This chapter introduces a new distributed programming langusge. It pro-
vides an overview of concepts discussed in considerably more delail in the follow-
ing chapter and in the appendix. The language, known as LYNX, was specifi-
cally designed for systems programs for a multicomputer. 1t differs from the

languages of chapter 1 in three of the major areas covered by that survey:

Processes and Modules
Processes and modules in LYNX reflect the structure of a multicomputer.
Modules may nest, but only within a machine; no module can cross the
boundaries between machines. Each outermost module is inhabited by a
single process. Processes share no memory. They are managed by the
operating-system kernei and execute in parallel. Multipie threads of control
within a process are managed by the language run-time system, but there is
no pretense of parallelism among them.

Communication Paths and Naming
LYNX derives its name from links. Links are pairs of one-one, movable
communication paths. The programmer has complete run-time control
over the binding of links to processes and names to links. The resulting
flexibility allows iinks 10 be used for reconfigurable, type-checked connec-
tions between very loosely-coupled processes — processes written and

loaded at widely disparate times.

57

Syntax for Message Receipt
Messages in LYNX may be received both explicitly and implicitly.
Processes can decide at run time which approach(es) to use when, and on

which links.

2. Main Concepts

The three most important concepts in LYNX are the process, the link, and
the thread of control. Processes are supported by the operating system. They
execute in parallel and interact by exchanging messages on two-way communica-
tion links.

Each process begins with a single thread of control, executing the initializa-
tion code of its outermost module. It can create new threads itself or can arrange
for them 10 be created automatically in response to incoming messages. Separate
threads do not execute in parallel; the process continues 1o execule a single
‘thread until it blocks. It then takes up some other thread where it last left off. 1f
no thread is runnable, the process waits until one is. In a sensc, the threads are
coroutines, but the details of control transfer are hidden in the run-time support

package. Blocking staiements are discussed in scction 8.

Lexical scope in LYNX is defined as in Modula [115]. New threads of
control may created at any level of lexical nesting. Non-global data may there-
fore be shared by more than one thread. The activation records accessible at any
given time will form a tree, with a separale thread corresponding to each leaf.
When a thread enters a scope in which a module is declared, it execuies the
module’s initialization code before proceeding. A thread is not allowed 1o leave a

given scope until all its descendants still active in that scope have completed.

58

The sequential features of LYNX are Algol-like. 1 will not discuss them

here. A full description of the language can be found in the appendix.

3. Links

A link is a two-ended communication channel. Since all data is encapsu-
lated in modules, and since each outermost module corresponds to a single pro-
cess, it follows that links are the only means of interprocess interaction. The
language provides a primitive type called “link.”” A link variable accesses one
end of a link, much as a pointer accesses an object in Pascal [65]. The dis-

tinguished value “*nolink’" is the only link constant.

New values for link variables may be created by calling the built-in func-

tion ‘‘newlink'”:

endA ;= newlink (endB) :

One end of the new link is returned as the function value: the other 1s returned
through a result parameter. This asymmetry is useful for nesting calls to new-
link inside the various communication statements (see below). In practice, calls

to newlink seldom appear anywhere ¢lse.
Links may be destroyed by calling the built-in procedure ‘‘destroy’’:
destroy (myend) ;

Destroy is similar to **dispose’” in Pascal. All link variables accessing either end
of the link become unusable (i.e. dangling). An attempt to destroy a nil or dan-
gling link is a no-op.

Arbitrary data structures can be sent in messages. If a transmitted data

structure conlains variabies of type link, then the link ends refcrenced by those

59

variables are moved from the sending process to the receiver. The semantics of
this feature are somewhat subtle. Suppose process A has a link variable X that
accesses the ‘‘green’ end of link L. Now m:..nvo% A sends X to process B,
which receives it into link variable Y. Once the transfer has occurred, Y will be
the only variable anywhere that accesses the green end of L. Loosely speaking,
the sender of a link variable loses access to the end of the link involved. This
rule ensures that a given end of a given link belongs to only one process at a

time.

1t is an error to send a link end that is bound 10 a entry (see below), or on

which there are outstanding sends or receives.

4. Sending Messages

Message transmission looks like a remote invocation:

connect opname { expr_list | var_list) on linkname ;

Run-tirhe support routines package the operation name and expression list into a
message and send it out on the link. The current thread in the sender is blocked

until it receives a reply message containing values for the variable list.

5. Receiving Messages Explicitly
Any thread of control can receive a message by executing the accept and

reply statements:

accept opname (var_list) on linkname ;

reply { expr_list) ;

Accept blocks the thread unltil a message is available. Reply causes the expression

60

list to be packaged into a second message and returned 1o the sender. The com-

piler enforces the pairing of accepts and replies.

6. Entries

An entry looks much like a procedure. 1t is used for receiving messages

implicitly. Entry headers are tempiates for messages.

entry opname (in_args) : ouL types ;

begin

end opname;
All arguments are passed by value. The header may be followed by the keyword
Jorward or remote instead of a begin ... end block. Remote has the same meaning
as forward, except that an eventual appearance of the entry body is not required.
Source file inciusion can therefore be used to insert the same entry declarations

in both the defining and invoking modules.

Any process may bind its link ends to entries:

bind link_list to entry_list ;

After binding, an incoming request on any of the mentioned link ends may cause
the creation of a new thread to execute one of the mentioned entries, with param-
elers taken from the message. An entry unblocks the sender of the message that

created it by executing a reply statement (withoutl a matching accept).

A link end may be bound to more than one entry. The bindings need not
be created at the same time. A bound end can even be used in subsequent accept
statements. These provisions make it possible for separate threads lo carry on
independent conversations on the same link at more or less the same time.

When all of a process’s threads are blocked, the run-time support routines

61

attempt to receive a message on any of the links for which there are outstanding
accepis or bindings. The operation name contained in the message is matched
against those of the accepts and the bound entrics in order to decide which thread
to create or resume. If the name differs from those of all the outstanding accepts
and bindings, then the message is discarded and an exception is raised in the

sender (sce below for a discussion of exceptions).

Bindings may be broken:

unbind link_list from entry_list;
An attempt to break a non-existent binding is a no-op.

Entries visible under the usual scope rules can be used o create new

threads directly, without links or bindings:
call entryname (expr_list | var_list) ;

The built-in function “*curlink’® returns a reference to the link on which
the request message arrived for the closest lexically-enclosing entry. If there is
no enclosing entry, or if the closest enclosing entry ,.zmm called locally, then cur-
link returns nolink. In the examples at the end of this chapter, curlink is used in
entries to make and break bindings for the link on which the current request

arrived.
In order to facilitate type checking, the operation names and message for-
mats of connect and accept statements must be defined by entry declarations.

The entries can of course be declared remote.

62

7. Exceptions

The language incorporates an exception handling mechanism in order o 1)
cope with exceptional conditions that arise in the course of message passing, and
2) allow one thread to interrupl another, The mechanism is intended 10 be as

simple as possible. 1t does not provide the power or generality of Ada [108] or
PL/T {11].

Exception handlers may be auached to any begin ... end block. Such blocks
comprise the bodies of procedures, entries, and modules, and may also be
inserted anywhere a statement is allowed. The syntax is

begin
when exception_list do

when exception._listdo

A handler (when clause) is executed in place of the portion of its begin ... end

block that had yet to be executed when the exception occurred.
Built-in exceptions are provided for a number of conditions:

® Failure of the operation name of a message to maich an accept or binding

on the far end of the link.
‘e Type clash between the sender and receiver of a message.
® Termination of a receiving thread that has not yet replied.
© Destruction of the link.

Links can be destroyed explicitly by threads on either end. They are also des-

troyed in the event of hardware failures and al process termination.

“saonposd pua

‘pud
110WNSU0d wo (| 3onpoid) Jdjsursl 123UUOD
doog
420mposd - - wWoq

{3onpoud pus
134210YyM — -
uigaq
‘e1ep : 2onpoud wonduny

13jowda (wiep . ojul) sojsuen Arjud
L19A3TRYM = BlRD adA}

{Ouy] @ Jawnsuod) saonpodd spnpow

"BIBD JO WBA1IS SNONUNUOD B 1 $Pad)

1onposd syl sisanbai jo 1d19dar 1DHAXD SIIMNSUOWIDP SIWINSUOD DY,

J13UINSUO)) pue 13INPoIg ‘[°6

*XNAT JO xeuks syl 01 uononposiutl ue se

3a19s Aoyl -Bumoxaun pue [ews e uondas syl w swesSoud oidwes ayg

sejdwexy g

"anJl st uolpuod ueatoog (xoidwod Ljisenigie)

Yl {DUN JNUNUOD 10U 1M PBIIY JUSLIND JY JO UONNIIXD TBY) JdueIEn [[Im
t uonpuod Neme

1YO1IMS 1X21U03 B 9SNR) 01 ABM [BUONIPPE U0 SI D3y,

124

ISIX0 [0S sBulpuig ydIyM
U1 10 SALDR {INIS DJB SPEALILY) PAIsau ydiym ul 3dods B JO PUS Ayl SAYIEDL {041LOD
USYM IN200 OS[B [[IM UOUMS TXD1U0D V' "WAY! SAsn 1By pralyl ay Sumdolg Aq

YoUMS 1X31U0D B asne2 Kvw £)das pue 9dadov 10auu0d *1ws paIsaddns sy

sjuawalels Juryooig g

‘uaddey 13a3u M eyl Suiy
-owos 10§ Sumeam st ey prasy e Sundnusiul Joj (njasn ase suondadxs pauljsp
-13s) 'paYoolq usym Ajuo suondadxa (93§ SpEosl 1Byl ddlueiend sonuBwWaS
3UnNnoIod 3yl I Asn Jeyl speasyl yl B 01 Jqisia adods v ul paie[osp 3q isnw
uondaoxa a1 ‘awey £q 11 0] 12J31 SII|PURY Y DUIS " (PEIIY 1UDLIND dYL pnjoul
10u Aew Jo Aew siy) umeyd omEm_.__xu 1u91Ind 1oy uo adods dwos ul 1t 10} 1d[puBy

B POIB[OAp SARY 1BY) SPEAIUL 3sOy AJuo pue {[e Ag 119) St uondaoxa pauljop-iasn ¢
¢ aweu—uondadxa asies

1udWAIMS AU Aq pasiel e SUoNdadKa paulyap-I1as(y

*A2A1S1n204 pavioge
218 SpRALY) 3SOY) “OANIDE [[NS AJB PRSIyl PAIssu yorym uy adooss v sadeoss uoned
-edoud sy1 1 -ssaoosd Buipuos ay ul prasy m.dm_‘aoaau ayy ut pasted st uondaoxd
ue uay ‘pardas 194 j0u sey eyl Anua ue jo adods 1SOWIIINO dUY 1B pajpury
10u st uondadxa ue fi 10 Yibwams 1dsoor ue jo adods ayl sadwosy uondadxs ue
1o uvoneSedosd syl §j| "PITIOGE ST PEALYT AU ‘[AA3] 1BY 1B PAjpurRy 10U St uondaoxd
ayl i -ueSaq peaiyl jueand ayl yorym ut adods sy e syey uonededoid sy
‘uteyo dtwreukp ayl uo 3dods Ixau Jyr ut pastes st uondaoxa Ay ‘a3jpuey ou sey

NJ0[q 1Byl J| "SINDJ0 1 YDIYM UL 3D0[q Y Ul pastes st uondaoxs u-ing v

€9

"Jou seMm
JA0QR UOISIIA YL "[°6 UOHOAS UL 3pOd U UM S[GNEAIIOD St MO[IQ UOISIDA 34 L
‘papaau si yorosdde juaiayip B uayl ‘aied Jawnsuod/1aonposd Fundadsnsun ue
U93MIAQ UONIAULOD Y O1ut Padyds 3q o1 st 31 JI 10 ‘Joaamoy ‘reuondo st aajng
a4 JI sIAWNsuod pup $1onposd jo saquinu AIRINGIR uB 9AIDS O] A|ISED SAZIRID
-uad 1f . 'doip-jrew,, e se jo ySnoy aq Aww Jofng ayy sisixo Aseipounaiul
ue 1By mowy sanded yioq ji ateudoidde ase s1sanbas yong C1aggng Ayl Jo IJIALIS

aut 1sanbas A[9An0R JSNW 13WNSUOD puk 1aonpoid B ‘3A0QR PO 3Yl ISN O],

"Iayng pus
4198 03 1owWINsuod puiq
“nd o3 120npoid purg

19ZIS = J2iJIsE|
1 =:90apsiy
urdaq

4123 pua

Y([oaupseilyng) Adax

‘I + 9ZIS pous JIJISR| =: IIIJSE]

00upIsaly < > {] + 9zZIS pour I4Ise]) Heme
u1gaq
‘wiep : 138 Anjud

4nd pua
WAL EX
{4+ 2ZIS PO JUNSIY =1 IJIJISAY
‘ojut =: [aa1psaiplyng
{934JISB| < > 33L[SIY Eeme
urdaq
‘(eiep : ojut) ind Anyua

99

Gy,

(oz1s 1] : 9vupsR] ‘34 pSY
‘erep Jo [azis 1] Aeaae : ynq

Jea

L1aAdlEYM = Biep
adfy

L12A91BYM = JZIS
ISU0d

{Oquyf : sownsuod “13onpotd) 1ajyng anpour

‘sisanbay jo ool

noyduwir sateAsuUOWdp 3] 'SIWNSuUod pue sidonposd jo spaods oanepor oy ut

SUONIEMION} N0 SYIOOWS 131ynqg papunog ayl *sidwexa aioae) s auokidag

Jayjng pespunog ‘76

*13WNSUod pud
‘pus
{(1agynq) AwNSUod
(Ardaa fasonpoud wo (Jagnq) sajsuen 1dadoae
dooj
Jaunsuod — - uidaq

‘BIEp @ 191ynq IeA
dwinsuos pua

12021DYM - -
uidaq

‘(w1ep © ojul) WNSUOd arnpadoxd

‘ajowal (wiep : ojul) svjsuels Ajud
L12A3BYM = BlEp AdA)

‘(tuf : 120npoud) 13wnsuc) Anpowt

<9

teq ut onsyduns Kpaso st weaBoad syl Counsip dae siudLd aetedas jo sanuoud
sy 1ey swnsse | ‘Auoydwis Jo 9¥eS Byl 10 "SISYIO O1 JIGR[IBAE 324N0SaI Ul
aYBW O1 2UOp~wWiI S[EY 1] “9JIN0SS Y1 O $§I2DB UILIQO O} 2w ™2]7payas s|{e 1ualjd
yoeg 1s4y Aoud 1saySiy “suat[d jo AIUNWWOD B BUOWE 3DINOSII B SINPAYDS
tpaemaoy (Ul ;. pauanlay) suop~u A1jus C
11 -1 amdeyd jo 79 g UOMOIS UI PAQLIdSAP SeA 1ajnpayds Aiuoud ayf

rananb~Ajond pua

fdwa o1 ananb a2pponIul — — 1ampayds Guod €6
ananb (114014d — - wdaq
tdo) pua
ananb w1 £14014d 153y Sy wanas — —
urgaq .B&.:n pu?
‘fisond : dor uonouny ‘pud

‘1 + OZIS PO DUJSE] = I4JISR]
Laawnsuod uo ¢ | [951pse(]yng) 1ajsuen 129UU0D
3041841 < > (] + 9ZIS pOUWL 324ISB]) Heme
dooj
t19fsueq 03 190npoid puiq
19715 =: 024[i58Y
1 o=l o334ps41y
‘135Ut pua uidaq
ananb 01 1943] MaU ppY - -

131919p pud

ananb woif 1343] p1o 20w - -
uidaq
f(Ausoud : [aAa)) a1913p 3anpadod

uidaq tig)suet) pus
‘(Ausoud : [3A3]) 11asul dunpadoad HALER
‘1 4 9ZIS POW JIINSIHY = IDINSIY
:dor “orsfap ‘1asul ‘ojur =: [aaupsaylng
Jodxa 331AS8] < > JDIHSI HEME
‘Kisond uidaq
yroduny

‘(eyep : ojut) sajsuen Anus
‘ananb—Aiond spmpowr

: 1l e B *d341801

‘UB2j00g © DIGR[IBAR ITA . [ozis _WN_m.o.hw_;T_..:.. i :;

taaaeym = Kioud addy ‘ seiep jo [ozis 1] Aeate © jnq
o iea

{IAJIBUM = IR

H{UL] 1 32IN0SaI “I01B31D) IAINPAYDS Jnpo ey el W&Q

11 Sut LAdBYM = JZIS
1t suiploy , \Su0d
S{IYM SITRUILLISY 1UBI[D B J1 901N0S31 AU} 19A0I3L O WISIUBYISW ou saerodiodur it ‘Opuy ¢ 4swnsuod *13onpoud) 19gng dnpow

89 19

0L

‘pratiiEls pua
‘Adaa
‘pEAIPUD ‘pEIIOP 01 JUILIND pulq
‘pESNIEIS ‘OIIMLIBIS WIOJ] jUllInNd puiqun
pus
!0 = siopeasduniem jeme
‘1 + siapeasduniem =: siapeasfuniem
as[a
1+ siopead = S12peds
U3y}) = SI9M pue) = ssdumuniem i
ugdaq
‘peanaers Anud

‘paremaoj Himpus A1jua [premroj ‘peaspus £1jul
{paemao) B1imiIeIS AIJUd {paemaoj ‘peanieis A1jua

101IMOp pud
434aa10YyM — —
uidaq
S1UFWNTID 34DY PINOYS ~ - SANIMOP AIJUD

‘pealop pua
a210yA -~ -
urdaq
Stuawnd.o aapy pjnoys — - ‘peaiop L1jua

] 40 (SADMJD ST S4NT4A — —
c1e8arur ¢ sadum3uniiem ‘siapeasduniem ‘sialim ‘si1apeal
‘Paa4as Ju1aq MOU UO] ST JUILINT -
4aquinu 31qoIIDAD 1x3U 3yl §] 224f — —
“K1aypq 0 10 S2UO Y1 IY1] SIFYIN FYVY SATNAM — -
290N © UBAIND D9y
IeA
[siomumxew g} = 1oon ad4

‘

LAJAJIBUM = SISTLIMXBLU JSTOD

{(fuif @ 1018310) ALIMPESI A[Npow

“S131LIM 1O $19PEAL ISUND JO UOHBAIEIS SPIOAR 213y PAIuasad uonnjos ayL

‘[gg] swenea Auew sey pue umouy-[jam St walqold SIDM/SIOPEAL AU

SIAJLIAA PUE SIAPEIY b6

“19[Npayos pua
ann = J|qelieAe
JJUAlOMIU 0} 101R3ID pulq
uigaq

fJudloMmaU pud
HWTINPAYIS 03 1UdI[D pulq
‘Aydaa

uigaq

fOpur] 1 uaio) wudrmau Anua

‘auopTuti pu?
‘Apdaa
SPOLINIdL = A2UNOSAS
LN =: J|gejivAR
{OWTIINPaYds 03 Juijand puiq
{QUOpTWI WOy uIIND puiqun
utdaq
yurp @ pauamas) — - ‘ouop~un A1jud

LWTINPaYIS pu’d
H{[9A3]) AB1RpP
{(a24nosat) Apdaa
$DUOpTWI 0] UILIND puiq
LOWTANPAYDS WOy JULIND puiqun
asjef =: a|qR[iRAR
‘ol = [9AD] puE djqR[IBAR EME
{([9A9]) 1asul
. uigoq
“urp : (Kionad : [9Ad)) swanpayds Axjud

69

“ILIMPRDI PUd
“USIOMIU 0) 101BDID puUiq
] =: 934} 0 =:1Udund
‘0 =: samumduniem o =: stapeasfuniem
10 =: SIOIIm g =! SIapRAL

uonpomul -- - uidag

QUALOMIU PUd
OILIMILIEIS ‘PRAIIEIS 0] TUdi[D pulq
HALEX

wdaq

Lfulf : 1UAL) UAPMIU A13UD

L3NIMPUS PUd

HAGER

‘pud
+ SISMJMXEL POUI JUSLIND =I TULIND
0 - ssoimSuniem =: simIuniem
=1 SIolm

uay) g <> sidumdumem Jispd
g =: si1apeasdunem
siopeasfuniem = S1apeal

uayy g < > sdapeasduniem Jt

Y- SI9MUM = SIIIM

{31LIMIIBIS ‘PROILIEIS 03 JUI[IND pulq

-t

ILIMPUD *INUMOP *PRIIOD WIOLY YuilInd purqun

u1dsq
Gnampus A13us

Il

{pBaipus pud
HAGEX
pus
‘pud
‘1 + SIOIIMXBW PO 1UDLIND =: JUDLIND
C 1 — saamBuniem =: ssaumduniem
o=: sAalum
usyl 0 <> ssumBuniem J
uayy) = siopeas j
‘1 - siopeas =: SiaprAl
SOMIMLIENS PROLLIBIS 0 ullInd pulq
1pE2IPUD ‘PRIIOP WO YUI[IND puiqun
uidaq
‘peaspus Anua

DmLIES pud
‘Ajdaa
LOHIMPUD *AIMOD ‘DRAIOP 0] NHUILIND pulq
IOILIMIIBIS ‘PRANIRIS WIOJJ YUIIND puiqun
" tpus
‘uInl = UMD JIEME
I 4+ SISIIMXBUL POW 324) = 004) 934) =: wim
T+ siomamBuniem =: simumSuniem
as|a
N4 SIIM = SIIM
WAyl § = SISM pue (= SI3pedt ji
m3aq
q9yon : uim
JEBA
Sapamues Anus

oy 1moyNm 201n0sal B Jo uonmudwaddwi ay 38ueyd 01 pue Jsoyloue 01
$53004d U0 WOy 921n0s31 B ssed 01 3jgissod 5q 1SNW 1] "IAOW $0INOSIY
uoneandijuoday ®
‘PaAjoAul
21w sanssi [r19A3S ssa004d pajdnos-A(asco| duo ueyl diow FUOWE SADINOSII
aseys 01 pasu ay Aq pMeondwod asw A3y, "ased painguisip syi o1 A[ised azieid
-u99 10U Op ‘I9AIMOY ‘UONDBIISQE JOJ SWISIUBYIAW [eruanbag soidwexs sAoiAqo
ase [g.] ssdsnp npy pue ‘[go1] saSeyoud mpy ‘[GI{] soafnpow w{npow ' "uon

-oensqe mep 10§ Woddns 1otdxa papiaosd aaey safenfue([pnuanbas 1ud0Y

‘suotjesado aso[d pue *3aas J::s ‘prAJ JO SONURWIS 241 Aq Hccun
ag Aew ‘sidwexa soy ‘oqyy udado uy suonwiado dlowat jo soquunu Arenigqie
ue apniour ABW 301n0S3L B O] AUt sy Alowdul JO SHI0[q dqe(ieae pue
‘sweans mep ‘sao1aap feoisAyd ‘siossacoud Asanb ‘sapy usdo apnpdur sadinOSaAI
10 sodwexg)1 sA1B91D oym JdwwesFod ay Jo spuey dyl ul A[D4MUS ST 32UN0SI
v jo uomuyep ayy Amud 3Puis e se Ajemdaduod payoecsdde pue ddvpiNul
{BUIIIX3 SI JO SONUBWAS 9ul AQ PaULdp ‘uwowIpasqu ue st 1dIdU0d [eluswepun)

2 S1 90UN0SAI Y 'SIIN0SAI pAINGLisip Junussaidss 1oj (001 B Aue syul]

SHury “1°C

“1ane] ow
01 A3y au1 24' [01U0D JO spealy ‘ool JouLIo] dyl 01 A2y AUl 4B YUl 'SassacoLd
i vonpindwod woddns eyl saamipa) pue sassaocod uIBMISG UOnDRIMIUL
uoddns ey soumeaj :sodoiqns oma ol K[{EIMBU S3PIAID XNAT O UOISSNIsI(

‘eioads sweaBosd parnquusip sayew JBYM AR ASY) ([BNIUSD JUB $3SSII044

*10N1U0D JO PEALYI Yl

PL

pue Spui 2y *ssaoold oyl 2k s1dadouco Asay Jo tueniodwl sow Ay, CAMOMRYD
10§ $13A19S JO UONITLISUOD dYi Ul [FIUdWEpUN] paroid 18y s1dsouod oyi sueddns
1| -asn ut ApEalj® SEM 1RYI [OpOW B saumidpa X NAT ‘Isenuod Ag ounisip day
1am9q ade ey sidaouod payiun uolje Aayr Suiop os uf “[EUdWEPUN) 3G O daod
prnom §1daauod 10 135 [jews yotym ssand o1 paidwane A3y ‘9auedald 10) Suruny

‘uoneIndwod pAINGLISIP 10j S[POW Mau paonposiul safenfue SnOIdLd

1zoddns
afenguey (aasl-ydiy udnoayr $SOUIANDAYS 1AL ISBIIOUL 01 PAYIOM PuUR $3sSad0Id
poInguIsip ay yim wwSag 1| ‘uondaLp 1uAIRp A|panus ue wolp paydeoidde
sem XNAT -s10ssasoid oidiynw o1 uay ‘sassasoud aidunw o1 1say ‘safenuey
jenuanbas Junsixa aziesauag o1 suoyd jo o maud 1 amdeyd jo safenBuey ayy

“(s)49uBisap su jo aandadsyad ayr Aq pasuanyur Ajiaeay st adenBuep L1oag

suoisa(Jofep 7

“YNAT UM s10A138 Suipping souarradxs [eonowad $aq11sap uondas Suipnpd
-UOD AYL ' UOIID3S Ul PISSNISIP IR SUOISIIAP IOULA ‘T UOHIIS Ul Passnasip
ate Koyl -suoistoop udisap sofew jo 3ynsas aul ase saameoj anbupy ‘safendum;
Funsixo Aq paruasaid sanipiqissod oy Suowe WO UASOYD tom SIS0 :anbiun
18 YNAT JO Sasmimaj oyl jo awos -uBisap oy pulydq d[RuUonEL Y1 suledxd

oideyo sIyL CXNAT JO MIAIA0 ue paydidys Jaideyo Juipaoasd syj

uoouponIuf |

Jjeuonvy

¢ 19dey)

"20IN0S3L DY) 2SI
uay pue ‘suonesoado jo sauas v wiopad ‘ssoooe ured sassasotd yotym ut suoy
-gaydde o1 az1je19uUsT jou S0P 1y "uoisses parodtosd sad uonesado im0 prIL
suo 07 ssa004d yors siwp (11-11 aded) [g9] soudtopas ur uonnos,, YL o

ate Aawp tsSurpuig y3nosy s19A195 Ag pajjonuod aie suonesado syads o1 s1ydu
oyl -uondslold paulesS-aul J0j SISH $SI00T SAHNDIL TRyl WSIUBYISW IISIBOD
® SI 11 ‘dsuas Jayioue u[‘221nosal & uo suonesado isanbas o1 1apioy Su smojfe
1 :Apigede2 B ayif SEojul] B *OSUSS SUO U “SIAOW PUS UEB UIYM PIWIOJUL UDIAD
10u st yuy AuB Jo pua 1wj Syl 01 PaYdENE St $52004d yotym Fuimouy jo Kem
ou sey u *siseq yui-Ag-yul] v uo sSuipuiq ye31q 10 dew urd ssd04d B yInowy

crppnonged up carRpdwod *asunod jo You st syulj Aq paplogje uondaosd sy,

w.ﬂm— 1] skay jo washs e 01 Juniosal Aq wajqosd siviim/sIapeal
24l 01 UONNOS B 3240jUd Ajuo ued ‘aidwexs o) ‘wpy -djgssod st {0NUOD YONS
ou stped auo-Auew uynpy -suonwsado sejnonted o1 SuAl Jenonsed jJo sS300E
21 [011UOD 01 PAsN 2q ued sFuIpUIq (F'6 PUR €6 sUONdas) ¢ tadeyd jo sodurexs
S1011IM/$19pEAI pUB JAINpayds Auotd 3 U paiRnsuowap sy uonddiod Juipia

-01d jo supatu 3an0ayd Ing Adwis e st sapnus o1 syuy jo Jutpuig diwudg

'$$DIpPR SH MOUYy 01
suaddey ey 20inos Aseangie € woldj 159nbal v 1do008 01 “419AMOY ‘PAJI0J I3ABU
S| 'SaujUD AWEs 3yl o1 wayl Sulpuiq AG PUB 135 B Ul 19110301 Syui 11AY Suus
-8 Aq dnoi8 e se siuand Jopisuod o1 334) St awmn Jeinonsed Aue g Aedtunw
-woo 01 Fuipjm St 1L UdIYM Yitm SIUILD U1 ASOOUD O1 394f §1 19AIAS B isyted auo
-auo a1e syul] *1aA0a101 sidutod y3noa passadde Adv JBLY ASOY) PUR PAIR[OID
AjeonEls ate 1oyl syled UONEIIUNWILOD UIIMIAG ‘BPY Ul 1SN duo se ‘dien

-UBJ3JJIP O] PIIU OU ST 1D JRUL BSUIS Y] UI ULIOJIUN 3B SHUi| J0) SSWEN

-uo sSuio8 yons jo dieme

9L

2Q UA3 JOU Pa3U UL By dwn ul tutod tepnonded e je sisanbau su SuiAlds 10§
arenidoadde 1sow dnoid nay) jo Jaquiaul S O1 JUSHD 3Y1 199UUOD O} 10 PEOPYIOM
1134 D0UBJEQ O JOPIO Ul SIA[ISWAYI FuOWE pUnoLe yutj s UMD Ul JO pud 1Y
ssed Aew A3y, -504nosas e jusweidw ol aesadood AR S19AIDS JYY, “SIDALDS
Jo Auunwiwod v jo auo o1 juif ® poy Aew 1w v uoddns Aay suonesado
ayr pue woatp woswsidw ey sasspoosd 2yl jo yloq yuspuadaput die SaweU 1NBY YL
- Jayiour 07 $53204d AUO WOL) PAAOLL 10 *SJUNNOIQNS 0} passed ‘SaumdnNs e¥ep ui
PaI0IS *pakonsap ‘paieald Ajises ase Aol $199[qo SSRIO-ISH) SV 'S30INOSAL paing

-insip Sunuasasdar o1 pauns Ajjeapt seadde syuip ‘sanssy asoyr jo wydiy ug

*101ABY3Q PRY S 15110 21 Aq padrwiep ag o1 p1ojje UBd)i SASN

1241 ssao0ad Ay Jou 2ounosat v stuawajdw Jeyl ssadoid oyl JOYISN 1910

yora 1sn4y Jouued {ns Aay1 *A1001500 12410 yoed 1aadasiur s3s5a004d JI UAAT
uon2a104d °

*19UIOUR U0 134dIDUISIW 19A3U SI3SN STt PUB 3DINOS3L B TRy Sadjuesens

1 e st Supdays adAy csaunpaoosd jpwisof o1 sjjed se paredsndwos

se aie suonesado Ayl *awn uni je uoneooj aTurYD SIJUNOSAL IdUIS Y107}

uf “s{ed ainpacoud se patedidwod Se 1SB] 1B 9IR $201N0sal uo suonesdQ
Buryoay) adh L °

‘30U [BU

-191x3 sit uy suonesado jo soqunu L1emiqie ue apiaosd Kewr 30inosal Buis

€ 3SNeoag pasn 2q 10uued saweu uonesad 'SadIN0sal jo Jaquunu A1eaqie

ue Judwajdwi Aew ssaooid 3[Fuls B 35NBIDG Pasn ag JOUURD SILWBU $532044g

uonwiuawadw st jo 1uspuadapur 1 1B JWBL I[TUIS B SPISU 30IN0SAI Y

Surwen ®

*11 3sn jeyl sassadoud 3yl jo aBpapmouy

SL

‘uonrtado ur paoed pue
popdwuod Sem 19AI9S WU Yyl Joje Fuo| PIIRAID UG JARY {{im SISSI00Id
yons Auew ydnoyl uaa3 ‘ssadoud pasaisidar yowd o) suy v dody ued
“aidwiexd 10§ “19A40s dweu v Aised Ajjemuaad Kew Koy sadessaw jo sadfy

ayl jo aseme Fuiag moynm syulp jo saquinu afsep v proy ued ssadoud v (1)

:sadejueape sofew omi sey X NAT Jo Sunjoayd adhy srweudp ayi “isenuod
kg -sonjea aiquedwodut aaey sadAl 1usIapIp Jo sajqelieA Csyted uonestunwiod
$$3008 18Y] Sajqeiea Ayl o1 sadAl sufisse yoes ‘Jupyooyd yons ywiad oy cown
apdwos e sadKr su osyooyd yoeg -safessow up passed aq 0] $90UAIDJAL SMO|jE
sofendue| 9sayl Jo yoeg sassadoud juassgyp wt sdeyiad ‘suonesado jo 135 e
01 $30u313§1 pjoy eyl sauiqeded sapiaoad [¢ ‘p] WS uonesado 9fduis e 01 2oud
-19J51 v ploy 1.yl sajqetiea sapiaoad {607 ‘2Z] TIN 's59%04d B 01 30UD19)01 B ploy
1yl sojqeiiea aprnoad {68 ‘pL] AN pue ‘[pg ‘zg] snSivy ‘[g01] epy syled uon
-eorunwiwod 1o Suipuiq e apiaoad [sadeyo ur saBenduef Y Jo [BIIAIS

(*¢°¢ uonoas ‘v sadeyo
ur passnastp ate sanbruyoal 1500-mo7) “siseq afessawi-Aq-aBeSSoWw B U0 poauwiio)
-13d aq 1snw $20y) "urmuod 1snw it sad41 sy o1 punog aq 1sanbas B ued udsoyd
ud3q Sey puaisyl ' 1aye AjuQ ‘ssaooud Juiaoas oyl Aq pauiwexa uddg aAmy
Aoy 1onje [mun [0u0d jo speasn Julala09s o1 punoq lou e sisanbal ‘sidaoow
pue sfuipurq Surpumsino uo spuadap suonesado piEA JO 135 Y HOUIS "PAAIADA
a4u Aot 1udwow ayl [nun $9ssa00id FuiA190a1 01 punog 1ou 21 Sisanbas ‘parows
3q UBD jUI[B JO DUD IB} U1 ADUIS 1UIS aue Aoyl tuswow ay (nun syed uon
-EDIUNWIWOD 0} PUNOqg 10U 3Je $1sanbas ‘SO[QRIIBA JJe SIUDWIIEIS UOTEDIUNWILIOD

up Surf oy dduts “Furpurq arep ut ISIIIXI UB 4T SRUIl TudIx2 Aduel B OL

8L

‘os Juiop wodj 1t Juaaald ueod s8endue] oN sinsai
$N0au011d 3piacid pue sisanbas aA13s ued ssadcoud snmowifew B ‘A[pantwpy 6

pal sasoudt e
peasyl ay1 Ajuo sy uondaoxa 1ydneoun ue udoag 1ydned og ued suondsdxa pue
“ynsal snowas jsow ayl ase suondadxy -oiydosiseied wouy sy ase saouanbosuod
ay 1nq “1dadoe o1 Buifim st sisanbas jo sadAy oy Gunownsas Aq ssead su punog
-u0d urd ssa00ud v .mummm.m.u..E, Ut sJeay 11 1BYM O1 PIOM I) 1noge adpajmouy sit
MW NG ‘plOM 3YI JO 1594 'AY) 01 SUOIHISIULOD SII JIAO [OJIUOD dulnl-unt 2idwod
yum ssacoud e opiaoad Aoyl 1aylo ay uo Aupqixay pue Anoydwis pue puey auo

3yl uo uondsload Jinjosqe udamiag asiwoudwod B S SHUI JUIDWWAS

UOTIDANIP YOBD JOJ dUO ‘Suif Jo su1od annbas Ajuappns pinom (19410 yoes
Jo s1sanbas ajew udjo oym) m._ooa.:ooéun uoHEdIUNWWO ‘Aj[Buld S19AIDS O1
Pa1osuu0d 1Bl sjull jO Juawsow oy o} Aidde pinom sajnu [ridads (pasojous sem
pua yorym uo puadsp pnom sarnsopud jo sonuewas ayp -adkr sayid jo uaw
-nduw ue ME pinom Lousag 3dA1 4ora Jo qUI] AUO LINIAL PIROM YUIIMAN "TUSLD
' 01 juy ® aJinbal pinom puqun pue ‘puiq 9daody 13A13S v 01 ful[B asnbas
pinom 1zuuoy pus jo odA1 yoes ss2008 01 duo ‘pasinbas 3q pinom IjqELIBA Nuij
Jo sadfy uasapgip omy Anxsidwos si st woawp Fuowm jsowsto -safeiuvapusip
[F10ADS SBY JWRYIS B UYING “OACW SPUD TUSID udym (uonedijiou apiaosd 1sear
18 10) uoisstwsad 211nbai 194 “aan0u INOYNM JAOW 01 SPUD JIAIAS AU MOJ[R P[NOD
Juo Jtnowwdse atam syu J1 Andwwis yuy jo douanbasuod 12aIp B B Jaye St
AAOW SPUI JB} UAYM [[31 01 JaAIAS B Jo AIIGRUT dUYL “NUi| B JO PUd JUayd ayl pue

pu?d JIAI3S Yl udamidg SuiysinSunsip AQ paseAIdUl G PINOd UONIBIOI

‘pasow 3q sdemie ued pue paidod aq

1anau ued Ay e ul sanijiqeded wody Japip osie syulp syut jo Aadoud e Jou

Ll

1snw uonmuswaidwt vpy uy 1wolsip dpuasayur 318 1RYL SHNPOU JO UONOU OU

sey)| (syse1 pajed) sassadcoud Arengie Ag paseys aq Ol RIED SMO[[® BpY

"sassadosd X NATT O puodsarsod
sojnpow 10ssadosd pue ‘SaaUN0sal ‘suBipiEnd "X NAT JO [0JU0d JO spRaiy
a1 21B popsEIS pue ‘yS ‘sndiy jo ,50ssadoud,, Ayl 1938 ul "soulydew
jeaisuyd oresedas o1 juswudisse dyl apnpdsad suonesapisuod uoneudwAdu
nq ‘japresrd ur ndaxa sassaoosd sy tewp AJ10ads sonuewdg 'sassadoad diow Jo
auo Ag pauswadw St Jnpow Yyorg sapnpowr 10ssad0sd WY S{d poIwIS
pue suerpiend wayl s{ed SNBIy SAIINOSIA SINPOW Yyons S[[ed YS "dnpow

patejost ue st 30unosau e [*p] ¥S pue ‘[zg ‘1€l ponms ‘[pg ‘78] sndiv uj

*2101S UOUILOD B O)
$59008 yim stossasoud atededas uo Ajsnoaurinuns Sutuuns d1am A3y fi so *stiey
‘aesed parepnus ut desado o1 pauBisap USAQ JARY SPERLYL DU, "BIEp S Inpow
1Y) deys pue dnpow MNJuls v apisul d1esado 01 prEALYI SUO uRYl JI0W PIMO{IR
ualo aABY pur *{['p uonoss ‘| Jadeyd aas) sieak Auew 10} 108} Siyl paziugolas
aaey sioufisap o3enduey ‘jonuod jo speasy wuapuadapur £384r| jO UONDI[I0D

v Se usnum aq A[1Sed 1sow ued $3ssadold Auew duiyoew S[Buls B U0 UdAT

[oxju0) Jo speaay], ‘Tz

“JUBAJ[LI1 SSI] JO JIOW ST WSTURYIIW
Sumoayo adA1 ssadosd-vaur syl ‘sassappe XNATT 1BUI SINSSE Ayl 104 udw
-aidwit 01 131583 SBAM 30Ud[RAINDD sweu Aoudpadxs uo Aprwiid paseq sem os
op 01 uoistoap ayy ssaooxd yses unmm sadfy oy aduajeatnbs awou sasn ‘raideyd

Sumo(jo} Ayl Ul PIQLDSIP ‘XNAT Jo uoneuswadwit ImoeyD) YL

-soustxa ut weidoud L1943 jo

08

uonepdodas a1 9210§ AW JAAIAS J]Y Ay M| $59004d B 01 SIUBWADURLUS
‘wasks pajdnos-Ajpsoo; B up 'S1ayio jo uonwjidwodad K1essodauun
ap 2010) Aew jun uonepdwod “Suo ol siwawsdueyus ‘wesdosd pajdnod
-ApySn e U] "92In0SA1 B JO SJASN DU [[B JEpiRAUL A[QRIASUL [[IM SjUdW
-aouRyUd wieliad Ing ‘[9] dorjisiul U O1 suoIsUAIXa dus mof[e O1 Past
-ADp 3Q UBZ SWSIUBYDIN 'HIINOSDI PAINGUISIP YIB3 0] ddBpIIUL 3L 01 AfY
¥ 310A9p 01 pa1dadxa aq ued sweaSosd painginsip 1o} soeds sweu #qoid v
*$49110 2yl AJipowu O1 5/02ddp d[1j ® Ul UOWEIBIIIP JUO O UOHIPPE 1O afueys
v CILT1°801 ‘68 suonesroop jo sapyf o1 sdweis swn Fuixyje Kq os op A
-nsn suun uonedWwod §SOLR 3dUBAINDS dwku 3ds0jua op tey siopdwo) (Z)
pEITie
‘qRIALLL toU ST 1t e s1s983ns situn uone(idwod $SOIIB ADUI[RAINDY dweu
a010jus eyl ssapdwod jo Adieds aanepas aur ‘ajgissodw jou Ajurenssd
S1SE1 DUl S[IYA "PUIYDBU SUC URY) DI0U UO PAULEIUIBW 3Q OF St I JI Kyaeg

-nopted ‘Swidooyy00q JO TUNOWE [ENUESENS B sa1nbal souds sweu rgoiB v (1)

‘X NAT 40J 2oudfeAinbs jramonas ..*o uondope Syl PIBANOL SUIBDUOD PANGIISIP
Aqeoyroads omy “[£01] yorordde yoes jo soeueapesip pue safeurape [ruonipes
oyl puokag -sadfl 1oj aoeds sweu [rqoid B umurw o1 Japdwod dy satinbai
‘ouappAinba aweu ‘oanewssie sup ‘(ze d ‘[0¢]) aduareanbs [eimdnAs jo
asn s ug soBenSuey snoiadid JO IR WOL) SISHIP OSIE BUPIAYD oAl XNAT

*3A13054 O
s19adxa 11 aBessalu au) 2q11ISIP 01 Japlo ur adA1 piodal 1urLIBA ‘pAtRIIdWOD
AuSiy pue ‘[pIoynIe ue ARID tou paau sisanbal jo sadAl 1uasagyp Ajjedipes
{81335 01 Buipuodsal jo djqeded JAAIIS ¥ "BUII SWIBS dY1 1B UIAI JO ‘sawn

1ua13)J1p 18 sofessaw jo sadA1 1udIRyHp 10] Null Swes au asn ued ssaxoud v (7)

6L

-sa%0u o Swideuew Joj sanbiuyday, “mEp [EqO[S-uOU ‘[BIO[-UOU jO Suueys ay

SMOJ[E 1t “BPY il SY "[RISJIA0ILOD 150w 3y ‘sdeysad ‘st uoSuIXa 158f AYL
-UONDLIISAI TNOLIM 1SIU URD $24npadoud pue SRPON (9)

“uMO St Jo 1s9nbat

g o) Aidos awyp soj Sumem ojiym s1sanbal [puIsixa 1dedde ued ssaooid v ()
‘suondaoxa Aq pawdniisiut aq ued speasyl pajooid (¥}

-K[210Was S8 []am SB ‘A[[E00] PAIBAID 3G UBD [01UOD JO speaiy MaN ()
‘Funeuiwndy slogeq Aidas ued sainpasosd Anug ()

“Apondun sB o se Apiotdxa paataoal oq ued sagessay (1)

1SUOISUIIXD XIS Ulm ‘SIS500.44

painquisig ut saunpasoid Knus jo sonuewas Y sidope XNAT ‘e sip

yim Fuidooy up "wisAs Fuikpaapun) JO AIMOTAS YL 19U Kieanooe eyl

SWISIUBLYIIW JUIIUIAUOD PUR aJes apiroid of st XNAT Jo [0 1urodwt uy

-Buissed
afessaw aatsuadxa 10 ‘giep Jlwole ‘sosoydewas ‘SioluOUL JOJ PIBU OU St AIBY]
‘saunpaoosd ANUS JO SUONINDAXD QY ISPJO 01 SAPNS JUSWIEIS eme adus
Kpaneredwod ayy, -aqissodiul 18 SUONIPUOD 30BY ‘piend ueajoog v £q payooIq
uaym Kjuo sasnpacord Anud snotieA 3y pue 9pod UOHRZIfENIUL SHE U9IMISQ
yiioj pue yorg sdwnl ssacoud oyl ssasoid 213uIS B UIRIUOD 01 J[Npouwl ydea 10§
sapiaoad jesodosd g ay ‘ApudrInduod 9INd9XI Ued saanpasosd Anud eyl 3uipusl
-asd jo pearsuy ‘[zz] $3559004d PAINGLISI S, UBSURH YoULIg O SOHURIAS Ayl ul

U93s 9q UES AJUIIINIUOD INpow-eNul 0) yoroidde dandwsNE Ji0Ww YW Y

"SAA[SWAY] SUOIIDBSURH UO A[31 O pIOje

jouurd SIaAL3s “9daouod [eruawiepunj e jou e SUOIDBSURL] J3UM 1USWUOIIAUS UB

8

u] -siuard A1enigie yilm 10e1diul o patedaid ag ‘uoaamoy “snw A9Yyj, "duo JueM
Jeyl $9s53004d 1O} WISIUBYIIUE UONIBSURN B TUaW2IdU] 01 3500Y4d S s19A108
‘ssoates wasks Junesado jo suonesado [9A3[-MO| Apanesedwod 3y J0j e
-udosdde 1ou st "uoddns o1 pspudiut st sndiy 1Byl SwoisAsS uonoesuel) Julj-uo
au Joj (eapt as0ud Aew yowosdde we yong {111 ‘0T1] sadA1 eiep [BNPIAIDUL 1O]
fuo1wore jo Suturatw 198X3 3Y) JIA0 [011U0D (LD dABY siawweifold -suon
-e1odo utes8-0F48[UIAD SIZI[BLISS 1BY) WISIUBYIOW UOHIESUEI] (porestidwod pue)

npsamod B UM SSAD0E 1UDLIMOUOY jo uonsanb ajoym ayr sdaisapts sniy

-Aps02 sayies 210501y St sA[qeLIEA d[dwis Jo uondMoLd uresd-{jews CuonoRIANUL
opnpouwr-1awut 10§ pasn saaniwiid Guissed-ofessow owes oyt yim suonesado

1194} 2ZIUOIYOUAS VIED UOLILIOD Ol SSA0JB Uitm sassadoud ‘YS pue ppy Ul

-weadoid £I9A3 1SOWE U UOHEZIUOLYIUKS JO SULIO) 1UDIIINP A19A OM1 O1 PED]
Adyj], ‘UOMIBIAIUI ANPOW-IIUL JO] PAPIsU ApEalfe 3soyl O1 uoNIppe ui papiaoad
318 SWSIUBYIAW 9SAY], "BIEp paseys 103101d 01 pasn ase ssoydewds pue siojuoLl
‘popamg w pue (snfiy o1 10ss309paud ayr ‘{08 ‘6L]) NT1D papudxg Ul

-suonesado J1SkQ 1SOUW YT UIAD
Joj uoneziuodyduks 1oydxs spold ol pwuwesfosd ayl 3010) A3yl ISIXD UIAD
10U pInOYS 1BY) SUOMIPUOD 308 Aonponul sisuBisap dZenuel ‘preaed ur And
-3%0 ued speasy aresedas jey Suipudiasd Ag ceiep paseys uo suonerado oidwis
JO UONBZIUOIYDUAS 10} P3IU TUDIIYUL OU ST JIDLL, “dWH B IR JINOIXD UED |O1UOD
O praJL Suo AJUO ‘dulydRW JBUIS B UQ AIRMPIRY Fuidpiopun ay jo auney 2yl

1oayja4 10U saop 1t ‘Buiseayd AjRonayisar aq Avw wsifajjerd pairpnus dIYM

‘[a1jeaed ut A1n0axa sassavoud 1eyy Apoads sonurwas adengury
‘asm0 JaYN0 U] ‘Saulyoew ATrledos uo padeid Ag URD vIEP OU SIRYS 1BY! SASSII0Id

Kjuo tey Ajoads 3519 4O S3LIMPUNOQ DUIYIBW SSOIIB BIEP PAIRYS ANB[AWIS YN

18

3U) SW0JIIAO SIOP PUAS UONPZIUOIYIUAS "SUOLEMILS UOWIWOD Ut sofessow Ju
_Apapun 1amd) sa4tnbal 11 ASAEIIY puB WSILELIAW {nysamod 210w B ST 1 AsNeddq

pUdS UONEZIUOIYOUAS URYL IAYIEL PUDS UOTIEIOAUL-JIOWII sapiaoid XNAT

‘UOIYSE} SNOUOIYOUAS B UL WAL YliM adoo pue
19913p 01 paau ayl St Se ‘yFiy St S104I3 JO POOUHRNIL UL -sweadosd Jasn sNOLd
jEW UBAD 1O SNODUOLID Ajjrnudod qim UONBIUNWILOD PINIIYD-dK1 Ssarjoaul
Furssed aBessows $53004dIIUL (UOIYSE} HRM-OU B Ul poruswsdull §7 USIjo YoIyM)
o/1 |euoniperl MHUN ‘Gunsodas Jou1d jo wajgosd duy st 1010¥) Fuipoop ayL
“ISIX3 Op SUONNIOS NG ‘[ONUOD MOy} SITBNSSIZAU 1 pUE ‘pareojdwod alouws pue
15816 98eyoed 1oddns Dwin-uns Oyl SOHRW I TIOYND Suyyedwos Apeynonied jou
st Juuapyng jo osfejueapesip 4L -femkue powrwesosdninw aq Arw sautyorws
Jpou JDUIS PUR ‘PIND0IG S! dUO UdAIZ B UAYM [ONUOD JO SPRAIL JIYIo yiim
anunuod urd ssadoxd B dous ‘eadde 154y yBiw 1 se Juypdwod se jou s B
-ueApE A2UDL1RDU0D 31 *XNAT 104 '{8d JO jutod ay1 1sed doumsip Lyenique ue
papa320id dAry AR OYMm JOPUSS B 01 }IBq SI0LS Funoayyas Jo Anoyjip 3yl pue
safessaw Fuuayng Jo Anxsjduiod oyl a1e safmueapesip fedound syl Aoudsind

-uod jo 9313ap yBiy B St puds HEM-OU Ayl JO afuueape {ediound Sy

- 13A12951 2U3 wouy A[dal € SIAIIIL 1 [NUN SIEM JIPUDS YL

pUSS UONEIOAUL-SIOWY (£)

UONNOAXD

SuINuUNUOD 210§3Q PAAIIAL UBAQ sey aTessow ayl [nun siem 19pUas 3yl
puag uoneziuosyouks (7)

“Gu1od s1 1t Jaaasoym o1 Kausnol oy

Suruuidaq st aFessows SU SB UDAS *A1o1RIPAUILLE UONINJDXS SANUNLOD ISPUIS V

puss Hem-oN (1)

v8

-uoneziuolyduks adessaw o1 sayoroidde

jpdound aosy due 210y ‘[amdeyd Jo p' UOMDDS UL PIQUIOSID SV

uoyEZIUCIYIUAS “[°€

SUOISIIa(] IOUA ¢

“510ydeLUas ¥ JO NIOM Y SWLIOLId 1UAINETS 1IRME UR UL J]QE
-tieA uedjoog ddwis v ‘asie Op 181 5asED 350y} J04 "SIUBWAIEIS JUN{I0[q SS0I0R
UONBZIUOIYOUAS PEASYI-1AIUL 0] P3IU SMOLIIS B PIIIAOOUN 10U SBY AFP O 3dU3
-adxg CpayJEW ST 1UDWIBIRIS Fupioolq (Ajrenuatod) yows yortym ui s3unsy 3uwd
-npoad Aq 1usixa swos o1 djoy 01 paoadxs aq ued Jopdwod 2y, "ase siudWIES
Fun{o0]q 950U1 34AYM SNOIAGO A[JIRIPIWILT UIAD JOU 111 *SIUNNOIYNS SpIsul ind00
UED S3YOHMS 1X3IU0D DS “SILUAWSIES Ud0|q Aq paretedas ‘suonods [edNLID
JO S21I3S B JO SISISU0D 9p0d XN AT ‘193}43 U] "SIUDUMS 1X31U0D udamiaq Ajuo suoi

-puod aoe: siwaAdsd XN AT Ul SPE3MLI JO UOISTOXD [Emni gl ‘Apaniwpy

-sdwnp woanous-1sod
0] PIEp JO SOURUMUIEW I SE LOJD (ONW SB ISEI] B oM Ajuimiao st suon
-esioAu0d 1uspuadapur 10§ d1Eis JO juswITRUBL JUBWOINE YL PA[RI B saull
-noiqns udym uonewojul SuIBENgsp JOYI0 PUR SIdGUINY AUl Jutars 01 pAOAIP
uayo St uByl AW 20w dNbIL “10AdMOY 0U {[Im JOIRIOf[E SYL -safenduel
[euonuaAuod 3sow ur saruod YOEIS A FuNUIWAIOUL OF PAIOADD SI ULl DW
atout 21nbal [jim 101800 {R DTLIOIS 152G Y)Y UIAY ‘desy » W04} PARIO|R dq 1SN
YOUMS 1X21UOD 1XaU dY1 240J3q UIMAL jou Arus TR AUNNOJIQGNS Aur 10} SPIOdIDI
uoneandy ‘xipusdde 31 Jo £ uUONIIS UL pue ¢ 1odeys jo [-¢ uondas ur Ayanq

passnasip a1e Asypl -[91] PoOISISpUN [[9M B SPIOIIS UOHBANIE JO 331 Aies

€8

98

‘ajowrad ‘(aussow : w) sanbas Anpud

‘afessowr @ w
Sfurp Ul
IBA
pud
‘pus
JO 19ATBYM SSBID 958D
p1023x = 3Bessow
adky
119224 11o17dxa — — L13AIS Apow

‘paemionydiens sssf yonw st 1deaas 1ondxy

T19A3S pu?d
‘g ‘v 01 1udijd pulq
uidaq

‘g pus

utdaq
‘g Anud

Y pu?

uidaq
‘y Anyuad

Hjulf Ui JeA
1d12224 11o1]dw — — (13AI3S Jnpowd

(SIIAIDS

150U JO 2IMEBY UIALIP-A[[RUISIXS 3] 510931 A[P1e1n2d8 150w 1d1adal poydwg

“j0q spaau sFenJue; eondesd v -Buisnjuod
pue piEmymE St It yoiym 1oj siayio pue deudordde st yotym 1of suoneoydde
sey yoeqy Aponjdwil PaA1ddal 9q O WOYl smojfe Jonel ayl (€p1911dxa PaAIaIaL
3q 01 sadessow SMOR Sauiioj oyl "s8ulpulq jJO wWISIUBYOAW Yl PUB JUDUWINEIS

1d22oe 2y :safessow FurAR00s JO surow 1WALDHIP K194 0 sapiaoid XNAT

1draday adessapy yoydwy pue woydxsy “7°¢

‘puUdS Jo pury puodas e yum adenduel
oy Suuannp Amsnl oF ‘39A9MOY ‘[EWS 001 e sBulaes Ayj, "Pud FulAldN
3yl UO SOUINIMS IXITUCD IIMI} OMI IIE PIYIOIQUR I OF JIPuds Iyl Buimoje
‘weadosd s,195n oY) £q ueyl Iayies ‘saunnod loddns swn-uni Aq 1uas aq ued
sjuswdpamouior [aasl-dor ‘Aidos ou pasu eyl sIFESSIW JO UONEDIOAUY BIOWDI

01 uouIppY Ul Puds uoNEZIUOIYIUAS Fuipiaoid 10) UOHBANOW JWOS ST DIIYY,

-sofessow BIXS sanbas puas uonBZILOIYD
-ufs ynm uonesoaur sowss Junenuis Aidas deipswunt ue Fuipuas £q uon
-B30AUI JI0WAL YIM PalB[mWLs A[ISea S| PudS UONPZIUOIYOUAS “ElEp [njasn Auied
1om se 1uduu i ‘Kemkur 1uas Juidg st iwawSpaimoundw ue se Juop sy “saudas 12
-ndxa paau ey s1sanbas aq o1 soBessaw 1sous 193dxd 01 d[qEUOSEAL S1 1l ‘sdiysuon
-g[al JaA125/1UDND Jo Anbign ayl oAl *sadA1 JO $SOUIIALI0D YT JO UOUBLIIYUOD
sureIuoa 11 asneoaq waisks Junesado ayr £g 1uas 3q Jouurd WAWIPIMOUNIE Y],

‘Juswdpapmowyoe [aa3l-dor ® sasinbal 1 Ing ‘puas item-ou ayl jo saeueApesip

$8

13WNsSuUod pul
1PAAOYMA — -
uidaq
{(mep : ojul) ownsuos aanpadoad

jjnismau pud
29NN = PIAISIAL
‘ojul = uong
‘pawnsuod jeme
utdaq

420npoud £q pajpy — - (wEp . ojul) ynmsmau K1jus

1d12024 11ondwny - -

1uBd[00g : PIAIBIAL ‘PAWNSUOD
‘mep D agyng
IgA
LoAdleym = viep 3dAy

HOpugg ¢ 19onpouad) 1dWwnsuod mpowr

-13onpoid pua

¢

‘pud
1ownsuod uo (| 3onpoid) jymsmau 10auuod
doog
12Inposd — - WISaq

88

‘3onpoxd pus
124210YM - —
uidaq
eiep : 2onpoud worpouny

tajowad (mep { ojul) jmismau A1jua
LAdIRYM = BIep 3dA)

{0julf © Jawnsuod) 19onposd Inpow

AR

ssap Kjqesopisuod st yoeosdde ndidwr ay ases siyr up [te uondas ‘g sadeyd
Jo 13wnsuod pue 19onpotd Sy Ag paresisuowsp sem asn 51 siaad Funesadood

*2AN0R udaMIaq saBessawl jo dFuBYOXI Ay 40§ [yasn 1sow si 1d1adas uondxy

"Speaily Jo soquinu paxy B yim s1sanbas jo saquinu
payoadsun ur a1powLodde 0 Aem ou [R12uad i §1 Ay, 'adA1 yors Jo 1sanbay
pasidwoo-Ajensed auo o1 pajwiy aq ._Em 1M 194135 241 Ing “1sanbai jo adA) yowa
0} [041U0D JO PBALY) (9ANOR) 1UaL3Ip B udISSE O] J9AISS 3yl uiynm ajqissod 3sinod
Jo SLil "sM9IdWo2 uoHBIIUNWIWIOD JBYI [HUN (A[SSIPASU) PAYI0Iq 3q [{iM IIAIDS
ay1 *Aued payl Swos Yim uonedtuNWILLed saunbal isanbas v § *paysiuy sey auo

snotadsd 3 [nun 1sanbas mau B uo yiom uifag 10UURD 15A19S A *aAoqe dduwiexs

puodas syl up “uenodwr 1sow ayy Ajqeqosd st afeiueapesip puyt ayy
“nenidosdde aq jou Aew ey A2ua11n0U0d 1N0gw suoneaydun SALLLS 1] (f)

“apISINO Wwody paj[ed jnun Jur

-410u $30p 11 1apod jo Apoy 241ssDd B SI S(NpOW SdA13s Ayl Suipvapsiu sty ()

*SOLIIUD TUBIDYIP Y1 USIMIBG STudwngie

¢

Ul S3JUDIBJIP 109(§aL 01 34MONAS plodas jueuea paesiidwod v sannbas i (1)
:saBemueapesip [R13A9s sey yorosdde joydxa ay saidwexs asay uf

“I9AI3S pud
‘pua
‘Aydaa

v}
JO SSEJO W ased
‘Juayd uo (w) 1sanbas ydadde
dooj
494435 — — wdaq

L8

“SHUI{ YOIUM UO PUE ‘UDYM JSN OF (S1WI0) YOTUM At untie ap1aap 0l
ssaooud e Juimolpe &g soyue} dois auo $208 XNA1 "1dreoas noydwt pue yordxa

yioq apwoud Apeaife ‘[zg ‘1€] POWIBIS Kigeiou ‘saden8ue Sunsixd dwos

(JawnNsuod pud
‘pus
{(19jjng) SwNsuod
‘19onpoid uo (Jagyng |) jjnispio PIaUU0)
doog
Jawinsuod - - uidaq -

‘elep 1 1Qjng AeA

Bwnsuo) pua
12431DYMA ~ -
uidaq
“(eiep @ Ojul) dwWNSUOd danpardad

‘0w ‘mep © jjuisplo Anud
‘aadieym = wep adA)

‘(punf @ J9onpoud) sowNsuUod dnpout

pue ‘omnawwise

‘9onpoud pus
19A2I0YM - —
uidaq
‘erep : aonpoud uonpung

‘Jjmspio pua

Nl = 1uds

‘(aapnq) Kidaa

ipaonpoud neme
) uidaq
ng:ESuAQ.uw:S-;”ﬁmn“t:mu_oab:m

‘uesjoog : 1uas ‘paonpoud
‘eep :oI3gng

IBA

L19ABYM = B1Bp 3add)y

112024 o1 dwe - ~ (Ul OWNSU0D) J13onposd npou

:prq Ajjenba st {G1] uonnjos jenp ayy "pueisiapun o} piey

‘pateoiidwiod Aj1IBSSI03UUN St IBYY IPOD Ul SHNS3L Julf-Jo-INo

1t uraoy -doof uiew s JOwWnNsuod ayl ui sSuoaq Kjjeal Anus | Jjmsmau,, dyj,

-1aonpoxd pua
‘pua
‘onq =: paonposd
‘oonposd =: 13jjnq
luas neme
dooy
‘ang = 1u3s tasje) =: paonpoxd
420mpoad — — uidaq

06 68

“I2WNSUOD pud
pul

ana] = pawnsuod

{(1oyynQj swnsuod

{POAIRDAL NEMmE

doog
135[B] = PAAIDAL 1ANM = PIWNSUOD
1unsuo3 — — uigaq

“syuf Sutpuodssu100 3y Buikonsap Ag sapy 1oy 350
StUDI) fUI] dY1 J9A0 1Mo EIBp puds ol Junduwidne sijeyl pEALY! JIAIDS-IIY Ayl
ut (£€ suif 18 ydnes ‘[z au) uondooxs ue Suisies £q pajpuey aue §15anbas %398
-190nposd jo o104 ayi skeid 19AI3s 3yl Suipeas o) pouado St 3l ® Uayp "1SwNs
-u02 Jo 901 Yt shejd 19A13S Ayl Funiim 10§ pauado st 3jtj B USYAL TIOWINSUOS Ul
&q paidaoop pue (192uu03 yum) saonposd dy1 Ag patentut dIe sigjsuen wIEp jinq
‘{11 yorig £q pa1sa33ns sy Ixau aup 01 1sanbai SUO WOy AJEdNBWOINE PIULY
-urew St IX2IUOD *SILNUI-GNS ISAY] Juowy "SALNUD-GNS atendoudde o1 pus uayio
Sy) SpUIq UALl 1] CIUSHD SII O] PUD DUO SUIMIBL PUR (ST UL YU MaU B SITBALD
peaIyl Yo ‘(pz aut]) sisixd oy {eoishyd sit eyt SulkjuInA oY ‘s1sonbas wado
01 asuodsas ur paTesId IV SPEALYI MIN “[ONU0D JO PrALYI Jesrdas Aq pafeuew
SI UI} O} YORS “10A13S SU unpipy Sjulp Aq pajuasaudar ase safy uadQ
“(§b-€ SOUL]) MO[3G IPOD Y Ut umoys st ‘sapy Juiuado 1oj
‘S2LAUD ISOY! JO AU "SIPIACId 11 SIDIALSS df JO ORI 1O) ainpasosd Anus ue o
NUI[1Yl SPUIQ J3AIIS D[Lj AU (6P dUl]) TUDI[D MU © O1 JUI| B JIAIIS D[if DU SPUSS
PAROGUONMS DY) UDLAL SIPAIIS IDUIO SMOLIBA O] SIUSLD SIONPOJIUL TRl ISALSS
Swey v ‘picoquanms oyl ol quif AJws e yim gy suidsq sRAsS 1Y YL
-2ve1 1YSIW 19AI0S B YONs Jeyl W0} 3y
SOUDIONS MOJAq IPOD AYL ISAL3S IjIj Paseq-weans € st adwexs uQ .Au_&mmoa
10) srensdosdde so8uof ou st Junfem st PEIIY JIYIOUE YOLyMm 10j UONEIIUMLILIOD
31 1Bl 19A0DSIP ARwW pESIY SuO 1AM sjodotosd ur [ngasn e suondniiaiuy
‘xgjuks BOX3 3] YuM Jayour dniidqul 03 PRIl SUO Pamo[e KiateA pauyap
-12sn 21 jo uonippe oy *‘AemKue papasu siam suondadxa UG DUIS TXNAT

ur suondadxa pouljep-1sN JO SINUBLIAS Y1 10) 1Uapadald Ou JO DIBME WE |

suondadxy ‘p°¢

76

*A1e55909U 2A04d 1
pinoys *afendue| ay1 o1 vontppe paessopudens ey e 3q pinom 1diadal 1o1dxa
O UOISIAA JNISIUNLLISIAP-UoU v "yoroidde swndoidde aiow 3y st 1draoas poyduw
2JOUM 535BD Ul A[UO WISIUILLIDISP-UOU Yons paau o1 teadde 1ep 01 paulwexs suon
~eonddy -syuyp jo 7as ® jo auo Aue uo ofessow B Bundasor 10) WISIURYIIW € IPIA
-01d 10U s90p X NAT ‘0001 oydxa ynm saBenJue; pasodosd 1sow Mrun

-ajqisia daay o1 19jasd | 10
safessaw ‘safessaw Kjdas pue 1sanbas Swikpopun 3yl apiy O1 pudl OS[E pInom if
‘suawaies 1daooe jo E:U::W ay3 1951ja1 1ou pinom xeuks Funinsas ay *Apreunt
-1ojuny "1apio Aue ui seadde pinod ssapweted Kdaipsanbas pue *Aidas “1sanboy
‘ssotoweded jp 10§ saweu yum “ist) Joawesed S3UIS B 95N PINOA SANBLISYE SNO

-1Aqo uy "sadd1 Kidas pue siapweied 1sanbas 1Py ae8a43as siapeay Anug

"arowas s1 Apoq
asoum KHud UB Uim paIRpap 5g ued Apidydxa paalds Ajuo si eyl uonrsado uy
-35u0 pa1e(23p aq Ajuo pasu Apdndwi pue Apondxe yiog paalss st eyl uonesado
uy [om se 1diooss uodxs 10§ WY asn 01 3jqeuoseal swads 1 1diadas 1oydut
10§ sadfl sodsweied avpap Apeasfe s1opesy ANud 2DUIS TSUOHIRIBIIP dieys
01 9pod 3y ui doeid SUO UBYL JIOW 1¥ S1dIID SMOj[E XNATT “ludwaers 1dadoe
yoed 1B sadAy smpwesed Sulieddp JO pRAISUL ‘UONIPPR U] PAsO]d sem adoos oyt
131JR S[QISIA UIBLIDE PINOM TBYI SAQRLIBA O1ul sidlawiesrd afessaw kdo3 o1 pasu
ou s 3134 ‘BPY Ut sa0p it Aem dyi adods parsau B auyap *ajdwexa 10§ ‘lou $30p

1 -aiqissod se ajdunis se 9q 01 paudisap st XNAT Ul 1uswaies 1deode Y|

XBIUAS "¢'¢

16

‘oM

s XNAT Ul uanum Jurog st (JOALOS MIU B) I9ALIP [BUIWLIST DY} JO UOISIIA 1511}
sy Aem 19pun jjam St (4a10IS a1 1ofeurw AJOWAU Y] PUB PaYSIUL] ST JIALDS
aqy o ‘Buaum sty Jo SV TXNAT U S13AJ3S O PIING-21 01 Aemiopun ST IOM

soapwnd AMOLRYD 31 01 S[[B 12911p YA (K|uo s3.mea) {enuanbas [ovi)

BINPOIN Ul UDNILIM B19M SIDAIDS ANOMRYD Ayl JO suoneuawsiduit [euiduQ

Juardxy 'y

PEINELCHIETIE SS
UDI{OMIU 01 PIBOGHIIMMS PUlY $S
umw — ~ Waq €S

JUDIIMOU pUd s
‘KjdaJ ‘uado 031U pulq 1S

uidaq 0§
fOpur] : 1US1D) TUDOMOU Layud 6v

‘uado pu? Y

PpaIp aAvY SAUD PAISIU J1IUN ,uado, 3a03] 10U [JIM [OLUOI — — Ly
‘pud 9%

uans asua1ad —— (qurou) Aidar Sy

31qu)jvAD 10U — — 3S|I 4

Soypvas fi —— ‘pud 4

doop — — pu?d 42

‘pud 154

dooj 9av3] — — NXI ov

op GIAOULSTA TLOWTY HUPR[Y UM 6t

dooj anunuod ‘Junpou — - 8€

op Sunjaas uaym L€

‘1 + ndpeas =: ndpeal 9¢

‘qupaqy wo (| (ndpeas ‘oweusii) 139) weass PIUU0 4
wdaq R 2

dooy 113

puad $33spRaI 03 NU[3Y pulq udY) deas J1 [43

uay) Jegpest ji It

144

£6

<

‘pud
‘wiealis 03 JUupdfl) puiq
SpUD 4O3S3TLIM 01 YUIS[1) PUIq UIYI Se(HRIs Ji
uayy Ieparim

‘0 =: ndomam (g =: ndpeas
w3112 53134 — — LUy} yumou) Kjdag
uIYyl (SWRUI[L]) o|qe]IBAE JI
uado - - wdaq

9aspeas pua

‘Aidaa ‘Buppoos astea tndmou =: ndpead
uidaq
‘(40801u1 :ndmau) yaaspras Anjud

weaais pud

‘Aidaa 1 + ndowum =: ndayum {(ndatum ‘oweudjy ‘eep) ind
: uidaq
- {(s914q : mep) weans Anua

O}9asaIM pua
‘Ardaa ‘ndapy =: ndam
uifaq
. H{aa8aww ; ndajiy) yossatm Anud

‘{BUI3IXD ‘umdjoog.: (FULNS @ AWBUD[]) JIGR[IRAR UOTIUNY

qrugagxa 'smAq : (1o8awu : ndpras Buins : aweuapy) 108 uonduny
feuraixa

‘(1891w ndaum ‘Fuins : sweuapy (sa1Aq © mep) ind sanpadoad

‘Funyoas uondadxs

La8aut : ndatum ‘ndpeas Hul C JuR[ly JBA
oty e

(ueajoogq : Feypiaas ‘Seyoium ‘Geypeos (Suwns © Jweuajyy) uado Lnyua

LI9AdEYM = SAIAQ ‘oAdteym = Fuins adAy
LUl | PIBOQUINMS) IDAIISI|Y IMmpout

0t
6T
8T
LT

9T
§T
T
£C

[44
1T
0T
61

81
L1
91
ST

41
£l
(4t

~ oo O

ot N O

™~

“uImoy0} dU1 2w Sfed WaNsks jueniodw 150w s "syul] pue sassazoad yioq o)

11oddns 10911p sapa0id 1] "3pou yoes uo paredtiday st [FUIY AMOHEYD UL

-Guit 341 ul papnout a1 puk XIN utd foyy,
juswdopasp weifosd 10f pasn dIB USXVA 10818] [BIOADS CSYSID SARY SAPOU
swosg Alowaw jo sakqedaus 33141 JO oMl SBY 9poU yoEy ‘uoneiodio) uoNoId
w0ty Sull UIOY PUOIASAIGIN-OI B AQ PaIdRUN0d S3ULYdBW Spou 0SL/TT XVA

0z Jo uonogjod Iyl tondwooninuw PIsA1D 3yr uo suni [1py L] anopreyDd

ANOLIBYY) JO MATAIIAD T

*sordunis
Aigesapisuod sAem SwOS ul St uorwawddwl vaOs aul ‘anoryD £q papiroad
soantwnd oyt wo ApBaey paseq sem XNAT JO udisap ayr ydnowy ‘ABuisuding
‘0BAUL PUIDY JNOUBYD Y YUM swajqosd paoadxaun pasolunodus osfe
W Csyul Jo siaquinu 23ae] SuiAow 10§ pue Suioayo adA1 soj Apsepnonsed ‘sanbiu
4291 Bunsaaiul [B19A35 JO 1uawdO[3Ap U pannbas 1) “rowwesSoid sButs v Aq

yiom aw-sed jo sieak oma sapun 1snl yooy uoneiudwadwi anoprey) UL

“Kjuo 1aded uo paudisap sem ‘YOS paifed wansks Junesado
ue 10j ‘puodds ayl -Ning Ajemoe sem swoisks funesado painginsip AMOBUD
ap 30§ “1sIy ayy "XNAT Jo suoneuowRldiug om1 $aqLIdsap Jaideyd SiyL

uorppnposjuy '

uotjejud urd(d ury

p 1a3dey)

96

*t 4a1deyd jo 179 uonaas sag “ed
-151uno0o [enuanbas sit ueyl 193U0] JEYMIWOS SI X NAT wolj apod 103[q0 o1

"SUOISINA UIOg PIUILUBXI dABY OoyMm stowweafold jo SNSUasuod
ay 1vayas 01 sseadde 1t *aunseaw sandalgns AySiy v stosi apyp sedia

-unod [rnusnbas 113t ueyl pESL 01 121SED A|qRIapIsuod dse swesford XNAT °

o1 $2Ul1 000T Japun 1snf st jeu

-Buo 3y, "Buof saul] Og 13A0 1SN 51 JOAIISDILY MIU YL “apod fenuanbos
juajeainba ueyp 1ausoys Ajqraapisuod st swesdord YNAT J0J 221n0s Y], ®

. ‘pad3ngap

uoaq Apeasie ofeord swn-uni XNAT Ul PRY SWN SS3] UdAd pasinbai

QABY DINOM 1] “SHOOM OM] UL UM SEM I0AJISI[] XNAT 24l "dqnon

JO 22IN0S TUBISUOD B uadq Sey 1j ..m:ﬁ» omi 1noge jo pouad B 1dr0 sown

[BIOADS UDNLIM-31 DUB USNLIM SBAM, SOAIISO[L] BINPO 9yl -siedssiunod

fenuanbas 11941 uBYl M 01 Idisea A[qeaapisuod ase swesdord XNATT °

"UMBIP 3g ued suoisnjouod Ateutunaid [BIDAS

97

MakeLink {var endl, end2 : link)

Create a link and return references (o its ends.

Destroy tmyend : link)

Destroy the link with a given end.

Send (L : link; buffer : address; length : integer; enclosure : link)
Start a send activity on a given link end, optionally enclosing onc
end of some other link.
Reccive (L : link; buffer : address; length : integer)
Start a receive activity on a given link end.
Cancel (L : link; d : direction)
Atlemnpt 1o cancel a previously-started send or receive activity.
Wait (var ¢ : description)
Wait for an activity to complete, and return its description (link end,

direction, length, enclosure).

All calls return a status code. All but Wair are guaraniced to complete in a

bounded amount of time. Wair blocks the caller until an activity completes.

The kernel matches send and receive activities. 1t allows only one out-
standing activity in each direction on a given end of a link. Completion must be
reporied by Wair before another similar activity can be staried. Buffers are
managed by user processes, In user address space. Results arc unpredictable if a
process uses a buffer between the starting of an activity and the notification of its

completion.

98

3. The Charlotte Implementation

The Charlotte LYNX compiler consists of about 13000 lines of Pascal
source and about 400 lines of C. (The C code includes initialized data struc-
wres, UNIX 1/0, and logical operations on bit fields.) The run-time system for
LYNX consists of about 5000 lines of C and 200 lines of assembler. The com-
piler uses a table-driven scanner and LL(1) parser, with FMQ [45] syntactic
error correction. It generates error-free C source code peppered with escapes to
assembly language. The standard C compiler is a second pass. The result is a
friendly but slow-running wtility that produces code of acceptable quality. The

appendix contains a thorough description of the implemented language.

3.1. Threads of Control

Lexical nesting of entries implies the sharing of non-local, non-global data
among multiple threads of control and precludes stack-based storage allocation
for routines that may cause context switches. For the sake of efficiency, the
compiler notices any roulines that cannot cause context switches and allocates
their activation records on a stack. For the rest of the routines, the storage allo-
cator uses a naive first-fit algorithm on a heap. A production-quality implemen-

tation would probably require experimentation with other allocators.

The LYNX implementation uses a slatic chain instead of a display. The
only context thai must be saved when control swilches from one thread to another
is the contents of ten of the VAX’'s general registers and the value of a global
pointer to the context block of the current thread. Each context block contains
several Boolean flags, links for the queue on which its thread resides, and room
for a subroutine-call stack mark. A thread yields control by putting itself on an

appropriale queue, aiming the stack pointer al its context block, and calling a

99

procedure known as the dispatcher. The subroutine call instruction saves the

appropriate registers.

The dispatcher maintains queues of threads that are blocked for various rea-
sons. When called, it decides which thread to run next, aims the VAX frame
pointer at the thread’s context block, and executes a return-from-subroutine

instruction.

The threads blocked at await statements reside on a single circular queue.
Each time it is called, the dispatcher returns control to the next thread on that
queue. The resumed thread re-evaluates :mf Boolean condition and returns
immediately to the dispatcher if that condition is not true. If the dispatcher dis-
covers that it has come all the way around the queue without finding a true con-
dition, then it executes a Wait system call to obtain notification of a completed
activity from the Charlotte kernel. The Boolean expressions in every await state-
ment are therefore re-evaluated every time a message is sent or received. The

cost involved is discussed in section 6.2.

3.2. Communication

The run-time system uses Charlotte links to implement the links of LYNX.
Link variables are indices into a table invisible to the user. For each link end,

the table contains

o head pointers for the queues of threads waiting to send and receive mes-

sages on the link,
e the size and address of the buffer of the outstanding receive activity (if any),

® a sequence counter for connect stalements (used to detect unwanted reply

messages), and

100

e a small amount of status information.

For a connect statement, the run-time system starts a send activity with the
kernel. When that activity completes, it starts a receive activity. Run-time rou-
tines also start send activities for reply statements and receive activities for accept
statements and bindings.

There are two basic kinds of messages: requests and replies. Requests
are caused by connect statements. Replies are caused by reply statements. Each
message includes several hytes of self-description. For requests, this information
consists of the name of the remote operation, the identity of the thread (the
client) that executed the connect statement, a sequence number, and a code word
for type-checking. For replies, only the sequence number and client thread are

specified. They are copied from the request message.

The operation name is used to direct an incoming request to an appropriate
thread of control (a server). The identity of the client is used o direct an incom-
ing reply. Sequence numbers allow the dispaicher to detect replies for clients
that have felt exceptions and are no longer waiting. The type-checking informa-

tion is discussed in the following section.

3.3. Type Checking

As explained in chapter 3, message type-checking in LYNX is based on
structural equivalence. Equivalent types have the same canonical description.
In the absence of pointers, these descriptions can mimic ordinary type declara-
tions, with the subtypes expanded in-line. Canonical descriptions for messages

can then be built from the descriptions of their parameters.

@ - ®
S . |- S

A thread in B receives the request and begins serving the operation. A now
expects a reply on L and posts a Receive with the kernel. Now suppose some
other thread in B requests an operation on L. A will receive B’s request before
the reply it wanted. Since A may not be willing to serve requests on L at this

point, B is not able to assume that its request is being served simply because A

received it.

A similar probiem arises if A binds L to a number of entries and then
breaks the bindings before all its threads are blocked. In the interests of con-
currency, the run-time support routines will have posted a Receive with the ker-
nel as soon as the first binding was made. When the last one is broken, they will
attempt to cancel the Receive. 1f B has requested an operation in the meantime,
the Cancel will fail. The next time A calls Wair, it will receive notification of the
message from B, a message it does not want. Delaying the start of receive activi-
ties until all threads are blocked does not help. A must still start activities for all
the messages it would be willing to receive. 1t will continue execution after one
of them completes. Before waiting for a second, it may change the set of mes-
sages it is willing to receive.

The first problem arises because Charlotte provides no way to screen mes-
sages within a single link. The second problem arises because Charlotte provides
no way for the user program to say ‘‘please receive exactly one request, on any
one of the following set of link ends.”” The second ,!,oc_ma would be more obvi-

ous if LYNX provided a non-deterministic version of explicit receipt, in the style

106

of CSP or Ada (see chapter 1, section 2.6.1, and chapter 3, section 3.3).

In both cases it is tempting to let A buffer unwanted messages until it is
again willing to receive from B, bul such a solution is impossible for two rea-
sons. First, a user-defined exception may arise in B, causing it lo aliempt (0 can-
cel the Send on L. Since A does not yet want the message, the Cancel should
succeed, bul cannot. Second, the scenario in which A receives a request but
wants a reply can be repeated an arbitrary number of times, and A cannot be

expected to provide an arbitrary amount of buffer space.

A must return unwanted messages to B. In addition to the request and
reply messages needed in simple situations, we now introduce the retry message.
Retry is a negative acknowledgment. In the second scenario above, when A has
broken all its bindings, a re-sent message from B will be delayed by the kernel,
since A will have no Receive outstanding. To prevent arbitrary numbers of
retransmissions in the first scenario (since A will keep a Receive posied for the
reply il wants), we also introduce the forbid and allow messages. Forbid denies
a process the right (o send requests. (It is still free to send replies.) Allow
restores that right. Retry is equivalent 1o forbid followed by allow. Both forbid
and retry return any link end that was enclosed in the unwanted message. A pro-
cess that has received a forbid message keeps @ Receive posted on the link in
hopes of receiving an allow Smmmmmn.: A process that has sent a forbid message
remembers that it has done so and sends an allow message as soon as it is either
willing to receive requests or else has no Receive outstanding (so the kernel will

delay all messages).

! This of course makes il vulnerable 10 receiving unwanted messages itself.

101

The size of the description of a message depends on the number of parame-
ters and on the complexity of their types. Rather than enclose the description
itsell in cvery message, the LYNX implementation uses a hash function 10
reduce canonical descriptions to a single word. An obvious hash function treats

a string of symbols as an integer base N, where N is the size of the symbol set.

Suppose <a> = @, -1 Gy 2@, -3 *°° ag is astring of symbols. Let

n -1
hash(<a>) =4 | s N'ord(gj)| mod p.

—

i =0
If <a > is the canonicai description of a type 4, we say

hashval (A) = hash(<a >) and hashlen{(A} =n.

in the Charlote LYNX implemenwtion, N is 37 and p is
232 .5 = 4294967291. Symbols are represented by the values 1-37. No sym-
bol has value 0, since prepending a zero-value symbol to a string would not
change its hash code. The lack of a zero-value symbol allows N to be used for

the value of the final symbol without introducing ambiguity.

In addition to simplicily, this hash function has the advantage of incremen-
tal computation. It obviates the need to store explicit canonical descriptions. The
compiler remembers the hash code and length of cach type’s canonical descrip-
tion, bul not the description itself. When a composite type is declared, its hash

code and description length can be calculated from those of its constituent types.

Suppose, for example, we are given the following declarations:

102

A= [1..10];
B = record
i,] : integer;
end;
C = orray Aof B;

We would like the hash code for C to be the same as the hash code for

C' = array [1..10] of record
i, j © integer;
end;

This is precisely the result we obtain by letting

hashval (Cy = T x Nhesttent pashval (A ; x Nheasien(B) . pashval (B)Y .

hashlen(C) = 1 + hashlen(A) + hashlen(BY,

where a is the value of the symbol ‘‘array’ as an N-ary digit. All arithmetic is

carried out in the ring of integers mod p.

As currently defined, LYNX provides no pointers. If it did, the hashing
technique would need 1o be changed. The problem stems from the need for for-
ward references in defining circular structures. When a given type is first
encountered we might not know the nature of its parts. We could still derive a
canonical description and hash code for each type, but we could not do it incre-

mentally the way we could above.

At the end of each declaration section all existing types will be fully
defined. Well-known techniques can be used 10 determine which are structurally
distinct and which equivalent [72]. Symbol-table entries for equivalent types can
be coalesced. We can then use the string-of-symbols notation, augmented with
backpointers, 1o construct canonical descriptions for the types that remain. We

expand each declaration recursively until we encounter a cycle. We then inserta

-1 %ut| uo voneiado aowal e s159nbas y $s3004d Ul peaIY B IBYL asoddng

*$9580 {2109ds jJO Jaquinu B Ul 3SLIEB
suoneondwos *Aeuniiojuny "Kdas ayr Joj auo puw 1sanbat dyy 10§ Juo 1pasn

3q M saSessow anopey) omi Ajuo ‘suonesado jo Aisofew isea oyl Jog

sadessop paruemuny Iy

“)UI} U0 UBY 2JOUI JO SPUD JO DINSOIUA DY pur saSessaw pajuemun
JO [BALLIE 9yl ISIOUNOS OMI WO PALWAS AYNdUJIp Yl JO I1SO INdIYIp

annb aq 01 parosd uonmuswadw jo ssadosd [eMdE 3 ‘anopey) Jo ssamwid

ayr Ag pateanow sem XNAT Jo uSisap A jo yonw teuyl 1oej oy andsaq

Swd[qoid °p

“1ayiour 01 onanb U0 WOL] PRILY] 119Y) DAOW PUB SISJJAQ Pasnun 31ed

-ojjeap uaifo Ay *sBury soyio Juowy 'sindJ0 uondadxa ue UIYM uOHEDdIUNLL

-wod paysiuyun dn Fuiueapd 10) 2jqisuodsal 318 SID[PUBY ISIYL, "SIUNINOS LOHEII
-uUnwWWod Y1 JO yoBd 10} siapuey uondadxa sapnjout Admyoed Jwn-uns dyL

‘1alpuey ou sey 1 uaym adods ayp sadeass uoncadxa ue

J1 PILIOQE 34v SPEAIYI ASAUY, "SPEALL PAIsau Jo isi] v sdody osje adods yoeg

‘pautep
21e SID|pUBY 31 yo1ym ut sadods ARO[pue ojua A3yl SB IS Sy WO SAA[ISWAYI
2A0W34 pUB 1DSUL speaty], siajpuey aeudordde yim speasyl jo 1St PAIRIOOSSE
ue sey uondsoxa pautjop-13sn K19Ag "20u0 1B speaiyl Auew ul pasies 3q Aew

suondaoxs pauyep-sasn peasy dBuwis B wi pastes sup suondaoxd urpng

‘atpury 01 pasoddns 1ou st 11 suondsoxs

141

sastes-a4 Aldunis sasneo uaym Jo dnosf B 10] 9p0od 3y, 334 IUSWUOIIAUS dwi
-unt syl ut }10j B yFnosys yoeq spa3doad 19ASU YoIeds Yyl 05 ‘Anud A10A3 jo pud
ay1 e soppuey Awwnp v spasul sopdwod ay], ‘punoj st Id[puey B {IuUn payoseas
SI PE2Yl PIIDIYJE SYI JO HOBIS BYl ‘SINO00 uondadxd uB UdYAM SweL) }OBIS SN
ut dnoa is[pury 1soWLIdUUL SH jO .mwuhc_um ay sdaay adoos yowg aappuey IJuls

e se sasne|d uaym jo dnosd yows 1wpn suondaoxs afeuBW IBY) SAUNNOL BYJ,

suondadxy “p'¢

*ANUS 210WaAL-uoU 10 WS 13008 duo urY) JI0W 10}
3po2 ysey awms dy) sasn ssadoxd ou 1Byl 24ns dRW 01 YOO sopdwod YL N
-1 sanjea ayr paudisse a1 3100si3pun pue ‘suSp ‘siond] ayg “sadf Joj se awes
oyl st uonduny ysey ayyp "sofessaw jo 1ed aandudsap-j1as auyy utl uoisndUL 10]

paysey osie 2ie soweu uonttado ‘uoneiudwoidwr X NATT mopeyD 2y U|

Ayun Kppwanxs
$10113 MEew 0} sanfea ySnous apnpoul M uonduny ysey ayl jo dfues oy
CI0AIMOY ‘DZIS PIOM I[QRUOSEII B UlIAy AILIND3S DINJOSGE JO YOB S SI SWdyds
ayp jo s8wmueapesip Ajuo ayy -uosuedwod prom-suo dduns € o1 Juyosyo adhy
JWn-uni Jo PEIYIIA0 JY1 saonpas it *safessowt tog4 [pe] sionpa afequirl Kseuipio
yia siun uoneqidwod ssosoe Junpayd adAy soy wsturyoaw adunis e sapiaosd

suonduosap adA1 jo Surysey ayr ‘uonepdwos [eusdixds yim dfenfue; B uf
L pud ¢ - aajurod 138aur paodad,, Surns ayr £q paruasasdar aq 1wySiw
‘pud
taouanbas_ : 1xau
trafaiur wan

pPJa0o23s = 2dudnbas

adf1 sy *oidwexs 104 ue§aq 21945 a1 ssaym 1uied sy o1 1rurodyorq

€01

107

Further complications arise when the buffer supplied 1o Receive is too small
o hold the message that arrives. This can happen whenever a process is
inweresied in more than one kind of message on a given link. If the messages
require different size buffers, the run-time support routines may post a Receive
with the kerned for the smaller size message before learning that the larger one
exists. The larger message may arrive hefore the Receive can be cancelled and
restarted with a larger buller.

Fortunately, Charloue informs both the sender and the receiver when over-
flow occurs. The sender’s communication routine can retransmit the message
on the assumption that the new buffer will be farger. It need only retransmit
once; the receiver will not be notified of the overflow until it blocks, and by then
it will know the size of the largest valid message. When it posts a second Receive
its bulfer will reflect that size.

I reply message overflows twice in succession then the server thread can
be sure that the client thread has felt an exception and died. The server can con-
unue. 1 a request message overflows twice in a row, however, the client cannot
make a similar assumption. It must wait for a message from the server. If the
server is only willing to receive replies, it returns a forbid message. it is wil-
ling to receive requuests (but only small ones, presumably), it instructs the client

to raise an exception ol cluss INVALID_OP in the thread that sent the request.

.

A receiver saves the enclosure from a message that overflows, It
remembers that enclosure when it receives the retransmission (retransmissions
can be recognized by their self-descriptive information). Since a client thread
may feel an exception and die before sending a retransmission, the receiver must

destroy the saved enclosure if it receives an original (non-retransmitied) message

108

first. In the absence of exceplions, each sender guarantees that the original and

retransmitied versions of a message make consecutive use of their link, with

nothing in between.

4.2. Moving Multiple Links

Most duta can be transmitted from one machine 1o another as a simple
stream of bytes. Links cannot. Two problems arise. First, since a considerable
amount ol stic information is associated with a link, and since rules forbid mov-
ing an aclive end, the run-time system must be aware of all the references to
links conutined in a given message. Second, since Charlotte permits only one
link end to be enclosed in each message supplied o the kernel, the run-time sys-
lem must packetize its higher-level messages.

To minimize the size of object files, the Charlowe LYNX compiler leaves
all the work of message passing 1o run-time support routines. At compile time, it
constructs descriptors for the request and reply messages of each entry. These
descriptors list the offsets within the messages at which references 1o links may

be found. For the following eniry,
entry foo (a, b @ integer, | : link; ¢ ; char) : link, link; ...

the request descriplor would be <8> (integers are four bytes long). The reply

descriptor would be <0, 4>,

Complications arise for scis of links, for arrays contining links, and for

variant records. Sets are handled by preceding their offsets with a flag.

set oflset

109

Arrays are handled by embedding a loop in the descriptor.

loop, offsetl, offser2, ..., offsetN endloop, count, add, backup

Loop and endloop are flags. Count is the number of elements in the array. Add
is the size of a single element. Backup is the distance back to the loop flag.
The offsets between the loop and endloop flags give the locations of links in the

first element of the array. Later elements are handled by adding multiples of

add 1o those offsets.

Arrays can nest. The routine that interprets message descriptors counts the
number of times it has gone around the loop for each level of nesting. It also
keeps track of the cumulative add correction for offsets. Al the end of each

array it reduces thal correction by count times add.
Variant records are handled by embedding an il statement in the descriptor.

if, offset, singleton, value, [offset, ...,]
range, Ivalue, hvalue, loffsel, ...,]

singleton, value, range, lvalue, hvalue, [offset, ...,]
ooy endif

The offset following the if flag gives the location of the tag of the variant. The
lists of singletons and ranges give the valid 1ag values for the arms of the variant.

Each arm may contain nested arrays or other variants.

The value of a link variable is an index into a process-specific 1able. When
enclosed in a message, the value must be changed. Before transmitting a mes-

sage buffer, the run-time routines change invalid links 10 nolink. Valid links are

left alone.!2 On the receiving end, the oid values are used to 1) distinguish valid

12 s possible of course that an uninitialized link variable or an old link
variable whose value has been reused will be interpreted as a valid reference.
This is the standard problem with dangling references.

110

links from nolink, and 2) detect duplicates. Once the receiver has examined the
buffer, both processes can tell how many distinct, valid links were meant to be

enclosed.

A request or reply that contains more than one enclosure must be broken
into several Charlotte messages. The first packet contains the message buffer and
the first enclosure. Additional enclosures are passed in empty enc messages (see
figure 4.1). For requests, (he receiver must return an explicit goahead message
after the first packet so the sender can tell the request is wanted. No goahead is

needed for requests with zero or one enclosures, and none is needed for replies,

@ L

simple case

COMNEC! wmmemcnnvnalSQUESL L - accept
compute
SO . /5 S eeee-- TEPlY

multiple enclosures

connNect -emmen-ee Lokequest L - accept
goaheat
eeoonnn. . 02D d. -
........ P - .U
cen
e mmm—————— e e -
compule
P - . & SO ... reply
enc
[- | U .-
eng .
—— PR - . [-

figure 4.1: link enclosure protocol

111

since a reply is always wanted.

4.3. Semantic Complications

In two instances, the problems described above forced me to do what a

“‘real-life”” implementor could not: change the semantics of the language.

(1) | had hoped to allow exceptions to abort unstarted communication as if it
had never been requested. This proved impossible, because enclosures

may be lost. Consider the following chain of events.

a) Process A sends a request to process B, enclosing a link end.
b) B receives the request unintentionally; it only wanted a reply.
¢) A feels a local, user-defined exception, aborting the request.

d) B crashes before it can send the enclosure back to A in a forbid mes-

sage.
The enclosure is lost, though the semantics of LYNX say the communica-

tion never started. Thus the rule: all link ends contained in a message are

lost as soon as the communication is requested, whether it finishes or not.

(2) Exceptions of class EXC_REPLY are raised ai connect stalements when
server threads die during rendezvous. 1 had hoped to define a similar
exception class 1o be raised at reply stalements when clients die during ren-
dezvous. In Charlotte, however, that would have required an explicit, top-
level acknowledgement from client to server when a reply message was suc-
cessfully received. The resuling 50% increase in underlying message
wraffic for typical cases would have been an unacceptable burden. Thus the
rule: if a reply statement completes successfully, the server thread can

assume the reply was delivered only if the client thread was still alive.

112

5. A Paper Implementation for SODA

It is worth considering whether the complexity of the implementation just
described is the fault of Charloue or of LYNX. For purposes of comparison, this
section describes an implementation of LYNX for SODA, a “*Simplified Operat-
ing system for Distributed Applications.”” SODA was designed by Jonathan

Kepecs as a part of his Ph. D. research [69].

5.1. A Review of the SODA Primitives

SODA was described in section 4.3.2 of chapler 1. Features needed by the

LYNX implementation are summarized here.

Every SODA process has a unique id. It also advertises 2 collection of
names to which it is willing to respond. There is a kernel call to generate new
names, unique over space and time. The discover kernel call uses unreliable

broadeast in an attempt to find a process that has advertised a given name.

Processes do not necessarily send messages, rather they request the
wransfer of data. A process that is interested in communication specifies a name,
a process id, a small amount of out-of-band information, the number of bytes it
would like to send and the number it is willing to receive. Since either of the last
two numbers can be zero, a process can request 1o send data, receive dala, nei-
ther, or both. The four varietics of request are termed put, get, signal, and
exchange, respectively.

Processes are informed of interesting events by means of software inter-
rupts. Each process establishes a single handler which it can close temporarily
when it needs to mask oul interrupts. A process feels a software interrupt when

its id and one of its advertised names are specified in a request from some other

113

process. The handler is provided with the id of the requester and the arguments
of the request, including the out-of-band information. The interrupted process is
free to save the information for future reference.

Al any time, a process can accept a request that was made of it at some
time in the past. When it does so, the request is completed (data is transferred in
both directions simultaneously), and the requester feels a software interrupt
informing it of the completion and providing it with a small amount of out-of-
band information from the accepter. Like the requester, the accepier specifies
buffer sizes. The amount of data transferred in each direction is the smaller of

the specified amounts.

Completion interrupts are queued when a handler is busy or closed.
Requests are delayed; the requesting kernel retries periodically in an attempt to
get through (the requesting user can proceed). If a process dies before accepting

a request, the requester feels an interrupt that informs it of the crash.

5.2. A Different Approach to Links

A link in SODA can be represented by a pair of unique names, one for
each end. A process that owns an end of a link advertises the associated name.
The following algorithm can be used 10 keep track of the location of links and to

move their ends from one process to another.

Every process knows the names of the.link ends it owns. Every process
keeps a hint as lo the current location of the far end of each of its links. The

hints can be wrong, but are expected 1o work most of the time.

A process that wants to send a LYNX message, either a request or a reply,

initiates a SODA put to the process it thinks is on the other end of the link. A

114

process moves link ends by enclosing their names in a message. When the mes-
sage is SODA-accepied by the receiver, the ends are understood to have moved.

Processes on the fixed ends of moved links will have incorrect hints.

A process that wants 1o receive a LYNX message, cither a request or a
reply, initiates a SODA signal to the process it thinks is on the other end of the
link. The purpose of the signal is allow the aspiring receiver to tell if its link is
destroyed or if its chosen sender dies. In the latter case, the receiver will feel an
interrupt informing it of the crash. In the former case, we require a process that
destroys a link to accept any previously-posted status signal on its end, mention-
ing the destruction in 2 out-of-band information. We also require it 1o accept
any oulstanding pur request, but with a zero-length buffer, and again mentioning
the destruction in the out-of-band information. After clearing the signals and

puts, the process can unadvertise the name of the end and forget that it ever

existed.

Suppose now that process A has a link L to process B and that it sends its

end to process C.

L

©

before after

© ©

115

If C wants to send or receive on L, but B terminates after receiving L from A,
then C must be informed of the termination so it knows that L has been des-
troyed. C will have had a SODA request posted with A. A must accept this
request so that C knows to watch B instead. We therefore adopt the rule that a
process that moves a link end must accepl any Emﬁo:ﬂ«-vomﬁa SODA request
from the other end, just as it must when it destroys the link. It specifies a zero-
length buffer and uses the out-of-band information to tell the other process where

it moved its end. In the above example, C will re-start its request with B instead

of A.

The amount of work involved in moving a link end is very small, since
accepting a request does not even block the accepter. More than one link can be
enclosed in the same message with no more difficulty than a single end. If the
fixed end of a moving link is not in active use, there is no expense involved at
all. In the above exampie, if C receives a SODA request from B, it will know

that L has moved.

The only real problems occur when an end of a dormant link is moved. If
our example, if L is first used by C after.it is moved, C will make a SODA
request of A, not B, since its hint is out-of-date. There must be a way to fix the
hint. Il each process keeps a cache of links it has known about recently, and
keeps the names of those links advertised, then A may remember it sent L 1o B,
and can tell C where it went. If A has wo_,mozns.“.ﬂ can use the discover com-

mand in an attempt to find a process that knows about the far end of L.

A process that is unable to find the far end of a link must assume it has
been destroyed. If L exists, the heuristics of caching and broadcast should suf-

fice to find it in the vast majority of cases. If the failure rate is comparable to

116

that of other *‘acceplable’” errors, such as garbied messages with **valid’® check-

sums, then the heuristics may indeed be all we ever need.

Without an actual implementation 1o measure, and without reasonable
assumptions about the reliability of SODA broadcasts, it is impossible to predict
the success rate of the heuristics. The SODA discover primitive might be espe-
cially strained by node crashes, since they would tend to precipitate a large
number of broadcast searches for lost links. If the heuristics failed too often, a

fall-back mechanism would be needed.

Several absolute algorithms can be devised for finding missing links.

Perhaps the simplest looks like this:

® ' Every process advertises a freeze name. When C discovers its hint for L is
bad, it posts a SODA request on the freeze name of every process currenty
in existence (SODA makes it easy to guess their ids). It includes the name

of L in the request.

L] Each process accepts a freeze request immediately, ceases execution of
everying but its own searches (if any), increments a counter, and posts an
unfreeze request with C. If it has a hint for L, it includes that hint in the

freeze accept or the unfreeze request.

e When C obtains a new hint or has unsuccessfully queried everyone it
accepts the unfreeze requests. When a frozen process feels an interrupt
indicating that its unfreeze request has been accepted or that C has crashed,
it decrements its counter. If the counter hits zero, it continues execution.

The existence of the counter permits multiple concurrent searches.

This algorithm has the considerable disadvantage of bringing every LYNX pro-

cess in existence 1o a temporary halt. On the other hand, it is simple, and should

117

only be needed when a node crashes or a destroyed link goes unused for so long

that everyonc has forgotten about it.

5.3. Comparison to Charlotte

The SODA implementation avoids the major problems of Chariotte. It
moves multiple links in a single message. 1t receives no unwanted messages. It
always knows what size buffer 1o allocate. It needs no retry, forbid, or allow

messages. 1t does nol require the semantic compromises of section 4.3.

In all fairness, however, there are potential problems that bear mentioning.
To begin with, SODA limits the maximum size of messages to some (relatively
large) network-dependent constant. In all likelihood, the limit could be respected
by LYNX without packetizing messages and 2?05 seriously inconveniencing
the programmer. After all, most language implementations place limits on all
sorts of things: the length of variable names, the maximum depth of procedure

nesting, the size of the run-time stack, and so forth. |

A much stricter (and again unspecified) limit applies lo the out-of-band
information for request and accept. If all the self-descriptive information included
in messages under Charlotie were to be provided out-of-band, a minimum of
about 48 bits would be needed. With fewer bits available, some information

would have 1o be included in the messages themselves, as in Charlote.

The most serious problem with SODA involves a third unspecified constant:
the permissible number of outstanding requests between a given pair of
processes. The implementation described in the previous section would work
easily if the limit were large enough to accommpdate three requests for every link

between the processes (a LYNX-request put, a LYNX-reply put, and a slatus sig-

118

nal). Since reply messages are always wanted (or can at least be discarded if
unwanted), the implementation could make do with two outstanding requests per
link and a single extra for replics. Too small a fimit on outstanding requests
would leave the possibility of deadlock when many links connect the same pair of
processes. In practice, a limit of a half a dozen or so is unlikely to be exceeded
(it implies an improbable concentration of simultaneously-active resources in a
single process), bul there is no way to reflect the limit 1o the user in a
semantically-meaningful way. Correctness would start to depend on global

characteristics of the process-interconnection graph.

None of these probiems is a serious condemnation of the SODA design. At
most, SODA would need only minor modifications to support a considerably
simpler LYNX implementation than does Charlotte. There are at least three

important lessons to be gained from this fact.

Lesson one: Hints can be better than absolutes.
The maintenance of absolute, up-to-date, consistent, distributed information
can be more trouble than it is worth. 1t may be considerably easier 1o rely

on a system of hints, so long as they usually work, and so long as we can

tell when they fail.

The Charlotic kernel admits that a link end has been moved only when all
three parties agree. The protocol for obtaining such agreement was a
major source of problems in the kernel, particularly in the presence of
failures and simultaneously-moving ends [7]. The implementation of links

on top of SODA was comparatively casy.

Lesson two: Screening belongs in the application layer.

Every reliable protocol needs top-level acknowledgments. A distributed

119

operaling system can attemnpt to circumvent this rule by allowing a user pro-
gram lo describe in advance the sorts of messages it would be willing to ack-
nowledge if they arrived. The kernel can then issue acknowledgments on
the user’s behalf. The shoricut only works, if failures do not occur between
the user and the kernel, and if the descriptive facilities in the kernel inter-
face are sufficiently rich 1o specify n.ﬁnnwwm_w which messages are wanted.
For implementing LYNX, the descripfive mechanisms of Charlotte were
simply not rich enough.

SODA provides a very general mechanism for screening messages. Instead
of asking the user to describe its screening function, SODA aliows it to pro-
vide that function iself. In effect, it Rv_mnmw.«.m static description of desired
messages with a formal subroutine that can be called when a message

arrives.

Lesson three: Simple primitives are best.
From the point of view of the language implementor, the *‘ideal operating
system”” probably lies at one of two extremes: it either provides everything
the language needs, or else provides almost nothing, but in a flexible and
efficient form. A kernel that provides some of what the language needs,
but not all, is likely to be both msxéma.m:a slow: awkward because it has
sacrificed the flexibility of the more ﬁ.iB:?m system, slow because it has
sacrificed its simplicity. Clearly, Charlotie could be modified to support all
that LYNX requires. The changes, however, would-not be trivial. More-
over, they would probably make Charlotte significanily larger and slower,
and would undoubtedly leave oul something that some other language
would want. The beauty of SODA is that il provides mechanisms flexible

enough to support a wide range of programming languages and styles.

120

Among the languages of chapter 1, existing implementations have all
assumed a homogeneous environment. Implementors have felt free to
adopt the first extreme, addressing themselves (o the needs of a single
language and often eliminating any real distinction between the operating
system and the run-time support for the language itself. Such an approach
will prove inadequate for general-purpose computing, when a machine like
a multicompuier must be shared by dissimilar users. For such an environ-
ment, the kernel interface will need Lo be relatively primitive. The fact that
LYNX can be implemented easily on something as simple as SODA speaks

well of its appropriateness for writing general-purpose servers.

6. Measurements

6.1. Size

Object files produced by the Charlotte LYNX compiler tend to be about
50% larger than object files for comparable C programs. The difference can be
attributed to a number of sources: default exception handlers, descriptive infor-
mation for entries and messages, initialization, management of the environment
tree, and run-time checks on subranges, sets, case statements, and function
returns. In addition to the increase in basic code size, every LYNX program is
linked to a substantial amount of run-time support code: the dispatcher, the com-

munication routines, and code to manage exceptions and threads.

The run-time support consists of 23.7K bytes of object code. Of this total,
3.0K supports sets and run-time checks. It can legitmately be Rmm&a.a as
correcting deficiencies in C, rather than supporting the features of LYNX. The

remaining 20.7K can be attributed to the following goals:

121

support for multiple threads of control *19% 3.9K

basic communication 20% 59K
multiple-link transfers 30% 6.1K
exception bookkeeping 11% 2.2K
exception handlers 12% .2.6K

The support for multiple-link transfers mm, divided more or less equally
between finding links buried in data structures and vmnxmaﬁ:m messages. Some-
what less than half of the support for basic communication is devoted to forbid,
allow, and retry messages, and to undersize buffers. 1 would expect the run-time
support for SODA to be about 4K smaller than that for Charlottc. Both might be

reduced further by careful programming.

6.2. Threads of Control

With a single thread of control, the following loop executes in just over 8.5

seconds:

foreach i in [1..100000] do
await true;
end;

A loop with a call to an empty subroutine takes 3.8 seconds.

procedure null;
begin end null;

foreach i in [1..100000] do
null;

end;

The loop overhead itself takes 0.6 seconds.

122

foreach i in [1..100000] do
- nothing
end;

By implication, a context swiich between threads of control requires a minimum
of 85-6=79 microseconds, or approximately two and a half times as long as a

call 10 an emply subroutine with no arguments {38~ 6= 32 microseconds).

Since the Boolean conditions in awail statements can refer to arbitrary vari-
ables, the context of a thread must be restored before a condition can be checked.
If there are many threads blocked at await statements, and if their Boolean condi-
tions are reiatively complicated (and therefore take some time to evaluate), it may
ake considerably longer than 79 microseconds to swilch to a new ready task.
Moreover, as pointed out in section 3.1, the run-time supporl routines must cycle
through all tasks blocked at awail statements before waiting for each external

event.

Oniy extensive experience with LYNX will reveai whether the repeated
evaluation of awaited conditions constituies an unacceptable burden. It does not
appear o be unacceptabie in the applications wrillen to date, mainly because
awail statements are infrequently used. Most threads block for communication,

not iocal conditions.
If await statements should prove lo be a burden, several steps could be

taken:

® A more intelligent compiler could notice when threads are waiting on a
simple Boolean variable, could keep those threads on a single queue, and
could check the variable only once, without changing contexis.

@ The language couid be extended to allow Boolean cxpressions to be associ-

ated with named condition variabies, as proposed by Kesscls [71] for use

123

in monitors. Run-time routines could then check even complicated condi-
tions exactly once when the current thread blocks, again without changing

contexts.

® The language could be exiended 1o include semaphores or signals, requir-

ing threads to unblock each other explicitly.

6.3. Communication

The facilities of LYNX are not without cost. Even the simplest remote
request must gather and scatier parameters, manage queues of sending and
receiving threads, establish default exception handlers, enforce flow control,
check operation names and types, guard dgainst buffer overflow, look for

enclosed links, and make sure the links are valid.

The following lable summarizes timing information for two simple opera-
tions. The first hall of the table gives times for a remote operation with no
request or reply parameters. The second half gives times for an operation with
1000 bytes of data transfer in each direction. In each row, times for LYNX pro-
grams are compared against times for C programs that execute the same sysiem
calls in the same order but without the checks described above. The figures were
obtained by timing a pair of processes in tight 1000-iteration ioops, one with an
embedded connect statement, the other with an accept statement.'? The 6

microsecond loop overhead is insignificant.

13 Tests were carried out over a period of several days under a variety of net-
work loads. Tests that demonstrated high variance were repeated more often than
those that seemed more stable. No test was repeated fewer than five times. The
+ figures give the most significant digit of the standard deviation.

124

explicit receipt

LYNX C
Empty request, reply
intra-machine 456+ 0.1ms 39.4 % 0.3ms
inter-machine 569+ 0.8ms 54.7+ 0.7ms
1K request, reply
intra-machine 497+ 0.1ms 41.1 £ 0.1ms
inter-machine 65.1+ 0.1ms 60.1 = 0.1ms

The gap between LYNX and C programs is smaller across machines
because paris of the run-time support can execute in parallel. The gap between
the times in the first and second halves of the table is due in part to the copying
of buffers. A timing test similar 1o the one for contexi swilches reveals that copy-
ing a 1000 byte buffer requires approximately 360 microseconds. The LYNX
program requires 4 such copies for gathering and scatiering, for a total of 1.4

milliseconds. The rest of the gap is consumed by the Charloue kernel.

Similar figures have been obtained for implicit message receipt:

implicit receipt

LYNX C
Empty request, reply
intra-machine 46.8 = 0.lms 39.5% 0.3 ms
inter-machine 60.2+ 0.1ms 552 0.2ms
1K request, reply
intra-machine 503+ 0.ims 41.!*+ 02ms
inter-machine 69.5+ 0.1ms 633+ 0.3ms

Differences from the first table are due 1o two factors. First, the LYNX server in
the second table incurs overhead for the creation and destruction of a separate
thread of control for each request. Sccond, the speed of the kernel itself is

affected by the order in which system calls are made. With implicit receipt, the

server with
explicit receipt

Receive

Wait (receive)
Send

Wait (send)
Receive

Wait (receive)
Send

Wait (send)
Receive

run-time system posts a new Receive as soon as the old one compietes.

server with
im plicit receipt

Receive

Wail (receive)
Receive

Send

Wait (send)

Wail (receive)
Receive

Send

Wait (send)

Because of Charloute’s sensitivity to the ordering of events, the figures

above are suggestive, not definitive.

The speed of messages in practice will

depend not only on the actions of the sender and receiver, but equally well on all”’

events that are noticed by the kernel.

6.4. Predicted Values for SODA

The SODA LYNX implementation, as described in section 5.3, would be
considerably simpler than the onc for Charlotie. Most of the difference, how-
ever, would be seen only in unusual cases: the transfer of messages with multiple
enclosed links, the receipt of unwanted requests. Typical message traffic would
require about as much run-time support as it currently does in Charlotie. It

might, however, require considerably less kernel support.

It is difficult to compare message transmission times in Charlotte and

SODA. Charlotie has a considerable hardware advantage: the only implementa-

126

tion of SODA ran on a collection of PDP-i1/23’s with a 1-Mbit/second CSMA
bus. SODA, however, probably has a software advantage: it was much simpler
and easier 1o implement. The Charlotie group made a deliberate decision (o

sacrifice efficiency in order to keep the project manageable.

With these reservations in mind, it appears reasonable o expect consider-
ably better performance from SODA. Experimental figures reveal that for small
messages SODA was three times as fast as Charlotte.'* Much of the difference
can be attributed 1o the lack of features in the kernel. By providing a simpler

interface, SODA avoids duplicating functions that are provided at a higher level.

To a large extent, the differences between Charlotie and SODA can be cast
in the context of a more general class of end-to-end arguments [97]. End-to-
end arguments provide a rationale for simplifying the lower levels of a layered
software system. Among other things, they question the wisdom of providing too
many ?:n:o:w.m: levels that are shared by several applications. Any facility that

is not used by a given application will extract a performance penalty that could be

avoided by moving it up into the higher levels that use it.

One of the easiest largets for end-lo-end arguments is the detection of
errors in communication protocols. A lower protocol level can only eliminate
errors that can be described in the context of its interface o the level above.
Overall reliability must be ensured at the application level. Since end-to-end
checks generally catch all errors, low-level checks are redundant. They are jus-

tified only if errors occur frequently enough to make early detection essential.

14 The difference is less dramatic for larger messages; SODA’s slow network
extracted a heavy toll. The figures break even somewhere between 1K and 2K
bytes.

127

The run-time system for LYNX never passes Charlotte an invalid link end.
It never specifies an impossible buffer address’or length. It never tries to send
on a moving end or enclose an end on itself. To a cerlain extent it provides its
own top-level acknowledgments, in the form of goahead, retry, and forbid mes-
sages, and in the confirmation of operation names and types implied by a reply
message. 1t would provide additional acknowledgments for reply messages (sec-
tion 4.3, paragraph 2) if they were not so expensive. For the users of LYNX,

Charlotte wastes lime by checking these things itself,

128

Conclusion

This dissertation makes at least five important contributions o computer sci-

ence.
(1) It enumerates the language needs of multicomputer systems programs.

(2) It presents a framework for the discussion of distributed languages and a

survey of previous proposals.
(3) It develops a new language ideally suited to meeting the needs in ().

(4) It demonstrates the feasibility of implementing that language tand by impli-

cation languages in general) on a distributed operating system.

(5) It derives useful insights into the nature of the language/operating system

interface.

In comparison to a sequential language that performs communication
through library routines or through direct calls to operating system primitives,
LYNX supports

— direct use of program variables in communication statements
-- secure type checking
— thorough error checking, with exception handlers outside

the normal flow of control
-~ automatic management of concurrent conversations

In comparison to previous distributed languages, LYNX obtains these benefits

without sacrificing the flexibility needed for loosely-coupled applications. LYNX

supports

i

dynamic binding of links to processes
dynamic binding of types to links

— abstraction of distributed resources
protection from errors in other processes

i

129

In addition, LYNX reflects the structure of an underlying multicomputer by dif-
ferentiating between processes, which execute in parallel and pass messages, and
threads of control, which share memory and execute in mutual exclusion.

The languages of chapter 1 were designed primarily to support communica-
tion between pieces of a single distributed program. Even for this limited
domain, LYNX offers some advantages over most previous proposals. By provid-
ing both explicit and implicit receipt, LYNX admits a wide range of communica-
tion styles. By allowing dynamic binding of links to entry procedures, LYNX
provides access control for such applications as the readers/writers problem. By
integrating implicit receipt with the creation of threads, LYNX supports com-
munication between processes and management of context within processes with

an economy of syntax.

Support for tightly-coupled programs, however, is not central to the thesis.
The real significance of the work at hand lies in problems unaddressed by previ-
ous research. LYNX is not another language in the mold of chapter 1. It meets
the needs of loosely-coupled applications for which other languages were never
intended. 1 feel no need to claim that LYNX is better than other languages for
gencral-purpose use, only that it is more appropriate for writing servers on a
multicomputer operating system.

Since the arguments for LYNX rest on practical (as opposed to theoretical)
concerns, they are strengthened considerably by the existence of a compiler and
a working run-time system. The implementation for Charlotte, as described in
chapter 4, is important in several respects. It permitted the construction of
usable programs. 1t verified that the language could be implemented efficiently,

with a reasonable amount of effort. It spurred the development of novel tech-

130

niques for checking types and moving links. In concert with the paper design for
SODA, it produced the lessons of section 5.3 (hints can be betier than absolutes;
screening belongs in the application layer; simple primitives are best). Finally, it

resulied in a product of continuing value to the larger Charlotte project.

Directions for Future Research

The material in this disserlation suggests several avenues for future work,
The most obvious of these would explore extensions and improvements to LYNX.
Some extensions could be motivated by efforts to adapt the language to additional
problem domains. Substantial changes might be needed, for example, if LYNX
were to be used on a multiprocessor architecture, where memory could be shared
by more than one CPU. Other extensions might prove useful even in the

language’s original domain. Possibilities include:

° A cobegin construct for dividing a thread into subthreads
Such a construct would, for example, allow a thread to request operations
on two different links when order is unimportant. As currently defined,
LYNX requires the thread to specify an arbitrary order, or elsc create sub-
threads through calls to entries that are separated lexically {from the princi-

pal flow of control.

° A mechanism for forwarding requests
In some algorithms a server passes a request on o a peer, waits for a reply,
and passes the reply back to the client. Communication could be reduced if
the second server replied to the client directly. It is not immediately obvi-
ous how such a facility would work in LYNX, where all communication is

constrained to flow through links.

131

[*“Exception handlers’’ for bindings
A link that is bound to entries but is not in use by any active thread can be
destroyed at either end. LYNX specifies that the bindings are broken, but
provides no ‘‘Hook’ for programmer-defined recovery. The language
could allow a link o be bound to a cleanup entry that would be executed

automatically when the link was destroyed.

® Asynchronous receipl

As currently defined, LYNX provides no mechanism for coping with asyn-
chronous external events. Both incoming and outgoing messages go unno-
ticed until all threads in a process are blocked. Real-time device control
cannot be programmed in LYNX, nor can any algorithm in which incom-
ing messages must interrupt the execution of lower-priority ‘‘background””
computation {42,46]. To support such algorithms, LYNX would need con-
siderably more elahorate facilities than it currently provides for synchroniz-
ing threads.

Beyond mere changes to the language, work on LYNX points to several
related subjects. Efficiency is one of these, particularly the relationship of effi-
ciency lo layers in a communication protocol. Previous work on high-speed
mechanisms for interprocess communication [77, 90, 103] suggests that layers
extract an enormous price in communication overhead. Nevertheless, layers are
certainly useful. Their modular structure makes them easier than inlegrated sys-
tems to build, debug, maintain, and understand. They also promote flexibility by
allowing different upper layers to run simultancously on the same underlying
system. Research to date has produced neither a really fast layered protocol nor

a convincing explanation of why such a protocol cannot exist.

132

Assuming that layers will continue to exist, at least to the extent that
languages will be built on top of distributed operating systems, it is very much
worthwhiie to investigate the interface between the layers. The resulis in chapter
4 suggest that the interface defined by the Charlotie kernel is inappropriate: too
low-ievel to be used conveniently ‘‘as is,”” yet 100 inflexible to support a straight-
forward implementation of LYNX. The search for an *‘‘ideal” interface would

benefit substantially from formal criteria for evaluating particular proposals.

Finally, there is at least some reason to be suspect of any programming
language that places ‘*too many’’ parameters outside the control of the individual
programmer. Niklaus Wirth, in his 1984 Turing Award Lecture, proposed that
‘‘Systems programming requires an efficient compiler generating efficient code
that operates without a fixed, hidden, and large so-called run-time pack-
age.”” [119] LYNX does not meet this standard by any streich of the imagina-
tion. lts run-time package is fixed, hidden, and large, for the simple reason that
it cannot itself be written in LYNX. The package relies on knowledge of the
compiler’s storage-allocation strategy. It also uses symbol-table data generated by
the compiler but invisible to the user. If the necessary information were made
an explicit part of the language, much of the run-time package could be moved
into library routines. Pieces that proved inappropriate for particular applications
could be quickly and easily replaced. The modified language might be consider-
ably more flexible than the current version. 1t might also be more amenable to

formal analysis (though its iibrary routines might not!).

The design of LYNX was very much an exercise in practical problem-
solving. As such, it must be judged on the basis of the solutions it provides.

Only long-term experience can support a final verdict. New problems will

133 134

undoubtedly arise and will in wrn provide the impetus for additional research. Appendix

Al present, however, the evidence suggests that LYNX is a success.
LYNX Reference Manual

Caveat: this reference manual is not a formal document. It describes the
Charlotie/VAX implementation of LYNX at a level of detail suitable for program-

mers.

1. Lexical Conventions

A LYNX program is a sequence of characters from the Ascii character sct.
Characters are scanned by the compiler from left to right and are grouped
together in tokens. Some tokens are valid prefixes of longer tokens. In such
cases, the compiler finds tokens of maximal length. Tokens can be separated by
white space (spaces, tabs (\), and newlines (\n)). White space has no other
meaning.

Many tokens are simple symbols:

} << >>

A~
Ao
n T
v
i
v
N~
A
o

!

\4

Others are more complicated. All can be defined by regular expressions.

In the following, italics are used for intermediate definitions. Parentheses
are used for grouping. Vertical bars arc used for alternation. Other adjacent
symbols are meant io be concatenated. The function NOT indicates complemen-

tation with respect to the Ascii characler sel.

Comments in LYNX begin with '~ - and extend through end-of-line.
COMMENT =
-—(NOT (\n))*

Comments are treated like white space.
Numeric constants can be expressed in ocial, decimal, or hexadecimal.

NUMBER =
0 (0| ocudigit) * |
decdigit 0 | decdigit) * |
(0| hexdigity *

where
ocidigit = ‘1'..'7T
decdigit = ‘1'..‘9°
hexdigit = '1°..'9", ‘A’ P, a2t

Character and string constants are delimited by single and double quotes,
respectively. Non-printing characters may be indicated by the single-leter
backslash-escapes of C (\b, \n, \r, \t), or by numbers {as defined above) delim-
ited by a pair of backslashes (as in \#7f\ for the delete character). Single quotes
in character constants and double quotes in string constants are indicated by V

and \", respectively. Backslashes are indicated by \\. Backslashes not accounted

for by any of the preceding rules are ignored. !?

!5 These conventions agree with C except in the form of numeric escapes.

CHARCONST =

'

NOT (', \, \n, nonprint) |
\NOT (#, 0, decdigir, \n , nonprint) |
\ number \

X

STRINGCONST =

"

NOT ¢ ", \, \n, nonprint) |
\NOT (#, O, decdigit, \n , nonprint) |
\ number \

yE

where

136

nonprint indicates the Ascii characters with codes 1..8, 11..31, and 127
decdigit is as above
number is as defined for the token ‘‘number”’

Keywords are:

ACCEPT AND ARRAY AWAIT
BEGIN BIND CALL CASE
CONNECT CONST DO ELSE
ELSIF END ENTRY EXCEPTION
EXIT EXPORT EXTERNAL FOREACH
FORWARD FROM FUNCTION IF
IMPORT IN LOOP MOD
MODULE NOT OF ON

OR OTHERWISE PROCEDURE RAISE
READ RECEIVE RECORD REMOTE
REPEAT REPLY RETURN REVERSE
SEND SET THEN TO

TYPE UNBIND UNTIL VAR
WHEN WHILE WITH WRITE

After excluding keywords, identifiers are strings of letters, digits, and
underscores that do not begin with a digit and do not end with an underscore.
Case is not significant in identifiers, except when significance is imposed from

outside by associating names in the language with external objects.

137

IDENTIFIER =
letter | (
(letter | _)
(letter | _, digit) *
(letter | digit)
)

where
letter = ‘A2, 'a’..'2’ '
digit = '0*..'9
2. Types

A type is a set of values and a mapping from those values to representations
in memory. Types are useful for restricting the values that can be used in vari-
ous conlexts. Several types are pre-defined. Others are created by type con-
structors.

type ;2= IDENTIFIER
1= enum-type

;1= subr_type

1= array-lype .
1:= record_type
1= seL.lype

2.1. Pre-defined Types

integer
consists of as many distinct values as can be srepresented in a single word.
Its values lic in a contiguous range centered approximately at the origin
(—2147483648 through 2147483647 on the VAX),

char
consists of the Ascii characters. Char variables occupy one byte on the

VAX.

138

Boolean

link

2.2,

first

The

consists of the truth values. True and false are pre-defined constants of type

Boolean. Boolean variables occupy one byte on the VAX.

consists of references to the ends of communication channels. Link values
are created at run time. A given end of a given link is accessible to only

one process at a lime. Links are discussed in detail below.

Nolink is a pre-defined constant of type link. The value nolink can be
assigned inlo or compared against the contents of a link variable, but is

usable for nothing else. Link variables occupy two bytes on the VAX.

Enumerations

The values of an enumeration type have a one-one correspondence with the

few non-negative integers.

enum.type 1= (identlist)

ident_list ::= IDENTIFIER id_list_tail

id_list_tail 1=, ident list

identifiers in the list name the values of the type. Enumeration variabies

occupy four byles on the VAX.

2.3.

exis

Subranges

A type can be declared 1o be a subrange of any existing scalar type. The

ting type is called the parent type of the subrange. Scalar types are integers,

chars, Booleans, enumerations, and subranges.

subr_type ;= | expr .. expr]

Subrange variables occupy one, two, or four bytes on the VAX, depending on
whether or not their bounds fall in the ranges —128..127, —32768..32767, or
--2147483648..2147483647, respectively.

2.4. Array Types

The values of an array type are ordercd lists of values of the array’s ele-

ment type. The lengih of cach list is the number of distinct vaiues of the array’s

index type.

array_type 1= ARRAY type OF type

The type that follows the word ARRAY is the index type. The second type is the

element type. The index ype must be scalar.

A variable of an array type thus consists of many smaller variables, called
the elements of the array. The element variables have names: if expr is an
expression whose type is the index type of array ‘*foo’> and whose value is n,

then ‘*foo [expr]” is 4 name for the nth element of foo.

The elements of an array are stored in consecutive locations in memory.
The location of the first element is the same as the location of the array. There
is no special syntax for multi-dimensional arrays. The cqomqmaimq can of
course declare arrays of arrays and access their elemenis as “‘name [row]

[column].””

2.5. Record Types

A record is a list of named fields. The values of a record type are lists of

values of the types of the fields.

140
record_type ::= RECORD field_list_opt END
field_list_opt .= field field-list_opt
field ;o= identlist o type ;

.= CASE IDENTIFIER : type OF vt lisLopt END;

vnt_list.opt ::= variant vnt_list_opt

variant ::= { componenL.list } field lisLopt
component_list ::= component comp.lisL tail
comp..list_tail 1=, component comp_list_tail
component .= expr component.tail

I

component_tail L= oL expr

A variable of a record type thus consists of a collection of smaller variables,
one for each field of the record. Each of these smaller variables has a name.
The name is created by appending a period and the name of the field to the name

of the record variable.

The word CASE introduces a variant portion of a record. All variants have

the same location. Only one variant is valid al a time.

The identifier following the word CASE is the name of a special field cailed
the tag of the variant portion of the record. The tag must have a scalar type. It
determines which variant is valid at a particular point in time. The component
list of each variant lists the values of the tag for which the variant is valid. The
lists must be disjoint. Their component expressions must have values that can be

determined at compile time. They cannot involve function calls.

On the VAX, records have the same representation in memory as C structs

and unions.

141

2.6. Set Types

The values of a set type are unordered sets of values of the sel’s com-

ponent type.

seLtype 1= SET OF type
The component type must be scalar or link.

On the VAX, every sct variable occupies 16 bytes. The component type of
a setl (if other than link), must have no more than 128 elements. For sets of
subranges of integers, the subrange bounds must lie between 0 and 127,

inclusive.

3. Declarations

Identifiers denote types, conslants, variables, exceptions, exception classes,
subroutines, and entries. Several identifiers are pre-defined; all others must be
declared by the programmer. Identifiers exported from a module (sections 3.7
and 4) appear in the export list before they are declared. All other identifiers

must be declared before they are used.
dec_pt .. = declaration dec_pt

declaration ::= CONST const_dec const_dec_tail
::= TYPE type_dec type_dec_tail
1:= VAR var_dec var_dec_tail

::= EXCEPTION ident.list ;

;= subroutine ;

1= entry ;

1= module ;

Declaration sections can appear in any order, an arbitrary number of times.

142

3.1. Types

A type may have any number of names. There are four built-in types.
They all have names. Each lexical occurrence of a type constructor introduces a
new type. A type declaration introduces a new name for the type on its right
hand side. A constructed type that appears on the right-hand side of a variable
declaration has no name. Once declared, the name of a type can be used any-

where a type constructor could be used, but without introducing a new type.

type_dec ::= IDENTIFIER = type ;

type_dec_tail 1= type-dec type_dec_tail

3.2. Constants

Constant declarations introduce names for string constants or for values of

pre-defined scalar types.

const.dec ;= IDENTIFIER = expr ;

.. .

const_dec_tail .= const.dec const.dec_tail

The expression must have a value that can be determined at compile lime. It
cannot involve function calls. If the expression is a string constant, then the
declared constant has the new and nameless type ‘‘ARRAY [0..n] of char,”

where n is the number of characiers in the string. Byte n is a null (Ascii 0).

3.3. Variables

Variable declarations reserve memory locations and introduce names for

those locations.

143

var_dec ;o= ident list : type ;

»

var_dec_tail 1= var_dec var_dec_tail

The name of a variable refers either 10 the location of the variable or to the value
stored at that location {its contents), depending on context. The type of a vari-
able restricts the values that can be stored at its location. 1l is a programming

error 10 refer to the contents of a variable before storing a value at its location.

3.4. Exceptions

Every link value has several exceptions associated with it. Names for these
exceptions consist of an expression of type link (with the appropriale value) fol-

lowed by the name of a built-in exception class.

Additional exceptions are introduced by exception declarations. Each iden-

tifier in the identifier list of an exception declaration is the tonly) name for a new

exception.

Programmer-defined exceptions have different semantics from the excep-
tions associated with links (see section 7.2). Both kinds of exceptions are used

only in when clauses (section 6.11) and raise statements {section 6.12).

3.5. Subroutines

Subroutines are parameterized sequences of statements.

144

subroutine ::= PROCEDURE IDENTIFIER arg_list_opt ; body
;= FUNCTION IDENTIFIER arg_list_opt
fun_type_opt ; body

arg list.opt ;= 1 mode formal more_m_formals)
more_m_formals ::= ; mode formal more_m_formais
modc i= VAR
:i= CONST
formal ;= ident list : IDENTIFIER
fun_type_opt = : IDENTIFIER
body ;i = dec_pt compound-stmt IDENTIFIER
::= FORWARD
::= EXTERNAL

The name of the subroutine follows the keyword PROCEDURE or FUNCTION.
The identifier at the end of a non-trivial subroutine body must match the name of

the subroutine.

The argument list specifies formal parameters for the subroutine,
together with the modes and type names of those parameters. Within the com-
pound staterment of a subroutine body, parameters may be used as if they were
variables. VAR parameters are passed by reference. Plain parameters are
passed by value. The contents of CONST parameters cannot be modified.

CONST parameters are passed by reference on the VAX.
Functions yield a value whose type name foliows the argument list. Pro-

cedures do not yield a value.

A FORWARD subroutine body indicates that the subroutine will be
declared again later in the same scope, with a non-trivial body. The second

declaration must omit the argument list and function type.

145

An EXTERNAL subroutine body indicates that the subroutine is external to
LYNX and must be found by the linker. Case is significant in the names of

external subroutines.

3.6. Entries

An entry resembles a procedure.

entry ;= ENTRY IDENTIFIER in_args_opl out_types_opt ;
body

in_args_opt :i= (formal formal_tail)

formal_tail ;i = ; formal formal_tail

n

oul_types_opl ;o= :identlist

The name of the entry follows the keyword ENTRY. As with subroutines, the

identifier at the end of a non-trivial body must match the name of the entry.

An entry cannot be declared EXTERNAL, but it can be declared
REMOTE.

body ::= REMOTE
A REMOTE body indicates that the entry may de declared again (minus in argu-

ments and out types, but with non-trivial body) in the same scope. Unlike FOR-

WARD, REMOTE does not require the later declaration.

The in arguments and out types of an entry are templates for the request
and reply messages of a remote operation. Within the staiements of the body of
the entry, the in arguments can be used as if they were variables. Through the
use of the bind statement (section 6.9), the programmer can arrange for an entry

1o be executed in response 1o incoming requests.

146

3.7. Modules

Modules are an encapsulation mechanism for structuring programs and for

limiting the scope of identifiers.

module ::= MODULE IDENTIFIER ; import.pt exporL_pt
dec_pt cpd_stmt_opt IDENTIFIER
import_pt ;1= IMPORT ident list ;
export_pt 1= EXPORT ident list ;
cpd_stmt_opt 11= compound_stmi
:= END

The compound statement of a module, if it has one, is called the module’s
initialization code. For consistency with the terms for subroutines and entries,
it is occasionally called the module’s body as well. The purpose of import and

export lists is explained below.

4. Scope

Declaration sections appear near the beginning of every block. Blocks are

subroutines, entries, and modules.

Declarations introduce meanings for identifiers. ldentifiers can have dif-
ferent meanings at different places in a program. The portion of a program in
which a particular meaning holds is called that meaning’s scope. The scope of a
meaning extends from the declaration of its identifier to the end of the block in

which that declaration appears, with three exceptions:

(1) I a nested block contains a declaration of the same identificr, or if a with
statement or labeled statement introduces a new meaning for the identifier

(see sections 6.5.4, 6.6, and 6.8), then the scope of the outer meaning

147

does not include the scope of the inner meaning.

{2) A meaning does not extend into any nested module unless its identifier is
explicitly imported.

{3) If a module explicitly exports an identifier, then the meaning of that iden-
tifier extends from its declaration inside the module to the end of the enclos-

ing block {subjecl to exceptions (1) and (2)).
Identifiers can be imported or exporled repeatedly in a nested chain of modules.

For the purpose of defining scopes, the formal parameters of subroutines
and entries are considered to be part of the declaration section immediately fol-
lowing their argument list. They are not visible in as large a scope as is the

name of their subroutine or entry.

Two record types visible at the same point in a program can have fields with
the same name. Otherwise, declarations of the same identifier must have disjoint
scopes. In particular, simultaneously visible enumeration types cannot have

values with the same name.

The environment of a particular thread of control at run time is a mapping
from names to their current meanings. New meanings appear whenever control
enters the initialization code of a module or the body of a subroutine or entry.
The affected identifiers are those declared in the immediately preceding declara-
tion section. For a subroutine or entry, the meanings disappear with the comple-
tion of the body of the block. For a module, the meanings disappear with the
completion of the closest enclosing subroutine or entry. They may not be visible
outside the module, unless they are exported. For any particular thread, the
appearance and disappearance of meanings occurs in LIFO order. (The same is

not true of a process as a whole, as discussed’ in section 7.)

148

5. Expressions

An expression evaluates 10 a value at run time. Every expression has a

type. Expressions are composed of atoms, parentheses, function calls, and

operators.
expr ;1= term expr-tail
expr-tail ;2= rel_op term expr_tail
term 1= factor term._tail
term_tail 1= other_op factor term_tail
factor ;1= NOT factor

;:= — factor

= constant

1= sel

1= (expr)

i = selector sel_fac_tail
selector ;.= IDENTIFIER selector..lail
selector_tail ;1= . IDENTIFIER selector_tail

5.1. Atoms

An atom is an explicit constant, or the name of a constant or variable.

constant 1= NUMBER
= CHARCONST
;2= STRINGCONST
sel_fac_tail 1= changeover
changeover 1= [expr] designator_tail
::= : IDENTIFIER designator_tail
designator_tail ;= . IDENTIFIER designator_tail
;= changeover

149

A number or character constant is an expression with an obvious value and
type. A string conslant has the new and nameless type “*ARRAY [0..n} of

char,”” where n is the number of characters in the string.

The name of a constant or variable is an cxpression whose value is the
value of the constant or the contents of the variable and whose type is the type of
the constant or variable. Within a name, a period indicates selection of a field of
a record. Brackets indicate selection of an element of an array. A colon indi-
cates a type cast.

Type casts are allowed only on variables. A variable name followed by a
type cast is the name of an imaginary variable whose type is specified by the cast,
whose location is the same as that of the original variable, and whose value is

determined by interpreting the data at that location. That value may be garbage.

5.2. Set Expressions

A set expression evaluates to a value of type ““SET OF component_type,”’
where componeni_type is a subrange whose bounds are the lowest and highest
possibie values of any of the component expressions or ranges. The set type is
new and nameless. [t is provisional in the sense that it may be coerced 0
another type if context requires it.

set ;= { comp_lisLopt }
comp_lisLopt o= component.list

il

The value of the set contains the value of each component expression and ail

values in each component range.

5.3. Function Calls

The type of a function call is specified in the declaration of the function.

The value is obtained by invoking the function at run time.

sel_fac_tail 1= (expr-list)
expr-list 1= expr expr-listtail
expr-list tail 1=, expr-list

The expressions in the argument list are called actual parameters. They must
agree in order and number with the formal parameters of the function. Their
types must be compatible with the types of the formals. Type compatibility is
discussed under assignment statements (section 6.1). A function call with no

parameters looks like an atom.

The values of the actual parameters are used as initial values for the formal
parameters of the function. Actual parameters corresponding to VAR or CONST
formal paramelers must be variables. The contenls of actual parameters
corresponding to VAR formal parameters may be changed by invoking the func-
tion. The contents of actual parameters corresponding lo value or CONST for-

mal parameters are not changed.

5.4. Operators
All operators are pre-defined. They are represented by the following

tokens:

+ - * / ~ ~ >
< <= >= > = <>
NOT AND OR IN MOD

NOT is a unary operator. It has one operand, the expression to its right. The

151

minus sign (—) can also be a unary operator, if there is no expression to its
immediate left. Otherwise, it is a binary operator. Binary operators have two
operands: the expressions to their left and right. The rest of the operators in the

above list are binary.

5.4.1. Operator Precedence

In the absence of parentheses, operands and operators are grouped together

according to the following levels of precedence.
Loosest grouping

OR
AND
< <= >= > = <>
+ - (binary)
= MOD /
NOT - (unary)

Tightest grouping
Operators of equal precedence associate from left to right.

5.4.2. Operator Semantics

For the purposes of this section, define the base of any type except a
subrange (o be the type iisell. Define the base of a subrange 1o be the base of the
subrange’s parent type.

NOT

is a unary operator whose operand must have. base type Boolean. “*NOT

expr’® is an expression of type Boolean whose value is the negation of the

value of expr.

152

AND and OR
are binary operators whose operands must have base type Boolean. *‘exprl
AND expr2® and ‘‘exprl OR expr2’ are expressions of type Boolean
whose values are the logical and and or, respectively, of the values of their

operands.

{unary) -
is an operator whose operand must have base type integer. ‘‘— expr’’ is an
expression of type integer whose value is the additive inverse of the value of
expr.

+, -, and*
are binary operators whose operands must be sets, or else of base type
integer. If exprl and expr2 are of base type integer, then “‘exprl +

.

‘expr2,”” ‘“‘exprl - expr2,” and ‘‘exprl = expr2’’ are expressions of Lype
integer whose values are the sum, difference, and product, respectively, of
the values of their operands. The VAX implementation performs these

operations in two's complement arithmetic with no checks for overflow.

If expr! and expr2 are sets, then *‘exprl + expr2,” “‘exprl — expr2,”’ and
““exprl « expr2’’ arc expressions whose values are the union, difference,
and intersection, respectively, of the values of the operands. If neither
operand has a provisional type, then the types must be the same, and the
type of the expression will be the same as well. I exactly one operand has
a provisional type, then it is coerced 10 the type of the other operand, if pos-
sible. The coercion is not permitted if 1) the two operands have different
component base types, or 2) the bounds of the component type of the provi-

sional operand do not lie within the bounds of the component type of the

153

other operand. If both operands have provisional types, then the bases of
their component types must be the same, and the expression has a new pro-
visional type. The component type of the expression has the same base as
the component types of the operands, and its bounds are the minimum and

maximum of the bounds of the components of the operands.

/ and MOD

are binary operalors whose operands must have base type integer. ‘‘exprl/
expr2’ and ‘“‘exprl MOD expr2’ are expressions of type integer whose
values are the quotient and remainder, respectively, obtained in dividing

exprl by expr2, The remainder has the same sign as the dividend (in this

case exprlj.

<, <=, >=,and >

are binary operators whose operands must either be sets or else have scalar

base types. If the operands are sets, then the type rules described under

““+, ~, and =" apply. ‘‘set! op sei2” is an_cxpression of type Boolean

whose value reflects the relationship between the two sets. In the order of
aur

the heading above, the operators determine whether setl is a proper subset,

subset, superset, or proper superset of set2.

If the operands are scalars, then their base types must be the same, and
‘*exprl op expr2” is an expression of typc Boolean whose value indicates
whether exprl is less than, less than or cqual to, greater than, or greater

than or equal to expr2.

and <>

are binary operators whose operands must cither be sets, be of type link, or

have scalar base types. If the operands are sets, then the type rules

154

described under '+, -, and =" apply. I the operands are scalars, then
their base types must be the 'same. In all cases, *‘exprl op expr2’’ is an
expression of type Boolean whose value indicates whether exprl and expr2

have the same value.

is a binary operator whosc operands must have type link. ‘‘exprl ~
expr2™ (read **exprl is similar 10 expr2”’) is an expression of type Boolean
.whose value indicates whether the values of exprl and expr2 are references
1o opposite ends of the same link. Checking for similarity is not supported

by the Charlotic implementation.

is a binary operator whose left operand must have type link and whose right
operand must be the name of an entry. “‘expr ~ > entryname’’ is an
expression of type Boolean whose value indicates whether the link end
referenced by expr is bound to entryname. (Bindings are discussed in sec-
tion 6.9.)

is a binary operator whose right operand must be a sel whose component
basc type is the same as the base type of the left operand. *‘exprl IN
expr2” is an expression of type Boolean whose value indicates whether the

value of the left operand is a component of the value of the right operand.

6. Statements

Statements accomplish the work of a program. They change the contents of

variables, send messages, and produce output data on the basis of internal calcu-

lations, incoming messages, and inpul data.

stmi 1= reply
::= other.stmt
other_stmt ;.= label_opt labeled.stmt
1= communication
= o
;= bind_stmt
:1= unbind._stmt
= ifstmt
;1= case_stmt
1= exitstmt
1i= with.stmt
1i= return.stmt
awailstml
11= raise_stmt
.+ = selector sel_stmt tail

I

it

i

i

labeled_stmt ::= loop.stmt
;1= compound_stmt

I

6.1. Assignment Statement

An assignment stalement changes the confents’ of a variable.

sel_stmi_tail i = firstchange := expr
firstchange ;1= changeover

The left-hand side of the assignment precedes the := sign. 1t must be the
name of a variable. The type of the expression on the right-hand side must be

compatible with the type of the lefi-hand side.

Every type is compatible with itsell (compatibility is reflexive). A subrange
and its parent type are compatible with each other. Two subranges are compati-
ble with cach other if their parent types are compatible and if their sets of values
intersect. (Run time checks may be necessary to guarantee that assignments pro-
duce vaiid values for the left-hand side.) A string constant is compatible with any

array whose elements have base type char. A long string may be truncated 1o fill

156

a small array. A short string may be extended with garbage to fill a large array.
A provisional set type is compatible with any type it could be coerced to match
(run time checks may again be necessary). Types not covered by these rules are

not compatible.

6.2. Procedure Call

Like a function call, a procedure call provides a set of actnal parameters
to be used for the initial values of the formal parameters of the subroutine.

Unlike a function, a procedure yields no value.

sel_stmt_tail 1= e_arg opl
e arg_opt ;= (expr-list)

it

Actual parameters must agree in order and number with the formal parameters of
the procedure. Their types must be compatible with the types of the formals.
Actual parameters corresponding to VAR or CONST formal parameters must be
variables. The contents of actual parameters corresponding to VAR formal
parameters may be changed by calling the procedure. The contents of actual
paramcters corresponding 1o value or CONST formal parameters are not

changed.

6.3. If Statement

An if statement contains one or more lists of statements, at most one of
which is executed. The choice between the lists is based on the values of one or

more Boolean expressions.

157

if_stmt 2= IF expr THEN stmtlistopt elsif_lisLopt else_opt
END

elsif_list_opt ;= ELSIF expr THEN simt list_opt elsif_list_opt

else_opt 1= ELSE stmt_list_opt

stmt_list_opt 1= stmt ; m::_r:mrmn_

+

The first statement list is executed if the first Boolean is true, the second if the
second Boolean is true, and so forth. The last list, if present, is executed if none

of the Booleans are true.

6.4. Case Statement

Like an if statement, a case statement contains multiple lists of statements.
It is intended for the commonly-occurring situation in which the choice between

lists is based on the value of a single variable.

case_stml 1= CASE expr OF case_list_opt default_opt END
case_lisL.opt 1= { component.list } stmt_lisL_opt case_iisLopt
defaulopt ::= OTHERWISE stmt_list_opt

The expression following the word CASE must be a scalar. The beginning of
each arm of the case statement has the same syntax as a set expression. The
component lists must be disjoint. The expressions they contain must have values

that can be determined at compile time. They cannot involve function calls.

Exactly one of the stalement lists must be executed. If the value of the
scalar expression is found in one of the component lists, then the immediately
following statement list is executed. If the value is not found, then the statement

list following the word OTHERWISE (if present) is exccuted instead. If the

158

value is not found and the OTHERWISE clause is missing, then an error has

occurred and execution must halt.

6.5. Loop Statements

Loop statements cause repetitive execution of a nested list of statements.

loop_stmt 1= forever_loop
= while_loop
11= repeat_loop
foreach_loop

[

6.5.1. Forever Loop

Execution can only leave a forever loop by means of an exit statement, a

return statement, or an exception.

forever_loop ;2= LOOP simt_lisLopt END

6.5.2. While Loop
The header of a while loop contains a Boolean expression.

while_loop :v= WHILE expr DO simt_list_opt END

The expression is evaluated before every iteration of the loop. If its value is true,
the statements inside the loop are executed. I it is false, execution continues
with the next statement following the loop. If the value of the Boolean expression

is false the first time it is examined, then the loop is skipped in its entirety.

6.5.3. Repeat Loop

The footer of a repeat loop contains a Boolean expression.

repeat_loop 2= REPEAT stmLIisLopt UNTIL expr

The expression is evaluated afier every iteration of the ioop. If its value is false,
the statements inside the loop are executed again. If it is true, execution contin-
ues with the next statement following the loop. The staiements inside a repeat

loop are always executed at jeast once.

6.5.4. Foreach Loop

The header of a foreach loop introduces a new variable called the index of

the loop.
forcach_loop ;2= FOREACH IDENTIFIER IN generator DO
stmilist_opt END

generator = {expr .. expr]
1= osel
:t= selector firsichange
;1= REVERSE reversible_gen

reversible_gen = expr .. oexpr) .

1= selector
The scope of the index is the statement list inside the loop. The type of the index

is determined by the loop’s generator. A generator can be a range of values, a

set expression, a name of a set variable, or a name of a scalar type.

The generator produces a sequence of values for the index. The siatements
inside the foreach loop are executed once for each value. If the generator is a
range of values, then the type of the index will be the base type of the bounds of
the range (thc bounds must have the same base lype). The index takes on the
values in the range in ascending or descending order, depending on whether the
word REVERSE appears in the loop header. The range may be empty, in which

case the loop is skipped in its entirety.

160

If the generator is a set expression or a variable of a set type, then the type

of the index is the base type of the components of the sel. The index lakes on the

values of the set in arbitrary order,

If the generator is the name of a scalar lype, then that type is the type of the

index. The index takes on the values of the type in ascending or descending

order, depending on whether the word REVERSE appears in the loop header.

The value of the index can be examined but not changed by the statements
in the loop. It cannot appear on the lefi-hand side of an assignment, nor can it
be passed as a VAR parameter {o any procedure or function, nor can it appear
among the request parameters of an accepl statement or the reply parameters of a

connect, call, or receive statement.

6.6. Exit Statement

A exit statement can only appear inside a loop or inner compound statement
(not the body of a subroutine, module, or entry). An exil statement causes con-

trol to jump to the staiement immediately following the loop or compound state-

ment.
exiLstmt 1= EXIT ident.opt
ident_opt ::= IDENTIFIER
Any loop statement or compound statement can be preceded by a label.
label_opt ii= << IDENTIFIER > >

The scope of the identifier in a labe! is the statement list inside the immediately
loliowing loop or compound statement. The identifier in an exit statement must

have been introduced in a label. Control jumps 1o the statement immediately

161

following the labeled statement. I the identifier in the exit stalement is missing,
then control jumps 1o the statement immediately folowing the closest enclosing

loop or compound statement.

6.7. Return Statement

A return statement can only appear inside a subroutine.

return_stmt ::= RETURN expr._opt
expr_opt = expr

If the subroutine is a function, the type of the return expression must be
compatible with the type of the function. The funciion yields the value of the
expression, and control returns to the evaluation of the expression in which the
function call appeared. If control reaches the end of the body of a function
without encountering a return statement, then an error has occurred and execu-

tion must halt.

If the subroutine is a procedure, then the return expression must be miss-
ing. Control continues with tne statement immediately following the procedure
call. There is an implicit return statement at the end of the body of every pro-

cedure.

6.8. With Statement

A with statement makes it easicr and more efficient 10 access the fields of a

record.
with_stmt 1= WITH designator DO stmLlist_opt END
designator .= selector firstchange

The designator must be the name of a record variable. Within the staiement list

162

of the with stalement, the fields of the record can be named direcily, without
preceding them with the designator and a period. The with statement constitutes

a nesled scope; any existing meanings for the names of the fields will be hidden.

6.9, Bind and Unbind Statements

The bind statement associates link ends with entries. The unbind statement

undoes associations.

bind_stmt ;1= BIND expr_list TO ident_list
unbind_stmt ;1= UNBIND expr.list FROM identlist

Each expression in the expression list must either be of type link or else be a set
of component base type link. Euach identifier in the identifier fist must be the
name of an entry. Each mentioned link end is bound (unbound) to (fromj cach
mentioned entry. If any of the link values arc not valid, then an error has

occurred and execution must halt,

Binding and unbinding are idempotent operations when performed by a sin-
gle thread of control; a thread does no harm by making the same binding twice,
or by attempling to break a non-existent binding. Conflicting bindings are a
run-time error. If two threads auempt to bind the same link end to different
instances of the same entry (same entry lexically, but different environments), or
il one or more threads attempt to bind the same link end to different entries with

the same name, then an error has occurred and execution must halt.

The purpose of bindings is discussed under exccution (section 7) below.

6.10. Await Statement

The await statement is used to suspend execution of the current thread of

control until a given ccadition holds.

163

await_stmt = AWAIT expr

The expression must be of type Boolean. The current thread will not continue
until the expression is true. If it is false when first encountered, it must be

changed by a different thread.

6.11. Compound Statement

A compound statement is a delimited list of statements with an optional set

of exception handlers.

compound.-stmt ::= BEGIN stmt_list_opt hand_list_opt END
hand_list.opt ;= when_clause more_handlers

when_clause ;= WHEN exception more_whens DO stmt list.opt
more_whens ;1= , exception more_whens

more_handlers :: = when_clause more_handlers

exception ;2= expr ident_opt

Compound statements comprise the bodies of subroutines, modules, and entrics.

They may also be nested anywhere a stalement can occur.

Each exception handler consists of a series of when clauses and a statement
list. As mentioned in section 3.4, an exception is either an expression of lype
link followed by the name of built-in exception class, or a name introduced in
an exception declaration. The exceptions in the when clauses of a given com-
pound statement need not be distinct. When an exception arises, the first clause
that matches the cxception will be used. Exceptions are discussed in more detail

in section 7.2.

164

6.12. Raise Statement

Some exceptions occur sponlaneously in the course of communication on

links. Others arc caused by execution of the raise statement.

raise_simit .= RAISE exception

An exception associated with a link end is raised in the current thread of control.
An exception introduced by an exception declaration is raised in each thread with

an active handler for it.

6.13. Input/Output Statements

Input and oulput statements read and write Ascii data on the standard input
and output streams. In the Charlotie implementation, these streams connect o

the (possibly virtual) console terminal of the local node.
io 1:= WRITE { expr_list)

::= READ ¢ expr des_lisLopt)
des_list_opt ;= designator_list

ft

il

designator_list n
des.list_tail i

designator des_lisLtail
, designator des_list_tail

it

The parameters of read and write have the same format as those of the scanf and
prinif routines in C. The first argument must be a string constant or an array
whose clements have base type char. The rest of the arguments must be scalars
or strings. The second and subsequent arguments (o read are automatically

passed by reference.

6.14. Communication Statements

Communication statements use links to exchange messages with remote

processes.
commumnication 11= connecl_stmt
= call_stmt
1= accept.stmt
= send.simt
1= receive_stmt

6.14.1. Connect and Call Statements

The connecl statement requests a remole operation. The call siatement

invokes a local operation.

connectstmt .+= CONNECT IDENTIFIER call_args_opt ON expr
call_stmt ;= CALL IDENTIFIER call_args_opt

call_args.opt ;= (call_args)

call_args = expr.list | des_list_opt

::= | designator_list

The identifier following the word CONNECT or CALL must be the name of an

eniry. The final expression of a connect stalement must have type link.

The thread of control that executes a connect or call statement is called a
client. The client creates a request message from the actual parameters of the
expression list, sends the message, and waits for a reply message. The reply will
contain new values for the actual parameters in the designator list. The request
actual parameters must agree in number and order with the formal parameters of
the entry whose name follows the word CONNECT or CALL. Their types must
be compatible with those of the formals. The reply ‘actual parameters must be the

names of variables. They must agree in number and order, and be compatible,

166

with the reply types of the entry.

6.14.2. Accept Statement

The accept statement allows a thread of control to serve a request from

some other process for a remote operation.

accept_stmt ::= ACCEPT IDENTIFIER d_arg-opt ON expr ;
o_s_list_opt reply

o_s_list_opt ::= other_stmt ; o_s_lisL_opt

d_arg_opt ;= (designator_list)

reply ;= REPLY e_arg_opt

The identifier following the word ACCEPT must be the name of an entry. The

expression following the word ON must have type link.

The thread of control that executes an accept statement is called a server.
The server waits for a request message from a client on the other end of the
referenced link. When such a message arrives, it will contain new values for the
actual parameters in the designator list. The parameters in that list must agree in
number and order, and be compatible, with the parameters of the entry whose

name follows the word ACCEPT.

The server executes the statement list and returns a reply message o the
client. The actual parameters following the word REPLY must agree in number
and order, and be compatible, with the reply types of the entry whose name fol-
lows the word ACCEPT. The acluals are packaged together to form the reply
message. They are returned to the client on the link specified after the word

ON — the same link on which the request message arrived.

167

The syntax of the portion of an accept statement beginning with the word
REPLY is a valid statement in and of isell; thercfore the statements inside the

accept cannot include a reply.

6.14.3. Reply Statement

Accept statements provide for the explicit receipt of requests for remote
operations. Entries provide for implicit receipt. Within the body of an entry,
the reply portion of an accept statement can appear by itself. It_ actual parame-
ters must agree in number and order, and be ~ompatible, with the return types of
the entry in which the reply statement occurs. The reply message is returned to

the client on the same link on which the request message arrived.

If control reaches the end of an entry without replying, or if the thread of
control executing the entry attempts to reply more than once, then an error has

occurred and execution must halt.

6.14.4. Send Statement

The send statement allows a thread to escape the normal checking of opera-

tion names and message types.

send_stmt ::= SEND designator length_opt enclosure_opt ON expr
length_opt o= o< lerm >
enclosure_opt o= WITH expr :

The designator following the word SEND must be the name of a variable. The
expression following the word ON must have type link. A sequence of bytes,
beginning at the location of the variable, are sent on the referenced link. The

length option indicates the number of bytes to be sent. 1f missing, the size of the

168

variable is assumed tand the bytes that are sent are precisely the contents of the
variable). No interpretation is implied for the transferred bytes; in particular,
link variables that happen to lie among them do nor cause the link ends they
reference 1o be moved. In the Charlotte implementation, a single enciosure can

be attached to the message by means of an optional with clause.

The thread of control that executes a send statement blocks until the mes-
sage is received by some thread in the process on the other end of the link. It

does nor wait for a reply message.

6.14.5. Receive Statement

The receive statement is the counterpart of the send statement. 1t allows a

thread to escape the normal checking on messages.

receive.stmt ;= RECEIVE designator length.opt enclosure_opt
ON expr

The designator following the word RECEIVE must be the name of a variable.
The expression following the word ON must have type link. A sequence of bytes
is received on the referenced link and stored in memory beginning at the location
of the variable. The length option indicates the number of byies to be received.
If missing, the size of the variable is assumed (and the bytes that are received
constitute new contents for the variable). The enclosure option is provided for
{he benefit of the Charlotte implementation. 1t must be the name of a variable of
type link. The contents of the link variable are changed to reference the link end
that was enclosed in the message. If no end was enclosed, the contents of the

link variable are changed to nolink.

The thread of control that executes a receive statement blocks until a mes-

sage arrives.

169

6.14.6. Communication Rules

Messages sent in the same direction on the same link are guaranteed 1o
arrive in order. Messages sent on different links are not, even if they involve the
same pair of processes. Similarly, the cicanup of the far end of a link that is des-
troyed locally may occur in arbitrary order with respect to the destruction or

arrival of messages on other links.

If any of the following rules is broken, then an error has occurred and exe-

cution must halt,

(Iy For all communication statements, the value of the expression that follows

the word ON must reference a valid link.

(2) A link end that is bound to an entry, or that is being used in a connect,
accepl, or reply stailement may not simultaneously be enclosed in a mes-

sage.
(3} A link end that is bound to an entry, or that is being used in a connect,

accept, or reply statement may not simultaneously be used in a send or

receive statement,

Rule 3 is not enforced correctly by the Charlotte implementation. There
are (unlikely) circumstances under which invalid communication will be allowed
or valid communication forbidden. In general, a program is safe if it avoids
using send and receive on links that may occasionally have threads executing con-

nect statements on both ends simulianeously.

6.14.7. Enclosures

There are no limitations on the data types that can appear in the argument

lists of connect, accept, and reply statements. In particular, references to links

170

and data structures that contain references to links can be transferred from one

process to another.

If a link variable that references a valid link is enclosed in a request or
reply message, then the end of the link that it references is moved to the receiving
process. The contents of the link variable are changed in the receiving process to
be a valid reference to the moved end of the link. A single link variable can also
be enclosed in a send statement, but only by means of the with clause (section

6.14.4).

A link end that is enclosed in a message becomes inaccessible in the send-
ing process, even if communication is interrupted by an exception. Link vari-
ables that referenced the end are now dangling references; their contents are no

longer valid.

A process can own both ends of a link. If it sends a message to itself on
that link, references to any enclosures still become invalid, just as if they had
been sent 1o another process. Link variables that refer to enclosures in call state-
ments or in replies from calied entries do nor become dangling; they remain

valid.

7. Execution

A LYNX program is a collection of modules. Modules nest. The syntax
for outermost modules differs slightly from that of other modules. Each outer-

most module is inhabited by a single process.

process_list 1= process . process_list

process ::= MODULE IDENTIFIER in_args_opt ;
dec_pt cpd_stmt_opt IDENTIFIER

171

An outermost module has no import and export lists. Its arguments must have
built-in types. Links in the argument list provide the means for a process to

communicate with the rest of the world.

A process begins execution with a single thread of control. The task of that
thread is to execute the initialization code of thc process’s outermost module.
Before doing so, the thread recursively executes the initiafization code of any
nested modules. In general, a thread of controi executes the initialization code of
a module immediately before executing the body of the subroutine, module, or

entry in which that module is declared.

New threads of control are created by instantiating entries. Entries are
instantiated by call statements and by the arrival of messages on link ends bound

to entries.

The threads in a process do not execute in parallel. A process continues
with a given thread until it blocks. (Blocking stalements arc listed in section
7.1.) It then switches context to another thread. I no other thread is runnable,
the process waits for an event. An cvent is the completion of an outstanding
connect or reply statement, or the arrival of a request on a link end that is bound
to an entry or for which there are outstanding accept statements. If no events are
expecled, then deadlock has occurred and execution must halt. Events only com-

plete when all threads are blocked.

The completion of an event always allows some thread to continue execu-
tion. Only one event completes at a time. The nature of the event determines
which thread runs next. i a connect or seply statement has completed, the
thread that executed that statement can continue. If a request arrives on a link

end for which there are outstanding accept staiements or bindings to entries, then

172

the contents of the request are examined.

If the requested operation matches the name of an entry in one of the
accept statements, then the thread that executed that accept stalement can con-
tinue. If the requested operation malches the name of an entry in one of the
bindings, then a new thread of control is created. That thread begins execution
in the appropriate entry with initial values for its parameters laken from the mes-
sage. If outstanding accept statements or bindings exist, but the requested opera-
tion matches none of them, then a built-in exception of class INVALID_OP is
raised at the connect statement on the other end of the link and the local process

waits for another event.

As mentioned in section 4, the meanings of identifiers visible to a given
thread of control come and go in LIFO order. Likewise, the management of
storage for the variables accessible to the thread can be performed in LIFO
order. Variables declared in an outermost module are created when their process
is created. Parameters and variables declared local to a subroutine or entry are
created when control enters the body of their block. Variables declared immedi-
ately inside a non-outermost module are created when control enters the body of
the closest enclosing subroutine, entry, or outermost module. Different instan-

tiations of the same subroutine or entry do not share local variables.

Since a process may have many suspended threads of control at a given
point in time, the variables of a process as a whole cannot be managed on a
stack. The creation of a new thread of control in an entry creales a new branch
in a run-time environment zree. The environment of a thread created with a call
statement is similar 1o that of a procedure; in addition 1o (new) local variables, it

shares the variables in enclosing blocks with its caller. The environment of a

173

thread created in response to a message on a bound link is the same as it would
have been if the entry in question had been called locally at the point the bind

statement was executed.

Control is not allowed (o return from a subroutine whose local variables are
still accessible 1o other threads of control or to potential threads that might be
created in response to incoming messages. Similarly, a thread does not terminate
when it reaches the end of the body of its entry; it too waits for nested threads 1o
finish. A process terminates only after all its threads have finished. A thread
that is waiting for nested threads does so at the very bottom of the block, affer the

word END. Exception handlers for the block are no longer active.

7.1. Blocking Statements

The absence of asynchronous context switches allows the programmer to
assume that data structures remain consistent until the current thread of control

blocks. A context switch between the threads of a process can occur
(1) atevery connect, call, accept, and reply statement,

(2) at every await statement,

(3) whenever the current thread terminates, and

(4) whenever control reaches the end of a subroutine, entry, or outermost
module whose local variables remain accessible to other threads or potential

threads.

In the absence of exceptions, a thread that resumes execution after a con-
text switch continues with the statement immediately following the statement that
blocked. Functions must not contain blocking statements or calls (o subroutines

whose execution may lead to a blocking statement.

174

7.2. Exception Handling

Exceptions interrupt the normal flow of control, They come in two
varieties.

Built-in exceptions are associaled with links. In the process of communica-
tion on link end L, the following exceptions may arise:
L INVALID_OP

A remote operalion was requested, but it was not among those for which

there were acceprs or bindings in the process on the far end of L.

L TYPE_CLASH
A remole operation was requesied, and the process on the far end of L was
willing to serve it, but the two processes disagreed on the number, order,
or types of the request or reply paramelers.

L LOCAL_DESTROYED
The link end referenced by L was destroyed by a thread of control in the
local process.

L REMOTE_DESTROYED

The other end of the link referenced by L was destroyed by a thread in the

process that owned it.
L EXC_REPLY
A remolc operation had started, but the thread of control that was serving it

felt an exception that prevented it from replying.!®

1o There is no corresponding exception for a server whose client feels a
locally-defined exception before it can receive its reply. When a reply stalement
completes withoul exception, a server can assume that the reply message was
successfully delivered if and only if the client thread was still alive within the pro-
cess on the far end of the link. The server can be sure that the clienl’s process

L LENGTH_CLASH

An unchecked send or receive was attempted, but the receiver wanted fewer
bytes than the sender sent. The built-in function ACTUAL_LENGTH will
return the number of bytes successfully transferred. This number will be

the smaller of the lengths expected by the two processes.

Exceptions occur only when all threads arc blocked. Built-in exceptions
are raised in the thread in which they arise. The handlers of the closest enclos-
ing compound slatement are examined in order to see if one of them matches the
exception that arose. 1f one does, then the thread is moved to the beginning of
the matching handler and is ready to continue. The handler will be executed in
place of the portion of the compound statement that had yet to be executed when

the exception occurred.

If the closest enclosing compound staternent has no handlers, or if none of
them matches the exception, then the exception ‘propagates to the handlers of
the nest enclosing compound statement. If the propagation reaches the com-
pound statement comprising the body of a subroutine, then the exception is raised
at the subroutine’s point of call, and propagation continues. Any nested threads
that still have access to the local variables of the subroutine are aborted (recur-

sively). Likewise any bindings that might create such threads are broken.

The propagation of an exception stops when'an appropriate handler is found
or when the body of an entry or outermost module is reached. A thread with no
appropriate handler is aborted. If propagation escapes the scope of an accept
statement, or if an exception remains unhandled in the body of an entry that has

not yet replied, then a buill-in exception of class EXC.REPLY is raised at the

was alive and that the link between them was still intact.

176

corresponding connect statement in the process on the other end of the link.

In the absence of exceptions, when all threads are blocked, the occurrence
of an event allows exactly one thread to continue. With exceptions, however,
more than one thread may be unblocked at once. When a link is destroyed, for
example, all threads waiting for the completion of communication on the same
end of that link are moved to the beginning of their handlers simultaneously, and

an arbilrary one is chosen 1o continue first.

Both built-in and programmer-defined exceptions can arise from use of the
raise stalement. A built-in exception is raised as if it had occurred in communi-
cation in the current thread of control. By contrast, a programmer-defined
exceplion is raised in all and only those threads that have an active handler for it.
Once raised in a thread, a programmer-defined exception propagates like a buili-
in exception. The only difference is that the propagation will always encounter

an appropriate handler by the time it reaches the compound staiement in which

the thread originated.

When a connect, accepl, or reply statement is interrupled by a
programmer-defined exception, the language makes no guaraniee aboul whether
or not the requested communication will have occurred. Any of the following
conditions may hold.

connect

1) The operation may not have started. The process at the other end of the
link does not know anything has happened. 2} The request may have been
received by the process at the far end of the link. It is now being served.
The reply message will be discarded when it arrives. 3) The operation may

have completed. The reply message will have been discarded.

. 177

accept
11 The operation may not have started. The process at the other end of the
link does not know anything has happened. 2) A request may have been
received. The connecled thread (if it still exists) in the process at the other
end of the link will fee! a built-in exception of class EXC_REPLY.

reply
1) The operation may not have completed. The connected thread (i it still
exists) in the process at the other end of the link will feel a built-in excep-
tion of class EXC REPLY. If the server .E«mma attempts to reply again,
then an error has occurred and execution must stop. 2) The operation may
have completed. The process at the other end of the link does not know

anything has happened.

In the case of connect and reply, link ends that were enclosed (or were to have

been enclosed) are no longer accessible to the sending process.

7.3. Message Type Checking

Since the client and server involved in a remote operation will in general be
in different processes, they will share no declarations. Run-time checking is
necessary 10 assure that they agree on the number, order, and structural

equivalence of request and reply paramelers.

Structural equivalence is a weaker check than the notion of compatible
types used in the rest of the language. The built-in types arc of course equivalent
in every process. Enumeration types are équivalent if they have the same
number of values. Subrange types are equivalent if they have the same bounds

and the same (built-in) base type. Array types are equivalent if they have

178

equivalent index and element types. Record types are equivalent if their fields

have equivalent types and occur in the same order.

If a client requests an operation that the process on the other end of the link
is willing to serve, but the server would disagree about the number, order, or
structure of the parameters of the request or reply messages, then a built-in
exception of class TYPE_CLASH is raised in the client. The server continues to

wait for a valid, matching request.

8. Pre-defined ldentifiers

The following identifiers are pre-defined.

types: Boolean, integer, char, link

constants: true, false, nolink

exception classes: TYPE_CLASH, INVALID_OP, LENGTH_CLASH,
EXC_REPLY, LOCAL_DESTROYED,

REMOTE_DESTROYED
functions: newlink, valid, curlink, ACTUAL_LENGTH
procedures: destroy

The types, constants, and exception classes have been discussed elsewhere.

The function *‘newlink’’ takes a single reference parameter of type link and
yields a value of type link. The parameter and function value return references

10 the two ends of a new link, created as a side effect.

The function *‘valid’’ takes a single value parameter of type link and yiclds
a value of type Boolean. The value indicates whether the parameter accesses an

end of a currently valid link that can be used in communication or bindings.

The function “‘curlink’’ takes no parameters. It rewrns a value of type
link. The value is a reference 1o the link on which the request message arrived

for the closest lexically-enclosing entry {not the original entry for the current

179

thread of control). If there is no enclosing entry, or if the closest enclosing entry

was invoked locally with a call statement, then curlink yields nolink.

The funclion ““ACTUAL_LENGTH”’ iakes no parameters. It returns a
value of type integer. If ACTUAL_LENGTH is called before the first context
switch after the completion of a send or receive statement, then the value is the
number of bytes

actually transfefred. In other

circumstances,
ACTUAL_LENGTH returns garbage. ACTUAL_LENGTH is intended for use
in code immediately following a reccive statement or in handlers for

LENGTH_CLASH exceptions.

The procedure ‘‘destroy’” takes a single value parameter of type link. It
destroys the corresponding link. Variables referencing either end of the link (in
any process) become invalid. An attempt to amm:Q a nil or dangling link is a

no-op.

9. Collected Syntax

The following is an LL(!) grammar for LYNX. Process list is the start

symbol. The notation

A

B|C
is shorthand for

A =B

Epsilon (€) denotes the empty string.

accepl_stmt ACCEPT IDENTIFIER d_arg_opt ON expr ;
o_s_list_opt reply

{ mode formal more_m_formals) | e

I

arg list_opt

array.-type
awailstmt

bind_stmt
body

call_args
call_args_opt
call_stmt
case_listopt
case_stmt
chanzeover

communication

comp-list_opt
complist_tail
component
component_list
component_tail
compound_stmt
connect.stmt
const_dec
const.dec_tail
constant
cpd_stmL.opt
d_arg_opt
dec_.pt
declaration

defaultopt
des_listopt
des_list_tail
designator
designator_list
designator_tail

e.arg_opt

It

I

i

I}

I

]

i

I

i

H

i

i

i

il

it

1

]

i

it

ARRAY type OF type

AWAIT expr

BIND expr_list TO ident_list

UNBIND expr-list FROM ident_list
dec..pt compound_stmt IDENTIFIER
FORWARD | EXTERNAL | REMOTE
expr.list | des_lis,opt | | designator_list
(callargs) | e

CALL IDENTIFIER call_args_opl

{ componentlist } stmL lisLopt case_lisL.opt | €
CASE expr OF case_list_opt defauli_opt END
| expr] designator_tail

: IDENTIFIER designator_tail
connecL_stmi | call_stmt | acceptstmt
send_simt | receive_stmt

component_list | €

, component comp_list_tail | €

expr component.laii

component comp-iist_tail

.oexpr | e

BEGIN simt_listopt hand_lisL_opt END
CONNECT IDENTIFIER call_args_opt ON expr
IDENTIFIER = expr; | ;

const_dec consL.dec_tail | €
CHARCONST | STRINGCONST | NUMBER
compound.stmt | END

{ designator_list) | e

declaration dec.pt | €

CONST const-dec const_dec..tail

TYPE type_dec type_dec_tail

VAR variable_dec var_dec_tail
EXCEPTION ident list ;

subroutine ; | entry ; | module ;
OTHERWISE stmtlistopt | €
designator_list | €

, designator des_listtail | e

selector firstchange

designator des_list_tail

. IDENTIFIER designator_tail

changeover | €

(expr.list) | €

180

else_opt
elsif_list_opt
enclosure_opt
entry
enum-_type
exception
existmt
exporL.pt
expr
expr-list
expr_list_tail
expr_opt
expr_tail
factor

ficld

field_list_opt
firsichange
foreach_loop

forever_loop
formal
formal_1ail

fun_type_opt
generator

hand_list.opt
id_list tail
identlist
identopt
if_stmt
import_pt
in_args_opt
io

label_opt
labeled_stmt
length_opt
loop—_stmt

181

::= ELSE stmt_listopt | €
;= ELSIF expr THEN stmtlist_opt elsif_lisL.opt | €
= WITH expr | €

I

ENTRY IDENTIFIER in_args_opt out_types_opt ; body
(identlist)

expr ident_opt .

EXIT ident_opt

EXPORT identlist; | €

term expr_tail

it

i

1= expr exprlist_tail

[

,exprolist | €

= expr | e

= rel_op term expr_tail | €
;1= NOT factor | - factor | constant
ii=sel | (expri | selector sel_fac_tail

s= ident list s ype ;|

;= CASE IDENTIFIER : type OF vntlist opt END ;
::= field field_lisLopt | €

;2= changeover | e

::= FOREACH IDENTIFIER IN generator DO

stmt_lis,opt END

;:= LOOP stmt.lisLopt END
::= ident_list : IDENTIFIER
;1= ; formal formal_tail | e

::= : IDENTIFIER | € i

t

[expr .. expr] | selector firstchange
set | REVERSE reversible_gen
when_clause more_handlers | €

, ident list | €

IDENTIFIER id_list_tail
IDENTIFIER | €

IF expr THEN stmt_lisLopt elsif_list_opt else_opt END
IMPORT identlist ; | €

{ formal formal_tail) | e

WRITE (expr_list)

READ (expr des_lisLopt)

<< IDENTIFIER >> | €

I

il

i

I

il

il

I

n

;1= loop.stmt | compound_stmt
= <term > | €

1= while_loop | foreach_loop
::= repeat_loop | forever_loop

mode
module

more_handlers
more_m._formals
more_whens
o-s_lisLopt
other_op
other_stmt

out_types_opt
process

process_list
raise_stmt
receive_stmt
record_type
rel_op

repeat_loop
reply
return.stmt
reversibie_gen
sel_fac_tail
sel_stmt_tail
selector
selector_tail
send_stmt
set

set-type

stmt
stmi_list_opt
subr_type
subroutine

term
term._tail

type

182

;= VAR | CONST | e
+= MODULE IDENTIFIER ; imporL_pt export.pt
dec..pt cpd_stmi_opt IDENTIFIER
.= when_clause more_handlers | €
: mode formal more_m_formals | €
, exception more_whens | €
other_stmt ; o_s_lisLopt | €
OR | AND | + | = | =}/ | MOD
label_opt labeled_stmt | communication | io
bind_stmt | if_stmt | case_simt | exit.stmt
with_stml | return_stmt | await.stmt | raise_stmt
selector sel_stmitail | €
;= identlist | e
::= MODULE IDENTIFIER in_args_opt ;
dec_pt cpd_stmiopt IDENTIFIER
;1= process . process_list 3
::= RAISE exception
.:= RECEIVE designator length._opt enclosure..opt ON expr
;= RECORD field_lisL,opt END
IN| ~ | ~>
=] <> <}<=}]>f>=
REPEAT stmtlistopt UNTIL expr
REPLY e_arg opt
RETURN expr_opt
{expr .. expr] | sclector
changeover | (expr-list) | e
::= firstchange := expr | c.arg-opt
;= IDENTIFIER selector._tail
::= ., IDENTIFIER selector_tail | €
::= SEND designator length..opt enclosure_opt ON expr
;1= { comp_listopt }
SET OF type
reply | other_stmt
stmt ; stmi_listopt | €
[expr .. expr]
PROCEDURE IDENTIFIER arg_lisLopt ; body
FUNCTION IDENTIFIER arg-listopt fun_type_opt
; body
.= factor term_tail
::= other_op factor term_tail | €
.+= IDENTIFIER | enum_type | subr_type

i

I

il

i

il

il

i

It

il

I

i

]

i

it

I

it

i

type_dec
type_dec_tail
var_dec_tail
variable_dec
variant
vnt_list_opt
when..clause
while_loop
with_stmt

it

i

1

. 183

array_type | record.-type | seL.type
IDENTIFIER = type; |

type-dec type.dec-tail | e

variable_dec var.dec_tail | .¢

ident_list : type ; | ; i

} component_list } ficld_list_opt

variant vat_listopt | €

WHEN exception more_whens DO stmt_list_opt
WHILE expr DO stmt_list_opt END ’
WITH designator DO stmt_listopt END

184

REFERENCES

{11

(2]

{31

[6]

18]

{9

Allchin, J. E. and M. S. McKendry, ‘‘Synchronization and Recovery of
Actions,”” ACM Operating Systems Review 19:1 (January 1985), pp. 32-45.
Originally presented at the Second ACM SIGACT/SIGOPS Symposium
on Principles of Distributed Computing, Montreal, Quebec, Canada, i7-
19 August, 1983,

Almes, G. T., A. P. Black, E. D. Lazowska, and J. D. Noe, ‘*The Eden
System: A Technical Review,”’ Technical Report 83-10-05, Department of
Computer Science, University of Washington, October 1983.

Andrews, G. R. and J. R. McGraw, *‘Language Features for Process
Interaction,’’ Proceedings of an ACM Conference on Language Design for
Reliable Software, 28-30 March 1977, pp. i114-127. In ACM SIGPLAN
Notices 12:3 (March 1977).

Andrews, G. R., ‘‘Synchronizing Resources,”” ACM TOPLAS 3:4
{October 1981), pp. 405-430.

Andrews, G. R., ‘‘The Distributed Programming Language SR —
Mechanisms, Design and Implementation,” Software — Practice and
Experience 12 (1982), pp. 719-753.

Andrews, G. R. and F. B. Schneider, ‘“‘Concepts and Notations for Con-
current Programming,”” ACM Computing Surveys 15:1 (March 1983), pp.
3-44.

Artsy, Y., H.-Y. Chang, and R. Finkel, “*Charlotte: Design and Imple-
mentation of a Distributed Kernel,”” Computer Sciences Technical Report
#3554, University of Wisconsin - Madison, August 1984.

Baiardi, F., L. Ricci, and M. Vanneschi, ‘‘Static Checking of Interpro-
cess Communication in ECSP,” Proceedings of the ACM SIGPLAN "84
Symposium on Compiler Construction, 17-22 Junc 1984, pp. 290-299. In
ACM SIGPLAN Notices 19:6 (Junc 1984).

Ball, J. E., G. J. Williams, and J. R. Low, ‘‘Preliminary ZENO
Language Description,”” ACM SIGPLAN Notices 14:9 (September 1979),
pp. 17-34.

[10]

1]

{12]

[13]

[14]

{15]

{16]

[17]

(18]

[19]

[20]

185

Baskeu, F., J. H. Howard, and J. T. Montague, ‘‘Task Communication
in Demos,™ Proceedings of the Sixth ACM Symposium on Operating Sysiems
Principles, November 1977, pp. 23-31.

Beech, D., **A Structural View of PL/1,"" Computing Surveys 2:1 (March
1670), pp. 33-64.

Bernstein, A. J., **Output Guards and.Nondeterminism in ‘Communicat-
ing Sequential Processes’,” ACM TOPLAS 2:2 {April 1980), pp. 234-238.

Bernsiein, A. J. and J. R. Ensor, **A Modula Based Language Support-
ing Hierarchical Development and Verification,”” Software — Practice and
Experience 11 (1981), pp. 237-255.

Birtwistle, G. M., O.-]. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA
Begin, Auerback Press, Philadelphia, 1973.

Black, A. P., '‘An Asymmetric Stream Communication System,’’
Proceedings of the Ninth ACM Symposium on Operating Systems Principles,

-10-13 Ociober 1983, pp. 4-10. In ACM Operating Systems Review 17:5.

Bobrow, D. G. and B. Raphael, ‘‘New Programming Languages for
Artificial Intelligence Research,”” Computing Surveys 6:3 (September
1674), pp. 153-174.

Bos, J. van den, ‘‘Input Tools — A New Language for Input-Driven Pro-
grams,”’ Proceedings of the European Conference on Applied Information
Technology, IF1P, 25-28 September 1979, pp. 273-279. Published as
EURO IFIP 79, North-Holland, Amsterdam, 1979.

Bos, J. van den, R. Plasmeijer, and J. Stroet, ‘‘Process Communication
Based on Input Specifications,” ACM TOPLAS 3:3 (July 1981), pp. 224-
250.

Brinch Hansen, P., *‘Structured Multi-programming,’” CACM 15:7 (July
1972), pp. 574-578.

Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

{21]

(22

{23]

i24]

[25]

[26]

[27]

(28]

{29]

[30]

186

Brinch Hansen, P., *'The Programming Language Concurrent Pascal,”
IEEE Transactions on Sofiware Engineering SE-1:2 (June 1975), pp. 199-
207.

Brinch Hansen, P., ‘*Distributed Processes: A Concurrent Programming
Concept,”’ CACM21:11 (November 1978), pp. 934-941.

Brinch Hansen, P., **The Design of Edison,”” Technical Report, Univer-

sity of Southern California Computer Science Department, September
1980.

Brinch Hansen, P., “‘Edison: A Muliiprocessor Language,’” Technical
Report, University of Southern California Computer Science Department,
September 1980.

Browne, J. C., J. E. Dutton, V. Fernandes, A. Palmer, J. Silverman, A.
R. Tripathi, and P.-S. Wang, ‘‘Zeus: An Object-Oricnted Distributed
Operating System for Reliable Applications,”” Proceedings of the 1984
ACM Annual Conference, 8-10 October 1984, pp. 179-188.

Buckley, G. N. and A. Silberschatz, ‘*‘An Effective Implementation for
the Generalized Input-Output Construct of CSP,”” ACM TOPLAS 5:2
(April 1983), pp. 223-235.

Burger, W. F., N. Halim, J. A, Pershing, F. N, Parr, R. E. Strom, and
S. Yemini, ‘‘Draft NIL Reference Manual,”” RC 9732 (#42993), 1.B.M.
T. J. Watson Resecarch Center, December 1982.

Campbell, R. H. and A. N. Habermann, ‘‘The Specification of Process
Synchronization by Path Expressions,” pp. 89-102 in Operating Systems,
Lecture Notes in Computer Science #16, ed. C. Kaiser, Springer-Verlag,
Berlin, 1974,

Cashin, P., *‘Inter-Process Communication,”” Technical Report 8005014,
Bell-Northern Research, 3 June 1980.

Cheriton, D. R. and W. Zwaenepoel, ‘“The Distributed V Kernel and its
Performance for Diskless Workstations,”” Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, 10-13 October 1983, pp.
128-139. In ACM Operating Systems Review 17:5.

(311

[32]

{33]

[34]

{35]

{36]

{37

[38]

[39]

[40]

187

Cook, R. P., ‘‘*Mod--A Language for Distributed Programming,”’ IEEE
Transactions on Software Engineering SE-6:6 (November 1980), pp. 563-
571.

Cook, R. P., ‘““The StarMod Distributed Programming System,”” IEEE
COMPCON Fall 1980, Sepiember 1980, pp. 729-735.

Courtois, P. J., F. Heymans, and D. L. Parnas, '‘Concurrent Control
with ‘Readers’ and ‘Writers’,”” CACM 14:10 (Ociober 1971), pp. 667-
668.

DeWwin, D. J., R. Finkel, and M. Solomon, *“The CRYSTAL Multicom-
puter: Design and Implementation Experience,”” Computer Sciences
Technical Report #553, University of Wisconsin - Madison, September
1984.

Dijkstra, E. W., **Co-operating sequential processes,”” pp. 43-112 in Pro-
gramming Languages, ed. F. Genuys, Academic Press, London, 1968,

Dijkstra, E. W., ‘‘Hierarchical Ordering of Sequential Processes,’” pp.
72-93 in Operating Systems Techniques, A. P. 1. C. Studies in Data Pro-
cessing #9, ed. C. A. R, Hoare and R. H. Perrott, Academic Press, Lon-
don, 1972. Also Acta Informatica 1 (1971), pp 115-138.

Dijkstra, E. W, “'Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,”” CACM 18:8 (August 1975), pp. 453-457.

Ellis, C. S., J. A. Feldman, and J. E. Heliotis, ‘‘Language Constructs
and Support Systems for Distributed Computing,”” Proceedings of the ACM
SIGACT-SIGOPS Symposium on Principles of Distribuied Computing, 18-20
August 1982, pp. 1-9.

Feldman, J. A., ‘‘High Level Programming for Distributed Computing,”’
CACM 22:6 {June 1979), pp. 353-368.

Finkel, R., R. Cook, D. DeWitt, N.'Hall, and L. Landweber, ‘*Wiscon-
sin Modula: Part 111 of the First Report on the Crystal Project,”” Com-
puter Sciences Technical Report #501, University of Wisconsin -
Madison, April 1983.

f41]

[42]

{43]

[44]

{45]

{46}

{47}

{48]

149]

[50]

188

Finkel, R., M. Solomon, D. DeWit, and L. Landweber, *‘The Charlotie
Distributed Operating System: Part 1V of the First Report on the Crystal
Project,” Computer Sciences Technical Report #502, University of
Wisconsin - Madison, October 1983,

Finkel, R. and U. Manber, “‘DIB: A Distributed Implementation of
Backiracking,”” submitted to the Fifth International Conference on Distri-

buted Computing Systems, September 1984.

Finkel, R. A., “*Tools for Paraliel Programming,’’ Appendix B of Second

. Report, Wisconsin Parallel Array Computer (WISPAC) Research Project,

University of Wisconsin Electrical and Computer Engineering Report
#80-27, August 1980.

Finkel, R. A. and M. H. Solomon, *‘The Arachne Distributed Operating
System,”” Computer Sciences Technical Report #439, University of
Wisconsin - Madison, 1981.

Fischer, C. N., D. R. Milton, and S. B. Quiring, “Efficient LL(1) Error
Correction and Recovery Using Only Insertions,”” Acta Informatica 13:2
(1980), pp. 141-154.

Fishburn, J. P., ‘‘An Analysis of Speedup in Parallel Algorithms,”’
Ph. D. thesis, Computer Sciences Technical Report #431, University of
Wisconsin - Madison, May 1981.

Gelernter, D. and A. Bernstein, ‘‘Distributed Communication via Global
Buffer,”” Proceedings of the ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, 18-20 August 1982, pp. 10-18.

Gelernter, D., “*Dynamic Global Name Spaces on Network Computers,”’
Proceedings of the 1984 International Conference on Paralle! Processing,
21-24 August, 1984, pp. 25-31.

Gelernter, D., ‘‘Generative Communication in Linda,”> ACM TOPLAS 7:1
(January 1985), pp. 80-112.

Ghezzi, C. and M. Jazayeri, Programming Language Concepts, John Wiley
and Sons, New York, 1982,

(51}

152]

{53]

{56}

{60]

189

Good, D. 1., R. M. Cohen, and J. Keeton-Williams, “‘Principles of Prov-
ing Concurrent Programs in Gypsy,”” Conference Record of the Sixth
Annual ACM Symposium on Principles of Programming Languages, 29-31
January 1979, pp. 42-52.

Habermann, A. N., “‘Synchronization of Communicating Processes,”
CACM 15:3 (March 1972), pp. 171-176.

Habermann, A. N., *‘On the Timing Restrictions of Concurrent
Processes,”” Fourth Annual Texas Conference on Compuling Systems, 17-18
November 1975, pp. 1A.3.1-1A.3.6.

Haddon, B. K., ‘*Nested Monitor Calls,”’ ACM Operating Systems Review
11:4 (October 1977), pp. 18-23.

Herlihy, M. and B. Liskov, ‘‘Communicating Abstract Values in Mes-
sages,’’ Computation Structures Group Memo 200, Laboratory for Com-
puter Science, MIT, October 1980.

Hoare, C. A. Ry, ““Towards a Theory of Parallel Programming,” pp.
61-71 in Operating Systems Techniques, A. P. 1. C. Studies in Data Pro-
cessing #9, ed. C. A. R. Hoare and R. H. Perrotl, Academic Press, Lon-
don, 1972.

Hoare, C. A. R., ‘‘Monitors: An Operating Sysiems Structuring Con-
cepl,”” CACM 17:10 (October 1974), pp. 549-557.

Hoare, C. A. R., ‘*Communicating Sequential Processes,”” CACM 21:8
(August 1978), pp. 666-677.

Holt, R. C., G. S. Graham, E. D. Lazowska, and M. A. Scol,
““Announcing CONCURRENT SP/k,”” ACM Operating Systems Review
12:2 (April 1978), pp. 4-7. .
Holt, R. C., G. S. Graham, E. D. Lazowska, and M. A. Scou, Structured
Concurrent Programming with Operaiing Systems Applications, Addison-
Wesley, 1978. a

[61]

[62]

[63]

[64]

[65]

{66]

{67]

{68]

[69]

{70]

190

Holt, R. C., **A Short Introduction to Concurrent Euclid,”” ACM SIG-
PLAN Notices 17:5 (May 1982), pp. 60-79.

Howard, J. H., “*Signaling in Monitors,”’ Proceedings of the Second Inter-
national Conference on Software Engineering, 13-15 October 1976, pp.
47-52.

Ichbiah, J. D., J. G. P. Barnes, J. C. Heliard, B. Krieg-Brueckner, O.
Rouvhine, and B. A. Wichmann, ‘‘Rationale for the Design of the ADA
Programming Language,”” ACM SIGPLAN Notices 14:6 (June 1979).

Jazayeri, M., C. Ghezzi, D. Hoffman, D. Middleton, and M. Smother-
man, ‘‘CSP/80: A Language for Communicating Sequential Processes,”’
IEEE COMPCON Fall 1980, 23-25 September 1980, pp. 736-740.

Jensen, K. and N. Wirth, Pascal User Manual and Report, Lecture Notes
in Computer Science #18, Springer-Verlag, Beriin, 1974,

Kahn, G. and D. B. MacQueen, ‘‘Coroutines and Networks of Parallel
Processes,” pp. 993-998 in Information Processing 77, ed. B. Gilchrist,
North-Holland, 1977. Proceedings of the 1977 IFIP Congress, Toronto,
8-12 August 1977,

Kaubisch, W. H., R. H. Perrou, and C. A. R. Hoare, ‘‘Quasiparallel
Programming,” Software — Practice and Experience 6 (1976), pp. 341-
356.

Keedy, 1. L., **On Structuring Operating Systems with Monitors,”” ACM
Operating Systems Review 13:1 (January 1979), pp. 5-9.

Kepecs, J., ‘‘SODA: A Simplified Operating System for Distributed
Applications,” Ph. D. Thesis, University of Wisconsin - Madison, Janu-
ary 1984. Published as Computer Sciences Technical Report #527, by J.
Kepeces and M. Solomon.

Kernighan, B. W. and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Englewood Cliffs, 1978.

(711

{72]

{731

[74]

{751

{76]

1771

[78]

{791

180]

191

Kessels, J. L. W., “‘An Alternative 1o Event Queues for Synchronization
in Monitors,” CACM 20:7 (July 1977}, pp. 500-503.

Kral, J., “‘The Equivalence of Modes and the Equivalence of Finite Auto-
mata,’” ALGOL Bulletin 35 (March 1973), pp. 34-35.

Lampson, B. W., J. J. Horning, R. L. London, J. G. Miichell, and G. J.
Popek, ‘‘Report On The Programming Language Euclid,”” ACM SIGPLAN
Notices 12:2 (February 1977).

Lampson, B. W. and D. D. Redell, ‘‘Experience with Processes and
Monitors in Mesa,”” CACM23:2 (February 1980), pp. 105-117.

Lauer, H. C. and R. M. Needham, ‘‘On the Duality of Operating System
Structures,”” ACM Operating Systems Review 13:2 (April 1979), pp. 3-19.
Originally presented at the Second International Symposium on Operating
Systemns, October 1978.

LeBlanc, R. J. and C. N. Fischer, **On Implementing Separate Compila-
tion in Block-Structured Languages,”” Proceedings of the SIGPLAN Sympo-
sium on Compiler Construction, 6-10 August 1979, pp. 139-143. In ACM
SIGPLAN Notices 14:8 (August 1979).

LeBlanc, T. J. and R. P. Cook, “*‘An’ Analysis of Language Models for
High-Performance Communication in Local-Area Networks,”” Proceed-
ings of the SIGPLAN '83 Symposium on Programming Language Issues in
Software Systems, 27-29 June 1983, pp. 65-72. In ACM SIGPLAN Noiices
18:6 (June 1983).

Liskov, B., A. Snyder, R. Atkinson, m:m C. Schaffert, ‘‘Abstraction
Mechanisms in CLU,"" CACM 20 {August 1977), pp. 564-576.

Liskov, B., ‘‘Primitives for Distributed Computing,”” Proceedings of the
Seventh ACM Symposium on Operating Systems Principles, December 1979,
pp. 33-42.

Liskov, B., ‘‘Linguistic Support for Distributed Programs: A Status
Reporl,”’ Computation Structures Group Memo 201, Laboratory for Com-
puter Science, MIT, October 1980.

{81]

182]

{83]

[84]

[85]

186]

(87}

(88]

(891

[90]

192

Liskov, B. and M. Herlihy, ‘‘Issues in Process and Communication
Structure for Distributed Programs,”” Proceedings of the Third IEEE Sym-
posium on Reliability in Distributed Software and Database Systems, October
1983, pp. 123-132.

Liskov, B. and R. Scheifler, **‘Guardians and Actions: Linguistic Support
for Robust, Distributed Programs,”> ACM TOPLAS 5:3 (July 1983), ppP-
381-404.

Liskov, B., M. Herlihy, and L. Gilbert, “*Limitations of Remote Pro-
cedure Call and Static Process Structure for Distributed Computing,”
Programming Methodology Group Memo 41, Laboratory for Computer

Science, MIT, September 1984,

Liskov, B., ‘‘Overview of the Argus Language and System,”” Program-
ming Methodology Group Memo 40, Laboratory for Computer Science,
MIT, February 1984.

Lister, A., **The Problem of Nested Monitor Calls,”” ACM Operating Sys-
tems Review 11:3 (July 1977), pp. 5-7. Relevant correspondence appears
in Volume 12, numbers I, 2, 3, and 4.

Lister, A. M. and K. J. Maynard, ‘‘An Implementation of Monitors,”’
Software — Practice and Experience 6 (1976), pp. 377-385.

Mao, T. W. and R. T. Yeh, **Communication Port: A Language Concept
for Concurrent Programming,”” IEEE Transactions on Sofware Engineering
SE-6:2 (March 1980), pp. 194-204.

May, D., **OCCAM,” ACM SIGPLAN Nolices 18:4 (April 1983), pp.
69-79. Relevant correspondence appears in Volume 19, number 2 and
Volume 18, number !1.

Mitchell, J. G., W. Maybury, and R. Sweet, ‘‘Mesa Language Manual,
version 5.0,”” CSL-79-3, Xerox Palo Alto Research Center, April 1979.

Nelson, B. J., ‘‘Remote Procedure Call,”” Ph. D. Thesis, Technical
Report CMU-CS-81-119, Carnegic-Mellon University, 1981.

[91)

192]

193]

[94]

195]

[96]

971
198]

1991

(100}

193

Parnas, D. L., ‘‘The Non-Problem of Nested Monitor Calls,”" ACM
Operating Systems Review 12:1 (January 1978), pp. 12-14. Appears with a
response by A. Lister,

Powell, M. L. and B. P. Miller, *‘Process Migration in DEMOS/MP,”
Proceedings of the Ninth ACM Symposium on Operating Systems Principles,

10-13 October 1983, pp. 110-118. In ACM Operating Systems Review
17:5.

Prau, T., Programming Languages: Design and Implementation, Prentice-
Hall, Englewood Cliffs, 1975.

Rashid, R. F. and G. G. Robertson, ‘‘Accent: A Communication
Oriented Network Operating System Kernel,”” Proceedings of the Eighth
ACM Symposium on Operating Systems Principles, 14-16 December 1981,
pp. 64-75.

Robert, P. and J.-P. Verjus, ‘‘Toward Autonomous Descriptions of Syn-
chronization Modules,” pp. 981-986 in Information Processing 77, ed. B.
Gilchrist, North-Holland, 1977. Proceedings of the 1977 IFIP Congress,
Toronto, 8-12 August 1977. :

Roper, T. J. and C. J. Barter, “A nom,:&:mnm::m Sequential Process
Language and Implementation,’’ Software — Practice and Experience 11
(1981), pp. 1215-1234.

Salizer, J. H., D. P. Reed, and D. D. Clark, *‘End-To-End Arguments in
System Design,”” ACM TOCS 2:4 (November 1984), pp. 277-288.

Scolt, M. L., ‘‘Messages v. Remote Procedures is a False Dichotomy,”
ACM SIGPLAN Notices 18:5 (May 1983), pp. 57-62.

Scolt, M. L. and R. A. Finkel, *'A Simple Mechanism for Type Security
Across Compilation Units,”” Computer Sciences Technical Report #541,
University of Wisconsin - Madison, May 1984.

Scott, M. L. and R. A. Finkel, ““LYNX: A Dynamic Distributed Pro-
gramming Language,” Proceedings of the 1984 International Conference
on Parallel Processing, 21-24 August, 1984, pp. 395-401.

(101}

[102]

{1031

[104]

[105]

[106]

[107)

{108]

[109]

[110}

194

Seitz, C. L., *“The Cosmic Cube,”” CACM 28:1 (January 1985), pp. 22-
33.

Solomon, M. H. and R. A, Finkel, **The Roscoe Distributed Operating
System,”” Proceedings of the Seventh ACM Symposium on Operating Systems
Principles, December 1979, pp. 108-114.

Spector, A. Z., *‘Performing Remote Operations Efficiently on a Local
Computer Network,”” CACM 25:4 (April 1982), pp. 246-260.

Stallings, W., ‘‘Local Networks,”” 4CM Computing Surveys 16:1 (March
1984), pp. 3-41.

Strom, R. E. and S. Yemini, ‘*NIL: An Integrated Language and System
for Distributed Programming,’’ Proceedings of the SIGPLAN '83 Sympo-
sium on Programming Language Issues in Software Systems, 27-29 June
1983, pp. 73-82. In ACM SIGPLAN Notices 18:6 (June 1983).

Tanenbaum, A. S., ‘‘A Tutorial on Algol 68,”" ACM Computing Surveys
8:2 (June 1976), p. 155.

Tennent, R. D., ‘‘Another Look at Type Compatibility in Pascal,”
Software — Practice and Experience 8 (1978), pp. 429-437.

United States Department of Defense, *'Reference Manual for the Ada
Programming Language,”” (ANSI/MIL-STD-1815A-1983), 17 February
1983.

Walker, B., G. Popek, R. English, C. Kline, and G. Thiel, ‘“The
LOCUS Distributed Operating System,’’ Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, 10-13 October 1983, pp. 49-
70. In ACM Operating Systems Review 17:5.

Weihl, W. and B. Liskov, ‘‘Specification and Implementation of Resi-
lient, Atomic Data Types,’’ Proceedings of the SIGPLAN "83 Symposium on
Programming Language Issues in Software Systems, 27-29 Junc 1983, pp.
$3-64. In ACM SIGPLAN Notices 18:6 (June 1983).

